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For unbounded maximal sectorial operators we establish necessary and sufficient 
conditions for the domain equality domA = domA∗ and for the equality ReA = AR

of operator real part ReA and form real part AR. Here ReA = 1
2 (A + A∗) is 

half of the operator sum defined on domA ∩ domA∗, whereas AR = 1
2 (A+̇A∗) is 

the self-adjoint operator given by half of the form-sum of A and A∗ so that, in 
general, ReA ⊆ AR. The natural question posed in [6], whether for a maximal 
sectorial operator A the equality domA = domA∗ implies the equality ReA =
AR, is answered negatively in this paper. We construct families of unbounded 
coercive m-sectorial operators A such that domA = domA∗ for which ReA is 
a closed symmetric non-selfadjoint operator or a non-closed essentially selfadjoint 
operator. Moreover, we show that the domain equalities domA = domA∗ and 
domReA = domAR are equivalent to problems of invariant operator ranges of 
bounded selfadjoint or unitary operators as well as to the existence of bounded 
operators with specific operator range properties.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

In contrast to bounded operators the decomposition of an unbounded operator A in a Hilbert space into 
real and imaginary part may, in general, pose serious problems. For example, it may happen that domA ∩
domA∗ = {0} ruling out the obvious candidate ReA = 1

2 (A + A∗) or the operator A may not be sectorial 
so that the next obvious candidate AR = 1

2(A+̇A∗) taken in form sum sense may not be available either. 
However, even if both ReA and AR can be formed and hence ReA ⊆ AR, the problem whether, for maximal 
sectorial A, the equality domA = domA∗ implies the equality ReA = AR, see [6], has remained open.

In this paper we give a negative answer to this question. In addition, for an unbounded maximal sectorial 
(m-sectorial, for short) operator A we establish various equivalent conditions that guarantee the inclusion 
domA ⊆ domA∗ as well as the equalities domA = domA∗ and ReA = AR. Here the operator real part
ReA = 1

2 (A + A∗) is defined as the operator sum on dom ReA = domA ∩ domA∗, while the form real 
part AR = 1

2 (A+̇A∗) is defined via the form-sum of the operators A and A∗, i.e. AR is associated with the 
real part of the closed sesquilinear form induced by A, see [28, Sect. VI.3.1]. The operator AR is always 
selfadjoint (and nonnegative) and, in general, ReA ⊆ AR.

Only recently, in [6], it was proved that the domain intersections domA ∩ domA∗ may be everything in 
between being {0} and being dense but no core of A, and that these properties may occur for nice operator 
classes such as m-sectorial ones. In particular, in [6, Sect. 3, 5] we showed that for any n ∈ N∪{0} there is an 
m-sectorial operator A such that dim (domA ∩ domA∗) = n or codim (domA ∩ domA∗) = n, respectively. 
Further, in [6, Sect. 7] we constructed examples of m-sectorial operators A such that domA = domA∗. We 
also proved that in all these examples the equality domAR = domA or, equivalently, ReA = AR, holds 
true. Moreover, in [1], it was shown how to construct an unbounded operator S with nonempty resolvent 
set and domS = domS∗ such that the operators ReS, ImS = 1

2i (S − S∗) are symmetric with prescribed 
deficiency indices; in the corresponding construction in [1] the operator S is neither accretive nor dissipative. 
On the other hand, it is known, see [25], that if A is a maximal accretive (m-accretive, for short) operator, 
then

• for γ ∈ [0, 1) the m-accretive power Aγ can be defined and Aγ is m-sectorial with semi-angle πγ/2,
• for γ < 1/2 we have domAγ = domA∗γ = dom (Aγ)R, while for γ = 1/2 we have domA

1
2 ∩ domA∗ 1

2 =
dom (A 1

2 )R and hence ReA 1
2 = (A 1

2 )R.

Consequently, for m-sectorial A with semi-angle α ≤ π/4, the following are true:

a) if A2 is accretive, then ReA = AR;
b) if ReA �= AR, then A2 is not accretive.

Moreover, in [31] McIntosh constructed an abstract example of an unbounded m-sectorial operator B
with domB

1
2 �= domB∗ 1

2 ; other abstract examples may be found in [4]. On the other hand, the equal-
ity domB

1
2 = domB∗ 1

2 was established for some classes of m-sectorial second order elliptic differential 
and differential-difference operators B in [8], [9], [10], [23], [38], see also the references therein, hence 
dom (B 1

2 )R = dom (BR) 1
2 and ReB 1

2 = (B 1
2 )R for these operators. Note that due to Kato’s result [27, 

Cor. 2] for m-sectorial operators B, the equality domB = domB∗ implies the equalities

domB
1
2 = domB∗ 1

2 = dom (BR) 1
2 .
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In general, even in the case when domA ∩ domA∗ is dense, it is possible that ReA �= AR. For example, set

A0 = −
d2

dx2, domA0 =
{
f ∈ H2(R+) : f ′(0) = f(0) = 0

}
,

A = −
d2

dx2, domA =
{
f ∈ H2(R+) : f ′(0) = hf(0)

}
with h ∈ C \R, Reh > 0.

Then the operator A0 is densely defined, nonnegative and symmetric with deficiency indices 〈1, 1〉 in the 
Hilbert space L2(R+), while A is m-sectorial, see [5], and

A∗ = −
d2

dx2, domA∗ =
{
f ∈ H2(R+) : f ′(0) = hf(0)

}
.

Clearly, ReA = A0. Hence ReA � AR since AR is selfadjoint.
In this paper we prove that, for coercive m-sectorial A, acting in a Hilbert space H, the range in-

clusion ran (ImA−1) ⊆ ran (ReA−1) is necessary and sufficient for the equality ReA = AR, see Theo-
rem 3.11. Moreover, we show that if for an m-accretive operator A having bounded inverse the above 
range inclusion is fulfilled, then A is m-sectorial, and the equality domA = domA∗ holds if and only if 
ran

(
I + ((ReA−1)−1(ImA−1))2

)
= H, see Theorem 3.13. We also construct holomorphic families A(λ), 

Reλ > 0, of m-sectorial operators with the property Re (A(λ)) = (A(λ))R, see Theorem 3.16.
Moreover, we establish several equivalent necessary and sufficient conditions for the equalities domA

= domA∗ and domA = domA∗ = domAR for m-sectorial A, see Theorem 3.2, Corollary 3.3, Corollary 3.4
and Theorem 3.11, and we give new abstract examples of operators for which domA = domA∗ = domAR; 
here we will often assume that 0 ∈ ρ(A) or that A is coercive which simplifies the treatments.

Besides, for a given bounded nonnegative selfadjoint operator Q with dense range we construct, see 
Theorem 3.16, Corollary 4.4, Theorem 4.8, holomorphic families of m-sectorial operators A(λ), Reλ > 0, 
such that

domA(λ) = domA(λ)∗ = domA(λ)R = ranQ, dom (A(λ)R) 1
2 = ranQ

1
2 ,

and others such that

domA(λ) �= domA(λ)∗, ReA(λ) = A(λ)R, dom (A(λ)R) 1
2 = ranQ

1
2 .

Further, we solve the problem formulated in our paper [6]: does the equality domA = domA∗ imply the 
equality ReA = AR for an m-sectorial operator A? To this end, we provide an abstract construction of 
families of coercive m-sectorial dissipative operators A such that

domA = domA∗ = ranQ, dom (AR) 1
2 = ranQ

1
2 ,

but the real part ReA is

• a closed symmetric operator with arbitrary defect number n ∈ N ∪ {∞}, in which case AR is the 
Friedrichs extension of ReA;

• a non-closed essentially selfadjoint operator, in which case AR is the closure of ReA,

see Theorem 4.9 and Corollary 4.13.
Finally, we show that the above mentioned problems of domain equalities are equivalent to problems 

concerning invariant operator ranges of bounded selfadjoint or unitary operators and to the existence of 
bounded operators with specific operator range properties.
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Throughout this paper we assume that all Hilbert spaces are separable and we use the following notations. 
The symbols domT , ranT , kerT denote the domain, range and kernel of a linear operator T , respectively, 
and we write ranT := ranT for the closure of the range of T . For a contraction K we will use the notation 
DK := (I − K∗K) 1

2 for the unique nonnegative square root of the nonnegative operator I − K∗K. The 
Banach space of all bounded operators acting in a Hilbert space H is denoted by B(H); the cone of 
all bounded self-adjoint nonnegative operators in a complex Hilbert space H is denoted by B+(H). The 
spectrum and resolvent set of a linear operator T are denoted by σ(T ) and ρ(T ), respectively. If L is a 
subspace, i.e. a closed linear manifold of H, the orthogonal projection in H onto L is denoted by PL. The 
notation T �N means the restriction of a linear operator T to the linear manifold N ⊂ domT . The open 
right/left complex half-plane are denoted by C± := {z ∈ C : Re z ≷ 0}. For an interval I ⊆ (−π, π) we 
denote SI := {z ∈ C \ {0} : arg z ∈ I}.

2. Preliminaries

2.1. Maximal sectorial operators

A linear operator A with domain domA in a Hilbert space H with inner product (·, ·) is called accretive
if its numerical range, see e.g. [20], W (A) = {(Au, u): u ∈ domA, ‖u‖ = 1} lies in the closed right half-
plane, i.e. W (A) ⊂ C+; it is called maximal accretive, if it is densely defined and C− ∩ ρ(A) �= ∅ or, 
equivalently, A is densely defined, closed and A∗ is accretive, see [25], [28, Sect. V.3.10]. If A is m-accretive, 
then kerA = kerA∗ and hence kerA ⊆ domA ∩ domA∗. An accretive operator A is called coercive if there 
exists m > 0 with Re (Af, f) ≥ m(f, f), f ∈ domA.

An accretive operator A is called sectorial with vertex z = 0 and semi-angle α ∈ [0, π/2), or α-sectorial
for short, if W (A) lies in the closed sector with vertex 0 and semi-angle α, i.e.

W (A) ⊂ S(−α,α), S(−α,α) = {z ∈ C \ {0} : | arg z| < α} ,

see [25], [27], [28, Sect. V.3.10], [21], [37], [40] and maximal α-sectorial, or m-α-sectorial for short, if it is 
m-accretive.

The closed sesquilinear form associated with an m-sectorial operator A is denoted by A[·, ·] and its domain 
by D[A]; note that A[·, ·] is the closure of the form a[f, g] := (Af, g), f, g ∈ domA, see [28, Sect. VI.2.1]. By 
the second representation theorem,

D[A] = dom (AR) 1
2 , ReA[u, v] = ((AR) 1

2u, (AR) 1
2 v), u, v ∈ D[A]. (2.1)

Moreover, the form A[·, ·] and the operator A admit the canonical representations, see [28, Thm. VI.3.2],

A[u, v] = ((I + iG)(AR) 1
2u, (AR) 1

2 v), u, v ∈ D[A], A = (AR) 1
2 (I + iG)(AR) 1

2 , (2.2)

where G is a bounded selfadjoint operator in the subspace ran (AR) 1
2 and, if α is the semi-angle of A, then 

‖G‖ ≤ tanα.
In the sequel we introduce several operators associated with an m-sectorial operator A, the operator real 

part ReA, the form real part AR and the harmonic mean h(A, A∗).
Given an m-α-sectorial operator A, by (2.2) there exist a bounded selfadjoint G ∈ H with ‖G‖ ≤ tanα

and a closed densely defined operator L such that

A = L∗(I + iG)L
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as a product of unbounded operators. Vice versa, if G is a bounded selfadjoint operator in H and L is a 
closed densely defined operator, then the sesquilinear form

a[u, v] := ((I + iG)Lu,Lv) , u, v ∈ dom a = domL, (2.3)

is densely defined, closed and sectorial with adjoint form a∗ given by

a∗[φ, ψ] = ((I − iG)Lφ,Lψ), φ, ψ ∈ dom a∗ = domL. (2.4)

By (2.3), (2.4) and the first representation theorem [28, Thm. VI.2.1], the associated m-sectorial operators 
A and A∗ are given by

A = L∗(I + iG)L, domA = {u ∈ domL : (I + iG)Lu ∈ domL∗} , (2.5)

A∗ = L∗(I − iG)L, domA∗ = {φ ∈ domL : (I − iG)Lφ ∈ domL∗} . (2.6)

These relations yield that the operator real part ReA := 1
2 (A + A∗) is given by

dom ReA = domA ∩ domA∗ = {u ∈ domL∗L : GLu ∈ domL∗} , (2.7)

(ReA)u = 1
2(A + A∗)u = L∗Lu, u ∈ domA ∩ domA∗. (2.8)

Note that a selfadjoint operator G is bounded in H if and only if the unitary operator

UG := (I − iG)(I + iG)−1 = −I + 2(I + iG)−1 (2.9)

in H (the Cayley transform of G) satisfies −1 ∈ ρ(UG). Since I + iG = 2(I + UG)−1, and by (2.5), we have

A = 2L∗(I + UG)−1L.

The form real part AR of A is the nonnegative selfadjoint operator associated with the real part of a
given by Re a := (a + a∗)/2 according to the second representation theorem, see [28, Thm. VI.2.23], i.e. AR

is half the form-sum (denoted by +̇) of A and A∗, see [28, Sect. VI.1],

AR = 1
2(A+̇A∗)

and

domAR = domL∗L, AR = L∗L, domA
1
2
R = domL, A

1
2
R = (L∗L)

1
2 . (2.10)

Clearly,

domAR ⊇ domA ∩ domA∗ = dom ReA, AR ⊇ ReA. (2.11)

While both the operator real part and the form real part of A are versions of the ‘arithmetic mean’ of A
and A∗, the third nonnegative selfadjoint operator associated with an m-sectorial operator A is defined if 
kerA = {0}, which implies that also kerA∗ = {0}. In this case, the inverses A−1 and A−∗ := (A∗)−1 exist 
and are possibly unbounded operators with domains domA−1 = ranA and domA−∗ = ranA∗. Then the 
‘harmonic mean’ of A and A∗ is defined as
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h(A,A∗) :=
(
(A−1)R

)−1 =
(1

2
(
A−1+̇A−∗) )−1

.

Suppose that L = L∗, kerL = {0}, and A = L(I + iG)L. Since kerA = kerL = {0} and

A−1 = L−1(I + iG)−1L−1 = L−1(I + G2)− 1
2 (I − iG)(I + G2)− 1

2L−1,

it follows that

(A−1)R = L−1(I + G2)−1L−1, ((A−1)R)−1 = L(I + G2)L.

Therefore

domh(A,A∗) 1
2 = domL,(

h(A,A∗) 1
2u, h(A,A∗) 1

2 v
)

=
(
(I + G2) 1

2Lu, (I + G2) 1
2Lv

)
, u, v ∈ domL,

(2.12)

and hence, by (2.10) and (2.12),

dom (AR) 1
2 = dom (h(A,A∗)) 1

2 ,

AR = 1
2(A+̇A∗) ≤ h(A,A∗) = ((A−1)R)−1 ≤

1
cos2 αAR; (2.13)

here, for the last estimate, we have used that ‖G‖ ≤ tanα and so ||I + G2|| ≤ 1 + tan2 α = 1/ cos2 α.
An m-sectorial operator A is coercive if and only if the operator AR is positive definite, i.e. (ARf, f) ≥

m(f, f), f ∈ domAR with m > 0. Then 0 ∈ ρ(A), (A−1)R = ReA−1 and

domA
1
2
R = dom ((A−1)R)− 1

2 = dom (Re (A−1))− 1
2 = ran (Re (A−1)) 1

2 . (2.14)

If B ∈ B(H) is a bounded, accretive and coercive operator, then due to the estimate

|Im (Bf, f)| ≤ ‖B‖‖f‖2 ≤ ‖B‖ 1
m

Re (Bf, f), f ∈ H,

the operator B is m-sectorial. If, further, L is a possibly unbounded, closed and densely defined operator 
acting between Hilbert spaces H and H with kerL = {0}, then the sesquilinear form

a[u, v] := (BLu,Lv), D[A] = domL,

is closed and sectorial. The associated m-sectorial operator A in H and its adjoint A∗ are given by, see [9, 
Prop. 1],

A = L∗BL, domA = L−1 (ranL ∩B−1domL∗) ,
A∗ = L∗B∗L, domA∗ = L−1 (ranL ∩B−∗domL∗) . (2.15)

Further, the real part of a and the corresponding associated nonnegative selfadjoint operator AR are given by

Re a[u, v] = ((ReB)Lu,Lv), u, v ∈ domL,

AR = L∗(ReB)L, domAR = L−1 (ranL ∩ (ReB)−1domL∗) . (2.16)

Note that if 0 ∈ ρ(L), we can write

domA = L−1(B−1domL∗), domA∗ = L−1(B−∗domL∗), domAR = L−1((ReB)−1domL∗). (2.17)



Y. Arlinskĭı, C. Tretter / J. Math. Anal. Appl. 528 (2023) 127475 7
2.2. The class C̃H

Let α ∈ (0, π/2). A linear operator T in Hilbert space H defined everywhere is said to belong to the class 
CH(α) if

‖T sinα± i cosαIH‖ ≤ 1, (2.18)

see [2]. Condition (2.18) is equivalent to

2|Im (Tf, f)| ≤ tanα ||f ||2 − ||Tf ||2, f ∈ H. (2.19)

Therefore, if T ∈ CH(α), then T is a contraction and T ∗ ∈ CH(α). Vice versa, if ‖T‖ = ρ < 1, then 
T ∈ CH(αρ) with αρ = 2 tan−1 ρ. In view of (2.19), in the limit α ↘ 0, it is natural to consider CH(0) as 
the set of all selfadjoint contractions. Then, since CH(α1) ⊆ CH(α2) if 0 < α1 ≤ α2 < π/2 by (2.19), one 
can write CH(0) =

⋂
α∈(0,π/2) CH(α).

It is easy to see that the numerical range of T ∈ CH(α) satisfies

W (T ) ⊂ CC(α) := {z ∈ C : |z sinα + i cosα| ≤ 1 ∧ |z sinα− i cosα| ≤ 1} ,

where CC(α) is a lens-shaped region inside the unit disc with ±1 ∈ CC(α) and that, hence, the operators 
I + T and I − T are sectorial with vertex 0 and semi-angle α.

Operators of the class C̃H defined as

C̃H :=
⋃

α∈[0,π/2)

CH(α)

and their properties were studied in [2,3,7]. In particular, in Section 4 we will need the following, see [2]:

1) T ∈ CH(α) if and only if the operator S := (I + T )(I − T ∗) is bounded and sectorial with semi-angle α;
2) T ∈ CH(α) implies that Tn ∈ CH(α) for all n ∈ N,

ranDTn = ranDT∗n = ranDReT , n ∈ N, (2.20)

and T � kerDT = T ∗� kerDT∗ (recall that if K is a contraction, DK := (I − K∗K) 1
2 is the unique 

nonnegative square root of the nonnegative operator I −K∗K);
3) if A is m-α-sectorial, then the semi-group T (t) = exp(−tA), t ≥ 0, has a holomorphic continuation 

into the open sector S(−π
2 +α,π2 −α) :=

{
λ ∈ C \ {0} : | arg λ| < π

2 − α
}

to the contractive semigroup 
T (λ) = exp(−λA) ∈ CH(α + | arg λ|), λ ∈ S(−π

2 +α,π2 −α), see [2], [28].

2.3. Douglas’ Lemma and Heinz’ inequality

The next two results on operator ranges by Douglas and a generalization of Heinz’ inequality by Kato 
will be important tools in the following.

Theorem 2.1. (Douglas’ Lemma [14]) Let F , G be bounded operators on a Hilbert space H. Then the following 
are equivalent:

(i) ranF ⊆ ranG;
(ii) FF ∗ ≤ c GG∗ with some c > 0;
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(iii) there exists a bounded operator Y on H so that F = GY .

Moreover, if one of (i), (ii), (iii) holds, there exists a unique bounded operator Y in H so that

a) ‖Y ‖2 = inf{c : FF ∗ ≤ c GG∗};
b) kerF = kerY ;
c) ranY ⊆ ranG∗.

Theorem 2.2. (Generalized Heinz’ inequality [26, Thm. 1]) Let A, B be m-accretive operators on Hilbert 
spaces H, H′, respectively, T a bounded operator from H to H′ and γ ∈ [0, 1]. If TdomA ⊆ domB and 
‖BTu‖ ≤ M‖Au‖, u ∈ domA, for some M ≥ 0, then TdomAγ ⊆ domBγ and there exists c ≥ 0 such that

‖BγTu‖ ≤ exp (cγ(1 − γ))Mγ‖T‖1−γ ||Aγu||, u ∈ domAγ ;

if A, B are selfadjoint and nonnegative, we can choose c = 0.

2.4. Invariant operator ranges

If R is an operator range, i.e. the range of bounded selfadjoint operator, see [16], and if SR ⊆ R for 
a bounded operator S, then R is called invariant operator range of S, see [32]. Clearly, if SR ⊆ R, then 
(S + λI)R ⊆ R for all λ ∈ C. If R = ranC with a bounded selfadjoint nonnegative operator C, then 
Douglas’ Lemma, see Theorem 2.1, implies that

SranC ⊆ ranC ⇐⇒ SC = CW

where W is a bounded operator in H and S ranC = ranC if ranW = H.
Now assume, in addition, that kerC = {0} and ranC �= H; then ranC = H, i.e. ranC is not closed and 

hence C−1 is unbounded. Because C is bounded and C−1 is closed, the operator range R = ranC becomes 
a Hilbert space HC with the inner product

(u, v)C = (C−1u,C−1v), u, v ∈ HC , (2.21)

and the operator C maps the Hilbert space H unitarily onto the Hilbert space HC .
By the Closed Graph Theorem, each operator S ∈ B(H) leaving HC invariant, i.e. S ranC ⊆ ranC, 

is a bounded operator in HC and W := C−1SC is a bounded operator in H. An interpolation theoretic 
argument, see [30, Thm. I.5.1]), yields that S leaves ranCα invariant for each α ∈ (0, 1) and is bounded in 
the interpolation space HCα = ranCα.

Given a bounded selfadjoint operator C with 0 ≤ C ≤ I, kerC = {0} and ranC �= H, the algebra A(C)
of operators leaving R = ranC invariant was constructed in [32].

3. Domain and range inclusions and equalities

In this section, for m-sectorial operators A, we establish a series of equivalent conditions for domain 
inclusion domA ⊆ domA∗, domain equalities domA = domA∗, dom ReA = domAR, as well as for the 
stronger domain equalities domA = domA∗ = domAR which imply that ReA = AR.

Theorem 3.1. Let L be a possibly unbounded, closed and densely defined operator acting between Hilbert 
spaces H and H with kerL = {0} and let B be a bounded, accretive and coercive operator in H. If A = L∗BL

is the corresponding m-sectorial operator in H, see Subsection 2.1, then
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1) for the conditions
(a) AR = ReA,
(b) (ImB)(ReB)−1domL∗ ⊆ domL∗,
(b) implies (a) and, if additionally ranL = H, (a) and (b) are equivalent;

2) for the conditions
(a) domA ⊆ domA∗,
(b) B∗B−1domL∗ ⊆ domL∗,
(b) implies (a) and, if additionally ranL = H, (a) and (b) are equivalent.

Proof. 1) (b) =⇒ (a): It is easy to see that

B∗(ReB)−1 = I − i(ImB)(ReB)−1, B(ReB)−1 = I + i(ImB)(ReB)−1. (3.1)

If (ImB)(ReB)−1domL∗ ⊆ domL∗, then (3.1) yields that

B∗(ReB)−1domL∗ ⊆ domL∗, B(ReB)−1domL∗ ⊆ domL∗. (3.2)

Hence, by (2.15) and (2.16), if u ∈ domL and Lu ∈ (ReB)−1domL∗, then Lu ∈ B−1domL∗ and Lu ∈
B−∗domL∗. Therefore

domA ∩ domA∗ = {u ∈ domL : Lu ∈ B−1domL∗ ∩B−∗domL∗}
⊇ {u ∈ domL : Lu ∈ (ReB)−1domL∗} = domAR,

i.e. ReA ⊇ AR. Since AR ⊇ ReA by (2.11), we conclude ReA = AR.
(a) =⇒ (b): Now assume that ranL = H. By (2.15) and (2.16), the equivalences

domA ∩ domA∗ = domAR ⇐⇒ B−∗domL∗ ∩B−1domL∗ = (ReB)−1domL∗

⇐⇒ domL∗ ∩B∗B−1domL∗ = B∗(ReB)−1domL∗ (3.3)

⇐⇒ domL∗ ∩BB−∗domL∗ = B(ReB)−1domL∗ (3.4)

hold. If ReA = AR, then domA ∩ domA∗ = domAR and hence (3.3), (3.4) are satisfied. The latter 
imply that (3.2) holds. Now either the first or the second identity in (3.1) together with (3.2) imply that 
(ImB)(ReB)−1domL∗ ⊆ domL∗.

2) (b) =⇒ (a): Condition (b) implies that B−1domL∗ ⊆ B−∗domL∗ and therefore (a) follows from 
(2.15).

(a) =⇒ (b): If we assume that ranL = H, then domL−1 = H. Hence (2.15) implies that domA =
L−1B−1domL∗ and domA∗ = L−1B−∗domL∗. Therefore, in this case (a) also implies (b). �
Theorem 3.2. Suppose that L is a closed densely defined operator in the Hilbert space H and 0 ∈ ρ(L). Let 
G be a bounded selfadjoint operator in H, UG the Cayley transform of G given by (2.9), and let A be the 
m-sectorial operator associated with the closed form given by (2.3). Then

domA = L−1(I + iG)−1domL∗ = L−1(UG + I)domL∗,

domA∗ = L−1(I − iG)−1domL∗ = L−1(U−1
G + I)domL∗,

(3.5)

and

1) the following are equivalent:
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(a) ReA = AR,
(b) GdomL∗ ⊆ domL∗,
(c) (UG + I)−1domL∗ ⊆ domL∗;

2) the following are equivalent:
(a) domA ⊆ domA∗,
(b) (I + iG)−1domL∗ ⊆ domL∗,
(c) UGdomL∗ ⊆ domL∗,
(d) (I + iG)−1domL∗ ⊆ (I − iG)−1domL∗,

Proof. We apply Theorem 3.1 for the case B = I + iG. Then ReB = I, ImB = G and

UG = (I − iG)(I + iG)−1 = B∗B−1, (UG + I)−1 = 1
2(I + iG) = 1

2B, (U−1
G + I)−1 = 1

2(I − iG) = 1
2B

∗.

Now Theorem 3.1 yields the equivalences of (a) and (c) in 1) and 2).
Since L has bounded inverse L−1 and 0 ∈ ρ(I ± iG), the operators A and A∗ defined by (2.5), (2.6) have 

bounded inverses

A−1 = L−1(I + iG)−1L−∗, A−∗ = L−1(I − iG)−1L−∗.

Then the relations in (3.5) follow from (2.15).
The equivalence of (b) and (c) in 1) is obvious from the identity (UG+I)−1 = 1

2 (I+iG). The equivalences 
of (b), (c) and (d) in 2) follow since UG = −I + 2(I + iG)−1. �

If we apply Theorem 3.2 also to A∗, the following corollary is immediate.

Corollary 3.3. Under the hypothesis of Theorem 3.2, the following are equivalent:

(a) domA = domA∗,
(b) (I + iG)−1domL∗ ⊆ domL∗ and (I − iG)−1domL∗ ⊆ domL∗,
(c) UGdomL∗ = domL∗,
(d) (I + iG)−1domL∗ = (I − iG)−1domL∗.

Observe that if an m-sectorial operator A is associated with a closed sesquilinear sectorial form (2.3)
and if domA ⊆ domA∗, then domA ⊆ domL∗L = domAR and, since domA is a core of L, the Friedrichs 
extension of ReA coincides with AR.

Corollary 3.4. Under the hypothesis of Theorem 3.2, the following are equivalent:

(a) domA = domAR (= domL∗L),
(b) (I + iG)domL∗ = domL∗,

Proof. Since domA = L−1(I+iG)−1domL∗, we have domA = domL∗L⇐⇒ (I+iG)domL∗ = domL∗. �
By Corollary 3.4, Corollary 3.3 applied to A∗ and because UG +I = 2(I+iG)−1, we obtain the following.

Corollary 3.5. Under the hypothesis of Theorem 3.2, the following are equivalent:

(a) domA = domA∗ = domAR,
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(b) (I + iG)domL∗ = (I − iG)domL∗ = domL∗,
(c) UGdomL∗ = (UG + I)domL∗ = domL∗.

Corollary 3.6. Under the hypothesis of Theorem 3.2, let Ã := L∗(I + iG)−1L. Then

1) the following are equivalent:
(a) dom ReA = domAR,
(b) dom Re Ã = dom ÃR;

2) the following are equivalent:
(a) domA = domA∗,
(b) dom Ã = dom Ã∗;

3) if domA = domA∗, then ran (Re Ã) = ran (ReA), ran (Im Ã) = ran (ImA).

Proof. The operator Ã can be rewritten as

Ã = L∗(I + G2)− 1
2 (I − iG)(I + G2)− 1

2L = L̃∗(I + iG̃)L̃, (3.6)

where

L̃ := (I + G2)− 1
2L, dom L̃ = domL, G̃ := −G. (3.7)

Then

dom L̃∗ = (I + G2) 1
2 domL∗. (3.8)

1) Equality (3.8) yields G̃dom L̃∗ = G(I + G2) 1
2 domL∗ = (I + G2) 1

2GdomL∗. This implies the equiva-
lences

GdomL∗ ⊆ domL∗ ⇐⇒ (I + G2) 1
2GdomL∗ ⊆ (I + G2) 1

2 domL∗ ⇐⇒ G̃dom L̃∗ ⊆ dom L̃∗.

Applying Theorem 3.2 1), we obtain that dom ReA = domAR ⇐⇒ dom Re Ã = dom ÃR.
2) Since, again by (3.8),

(I ± iG̃)−1dom L̃∗ = (I ∓ iG)−1(I + G2) 1
2 domL∗ = (I + G2) 1

2 (I ∓ iG)−1domL∗,

we deduce the equivalences

(I + iG)−1domL∗ = (I − iG)−1domL∗

⇐⇒ (I + G2) 1
2 (I + iG)−1domL∗ = (I + G2) 1

2 (I − iG)−1domL∗

⇐⇒ (I − iG̃)−1dom L̃∗ = (I + iG̃)−1dom L̃∗.

Now Corollary 3.3 shows that domA = domA∗ ⇐⇒ dom Ã = dom Ã∗.
3) Assume that domA = domA∗. Then, by 2), we have dom Ã = dom Ã∗. By (2.8), we have ran ReA =

L∗L domA and, analogously, ran ImA = L∗GL domA. Due to Corollary 3.3 and (3.5), it then it follows 
that

ran ReA = L∗LdomA = L∗LL−1(I + iG)−1domL∗

= L∗(I + iG)−1domL∗ = L∗(I − iG)−1domL∗,
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ran ImA = L∗GL domA = L∗GLL−1(I + iG)−1domL∗

= L∗G(I + iG)−1domL∗ = L∗G(I − iG)−1domL∗.

Analogously, for Ã we obtain, using (3.6), (3.7) and (3.8),

ran (Re Ã) = L̃∗(I + iG̃)−1dom L̃∗ = L∗(I + G2)− 1
2 (I − iG)−1(I + G2) 1

2 domL∗

= L∗(I − iG)−1domL∗ = ran (ReA),

ran (Im Ã) = L̃∗G̃(I + iG̃)−1dom L̃∗ = L∗(I + G2)− 1
2G(I − iG)−1(I + G2) 1

2 domL∗

= L∗G(I − iG)−1domL∗ = ran (ImA). �
Remark 3.7. The form domains of A = L∗(I + iG)L and Ã = L∗(I + iG)−1L satisfy

D[A] = D[Ã] = domL.

In fact, D[A] = domL by (2.1), (2.3) and, analogously, D[Ã] = dom L̃ = domL by (3.6), (3.7).

Corollary 3.8. Under the hypothesis of Theorem 3.2, if A = L∗(I + iG)L satisfies ReA = AR, then so do 
all operators An := L∗(I + iGn)L and Ãn := L∗(I + iGn)−1L for arbitrary n ∈ N, i.e.

ReAn = (An)R, Re Ãn = (Ãn)R.

Proof. By Theorem 3.2 1), the condition GdomL∗ ⊆ domL∗ is fulfilled. Then GndomL∗ ⊆ domL∗ for 
arbitrary n ∈ N and hence, again by Theorem 3.2 1), ReAn = (An)R. The last claim now follows from 
Corollary 3.6 1). �

Note that if domA ⊆ domA∗ for A = L∗(I + iG)L, then the Cayley transform UG of G given by (2.9)
satisfies UGdomL∗ ⊆ domL∗ and, if 0 ∈ ρ(L), the operator

K := L∗UGL
−∗ (3.9)

is well defined and bounded in H by the Closed Graph Theorem.

Proposition 3.9. Let A = L∗(I + iG)L be a coercive m-sectorial operator such that domA ⊆ domA∗ and let 
K be given by (3.9). Then

A∗u = KAu, u ∈ domA.

Moreover, ReA = AR if and only if −1 ∈ ρ(K); in particular, the latter holds if ‖K‖ < 1.

Proof. Since A is coercive, we have 0 ∈ ρ(L); since A is sectorial, G is bounded and hence −1 ∈ ρ(UG) for 
UG given by (2.9). Further, as noted above, UGdomL∗ ⊆ domL∗, K in (3.9) is bounded in H and K + I is 
injective. By (2.5), we have (I + iG)LdomA ⊂ domL∗ and so we can write

A∗u = L∗(I − iG)Lu = L∗(I − iG)(I + iG)−1L−∗L∗(I + iG)Lu = KAu, u ∈ domA.

Since domA ⊆ domA∗, it follows that dom ReA = domA, ReA = 1
2 (A + A∗) = 1

2 (I + K)A and

ran (ReA) = (I + K)ranA = (I + K)H. (3.10)
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Because A is coercive, ReA is positive definite and hence injective. Thus (3.10) shows that ReA is selfadjoint 
if and only if ran (I + K) = H. �
Remark 3.10. A closed densely defined operator A is called q-hyponormal, see [33,34], if

domA ⊆ domA∗ and ‖A∗u‖ ≤ √
q ‖Au‖, u ∈ domA.

If q = 1, then A is called hyponormal, see [24]; if A is hyponormal, then λA + μI is hyponormal for any 
λ, μ ∈ C, see [24, Rem. 1]. For a nice overview on q-hyponormal operators and related operator classes we 
refer to [35, Fig. 1].

Proposition 3.9 implies that if A is a coercive m-sectorial operator such that domA ⊆ domA∗, then

‖A∗u‖ ≤ ‖K‖‖Au‖, u ∈ domA,

and therefore A is q-hyponormal with q = ‖K‖2; if ‖K‖ < 1, then A∗ is A-bounded with A-bound < 1 and 
hence ReA and ImA are closed since so is A, see also [33, Prop. 8.1].

Theorem 3.11. Under the assumptions of Theorem 3.2, let T := A−1 and write it as

T = C(I + iF )C with F = F ∗ ∈ B(H), C ∈ B+(H), kerC = {0}, ranC �= H. (3.11)

Then

1) for domA
1
2
R, A[·, ·], AR[·, ·], domAR and AR the following hold:

domA
1
2
R = D[A] = ranC, A[f, g] = ((I + iF )−1C−1f, C−1g), f, g ∈ ranC,

AR[f, g] =
(
(I + iF )−1C−1f, (I + iF )−1C−1g

)
, f, g ∈ ranC,

domAR = ran
(
C(I + F 2)C

)
, AR = C−1(I + F 2)−1C−1;

(3.12)

2) the following are equivalent:
(a) domA ⊆ domA∗,
(b) ranT ⊆ ranT ∗,
(c) (I + iF )ranC ⊆ (I − iF )ranC,
(d) (I + iF )(I − iF )−1ranC ⊆ ranC,
(e) (I − iF )−1ranC ⊆ ranC;

3) the following are equivalent:
(a) domA = domA∗,
(b) ranT = ranT ∗,
(c) (I + iF )(I − iF )−1ranC = ranC;

4) the following are equivalent:
(a) domA = domA∗ = domAR,
(b) ranT = ranT ∗ = ran (ReT ),
(c) (I − iF ) ranC = (I + iF ) ranC = ranC;

5) the following are equivalent:
(a) ReA = AR,
(b) F ranC ⊆ ranC,
(c) ran (ImT ) ⊆ ran (ReT ).
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Proof. 1) Since A−1 is bounded by assumption (3.11),

(A−1)R = ReA−1 = ReT = C2, ran (ReT ) = ranC2.

Because

A = T−1 = C−1(I + iF )−1C−1, A∗ = T−∗ = C−1(I − iF )−1C−1,

analogously as in (3.6), (3.7), we conclude that A = L∗(I + iG)L where

L = (I + F 2)− 1
2C−1, G = −F,

and thus AR = L∗L. The preceding formulas imply that all claims in (3.12) hold.
2), 3) and 4) In order to prove the sets of equivalences in 2)–4), we first note that

domA = ranT = ran (C(I + iF )C) , domA∗ = ranT ∗ = ran (C(I − iF )C) (3.13)

which implies the equivalence of (a), (b), (c) in 2) and in 3). The equivalence of (c), (d) and (e) in 2) follows 
if we note that (I + iF )(I − iF )−1 = (I − iF )−1(I + iF ) = −I + 2(I − iF )−1. Further, (3.13) yields the 
equivalences

domA = domA∗ = domAR ⇐⇒ (I + iF )ranC = (I − iF )ranC = (I + F 2)ranC

⇐⇒ ranC = (I + iF )ranC = (I − iF )ranC

⇐⇒ ranC2 = ran (C(I + iF )C) = ran (C(I − iF )C)

⇐⇒ ran (ReT ) = ranT = ranT ∗.

(3.14)

5) Next we prove the equivalence of (a) and (b) in 5). Note that we always have the inclusion domA ∩
domA∗ ⊆ domAR. Due to (3.13), (3.12), this is equivalent to

ran (C(I + iF )C) ∩ (ran (C(I − iF )C) ⊆ ran
(
C(I + F 2)C

)
, (3.15)

while dom ReA = domAR = domA ∩ domA∗ is equivalent to

ran (C(I + iF )C) ∩ (ran (C(I − iF )C) = ran
(
C(I + F 2)C

)
.

(a) =⇒ (b): Let ψ ∈ H. Then

f := C(I + F 2)Cψ ∈ ran (C(I + iF )C) ∩ (ran (C(I − iF )C)

and hence there exist x, y ∈ H such that

f = C(I + F 2)Cψ = C(I + iF )Cx = C(I − iF )Cy.

Therefore, because I + F 2 = (I + iF )(I − iF ) = (I − iF )(I + iF ) and C is injective, we conclude

Cx = (I − iF )Cψ, Cy = (I + iF )Cψ.

It follows that FCψ = iC(x − y) ∈ ranC and thus F ranC ⊆ ranC, as required.
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(b) =⇒ (a): Conversely, if F ranC ⊆ ranC, then for any ψ ∈ H one can find x, y ∈ H so that (I−iF )Cψ =
Cx and (I + iF )Cψ = Cy. It follows that, for f := C(I + F 2)Cψ,

f = C(I + iF )Cx = C(I − iF )Cy.

Since ψ ∈ H was arbitrary, this implies ran
(
C(I + F 2)C

)
⊆ ran (C(I + iF )C) ∩ ran (C(I − iF )C) which 

was equivalent to (a) by (3.15), (3.12), see above.
(b) ⇐⇒ (c): Because C is injective, the inclusion F ranC ⊆ ranC is equivalent to the inclusion 

ran (CFC) ⊆ ranC2. Now the claim follows since CFC = ImT and C2 = ReT . �
Remark 3.12. 1) The operator

UF := (I − iF )−1(I + iF )

is unitary. Because F is bounded, we have −1 ∈ ρ(UF ) and

UF + I = 2(I − iF )−1.

Hence the operator T = C(I + iF )C takes the form T = 2C(I + U∗
F )−1C and, further, the equality 

(I − iF )−1(I + iF )ranC = ranC can be rewritten as

(I − iF )−1(I + iF )ranC = ranC ⇐⇒ UF ranC = ranC,

(I − iF )ranC = (I + iF )ranC = ranC ⇐⇒ UF ranC = (UF + I)ranC = ranC.

2) The operator ((A−1)R)−1 = (TR)−1 = (ReT )−1 = C−2 is the harmonic mean of A and A∗; recall 
that AR ≤ ((A−1)R)−1 due to (2.13) or, equivalently, (AR)−1 ≥ (A−1)R. Hence dom ((A−1)R)−1 = ranC2

and so Theorem 3.11 4), together with (3.13), yields that domA = domA∗ = domAR if and only if 
domA = domA∗ = dom ((A−1)R)−1.

3) If a bounded operator T has the property ranT ⊆ ranT ∗, then Douglas’ Lemma, see Theorem 2.1, 
yields that T = T ∗V with a bounded operator V . Hence T ∗ = V ∗T , i.e. the operator T is q-hyponormal 
with q = ‖V ‖2. Further, if 0, −1 ∈ ρ(V ), then ranT = ranT ∗ = ran (ReT ).

4) If F ranC ⊆ ranC, then FnranC ⊆ ranC for every n ∈ N.

Let T be a bounded sectorial operator in H. Due to the canonical representation of m-sectorial operators, 
see (2.2), the imaginary part ImT takes the form

ImT = (ReT ) 1
2X(ReT ) 1

2

with some bounded selfadjoint operator X. Hence the range inclusion ran ImT ⊆ ran (ReT ) 1
2 holds. If 

T is bounded and accretive, ran ReT is dense and does not coincide with H, then the latter condition 
does not imply, in general, that T is sectorial; as an example consider e.g. T = Q + iQ 1

2 with bounded 
Q ≥ 0 so that ranQ is dense, but not equal to H. The next theorem shows that the stronger condition 
ran (ImT ) ⊆ ran (ReT ) is sufficient for the sectoriality of T .

Theorem 3.13. Let A be an unbounded m-accretive operator having bounded inverse A−1 and suppose that

ran (ImA−1) ⊆ ran (ReA−1). (3.16)

Then the operator A is m-sectorial and ReA = AR. Moreover,
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domA ∩ domA∗ = domAR = (ReA−1) ran
(
I +

(
(ReA−1)−1(ImA−1)

)2)
= ran

(
ReA−1 + (ImA−1)(ReA−1)−1(ImA−1)

) (3.17)

and the following are equivalent:

(i) domA = domA∗,
(ii) ran

(
I + ((ReA−1)−1(ImA−1))2

)
= H.

(iii) domA = domA∗ = domAR = ran (ReA−1).

Proof. Set Q := ReA−1, S := ImA−1. By Douglas’ Lemma, see Theorem 2.1, the range inclusion (3.16)
yields that there exists a bounded operator Y in H with S = QY . Since A is m-accretive, Q is injective and 
we can write

Z := iY = iQ−1S. (3.18)

Since Q and S are self-adjoint, it follows that

QZ = iS = −Z∗Q, (3.19)

which implies that ‖QZf‖ ≤ ‖Z‖‖Qf‖, f ∈ H, and hence, due to the generalized Heinz’ Inequality, see 
Theorem 2.2,

‖Q 1
2Zf‖ ≤ ‖Z‖‖Q 1

2 f ||, f ∈ H.

This shows that the operator X := −iQ 1
2ZQ− 1

2 � ranQ
1
2 is bounded with ‖X‖ ≤ ‖Z‖. Together with (3.19), 

we conclude that, for all f , g ∈ H,

(XQ
1
2 g,Q

1
2h) = −i(QZg, h) = i(Z∗Qg, h) = i(Qg,Zh) = i(Q 1

2 g,Q
1
2Zh) = (Q 1

2 g,XQ
1
2h),

and hence the operator X is essentially selfadjoint. Because iQ 1
2XQ

1
2 = QZ,

A−1 = Q + iS = Q + QZ = Q− Z∗Q = Q + iQ 1
2XQ

1
2

satisfies ∣∣Im (A−1f, f)
∣∣ =

∣∣(XQ
1
2 f,Q

1
2 f)

∣∣ ≤ ‖X‖||Q 1
2 f ||2 = ‖X‖Re (A−1f, f), f ∈ H. (3.20)

Thus A−1 is sectorial with semi-angle α ≤ arctan ‖X‖ ≤ arctan ‖Z‖. Since kerA−1 = {0}, the operator 
A = (A−1)−1 is m-sectorial. Theorem 3.11 5) yields that assumption (3.16) is equivalent to the equality 
ReA = AR, which completes the proof of the first two claims.

Due to (3.19), we can write

A−1 = Q + iS = Q(I + Z), A−∗ = Q + iS = Q(I − Z). (3.21)

Then ker(I + Z) = {0} and ker(I − Z) = {0}. It follows that ran (I + Z) ∩ ran (I − Z) = ran (I − Z2), see 
[4, Lemma 3.1]. Hence

domA ∩ domA∗ = ranA−1 ∩ ranA−∗ = Q ran (I − Z2) = (ReA−1) ran (I − Z2)

which proves (3.17) if we recall that Z = i(ReA−1)−1(ImA−1) by (3.18).
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Further, (3.21) shows that ranA−1 = ranA−∗ is equivalent to ran (I + Z) = ran (I − Z). Because 
ker(I±Z) = {0}, the latter holds if and only if ran (I−Z2) = H, see [4, Lemma 3.1]. Thus, under condition 
(3.16), the equality domA = domA∗ is equivalent to ran

(
I − Z2) = H and, if this is the case, then 

domA = domA∗ = ran (ReA−1) = domAR. This proves the equivalence of (i), (ii) and (iii). �
The next theorem is related to the Kato square root problem [25].

Theorem 3.14. [4, Prop. 4.4, Thm. 4.7]. Let A be an unbounded m-accretive operator having bounded in-
verse A−1. The following are equivalent:

(i) the operator A2 is accretive (α-sectorial);
(ii) the operator A−∗A is accretive (α-sectorial);
(iii) the operator Z := i(ReA−1)−1ImA−1 is a contraction (belongs to the class CH(α)).

If one of the conditions (i), (ii), (iii) is fulfilled, then A is m-π/4-sectorial and ReA = AR.

Proof. Set T := A−1. Then T = Q +iS with Q = ReT , S = ImT and the square T 2 = Q2−S2+i(QS+SQ)
is accretive if and only if Q2 ≥ S2. By Douglas’s Lemma, see Theorem 2.1, Q2 ≥ S2 is equivalent to 
‖Q−1S‖ ≤ 1. Because A2 = (T 2)−1, we conclude that A2 is accretive if and only if Z := i(ReA−1)−1ImA−1

is a contraction. Since QZ = −Z∗Q, compare (3.19), we have

T = Q(I + Z) = (I − Z∗)Q,

and thus T 2 = Q(I +Z)(I−Z∗)Q. It follows that T 2 is α-sectorial if and only if Z ∈ CH(α), see Subsection 
2.2 1). Therefore A2 is m-α-sectorial if and only if Z ∈ CH(α).

The operator M := A−∗A = T ∗T−1 satisfies

M(Tf) = T ∗f, f ∈ H,

and hence

(Mh, h) = (T ∗f, Tf) = (f, T 2f) = (Qf, (I + Z)(I − Z∗)Qf),

Re (Mh, h) = (Qf, (I − ZZ∗)Qf), |Im (Mh, h)| = 2|Im (ZQf,Qf)|,
h = Tf, f ∈ H.

Consequently, A−∗A is accretive if and only if Z is a contraction and A−∗A is α-sectorial if and only if 
Z ∈ CH(α), see (2.19) in Subsection 2.2.

If Z is a contraction, then T , and thus A, is m-π/4-sectorial, compare (3.20) in the proof of Theo-
rem 3.13. �
Remark 3.15. 1) Since Mh + h = 2(ReT )f for h = Tf , f ∈ H, we have ran (M + I) = ranQ �= H. Hence, if 
the operator M = A−∗A is accretive, then it is not closed. Because T ∗ = Q(I − Z), the adjoint M∗ takes 
the form M∗ = A∗A−1 = (I − Z)−1(I + Z) = (I + Z)(I − Z)−1 with domA∗A−1 = A(domA ∩ domA∗), 
see [4, Prop. 4.4].

2) Let B be an m-accretive operator. As we mentioned in the introduction, see [25, Thm. 5.1], Kato proved 
that the operator B 1

2 is m-π/4-sectorial and ReB 1
2 is selfadjoint. Hence the equality ReB 1

2 = (B 1
2 )R holds. 

Therefore Theorem 3.11 5) and Theorem 3.13 may be considered as generalizations of Kato’s result.
Besides, for B having bounded inverse, it was established in [19, Thm. 1 3)] that B is m-α-sectorial if 

and only if B∗ 1
2B− 1

2 is m-α-sectorial.
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Theorem 3.16. Let Q, S be bounded selfadjoint operators with Q nonnegative, kerQ = {0}, ranQ �= H and

ranS ⊆ ranQ. (3.22)

Set

A(λ) := (λQ + iS)−1
, λ ∈ C.

Then, for λ ∈ C+ the operator A(λ) is m-sectorial and

ReA(λ) = (A(λ))R, λ ∈ C+.

Moreover,

1) A(λ) forms a holomorphic family of type (B) in the open right half-plane and

dom ((A(λ))R) 1
2 = ranQ

1
2 , λ ∈ C+;

2) the following are equivalent:
(a) domA(λ) = domA(λ)∗,
(b) −λ, λ ∈ ρ(iQ−1S).

Proof. By assumption, ranS ⊆ ran (λQ) for all λ ∈ C, λ �= 0, and A(λ) has bounded inverse

T (λ) := λQ + iS = A(λ)−1

such that kerT (λ) = {0}. If Reλ > 0, then A(λ) is m-accretive and thus Theorem 3.13 shows that A(λ), 
and hence T (λ), is m-sectorial with ReA(λ) = (A(λ))R.

1) Since the operator T (1) = Q + iS is sectorial, the operator S admits the representation S = Q
1
2XQ

1
2

where X is a bounded selfadjoint operator in H. Hence, for λ ∈ C+,

T (λ) = Q
1
2 (λ I + iX)Q 1

2

and the closed sectorial form associated with the operator A(λ) = (λQ + iS)−1 is

A(λ)[f, g] = ((λ I + iX)−1Q− 1
2 f,Q− 1

2 g), f, g ∈ ranQ
1
2 ,

with constant domain ranQ
1
2 Thus A(λ), λ ∈ C+, is a holomorphic family of type (B).

2) As in the proof of Theorem 3.13, we conclude that by Douglas’ Lemma, see Theorem 2.1, the range 
inclusion (3.22) yields that there exists a bounded operator Z in H with iS = QZ, i.e. Z = iQ−1S, compare 
(3.18), (3.19). Hence T (λ) = Q(λI + Z), T (λ)∗ = Q(λI − Z), ReT (λ) = (Reλ)Q, and therefore

ranT (λ) = Q ran (λI + Z), ranT (λ)∗ = Q ran (λI − Z),

ran Re (T (λ)) = ranQ if Reλ > 0.

(b) =⇒ (a): If −λ, λ ∈ ρ(Z), then ran (λI + Z) = ran (λI − Z) = H. Consequently,

ranT (λ) = ranT (λ)∗ = ran ReT (λ) = ranQ

and hence domA(λ) = domA(λ)∗ = dom (A(λ))R by Theorem 3.13.
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(a) =⇒ (b): Assume −λ or λ ∈ σ(Z). We claim that then

ran (λ I + Z) �= ran (λ I − Z). (3.23)

Indeed, using the identity λ I + Z = 2(Reλ)I − (λ I − Z), one can easily prove that

ran (λ I + Z) ∩ ran (λ I − Z) = ran
(
(λ I + Z)(λ I − Z)

)
. (3.24)

Because ker(λ I +Z) = ker(λ I−Z) = {0}, the assumption ran (λ I +Z) = ran (λ I−Z) and equality (3.24)
yield that

ran (λ I + Z) = ran (λ I − Z) = H,

i.e. −λ, λ ∈ ρ(Z), a contradiction. Thus (3.23) holds. Hence domA(λ) �= domA(λ)∗. �
In the next section, see Theorem 4.8 below, we consider a more concrete abstract example where the 

operator Z above is a non-unitary isometry.

4. Examples

4.1. m-sectorial operators A with domA = domA∗ = domAR

The next proposition provides some sufficient conditions for an m-sectorial operator A to have the 
property domA = domA∗ = domAR and hence ReA = AR; it follows readily from well-known results, see 
Subsection 2.1 and cf. [22, Ex. 5.6] for the case of linear relations.

Proposition 4.1. Let L be a closed unbounded densely defined operator in the Hilbert space H and assume 
that G is a bounded selfadjoint operator in H such that

ranG ⊆ domL∗. (4.1)

Then the operator

A := L∗L + iL∗GL, domA = domL∗L,

is m-sectorial, the adjoint A∗ is given by

A∗ = L∗L− iL∗GL, domA∗ = domA = domL∗L,

and

ReA = AR = L∗L.

Proof. With the sesquilinear form a[u, v] given by (2.3), all claims of the proposition are immediate from 
(4.1), (2.5) and (2.7). �
Proposition 4.2. Let C be a bounded nonnegative selfadjoint operator with kerC = {0}, ranC �= H and let 
M be a bounded selfadjoint operator. Then

T := C(I + iCMC)C
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is a sectorial operator with kerT = {0} and

ranT = ranT ∗ = ran (ReT ) (= ranC2) (4.2)

and the m-sectorial operator A := T−1 satisfies

domA = domA∗ = domAR (= ranC2),

and the operator ImA defined on domA extends to a bounded operator on H.
If ‖C2M‖ ≤ 1, then the operators T 2, A2 are accretive, and T , A are π/4-sectorial.

Proof. Set F := CMC. Then

(I ± iF )C = (I ± iCMC)C = C(I ± iMC2).

Since ±1 ∈ ρ(iCMC), we have ±1 ∈ ρ(iMC2) and hence ran (I±iMC2) = H. Therefore ran
(
C(I ± iMC2)

)
= ranC and (I ± iF )ranC = ranC. Now Theorem 3.11 4) implies the first two claims.

If the operator C2M is a contraction, then I −MC4M ≥ 0 and, therefore,

ReT 2 = (ReT )2 − (ImT )2 = C4 − C2MC4MC2 = C2(I −MC4M)C2 ≥ 0

i.e. the operator T 2 is accretive. Because the operator T is the accretive square root of T 2, it is π/4-sectorial 
by [25]. The claims for A are then immediate.

Now we calculate the imaginary part ImA = (A −A∗)/2i of the operator A. If we note that 1 ∈ ρ(iMC2), 
we find that, for f ∈ domA = ranC2,

(ImA)f = 1
2i(T

−1 − T−∗)f = T−∗(T ∗ − T )T−1f

= −(C2 − iC2MC2)−1C2MC2(C2 + iC2MC2)−1f = −(I − iMC2)−1M(I + iC2M)−1f.

It follows that ImA defined on domA is bounded, and since domA is dense, ImA has a bounded extension 
to H. �
Proposition 4.3. Let Y ∈ C̃H, ‖Y ‖ = 1, be such that kerDY = {0} for DY = (I − Y ∗Y ) 1

2 . Define

An := (DY )−1(I + iY ∗nY n)−1(DY )−1, Bn := (DY )−1(I + iY ∗nY n)(DY )−1, n ∈ N. (4.3)

Then An, Bn are m-sectorial operators with vertex 0, semi-angle π/4 and

domAn = domA∗
n = dom (An)R, domBn = domB∗

n = dom (Bn)R, n ∈ N.

Proof. Let n ∈ N. If we set Tn := A−1
n and C := DY , Fn := Y ∗nY n, then we can write

Tn = C(I + iFn)C = D2
Y + iDY Y

∗nY nDY

which shows that Tn is a bounded sectorial operator with vertex 0 and semi-angle π/4 since Fn is a 
contraction. If we note that the right hand side of (2.20) is independent of n ∈ N, we conclude that 
ranDY n = ranDY . By Douglas’ Lemma, see Theorem 2.1, this range equality implies that there exists a 
bounded linear operator Nn with bounded inverse N−1

n such that
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DY = DY nNn, DY n = DY N−1
n . (4.4)

Then

(I ± iFn)C = (I ± iY ∗nY n)DY = (I ± iY ∗nY n)DY nNn = DY n(I ± iY ∗nY n)Nn

= DY N−1
n (I + iY ∗nY n)Nn = CN−1

n (I ± iFn)Nn.
(4.5)

Because the operators N−1
n , (I ± iFn), Nn are all bijective, this means that

(I + iFn)ranC = (I − iFn)ranC = ranC.

Now Theorem 3.11 4) yields the equalities ranTn = ranT ∗
n = ran (ReTn) and domAn = domA∗

n =
dom (An)R. This and Corollary 3.6 1), 2) imply domBn = domB∗

n = dom (Bn)R. �
Notice that the operator Zn := i(ReA−1

n )−1ImA−1
n associated with the operator An in (4.3), compare 

(3.18), takes the form Zn = iD−2
Y DY Y

∗nY nDY = iN−1
n Y ∗nY nNn, i.e. Zn is similar to the operator iY ∗nY n. 

Similar domain equalities hold for the following m-π4 -sectorial operators:

(DY m)−1(I + iY ∗nY n)±1(DY m)−1, (DY ∗m)−1(I + iY nY ∗n)±1(DY ∗m)−1,

(DY m)−1(I + iY nY ∗n)±1(DY m)−1, (DY ∗m)−1(I + iY ∗nY n)±1(DY ∗m)−1,
n,m ∈ N, n �= m,

(DY m)−1(I + iY n
R )±1(DY m)−1, (DY ∗m)−1(I + iY n

R )±1(DY ∗m)−1,

(DYR
)−1(I + iY ∗nY n)±1(DYR

)−1, (DYR
)−1(I + iY nY ∗n)±1(DYR

)−1,
n ∈ N.

Corollary 4.4. Let D := {λ ∈ C : |λ| < 1} be the open unit disc. Then

An(λ) := (DY )−1(I + iλY ∗nY n)−1(DY )−1, λ ∈ C, |λ| ≤ 1,

forms a holomorphic family of m-sectorial operators of type (A) and (B) in D. Moreover,

domAn(λ) = domAn(λ)∗ = dom (An(λ))R = ranD2
Y , D[An(λ)] = ranDY .

Proof. If we define

Tn(λ) := An(λ)−1 = DY (I + iλY ∗nY n)DY , λ ∈ C, |λ| ≤ 1,

then, for λ = x + iy with x, y ∈ R, x2 + y2 ≤ 1,

Tn(x + iy) = DY ((I − yY ∗nY n) + ixY ∗nY n)DY .

If |y| < 1, the nonnegative selfadjoint operator I − yY ∗nY n has bounded inverse and hence I − yY ∗nY n +
ixY ∗nY n is sectorial. If y = ±1, then x = 0 and the operator Tn(±i) = DY (I ∓ Y ∗nY n)DY is selfadjoint 
and nonnegative with kerTn(±i) = {0}.

In analogy to (4.5), the operator Tn(λ) can be represented in the form

Tn(λ) = D2
Y N−1

n (I + iλY ∗nY n)Nn, λ ∈ C, |λ| ≤ 1,

with Nn as in (4.4). Clearly, for λ ∈ D, we have ran (I + iλY ∗nY n) = ran (I − iλY ∗nY n) = H and therefore 
ranTn(λ) = ranTn(λ)∗ = ranD2

Y . Besides,
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ReTn(x + iy) = D2
Y N−1

n (I − yY ∗nY n)Nn, ImTn(x + iy) = xD2
Y N−1

n Y ∗nY nNn.

Since for λ = x + iy ∈ D, the inclusion ranY ∗nY n ⊆ H = ran (I − yY ∗nY n) holds, it follows that

ran
(
ImTn(x + iy)

)
⊆ ran

(
ReTn(x + iy)

)
.

Now Theorem 3.13 implies that ReAn(λ) = (An(λ))R for λ ∈ D. �
The next theorem strengthens [6, Thm. 10.2] where the equality of operator real part and form real part, 

as in (4.7) below, could not yet be proved.

Theorem 4.5. Let A be an m-α-sectorial operator in a Hilbert space H with α ∈ (0, π2 ) and let

T (λ) := exp(−λA), λ ∈ S(−π
2 +α,π2 −α) :=

{
λ ∈ C \ {0} : | arg λ| <

π

2 − α

}

be the holomorphic contractive semigroup generated by −A, see [28, Thm. IX.1.24]. Then

Ψ(λ) := A∗ (I + T (λ))A, Φ(λ) := A∗ (I + T (λ))−1
A, λ ∈ S(−π

2 +α,π2 −α), (4.6)

are m-(α + | arg λ|)-sectorial and form holomorphic families of type (B). If domA = domA∗, then

dom Ψ(λ) = dom Ψ(λ)∗ = dom (Ψ(λ))R =

= dom Φ(λ) = dom Φ(λ)∗ = dom (Φ(λ))R = domA∗A,
λ ∈ S(−π

2 +α,π2 −α), (4.7)

and both Ψ(λ) and Φ(λ), λ ∈ S(−π
2 +α,π2 −α), form holomorphic families of type (A).

Proof. By the first representation theorem, the operators Ψ(λ) and Φ(λ) in (4.6) are associated with the 
closed sectorial sesquilinear forms

ψ(λ)[f, g] := ((I + T (λ))Af,Ag) ,

φ(λ)[f, g] :=
(
(I + T (λ))−1Af,Ag

)
,

f, g ∈ domA, λ ∈ S(−π
2 +α,π2 −α),

respectively. Besides, Ψ(λ) and Φ(λ) are coercive if and only if A is coercive.
All claims except for dom (Ψ(λ))R = dom (Φ(λ))R = domA∗A, λ ∈ S(−π

2 +α,π2 −α), follow from [6, 
Thm. 10.2]. To prove these remaining identities, we show that, if domA = domA∗, then

(I + T (λ))domA∗ = (I + T (λ)∗)domA∗ = (I + ReT (λ))domA∗ = domA∗, λ ∈ S(−π
2 +α,π2 −α). (4.8)

First we note that −1 ∈ ρ(T (λ)) ∩ρ(Re (T (λ)) according to the proof of [6, Thm. 10.2]. Since ranT (λ) ⊂
domA = domA∗ by assumption and ranT (λ)∗ ⊂ domA∗, it follows that

ran (ReT (λ)) ⊂ domA∗, λ ∈ S(−π
2 +α,π2 −α), (4.9)

and that domA∗ contains each of the first three sets in (4.8). Vice versa, if g ∈ domA∗, there exists 
f ∈ H such that g = (I + T (λ))f . Then ranT (λ) ⊂ domA∗ implies f ∈ domA∗ which proves that 
domA∗ ⊂ (I + T (λ))domA∗. The proof for the remaining two inclusions in (4.8) is analogous if we use 
ranT (λ) ⊂ domA∗ and (4.9).
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Clearly, we have

Reψ(λ)[f, f ] = ‖(I + ReT (λ)) 1
2Af‖2,

Reφ(λ)[f, f ] = ‖(I + ReT (λ)) 1
2 (I + T (λ))−1Af‖2,

f ∈ domA, λ ∈ S(−π
2 +α,π2 −α),

and hence

(Ψ(λ))R = A∗(I + ReT (λ))A,

(Φ(λ))R = A∗(I + T (λ)∗)−1(I + ReT (λ))(I + T (λ))−1A.
λ ∈ S(−π

2 +α,π2 −α).

This together with (4.8) implies dom (Ψ(λ))R = dom (Φ(λ))R = domA∗A, as required. �
In the next theorem we show how, from one bounded m-sectorial operator T possessing property (4.2), 

one can construct infinitely many m-sectorial operators with the same property.

Theorem 4.6. Let T be of the form (3.11), i.e.

T = C(I + iF )C with F = F ∗ ∈ B(H), C ∈ B+(H), kerC = {0}, ranC �= H. (4.10)

1) If T satisfies

ranT = ranT ∗ = ran (ReT ),

then
a) for any α ∈ (0, 1) the operator Tα := Cα(I + iF )Cα satisfies the equalities

ranTα = ranT ∗
α = ran (ReTα);

therefore, if Aα := T−1
α , then domAα = domA∗

α = dom (Aα)R;
b) for any β ∈ R in some neighbourhood of 0 or of 1, the operator T̃β := C(I + iβF )C satisfies the 

equalities

ran T̃β = ran T̃ ∗
β = ran (Re T̃β);

therefore, if Ãβ := T̃−1
β , then dom Ãβ = dom Ã∗

β = dom (Ãβ)R;
c) there exists ε > 0 such that, for ϕ ∈ (−ε, ε), the operator Fϕ given by

Fϕ :=
(
F + i

1 − exp(−iϕ)
1 + exp(−iϕ) I

)(
I − i

1 − exp(−iϕ)
1 + exp(−iϕ)F

)−1

=
(
F − tan ϕ

2 I
)(

I + tan ϕ

2 F
)−1

is well-defined, bounded and self-adjoint, and the operator

T̂ϕ := C(I + iFϕ)C

satisfies the equalities

ran T̂ϕ = ran T̂ ∗
ϕ = ran (Re T̂ϕ);

therefore, if Âϕ := T̂−1
ϕ , then Aϕ is m-sectorial and dom Âϕ = dom Â∗

ϕ = dom (Âϕ)R;
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2) The operator

T̃ := C(I + iF )−1C (4.11)

satisfies
a) ran T̃ = ran T̃ ∗ if and only if ranT = ranT ∗,
b) ran T̃ = ran T̃ ∗ = ran (Re T̃ ) if and only if ranT = ranT ∗ = ran (ReT ).

Proof. 1) First we note that, by Theorem 3.11 4), assumption (4.10) on T yields that ranC is invariant for 
the operators I ± iF and (I ± iF )−1, i.e. (I ± iF )ranC = ranC.

a) This implies that, if α ∈ (0, 1), also ranCα is invariant range for I± iF and (I± iF )−1, see Section 2.4
and [17], [18], and hence (I ± iF )ranCα = ranCα. Now Theorem 3.11 4) yields that ranTα = ranT ∗

α =
ran (ReTα) for α ∈ (0, 1).

b) Because (I ± iF )ranC = ranC, Douglas’ Lemma, see Theorem 2.1, yields that there are bounded 
operators V± with bounded inverses V −1

± such that (I ± iF )C = CV± or, equivalently,

±iFC = C(V± − I).

Then, for any β ∈ R, β �= 0,

(I ± iβF )C = C(β(V± − I) + I) = βC(V± − (1 − β−1)I). (4.12)

Since V± are bounded and 0 ∈ ρ(V−) ∩ ρ(V+), there exist ε0, ε1 > 0 such that

β ∈ (−ε0, ε0) ∪ (1 − ε1, 1 + ε1) =⇒ 1 − β−1 ∈ ρ(V−) ∩ ρ(V+).

Together with (4.12), this implies that (I± iβF )ranC = ranC and thus, by Theorem 3.11 4), that ran T̃β =
ran T̃ ∗

β = ran (Re T̃β) for such β.
c) Let U := (I+iF )(I− iF )−1. Then −1 ∈ ρ(U) since F is bounded and, due to (4.10) and Theorem 3.11

4), see also Remark 3.12,

UranC = ranC, U∗ranC = ranC, (U + I)ranC = ranC.

It follows that −1 ∈ ρ(U�HC) where HC = ranC with inner product given by (2.21). Then, because 
ρ(U) ∩ ρ(U�HC) is an open set, there exists ε > 0 such that

ϕ ∈ (−ε, ε) =⇒ − exp(iϕ) ∈ ρ(U) ∩ ρ(U�HC). (4.13)

Hence, the operator Uϕ := exp(−iϕ)U is unitary in H with −1 ∈ ρ(Uϕ) and satisfies

UϕranC = ranC, U∗
ϕranC = ranC, (Uϕ + I)ranC = ranC; (4.14)

here, for last identity we note that (Uϕ +I)ranC = (U +exp(iϕ)I)ranC = ranC by (4.13). Moreover, using 
that exp(−iϕ) = (1 − i tan ϕ

2 )(1 + i tan ϕ
2 )−1, it is not difficult to show that the operator Fϕ defined in c) is 

related to Uϕ by

Fϕ = i(I − Uϕ)(I + Uϕ)−1

and hence, by (4.14) and Remark 3.12,
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(I − iFϕ)ranC = (I + iFϕ)ranC = ranC.

This and Theorem 3.11 4) now yield all claims for the bounded m-sectorial operator T̂ϕ and its m-sectorial 
inverse Âϕ = T̂−1

ϕ .
2) Let T̃ be given by (4.11). By Theorem 3.11 3) and since C : H → ranC is bijective, we have the 

equivalences

ranT = ranT ∗ ⇐⇒ (I + iF )(I − iF )−1ranC = ranC ⇐⇒ (I − iF )−1ranC = (I + iF )−1ranC

⇐⇒ C(I − iF )−1ranC = C(I + iF )−1ranC ⇐⇒ ran T̃ = ran T̃ ∗.

Finally, to prove the last claim, we first note that Re T̃ = C(I +F 2)−1C. Again by Theorem 3.11 4) and 
since C : H → ranC, I ± iF : H → H are bijective, we conclude that

ranT = ranT ∗ = ran (ReT ) ⇐⇒ ranC = (I + iF )ranC = (I − iF )ranC

⇐⇒ ranC = (I + iF )−1ranC = (I − iF )−1ranC

⇐⇒ (I − iF )−1ranC = (I + iF )−1ranC = (I + F 2)−1ranC

⇐⇒ C(I − iF )−1ranC = C(I + iF )−1ranC = C(I + F 2)−1ranC

⇐⇒ ran T̃ = ran T̃ ∗ = ran (Re T̃ ). �
In the following we denote by T := {λ ∈ C : |λ| = 1} the unit circle.

Proposition 4.7. Let C be a bounded selfadjoint operator such that C ≥ 0, kerC = {0}, ranC �= H and let 
U be a unitary operator in H. Assume that

UranC = ranC.

Then the following are equivalent:

(i) λ ∈ ρ(U) ∩ T and (U − λI)ranC = ranC,
(ii) λ /∈ σp(U), the operator Aλ := C−1(I − λU∗)C−1, λ ∈ T , is m-sectorial and

domAλ = domA∗
λ = dom (Aλ)R.

Proof. (i) =⇒ (ii): Let λ ∈ T be such that (i) holds and set Uλ := −λU . Then Uλ is unitary, −1 ∈ ρ(Uλ)
and, since Uλ + I = −λ(U − λI), we have

UλranC = ranC, (Uλ + I)ranC = ranC. (4.15)

Further, the operator

Fλ := i(I − Uλ)(I + Uλ)−1 = −iI + 2i(I + Uλ)−1 (4.16)

is selfadjoint, bounded and I + iFλ = 2(I + U∗
λ)−1.

Therefore the bounded operator Tλ := C(I + U∗
λ)−1C =

1
2C(I + iFλ)C is sectorial and kerTλ = {0}. 

Moreover, since by (4.15),

ranC = (I + Uλ)−1ranC = (I + Uλ)−1UλranC = (U∗
λ + I)−1ranC,



26 Y. Arlinskĭı, C. Tretter / J. Math. Anal. Appl. 528 (2023) 127475
it follows that

ranTλ = ranT ∗
λ = ran (ReTλ) = ranC2.

Then Aλ = T−1
λ is m-sectorial and, by Theorem 3.11 4),

domAλ = domA∗
λ = dom (Aλ)R = ranC2.

(ii) =⇒ (i): Let λ ∈ T be such that (ii) holds and let again Uλ := −λU . Since Uλ is unitary, we have 
ran (I + Uλ) = ran ((I + U∗

λ)Uλ) = ran (I + U∗
λ) and ran (I + Uλ) = ran (U − λI) = (ker(U∗ − λI))⊥

= (ker(U − λI))⊥ = H because λ /∈ σp(U). Thus the operator Fλ defined as in (4.16) is densely defined, 
selfadjoint and I + iFλ = 2(I + U∗

λ)−1. Therefore, we can write

Aλ = C−1(I + U∗
λ)C−1 = 2C−1(I + iFλ)−1C−1,

and hence, for all f ∈ domAλ,

Re (Aλf, f) = 2 Re
(
(I + iFλ)−1C−1f, C−1f

)
= 2

∥∥(I + iFλ)−1C−1f
∥∥2

,

Im (Aλf, f) = 2 Im
(
(I + iFλ)−1C−1f, C−1f

)
= −2

(
Fλ(I + iFλ)−1C−1f, (I + iFλ)−1C−1f

)
.

Since ran (I+iFλ)−1C−1 = domFλ, the m-sectoriality of Aλ implies that Fλ is a bounded operator. Because 
Fλ is closed and densely defined, it follows that it is everywhere defined, i.e. H = domFλ = ran (I + Uλ) =
ran (U − λI), and hence λ ∈ ρ(U).

Moreover, Theorem 3.11 4) and Remark 3.12 apply to the operator

Tλ := A−1
λ =

1
2C(I + iFλ)C,

and thus the last assumption in (ii) implies that (U − λI)ranC = (I + Uλ)ranC = ranC. �
4.1.1. Second order elliptic differential operators

Let Ω ⊂ Rn be a bounded domain with infinitely smooth boundary ∂Ω, and let H1(Ω), H̊1(Ω), H2(Ω)
be the Sobolev spaces associated with L2(Ω). In L2(Ω) we consider second order differential expressions

τA(u) = −
n∑

j,k=1

∂

∂xj

(
bjk(·)

∂u

∂xk

)

with coefficients bjk belonging to the class C∞(Ω̄). We suppose that τA satisfies the uniform ellipticity 
condition, i.e. that there exists a c > 0 with

Re

⎛⎝ n∑
j,k=1

bjk(x)ξkξj

⎞⎠ � c

n∑
k=1

|ξk|2, x ∈ Ω, ξ = (ξ1, ..., ξn)T ∈ Cn. (4.17)

Here we consider operators A in L2(Ω) of the form A = L∗BL where L is an unbounded operator from 
L2(Ω) to L2(Ω)n = L2(Ω, Cn), B denotes the bounded operator in L2(Ω)n given by

Lu = ∇u, domL = H̊1(Ω),(
B�f

)
(x) = B(x)�f(x), �f = ((fi)ni=1)T ∈ L2(Ω)n, x ∈ Ω,
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with B(·) :=
(
bjk(·)

)n
j,k=1 and the operator L∗ acting from L2(Ω)n into L2(Ω) has the form, see [29, 

Thm. 6.2],

L∗ �f = −div�f, domL∗ =
{
�f ∈ L2(Ω)n : div�f ∈ L2(Ω)

}
. (4.18)

Due to the classical Poincaré inequality, i.e.

‖∇u‖2
L2(Ω) ≥ γ‖u‖2

L2(Ω), u ∈ H̊1(Ω),

with some γ > 0, the operator L has bounded inverse. Condition (4.17) implies that B is a bounded sectorial 
operator in L2 (Ω)n with bounded inverse. Hence A is a coercive m-sectorial operator in L2(Ω) associated 
with the closed sesquilinear form given by, see [12, Chapt. III, § 2], [15, Thm. 7.5.7],

Au = τA(u) = −div
(
B(·)∇u(·)

)
, domA = H̊1(Ω) ∩H2(Ω),

A[u, v] = (BLu,Lv) =
∫
Ω

(
B(x)∇u(x),∇v(x)

)
Cndx, u, v ∈ D[A] = H̊1(Ω).

The adjoint operator A∗ is of the form

A∗u = L∗B∗Lu = −
n∑

j,k=1

∂

∂xj

(
bkj(·)

∂u

∂xk

)
= −div

(
(B(·))∗∇u(·)

)
,

domA∗ = domA = H̊1(Ω) ∩H2(Ω).

It follows that

ReA = L∗(ReB)L = −div
(
(ReB(·))∇

)
, dom ReA = H̊1(Ω) ∩H2 (Ω).

On the other hand, since

AR[u, v] = ((ReB)Lu,Lv) = 1
2

∫
Ω

(
(B(x) + B(x)∗

)
∇u(x),∇v(x)

)
Cndx, u, v ∈ D[AR] = H̊1(Ω),

the operator AR takes the form

AR = L∗(ReB)L, domAR = H̊1(Ω) ∩H2 (Ω).

Thus we obtain the equalities

domA = domA∗ = domAR. (4.19)

Note that, by Kato’s result [27, Cor. 2], this implies that

domA
1
2 = domA∗ 1

2 = dom (AR) 1
2 = H̊1(Ω).

We mention that the latter equalities were established in [10] by means of reducing to the case of Ω = Rn

considered in [8]; for more details and for the case of more general boundary conditions we refer e.g. to [11].
The domain equalities (4.19) and Theorem 3.1 2) now allow us to show the invariance of the domains of L

and L∗ for certain operators. For this, we recall that the range of L is the closed subspace ranL = ∇H̊1(Ω)
of L2(Ω)n and we denote by PL the orthogonal projection of L2(Ω)n onto ranL, note that
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PL
�f = ∇

(
Δ−1(div�f)

)
, �f ∈ domL∗ ⊂ L2(Ω)n,

where g := Δ−1(div�f) ∈ H̊1(Ω) ∩H2 (Ω) is the solution of the Dirichlet problem Δg = div�f for the Laplace 
operator. If Ω is connected, then L2(Ω)n = ∇H̊1(Ω) ⊕ H(div0, Ω) where H(div 0, Ω) := {�f ∈ L2(Ω)n :
div �f = 0}, see [13, Chapt. IX, § 3, Prop. 1], and so ranL =

(
H(div 0, Ω)

)⊥ and PL = P∇H̊1(Ω).
If we now regard L as an operator from L2(Ω) to ranL and set BL := PLB� ranL, then BL acts in ranL

and Theorem 3.1 applies, which yields that domL∗ given by (4.18) is invariant with respect to the operators 
(ImBL)(ReBL)−1, B∗

LB
−1
L and BLB

−∗
L = (B∗

LB
−1
L )−1, i.e.

(ImBL)(ReBL)−1domL∗ ⊆ domL∗, B∗
LB

−1
L domL∗ = domL∗.

4.2. m-sectorial operators A with ReA = AR

In the sequel we need the fact that the spectrum σ(Z) of an arbitrary non-unitary isometry Z coincides 
with the closed unit disc, i.e.

σ(Z) = D = {λ ∈ C : |λ| ≤ 1} . (4.20)

In fact, according to the Wold decomposition, see [39, Thm. I.1.1], the Hilbert space H decomposes into an 
orthogonal sum H = H0 ⊕ H1 such that H0 and H1 reduce Z, the part of Z on H0 is unitary and the part 
of Z on H1 is a unilateral shift; the subspaces H0 and H1 are of the form

H0 =
∞⋂

n=0
ZnH, H1 = H⊥

0 =
∞⊕

n=0
Zn((ranZ)⊥).

Then, since the spectrum of the unilateral shift coincides with the closed unit disc D, the equality (4.20)
holds.

Moreover, the linear manifold ran (λI−Z) is a proper subspace of H for every λ ∈ D = {λ ∈ C : |λ| < 1}
and

dim (ran (λI − Z))⊥ = dim ker(λI − Z∗) = dim (ranZ)⊥, λ ∈ D.

Theorem 4.8. Let Q be a bounded nonnegative selfadjoint operator in the Hilbert space H, kerQ = {0} and 
ranQ �= H. Let M be a proper subspace in H such that

ranQ ∩M⊥ = {0}. (4.21)

Then the operator

A(λ) := (λQ + i(QPMQ) 1
2 )−1, λ ∈ C+, (4.22)

is m-sectorial and

1) A(λ), λ ∈ C+, forms a holomorphic family of type (B) on the open right-half plane and

ReA(λ) = (A(λ))R, dom ((A(λ))R) 1
2 = ranQ

1
2 ;

2) if |λ| > 1 and Reλ > 0, then

domA(λ) = domA(λ)∗ = dom (A(λ))R = ranQ;
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3) if |λ| ≤ 1 and Reλ > 0, then

domA(λ) �= domA(λ)∗, ReA(λ) = (A(λ))R.

Proof. If we define the bounded operator, see [4, Thm. 5.2],

T0 := Q + i (QPMQ)
1
2 , (4.23)

then ReT0 = Q ≥ 0, i.e. T0 is accretive and kerT0 = kerT ∗
0 = {0} since kerQ = {0}. Because∥∥ (QPMQ)

1
2 f

∥∥2 = ‖PMQf‖2
, f ∈ H,

there exists a partial isometry V in H such that

(QPMQ)
1
2 = V PMQ = QV ∗.

Note that V = W ∗ if PMQ = V ∗ (QPMQ)
1
2 = V ∗((PMQ)∗PMQ) 1

2 is the polar decomposition of PMQ and 
W is the partial isometry with initial space (ker(PMQ))⊥ and final space ran (PMQ). Hence V has initial 
space ran (PMQ) and final space (ker(PMQ))⊥. Since ranQ ∩M⊥ = {0}, it follows that ran (PMQ) = M

and ranV = (ker(PMQ))⊥ = (kerQ)⊥ = H. Thus the operator

Z0 := iV ∗ = iQ−1 (QPMQ)
1
2 (4.24)

maps H isometrically onto M and, since M � H by assumption, Z0 is a non-unitary isometry in H and thus 
σ(Z0) = D, see (4.20). Moreover, kerZ∗

0 = M⊥ and Z0 satisfies the equality

QZ0 = −Z∗
0Q. (4.25)

Therefore T0 and T ∗
0 can be rewritten as

T0 = Q(I + Z0) = (I − Z∗
0 )Q, T ∗

0 = Q(I − Z0) = (I + Z∗
0 )Q.

Since ran (ImT0) = ran (QPMQ)
1
2 = Q M ⊂ ranQ = ran (ReT0), Theorem 3.13, see also (3.20), yields 

that T0 is π/4-sectorial and dissipative, i.e. Im (T0f, f) ≥ 0, f ∈ H. Moreover, since ‖Z0‖ = 1, it follows that 
T 2

0 is accretive but non-sectorial. Consequently, T0 is the accretive square root of the accretive operator T 2
0

and in [4, Thm. 5.2]) it was proved that ranT0 �= ranT ∗
0 .

If we set

T (λ) := A(λ)−1 = λQ + i(QPMQ) 1
2 , λ ∈ C+,

with A(λ) in (4.22), then T0 = T (1) and thus ranT (1) �= ranT (1)∗, ran ImT (1) ⊆ ran ReT (1). By (4.24), 
we have

T (λ) = Q(λI + Z0), T (λ)∗ = Q(λI − Z0). (4.26)

1), 2) Since ReT (λ) = Re (λQ), relation (2.14) yields that the function A(λ) is a holomorphic family of 
type (B) in the open right half-plane with D[A(λ)] = ranQ

1
2 .

For arbitrary λ ∈ C+, we can now apply Theorem 3.16 with S = QV ∗ therein, which yields that 
ReA(λ) = (A(λ))R and, since −λ, λ ∈ ρ(Q−1S) = ρ(V ∗) if |λ| > 1,
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domA(λ) = domA(λ)∗ = dom (A(λ))R = ranQ if λ ∈ C+, |λ| > 1.

3) Let λ ∈ C+, |λ| ≤ 1. Then −λ, λ ∈ σ(Z0) (= D). Since Z0 is an isometry, it is injective and so it 
follows that ran (λ I + Z0) �= H, ran (λ I − Z0) �= H. Moreover, by (3.23),

ran (λ I + Z0) �= ran (λ I − Z0),

and hence, by (4.26),

domA(λ) = ranT (λ) �= ranT (λ)∗ = domA(λ)∗, λ ∈ C+, |λ| ≤ 1. �
4.3. m-sectorial operators A with domA = domA∗, ReA �= AR

Our next goal is to prove the following theorem.

Theorem 4.9. Let Q be a bounded nonnegative selfadjoint operator in the Hilbert space H, kerQ = {0} and 
ranQ �= H. Let M be a proper subspace in H such that (4.21) holds, i.e. ranQ ∩M⊥ = {0}, and let

a ∈ (0, 1), φ ∈ (0, arctan a] ⊂
(
0, π4

)
. (4.27)

Then the operator defined by

Aa,φ := exp(−iφ)
(
a (QPMQ)

1
2 − iQ

)−1

=
[(

a cosφ (QPMQ)
1
2 + sinφQ

)
+ i

(
a sinφ (QPMQ)

1
2 − cosφQ

)]−1
,

(4.28)

has the following properties:

1) Aa,φ is unbounded, m-sectorial (with semi-angle π2 − φ), coercive and dissipative,
2) domAa,φ = domA∗

a,φ = ranQ,
3) dom (Aa,φ)

1
2
R = ranQ

1
2 ,

4) the imaginary part ImAa,φ is a positive definite selfadjoint operator,
5) the real part ReAa,φ is not selfadjoint, ReAa,φ � (Aa,φ)R, more precisely,

a) for φ ∈ (0, arctan a), the real part ReAa,φ is a closed symmetric operator with defect index n =
dimM⊥ and its Friedrichs extension is the operator (Aa,φ)R,

b) for φa := arctan a, the operator ReAa,φa
is non-closed and essentially selfadjoint and its closure 

is the operator (Aa,φa
)R;

6) the operator A2
a,φ is not accretive and, if ranQ ∩M = {0}, then

domA2
a,φ ∩ domA∗2

a,φ = {0}.

Proof. The proof is divided into several steps.
Step 1. In the proof of Theorem 4.8 we showed that the operator T0 in (4.23) is π/4-sectorial. The same 

arguments yield that the condition a ∈ (0, 1) implies that the operator

Ta := Q + ia (QPMQ)
1
2

is sectorial with semi-angle φa = arctan a < π/4. Moreover, since ImTa ≥ 0, the numerical range W (Ta) is 
contained in the closed sector
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S(0,φa) = {λ ∈ C : 0 ≤ arg λ ≤ φa}.

Taking into account (4.24) and (4.25), we conclude that Ta and T ∗
a admit the representations

Ta = Q(I + aZ0) = (I − aZ∗
0 )Q, T ∗

a = Q(I − aZ0) = (I + aZ∗
0 )Q.

Since |a| < 1 and Z0 is a partial isometry, we have ran (I ± aZ0) = H and hence

ranTa = ranT ∗
a = ran (ReTa) = ranQ. (4.29)

Besides, since ‖aZ0‖ = a, the operator T 2
a is sectorial with semi-angle α = 2 arctan a = 2φa, see [4, Prop. 4.4].

Step 2. By (4.27), we have φ ∈ (0, φa] with φa := arctan a. If we set

Ta,φ := exp(iφ)Ta = exp(iφ)
(
Q + ia (QPMQ)

1
2
)

= exp(iφ)Q(I + aZ0)

= cosφQ− a sinφ (QPMQ)
1
2 + i

(
sinφQ + a cosφ (QPMQ)

1
2
)
,

(4.30)

then ranTa,φ = ranTa and ranT ∗
a,φ = ranT ∗

a . Consequently, due to (4.29),

ranTa,φ = ranT ∗
a,φ = ranQ, φ ∈ (0, φa]. (4.31)

Because W (Ta) ⊂ S(0,φa), the numerical range W (Ta,φ) satisfies

W (Ta,φ) ⊂ S(φ,φa+φ) := exp(iφ)S(0,φa) = {λ ∈ C : φ ≤ arg λ ≤ φa + φ}. (4.32)

Therefore, if φ ∈ (0, φa] and hence

φa < φa + φ ≤ 2φa <
π

2 ,

the operator Ta,φ is dissipative and sectorial with semi-angle φa + φ.
According to the definition of Ta,φ in (4.30) and by (4.24), we have

ReTa,φ = cosφQ− a sinφ (QPMQ)
1
2 = cosφQ(I + ia tanφZ0), (4.33)

ImTa,φ = sinφQ + a cosφ (QPMQ)
1
2 = −ia cosφQ

(
i tanφ

a
I + Z0

)

= −ia cosφ
(

i tanφ

a
I − Z∗

0

)
Q. (4.34)

Since 0 ≤ (QPMQ)
1
2 ≤ Q, we have

sinφQ ≤ ImTa,φ ≤ (sinφ + a cosφ)Q.

Because kerQ = {0} and by Douglas’ Lemma, see Theorem 2.1, these inequalities imply that ker ImTa,φ =
{0}, and ran (ImTa,φ) 1

2 = ranQ
1
2 . Since tanφ ≤ tanφa = a for φ ∈ (0, φa], we have

|a tanφ| ≤ a2 < 1,

∣∣∣∣∣ i tanφ

a

∣∣∣∣∣ ≤ 1. (4.35)
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It follows from (4.33) and the first inequality in (4.35) that

ReTa,φ ≥ cosφ(1 − a2)Q ≥ 0. (4.36)

Together with the fact that Z0 is a non-unitary isometry and thus σ(Z0) = D, see (4.20), we obtain that 
− 1

ia tanφ ∈ ρ(Z0) and − i tanφ
a ∈ σ(Z0). Consequently,

ran (I + ia tanφZ0) = H, ran
( i tanφ

a
I + Z0

)
�= H.

Therefore, by (4.33), (4.34) and since kerQ = {0},

ran (ReTa,φ) = Q ran (I + ia tanφZ0) = ranQ,

ran (ImTa,φ) = Q ran
( i tanφ

a
I + Z0

)
� ranQ. (4.37)

Thus, by (4.31) and Theorem 3.11 3), 4) and 5),

ranTa,φ = ranT ∗
a,φ = ran (ReTa,φ) = ranQ, φ ∈ (0, φa]. (4.38)

Moreover, if φ < φa = arctan a, then 
∣∣∣ i tanφ

a

∣∣∣ < 1 and hence, since the defect is locally constant and 
ranZ0 = M,

dim
(
ran

( i tanφ

a
I + Z0

))⊥
= dim

(
ranZ0

)⊥ = dimM⊥;

if φ = φa, then one can show that

dim
(
ran

( i tanφ

a
I + Z0

))⊥
= dim (ran (iI + Z0))⊥ = 0.

To prove the latter equality, we first note that, by (4.34), ImTa,φa
= −ia cosφa Q (iI + Z0) =

−ia cosφa (iI − Z∗
0 )Q and thus ker (iI + Z0) = ker(I − iZ0) = Q−1(ker ImTa,φa

) = {0}. This implies 
that

(ran (iI + Z0))⊥ = ker(−iI + Z∗
0 ) = ker(I + iZ∗

0 ) = ker(I − iZ0) = ker(iI + Z0) = {0},

where, for the third identity, we have used that ker(I − Y ) = ker(I − Y ∗) for an arbitrary contraction Y in 
H, see [39, Prop. I.3.1], here with Y = iZ0.

Step 3. We define

Ta,φ := −iTa,φ = −i exp(iφ)Q(I + aZ0) = −i exp(iφ)
(
Q + ia (QPMQ)

1
2
)

= a cosφ (QPMQ)
1
2 + sinφQ + i

(
a sinφ (QPMQ)

1
2 − cosφQ

)
.

(4.39)

Because W (Ta,φ) ⊆ S(φ,φa+φ) by (4.32), we have

W (Ta,φ) ⊆ S(φ−π/2,φa+φ−π/2) := −iS(φ,φa+φ) = {λ ∈ C : φ− π/2 ≤ arg λ ≤ φa + φ− π/2}.

Since 0 < φ ≤ φa < π
4 , this means that the operator Ta,φ is sectorial with semi-angle γ = π/2 − φ and 

anti-dissipative, i.e. Im Ta,φ ≤ 0. Further, by (4.38) we obtain
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ran Ta,φ = ran (−iTa,φ) = ran (Ta,φ) = ranQ = ran (T ∗
a,φ) = ran ((−iTa,φ)∗) = ran T ∗

a,φ.

On the other hand,

Re Ta,φ = ImTa,φ = −i a cosφQ

(
i tanφ

a
I + Z0

)
= a cosφ (QPMQ)

1
2 + sinφQ,

Im Ta,φ = −ReTa,φ = − cosφQ(I + ia tanφZ0) = a sinφ (QPMQ)
1
2 − cosφQ,

(4.40)

and hence, due to (4.37) and (4.40),

ran (Re Ta,φ) = ran (ImTa,φ) = Q ran
(

i tanφ

a
I + Z0

)
� ranQ. (4.41)

Step 4. The operator Aa,φ in (4.28) is related to the bounded operator Ta,φ in (4.39) by

Aa,φ = T −1
a,φ = i exp(−iφ)(I + aZ0)−1Q−1. (4.42)

Therefore, the operator Aa,φ is unbounded, m-sectorial with semi-angle π/2 − φ, coercive and dissipative.
The adjoint operator A∗

a,φ is of the form

A∗
a,φ = T −∗

a,φ = −i exp(iφ)Q−1(I + aZ∗
0 )−1 = −i exp(iφ)(I − aZ0)−1Q−1. (4.43)

Because

domAa,φ = ran Ta,φ = ranQ, domA∗
a,φ = ran T ∗

a,φ = ranQ, ran (Re Ta,φ) � ranQ,

Theorem 3.11 3) and 4) yield domAa,φ = domA∗
a,φ � dom (Aa,φ)R and thus ReAa,φ � (Aa,φ)R.

To calculate the defect index of ReAa,φ, we note that ranAa,φ = ranA∗
a,φ = H since Ta,φ is bounded 

and hence, by (4.40), (4.42), (4.43) and (4.25),

ReAa,φ =
1
2(Aa,φ + A∗

a,φ) =
1
2Aa,φ

(
(A−1

a,φ + A−∗
a,φ)

)
A∗

a,φ = Aa,φ

(
Re (Ta,φ)A∗

a,φ (4.44)

= φ(I + aZ0)−1Q− 1
2
(
a cosφQ− 1

2 (QPMQ)
1
2 Q− 1

2 + sinφ I
)
Q− 1

2 (I + aZ∗
0 )−1 (4.45)

= −ia cosφ(I + aZ0)−1Q−1Q

(
i tanφ

a
I + Z0

)
(I − aZ0)−1Q−1

= −ia cosφ
(

i tanφ

a
I + Z0

)
(I − a2Z2

0 )−1Q−1, dom ReAa,φ = ranQ,

and hence

ran (ReAa,φ) = Aa,φran
(
Re (Ta,φ)A∗

a,φ

)
= Aa,φran (Re Ta,φ) = Aa,φQ ran

(
i tanφ

a
I + Z0

)
= (I + aZ0)−1

(
i tanφ

a
I + Z0

)
H

=
(

i tanφ

a
I + Z0

)(
1
a
I + Z0

)−1

H =
(

i tanφ

a
I + Z0

)
H,

where we have used that a ∈ (0, 1) and hence 1 ∈ ρ(Z0), see (4.20). It follows that
a
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a) for φ ∈ (0, φa) the linear manifold ran (ReAa,φ) is a proper subspace of H, ReAa,φ is a positive definite 
closed symmetric operator with

(ran (ReAa,φ))⊥ = ker
(
−

i tanφ

a
I + Z∗

0

)
,

and therefore

dim (ran ReAa,φ)⊥ = dim ker
(
−

i tanφ

a
I + Z∗

0

)
= dimM⊥ > 0

which means that the defect index of the closed symmetric operator ReAa,φ is dimM⊥ > 0 and, since 

ReAa,φ ⊂ (Aa,φ)R, dom ReAa,φ = domAa,φ and domAa,φ is a core of dom (Aa,φ)
1
2
R, the operator 

(Aa,φ)R is the Friedrichs extension of ReAa,φ;
b) for φ = φa the linear manifold ran (ReAa,φa

) = ran (iI + Z0) is non-closed and dense in H; this means 
that ReAa,φa

� (Aa,φ)R is essentially selfadjoint with closure (Aa,φ)R.

In Step 2 we had shown that ran (ImTa,φ) 1
2 = ranQ

1
2 which, by (4.39), implies that ran (Re Ta,φ) 1

2 =
ran (ImTa,φ) 1

2 = ranQ
1
2 . Together with (2.14), it follows that

dom ((Aa,φ)R) 1
2 = ran (ReA−1

a,φ) 1
2 = ran (Re Ta,φ) 1

2 = ranQ
1
2 .

In the same way as for ran (ReAa,φ), we conclude that

ran (ImAa,φ) = ran (Aa,φ −A∗
a,φ) = ran

(
Aa,φ(A−1

a,φ −A−∗
a,φ)A∗

a,φ

)
= Aa,φran [(Im Ta,φ)A∗

a,φ]

= Aa,φran (Im Ta,φ) = Aa,φQ ran (I + ia tanφZ0) = (I + aZ0)−1(I + ia tanφZ0)H

= (I + ia tanφZ0)(I + aZ0)−1H = H.

Moreover, since the operator ImAa,φ is symmetric and ReTa,φ ≥ 0 by (4.36), we have

ImAa,φ = −A∗
a,φ(Im Ta,φ)Aa,φ = A∗

a,φ(ReTa,φ)Aa,φ ≥ 0;

together with ran ImAa,φ = H, it follows that ImAa,φ is a positive definite selfadjoint operator for each 
φ ∈ (0, φa].

Since ReAa,φ � (Aa,φ)R so that ReAa,φ is not selfadjoint, Kato’s theorem, see [25, Thm. 5.1] applied to 
A = A2

a,φ therein yields that the operator A2
a,φ is not accretive.

Finally, assume that ranQ ∩ M = {0}. Since M = ranZ0, by [4, Prop. 4.1 7)] we obtain that Ta =
Q(I + aZ0) satisfies ranT 2

a ∩ ranT ∗2
a = {0}. Because Ta.φ = −i exp(iφ)Ta by (4.30), (4.39) and A2

a,φ = T −1
a,φ

by (4.42), it follows that

domA2
a,φ ∩ domA∗2

a,φ = ran T 2
a,φ ∩ ran T ∗2

a,φ = {0}. �
Remark 4.10. For R = ranQ the co-dimension n = dimM⊥ of the subspace M with ranQ ∩ M⊥ = {0}, 
which coincides with the defect dim ran (ReAa,φ) for φ ∈ (0, φa) by Theorem 4.9 5) a), can be an arbitrary 
n ∈ N ∪ {∞}.

In fact, by Schmüdgen’s theorem, see [36, Thm. 5.1], for an arbitrary dense operator range R in a separable 
Hilbert space, there exists a subspace N such that N ∩R = N⊥ ∩R = {0}. Clearly, dimN = dimN⊥ = ∞. 
It follows that for each n ∈ N ∪ {∞} any n-dimensional subspace M⊥ ⊂ N⊥ possesses the property 
M⊥ ∩R = {0}.
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Remark 4.11. Since the operator T0 = Q + i(QPMQ) 1
2 is sectorial, there is a bounded and nonnegative 

selfadjoint operator X0 in H such that (QPMQ) 1
2 = Q

1
2X0Q

1
2 ; in fact, X0 is a contraction because T0 is 

π/4-sectorial. By (4.24), (4.25), it follows that, for all a ∈ R,

Q
1
2 (I ± iaX0) = (I ∓ aZ∗

0 )Q 1
2 , (I ± iaX0)Q

1
2 = Q

1
2 (I ± aZ0).

If a ∈ (0, 1), then, since ran ((I ± iaX0) = H, the equalities ((I ∓ aZ∗
0 )ranQ

1
2 = ranQ

1
2 hold and

Q− 1
2 (I ∓ aZ∗

0 )−1h = (I ± iaX0)−1Q− 1
2h, h ∈ ranQ

1
2 .

The operator Aa,φ defined in (4.28) can be rewritten in the forms

Aa,φ = i exp(−iφ)Q− 1
2 (I + iaX0)−1

Q− 1
2

=Q− 1
2 [(a cosφX0 + sinφ I) + i (a sinφX0 − cosφ I)]−1

Q− 1
2 .

Then, if f ∈ domA∗
a,φ = ranQ for a ∈ (0, 1) and φ ∈ (0, φa), using (4.44), (4.45) and (4.25), we obtain

(
(ReAa,φ)f, f

)
=

(
Re (Ta,φ)A∗

a,φf,A∗
a,φf

)
=

∥∥∥(a cosφX0 + sinφ I
) 1

2Q− 1
2 (I + aZ∗

0 )−1f
∥∥∥2

=
∥∥∥(a cosφX0 + sinφ I

) 1
2 (I − iaX0)−1Q− 1

2 f
∥∥∥2

.

Because the operator a cosφX0 + sinφI is positive definite, the closure of the above quadratic form is 
given by ∥∥∥(a cosφX0 + sinφ I

) 1
2 (I − iaX0)−1Q− 1

2h
∥∥∥2

, h ∈ domQ− 1
2 = ranQ

1
2 .

The associated nonnegative selfadjoint operator is the Friedrichs extension of ReAa,φ, it coincides with 
(Aa,φ)R and has the form

(Aa,φ)R = Q− 1
2 (I + a2X2

0 )−1(a cosφX0 + sinφ I
)
Q− 1

2 ,

dom (Aa,φ)R = Q
1
2 (I + a2X2

0 )(a cosφX0 + sinφ I
)−1ranQ

1
2 .

Remark 4.12. Let Aa,φ = ((Aa,φ)R) 1
2 (I +iGa,φ)((Aa,φ)R) 1

2 with a bounded selfadjoint operator Ga,φ be the 
canonical representation of Aa,φ, see (2.2), and set

Ãa,φ := ((Aa,φ)R) 1
2 (I + iGa,φ)−1((Aa,φ)R) 1

2 .

According to Corollary 3.6 and its proof, see (3.6), (3.7), the operator Ãa,φ is m-sectorial and

dom Ãa,φ = dom Ã∗
a,φ, Re Ãa,φ � (Ãa,φ)R,

ran (Re Ãa,φ) = ran (ReAa,φ), ran (Im Ãa,φ) = ran (ImAa,φ).

Therefore Theorem 4.9 5) a), b) and 4) continue to hold for Re Ãa,φ and Im Ãa,φ, respectively.

Corollary 4.13. On S(0,φa] = {λ ∈ C \ {0} : 0 < arg λ ≤ φa} with φa := arctan a, a ∈ (0, 1), define

Aa(λ) =
1
λ

(
a (QPMQ)

1
2 − iQ

)−1
, λ ∈ S(0,φa].

Then the operator function Aa(λ), λ ∈ S(0,φa], satisfies
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1) the operator Aa(λ) is unbounded, m-sectorial (with semi-angle π2 − arg λ), coercive and dissipative for 
λ ∈ S(0,φa];

2) domAa(λ) = domA∗
a(λ) = ranQ, dom ((Aa(λ))R) 1

2 = ranQ
1
2 , ReAa(λ) � (Aa(λ))R for λ ∈ S(0,φa];

3) the imaginary part ImAa(λ) is a positive definite selfadjoint operator for λ ∈ S(0,φa];
4) Aa(λ), λ ∈ S(0,φa), forms a holomorphic family of both type (A) and (B)inside the open sector S(0,φa) :=

{λ ∈ C \ {0} : 0 < arg λ < φa} see [28, Chapt. VII];
5) the operator ReAa(λ) is closed and symmetric with defect index n = dimM⊥ for λ ∈ S(0,φa);
6) the operator ReAa(r exp(iφa)) is non-closed and essentially selfadjoint for r > 0;
7) if ranQ ∩M = {0}, then domAa(λ)2 ∩ domAa(λ)∗2 = {0} for λ ∈ S(0,φa].

Proof. Let λ = |λ| exp(iφ) ∈ S(0,φa], i.e. 0 < φ ≤ φa. Then Aa(λ) = 1
|λ|Aa,φ where Aa,φ is the operator in 

Theorem 4.9 given by (4.28). Now Theorem 4.9 implies all the claims. �
5. Existence of specific operators and invariant operator ranges

In view of the results of the previous sections, in this section we establish the existence of some classes 
of bounded operators leaving invariant a given dense operator range, see Theorem 5.4. First we need some 
auxiliary results.

Proposition 5.1. Let C be a bounded selfadjoint operator such that C ≥ 0, kerC = {0} and ranC �= H. 
Assume that U is a unitary operator in H with

UranC = ranC.

Then the operator S := UC has the following properties.

1) a) the equalities ranS = ranS∗ = ranC hold;
b) the following are equivalent:

(i) −1 ∈ ρ(U),
(ii) ran (S∗ + |S|) = ranS∗;

c) the following are equivalent:
(i) (U + I)ranC = ranC,
(ii) ran (S + |S|) = ranS∗;

2) if

ranS = ranS∗ = ran (S∗ + |S|),

then the unbounded operator

A := |S|−2(S∗ + |S|)|S|−1 (5.1)

is m-sectorial and
a) the equality ran (S + |S|) = ranS implies

domA = domA∗ = domAR, ReA = AR;

b) the inclusion ran (S + |S|) � ranS implies

domA = domA∗ �= domAR, ReA � AR.
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Proof. 1) Since C ≥ 0 and U is unitary, we have C =
√
S∗S = |S| and S∗ = CU−1. This implies 

ran |S| = ranC = ranS∗, ranS = UranC = ranC = ranS∗ = ran |S| which proves a). Further,

S + |S| = (U + I)|S|, S∗ + |S| = |S|(U−1 + I).

Therefore,

ran (S + |S|) = (U + I)ran |S| ⊆ ranC = ranS, ran (S + |S|) = ranS ⇐⇒ (U + I)ranS = ranS,

ran (S∗ + |S|) ⊆ ran |S| = ranS, ran (S∗ + |S|) = ranS ⇐⇒ ran (U−1 + I) = H,

and ran (U−1 + I) = H ⇐⇒ −1 ∈ ρ(U−1) ⇐⇒ −1 ∈ ρ(U) since U is unitary. Together with a), this proves 
c) and b).

2) If we suppose that ran (S∗ + |S|) = ranS, then 1) b) shows that U + I has bounded inverse. Since 
U−1 = |S|−1S∗, we have U∗ + I = |S|−1(S∗ + |S|). The operator

F := i(I − U)(I + U)−1

is bounded, selfadjoint and I + iF = 2(U∗ + I)−1, I − iF = 2(I + U)−1. Since F is bounded,

T :=
1
2C(I + iF )C = C(I + U∗)−1C = |S|(S∗ + |S|)−1|S|2

is a bounded sectorial operator with kerT = kerT ∗ = {0} since kerC = {0}. It follows that the operator A
in (5.1) satisfies A = T−1 and hence A is an unbounded m-sectorial operator with

domA−1 = ranT = ran (C(I + iF )C), domA−∗ = ranT ∗ = ran (C(I − iF )C).

Because U = (I + iF )(I − iF )−1 and UranC = ranC, we have (I + iF )(I − iF )−1ranC = ranC or, 
equivalently, (I+iF )ranC = (I− iF )ranC. Now Theorem 3.11 3) implies that ranT = ranT ∗ and domA =
domA∗. If ran (S + |S|) = ranS, then 1) c) shows that

ranC = (U + I)ranC = (I − iF )−1ranC.

Applying Theorem 3.11 4), we obtain that even domA = domA∗ = domAR which proves a). On the other 
hand, if ran (S + |S|) � ranS, then (U + I)ranC � ranC by 1) b) and hence

(I − iF )−1ranC � ranC.

According to Theorem 3.11 3) and 4), this yields that ReA � AR. �
Proposition 5.2. Let C be a bounded selfadjoint operator such that C ≥ 0, kerC = {0} and ranC �= H. 
Assume that U is a unitary operator in H such that

UranC = ranC.

Then the operator W := C−1UC has the following properties.

1) W is bounded and boundedly invertible in H;
2) the equality W ∗C2W = C2 holds;
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3) the linear manifolds ranC and ranC2 are invariant for the operators W ∗ and W−∗, i.e.

W ∗ranC = ranC, W ∗ranC2 = ranC2;

4) the operator Z := W ∗�HC is unitary in the Hilbert space HC , see (2.21), and unitarily equivalent 
to U−1;

5) the following are equivalent:
(i) −1 ∈ ρ(U),
(ii) (W ∗ + I)ranC = ranC;

6) the following are equivalent:
(i) (U + I)ranC = ranC,
(ii) −1 ∈ ρ(W ),
(iii) (W ∗ + I)ranC2 = ranC2.

Proof. 1) The operator W is well-defined and bounded in H by Douglas’ Lemma, see Theorem 2.1, or the 
Closed Graph Theorem. Clearly, W is injective. Because UC = CW and UranC = ranC, it follows that 
ranW = H and hence 0 ∈ ρ(W ).

2), 3) Since CU∗ = W ∗C, the equalities C2 = W ∗C2W and C2 = W ∗nC2Wn hold for all n ∈ N. Because 
ranU∗ = ranW = H, it follows that

W ∗ranC = ranC, W ∗ranC2 = ranC2.

5) Furthermore, the equality C(U∗ + I) = (W ∗ + I)C yields the equivalence ran (U∗ + I) = H ⇐⇒
(W ∗ + I)ranC = ranC. Since U is unitary, we have (U∗ + I) = (U + I)U−1 and thus ran (U∗ + I) = H ⇐⇒
ran (U + I) = H. Because ker(U + I) = (ran (U∗ + I))⊥, the claimed equivalence follows.

4) Because U is unitary in H and U−1 = C−1W ∗C, we deduce that the operator Z = W ∗�HC is unitary 
in the Hilbert space HC and

U−1 = C−1ZC, U = C−1Z−1C = C−1W−∗C.

Since C maps HC unitarily on H, this shows that Z in HC is unitarily equivalent to U−1 in H.
6) The equality (U + I)C = C(W + I) yields that

(U + I)ranC = ranC ⇐⇒ ran (W + I) = H ⇐⇒ −1 ∈ ρ(W ).

If (U + I)ranC = ranC and x ∈ ker(W + I), there exists y ∈ H with Cy = (U + I)Cx = C(W + I)x = 0
which shows that y = 0. If we note that UranC = ranC implies that (U∗ + I)ranC = (U∗ + I)UranC =
(U + I)ranC = ranC and ran C = H, it follows that ker(U + I) = (ran (U∗ + I))⊥ = {0}. This and 
kerC = {0} yield that y = 0 implies x = 0. This proves the equivalence of (i) and (ii). Since

(U + I)C = U(U−1 + I)C = UC−1(W ∗ + I)C2 = UCC−2(W ∗ + I)C2

and UranC = ranC by assumption, we conclude that

(U + I)ranC = ranC ⇐⇒ (W ∗ + I)ranC2 = ranC2,

(U + I)ranC � ranC ⇐⇒ (W ∗ + I)ranC2 � ranC2. �
Remark 5.3. The condition W ∗ranC = ranC follows from W ∗C2W = C2 and 0 ∈ ρ(W ). In fact, the latter 
yield W ∗C2 = C2W−1, W−∗C2 = C2W which imply W ∗ranC2 = ranC2 and W−∗ranC2 = ranC2. Hence, 
by interpolation [18], we conclude that ranC is an invariant operator range for W ∗ and W−∗.



Y. Arlinskĭı, C. Tretter / J. Math. Anal. Appl. 528 (2023) 127475 39
The next theorem on operator ranges follows from Proposition 4.2 and Theorem 4.9 combined with 
Theorem 3.11, Remark 3.12, Proposition 5.1 and Proposition 5.2.

Theorem 5.4. Let R be a dense operator range. Then the following hold.

a) there exists a bounded selfadjoint operator F such that

(I − iF )−1R = (I + iF )−1R � R;

b) there exists a bounded selfadjoint operator F such that

(I − iF )R = (I + iF )R = R;

c) there exists a unitary operator U such that

−1 ∈ ρ(U), UR = R, (U + I)R � R;

d) there exists a unitary operator U such that

−1 ∈ ρ(U), UR = (U + I)R = R,

i.e. R is an invariant operator range for U , U∗(= U−1) and (U + I)−1;
e) there exists a nonselfadjoint operator S ∈ B(H) such that

kerS = {0}, ranS = ranS∗ = ran (S∗ + |S|) = R, ran (S + |S|) � R;

f) there exists a nonselfadjoint operator S ∈ B(H) such that

kerS = {0}, ranS = ranS∗ = ran (S∗ + |S|) = R, ran (S + |S|) = R.

g) there exists Y ∈ B(H) with the properties

0 ∈ ρ(Y ), −1 ∈ ρ(Y ), YR = R, (Y + I)R = R;

h) there exists Y ∈ B(H) with the properties

0 ∈ ρ(Y ), −1 /∈ ρ(Y ), YR = R, (Y + I)R = R.

Proof. Let C be a bounded nonnegative selfadjoint operator such that ranC = R. By Proposition 4.2
there exists an unbounded m-sectorial coercive operator A in a Hilbert space H with domA = domA∗ =
domAR = ranC2 and hence ReA = AR. The operator A−1 is of the form A−1 = C(I + iF )C. By 
Theorem 3.11 4), Remark 3.12 1), and Proposition 5.1, we have

(I + iF )R = (I − iF )R = R,

UR = R, (U + I)R = R,

ranS = ranS∗ = ran (S∗ + |S|) = ran (S + |S|) = R

with U := (I − iF )−1(I + iF ) and S := UC. This proves claims b), d) and f).
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Set Q := C2 and let M be a subspace in H such that ranC2 ∩ M⊥ = {0}. Following Theorem 4.9, we 
define the bounded sectorial operator

Ta := Q + ia(QPMQ) 1
2 = C2 + a(C2PMC2) 1

2 , a ∈ (0, 1),

and, for φ ∈ (0, arctan a], we set

Ta,φ := −i exp(iφ)
(
Q + ia (QPMQ)

1
2
)
.

Then the operator Aa,φ := T −1
a,φ is m-sectorial. Due to [26, Thm. VI.3.2] there exist a bounded selfadjoint 

operator Ca,φ ≥ 0 with kerCa,φ = {0} and a bounded selfadjoint operator Fa,φ in H such that

Ta,φ = Ca,φ(I + iFa,φ)Ca,φ.

By Theorem 4.9 3) and 5), we have domA
1
2
a,φ = ranQ

1
2 = ranC = R and ReAa,φ � (Aa,φ)R. Then (2.14)

implies that

ranCa,φ = ran T
1
2

a,φ = domA
1
2
a,φ = R.

If we define

Ua,φ := (I − iFa,φ)−1(I + iFa,φ) = −I + 2(I − iFa,φ)−1, Sa,φ := Ua,φCa,φ,

then −1 ∈ ρ(Ua,φ) since Fa,φ is bounded. Now Theorem 3.11 3) and Proposition 5.1 yield that

(I − iFa,φ)ranCa,φ = (I + iFa,φ)ranCa,φ, Ua,φranCa,φ = ranCa,φ,

ranSa,φ = ranS∗
a,φ = ran (S∗

a,φ + |Sa,φ|) = ranCa,φ.

This implies that

(Ua,φ + I)ranCa,φ = (I − iFa,φ)−1ranCa,φ ⊆ ranCa,φ, ran (Sa,φ + |Sa,φ|) ⊆ ranCa,φ.

Because ranCa,φ = R, and ReAa,φ � (Aa,φ)R, Theorem 3.11 3) and 4) show that

(Ua,φ + I)R � R, (I − iFa,φ)−1R = (I + iFa,φ)−1R � R,

kerSa,φ = {0}, ranSa,φ = ranSa,φ = ran (S∗
a,φ + |Sa,φ|) = R, ran (Sa,φ + |Sa,φ|) � R.

This proves claims a), c) and e).
Due to Proposition 5.2, the operators

W := C−1UC, Wa,φ := C−1
a,φUa,φCa,φ,

are bounded and satisfy W ∗C = CU∗, W ∗
a,φCa,φ = Ca,φU

∗
a,φ and 0 ∈ ρ(W ), 0 ∈ ρ(Wa,φ) as well as

(W ∗ + I)R = (W ∗
a,φ + I)R = R.

Further, the equality (U + I)ranC = ranC is equivalent to −1 ∈ ρ(W ) and (Ua,φ + I)ranCa,φ � ranCa,φ

implies −1 /∈ ρ(Wa,φ). Thus for Y = W ∗ claim (g) holds, while for Y = W ∗
a,φ claim (h) holds. �
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