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Abstract: Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option
for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations
in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of
function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting
cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to
standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency
PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of
85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a
mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine
release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at
similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally
worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the
prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the
majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median
progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was
5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest
that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after
CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.

Keywords: Diffuse Large B-cell Lymphoma (DLBCL); Chimeric Antigen Receptor T-cell (CAR T);
Clonal Hematopoiesis (CH); Protein Phosphatase Mg/Mn-dependent 1D (PPM1D); Wild-type
p53-induced phosphatase 1 (Wip1); Next-Generation Sequencing (NGS)

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is a common type of high-grade, fast-growing
non-Hodgkin lymphoma (NHL), with an annual incidence of 4–8 cases in 100,000 people [1].
For the past 15 years, the standard first-line therapy for DLBCL has been a combined chemo-
immunotherapy with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine,
and prednisone) [2]. Although the therapy is safe and highly effective, 30–40% of patients
have refractory disease or relapse after R-CHOP therapy [3]. Salvage therapy followed by
high-dose chemotherapy with autologous stem cell transplantation (ASCT) is the standard
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approach in younger patients (below the age of 60), as well as in older patients without
therapy-limiting comorbidities [4]. However, despite this intensive treatment, 40–70% of
patients experience a second relapse after ASCT, and the long-term outcome of those who
relapse after transplant is poor [5–7].

Chimeric antigen receptor (CAR) T-cell therapy is a new immunotherapeutic option in
the management of advanced lymphoproliferative malignancies, such as acute lymphatic
leukemia (ALL), mantle cell lymphoma, as well as DLBCL [8,9]. With CD19-targeted CAR T-
cell therapy, durable responses were achieved in 43–54% of r/r DLBCL patients [10]. While
CAR T-cell persistence in the peripheral blood was associated with longer progression-free
survival [11], common germline variants of the target antigen CD19 may also affect treat-
ment outcomes of CAR T-cell therapy [12]. Currently, two FMC63-based anti-CD19 CAR
T-cell products, axicabtagene ciloleucel (axi-cel, Yescarta©) and tisagen-lecleucel (Kym-
riah©), have been approved by the European Medicines Agency (EMA) for patients who
received at least two prior treatment lines [9,13]. Moreover, axi-cel has been approved and is
the new standard second-line therapy for younger patients with primary refractory disease
or with early relapse, i.e., within 12 months of completion of first-line therapy [14,15]. CAR
T-cell infusion may induce relevant toxicities, including cytokine release syndrome (CRS)
in more than 60%, and immune effector cell-associated neurotoxicity syndrome (ICANS)
in more than 30% of the recipients, as well as prolonged cytopenias [3,8,15,16]. CRS and
ICANS are managed according to the severity of symptoms [17]. Standard management
includes tocilizumab, a humanized monoclonal antibody against the interleukin-6 receptor,
for patients with CRS, as well as corticosteroids in case of ICANS and/or CRS not respon-
sive to tocilizumab [18,19]. Real-world studies reported an overall response rate of 52–82%
after CAR T-cell therapy, with complete response (CR) rates of 40–52% [9,20–24]. Clinical
response rates were associated with DLBCL histologic subtypes, as well as expansion
levels and duration of persistence of CAR T-cells [6,15,25–27]. Patients relapsing after
CAR T-cell therapy may be treated with glofitamab, a CD20- and CD3-targeting bispecific
antibody [28]. Alternatively, the CD79b-directed antibody-drug conjugate polatuzumab
vedotin has been approved in combination with bendamustine and rituximab after two or
more prior therapies [29].

Clonal hematopoiesis (CH) refers to an expansion of clonally derived hematopoietic
cells, without evidence of an underlying hematologic malignancy, and with a minimal
VAF of 0.02. Mutations in genes that confer a selective advantage to hematopoietic stem
cells drive CH. Most relevant CH driver genes include PPM1D, TP53, DNMT3A, ASXL1,
and TET2 [30–33]. In the general population, 0.13–5% carry a mutation in the PPM1D
gene across all age groups [33,34], with an increase in somatic mutations with age [35].
More than 30% of patients with lymphoma who had undergone ASCT were found to
have CH and PPM1D was the most frequent driver alteration [32,36]. Patients with CH-
related PPM1D gene mutations are five times more likely to carry mutations in other genes,
predominantly TP53 [32,34,37]. The PPM1D gene is located on chromosome 17q, including
six exons encoding the protein phosphatase Mg2+/Mn2+-dependent 1D (PPM1D, Wip1),
an enzyme which targets the tumor suppressor protein p53 and other proteins involved in
the DNA damage response (DDR) [34]. Genotoxic impacts can activate the “guardian of
the genome” p53 to induce cell cycle arrest, DDR, and/or apoptosis of the damaged cell.
For cell-cycle progression, Wip1 is targeted for degradation by the anaphase-promoting
complex (APC/C), a multifunctional ubiquitin-protein ligase [38]. PPM1D alterations
are typically nonsense or frameshift mutations in exon 6, resulting in truncated protein
products promoting cell proliferation [33,39,40]. The truncated PPM1D protein variants
are able to dephosphorylate p53, but are not recognized by the APC/C complex, leading
to stabilization and accumulation of oncogenic mutant protein. Amplification and/or
overexpression of PPM1D has been described in a significant number of solid tumors,
suggesting a role for PPM1D in carcinogenesis [41–44]. In addition, studies have shown
that the truncated protein products can lead to a relative fitness of hematopoietic cells in
the presence of chemotherapy [34,45–47].
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In lymphoma patients, upon treatment with R-CHOP, expansion of PPM1D mu-
tant clones has been reported and occurred more commonly than for other CH-related
genes [31,33,34]. PPM1D mutants show a selective advantage in the context of certain
classes of chemotherapy, particularly drugs causing DNA cross-linking, as well as pyrimi-
dine analogs and radiotherapy. In contrast, microtubule inhibitors do not appear to confer
such an advantage [33,45,48]. Cell stress during ASCT is not driving PPM1D expansion, as
studies have shown a decrease in the VAF of PPM1D mutant clones following ASCT [45].
Gibson et al. reported an association of PPM1D mutations with inferior overall survival
(OS) after ASCT (10-year OS of 20.8% vs. 39.9%; p = 0.02 by log-rank test) [32]. Additionally,
Lackraj et al. reported a significant association between PPM1D mutations and poor OS in
DLBCL patients in the ASCT setting (HR 2.42, 95% CI 1.18–4.97, p = 0.016) [36]. Further-
more, Saini et al. reported elevated neurotoxicities after axi-cel in DLBCL patients with CH
mutations [30]. Higher toxicities were primarily associated with DTA mutations (DNMT3A,
TET2, and ASXL1 genes), but not with mutations in PPM1D or TP53.

In this retrospective study, we determined the prevalence of PPM1D gene mutations in
r/r DLBCL patients and analyzed the impact of PPM1D mutations on the safety and efficacy
of CD19-targeted CAR T-cell therapy. The presence of mutations in PPM1D exon 6 was
assessed through NGS amplicon sequencing of genomic DNA extracted from peripheral
blood mononuclear cells (PBMC). We analyzed correlations between PPM1D mutational
status and clinical outcomes after CAR T-cell therapy including response rates, survival
times, as well as CAR T-cell-related toxicities.

2. Materials and Methods
2.1. Patient Samples

We conducted a retrospective single-center study at the Inselspital, University Hospital
Bern, Switzerland. The analyzed cohort comprised 85 patients diagnosed either de novo
or secondarily with DLBCL, who underwent commercial CAR T-cell therapy between
January 2019 and August 2022. All participants gave written informed consent for the
usage of personal data for research purposes. All patients were followed up clinically at
one, three, six months, and one year after the CAR T-cell infusion. Imaging with PET-CT
was performed three and twelve months post CAR T-cell infusion. In addition, clinical and
laboratory data related to the underlying disease, the CAR T-cell treatment, and survival
endpoints were systematically collected.

2.2. NGS Amplicon Sequencing

Genomic DNA was extracted from mononuclear cells (PBMCs) isolated from the
peripheral blood of 88 DLBCL patients collected before CAR T-cell infusion and 8 healthy
donors. NGS amplicon sequencing and bioinformatics analysis were performed at Mi-
crosynth, Balgach, Switzerland. NGS amplicon sequencing included preparation of a
Nextera two-step PCR library, sequencing on Illumina MiSeq, 2 × 300 bases using a MiSeq
Reagent Kit v3 (600 cycle) and gene-specific primers covering exon 6 of the PPM1D gene
(F: 5′-GAGGATCCATGGCCAAGGG-3′, R: 5′-TTCCAATTTTCTTCTGGCCCC-3′, prod-
uct size: 505 bp). Bioinformatics analysis included trimming of locus-specific Illumina
adapter primers, merging of the reads, mapping trimmed and merged reads to human
reference chromosome 17 for variant calling and annotation, and to the PPM1D-selected
region (chr17:60,662,994-60,663,549) for coverage analysis, and dereplication of trimmed
and merged reads. The total demultiplexed reads which passed Illumina’s chastity filter
were 3,124,600, and the demultiplexed bases were 933,189,886, with a mean read length
of 299 bp. The quality of the reads was checked in fastq format with FastQC (version
0.11.9). Raw reads shorter than 200 bases, with average Q-values below 24, or incorporating
uncalled ‘N’ bases were filtered using the BBTools software suite (version 38.96). The
quality assessment returned a mean Q of 32, with 88% in Q20 and 77% in Q30. Mapping
software bwa (version 0.7.17-r1198) in combination with samtools (version 1.15.1) was
used to map remaining reads to (selected regions of) human UCSC hg38 reference genome
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downloaded from iGenomes. Coverage analysis was performed with bedtools (version
2.30.0). Variant calling was performed with LoFreq software (version 2.1.5). Consequences
of called variants were annotated on the amino acid level using annotation of the mentioned
reference genome. Disclaimer: DNA library construction, sequencing, and data analysis
described in this section were performed at Microsynth AG (Balgach, Switzerland).

2.3. Clinical Data Analysis

Parameters investigated for their potential prognostic significance were patient age,
transformed versus de novo DLBCL, international prognostic index (IPI), previous treat-
ment lines, prior radiotherapy, the need for bridging therapy before CAR T-cell infusion,
remission status at the time of CAR T treatment, number of complete or partial response
prior to CAR T therapy, prior SCT, lactate dehydrogenase (LDH) before lympho-depleting
therapy, use of Kymriah®, Yescarta®, Bristol Myers Squibb® (Celgene®) CAR T-cell prod-
ucts, the manifestation of a cytokine release syndrome (CRS), and/or an immune effector
cell-associated neurotoxicity syndrome (ICANS). Peak IL-6 and C-reactive protein (CRP)
serum levels were recorded during the treatment in order to evaluate the occurrence
of CRS and infections [17]. We investigated the remission status at follow-up dates at
100 days, 6 months, and 1 year after CAR T-cell infusion. The progression-free survival
(PFS) and OS were defined as the time from CAR T-cell infusion to disease progression,
death, or last follow-up, respectively. PFS and OS were censored at the last follow-up on 18
August 2023, which was also used as the data cutoff. Survival curves (Kaplan–Meyer) and
univariate statistical analyses were performed on GraphPad Prism version 10 (GraphPad
Software, San Diego, CA, USA). The categorical variables were summarized as frequencies
and percentages, and the continuous variables as medians and ranges.

3. Results
3.1. Prevalence of PPM1D Mutations in r/r DLBCL

NGS amplicon sequencing was performed to identify mutations in exon 6 of the
PPM1D gene in peripheral blood mononuclear cells isolated from 88 patients with r/r
DLBCL before infusion of CD19-targeted CAR T-cells. Only PPM1D mutations with a
variant allele frequency (VAF) > 0.015 were included. We identified 19 low-frequency
PPM1D mutations in 18 genomic DNA samples of 88 DLBCL patients (18/88; 20.5%), with
10 in-del (53%; 10/19), 5 nonsense, and 4 missense mutations (Figure 1, Table 1). The
identified PPM1D exon 6 mutations resembled those previously described [30,32,46], with
a majority of stop-gain changes resulting in truncated protein products (14/18, 78%). The
VAF of PPM1D mutations called in the DLBCL DNA samples ranged from 0.015 to 0.217,
with a mean VAF of 0.052, and a median VAF of 0.036. One variant with a non-conservative
change (F543V) was called in the reference healthy donor samples with a median VAF of
0.027, and in two DLBCL samples at VAF of 0.071 and 0.078. One variant with a conservative
change (D509N) may be a benign variant. However, all variants with stop-gain changes
are translated into phosphatase protein variants which may not be effectively targeted for
degradation by the cellular APC/C complex. Consequently, the function of the p53 tumor
suppressor may be impaired in cells with stop-gain mutated PPM1D genes, which may
induce cell survival and proliferation (Figure 2).

3.2. Baseline Clinical Characteristics of the DLBCL Patient Cohort

Of the 88 r/r DLBCL patients with NGS data, 85 were admitted to CAR T-cell infusion.
Clinical characteristics of the 85 r/r DLBCL patients are summarized in Table 2. The
median age at first diagnosis was 61 years (range: 34–79 years) with 60% de novo DLBCL
and 39% transformed DLBCL. Among patients diagnosed with transformed DLBCL, the
most frequent initial diagnosis was follicular lymphoma (FL; n = 23), followed by chronic
lymphocytic leukemia (CLL; n = 4). Most patients had initial disease stage IV (39%)
and initial prognostic indexes of 3 or 4 (81%) with similar proportions in the PPM1D
subgroups. Most patients had received three or more prior lines of therapy (65%) with
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equal proportions in the PPM1D subgroups. Additionally, 45% of the PPM1Dwt and 67% of
the PPM1Dmut population had undergone stem cell transplantation (SCT). The number of
complete remissions and partial responses to previous treatments was equally distributed
in both subgroups.
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Table 1. PPM1D gene mutations detected in r/r DLBCL cohort.

Classification Locus Chr7 VAF NT Change AA Change

indel 60,663,077 0.079 AT/A L450fs *
nonsense 60,663,083 0.023 T/G L450 *
missense 60,663,085 0.036 G/A E451K
nonsense 60,663,106 0.032 C/T R458 *
nonsense 60,663,157 0.026 G/T E475 *
nonsense 60,663,185 0.018 T/A L484 *
indel 60,663,224 0.046 del 17 L498fs *
missense 60,663,259 0.015 G/A D509N
indel 60,663,262 0.217, 0.121, 0.017, 0.017 C/CA N512fs *
indel 60,663,269 0.025 AT/A L513fs *
indel 60,663,307 0.044 GA/G I526fs *
missense 60,663,334 0.081, 0.078 T/G F543V
indel 60,663,336 0.054 TA/T R536fs *
indel 60,663,340 0.042 AG/A R536fs *
nonsense 60,663,347 0.018 T/G L538 *

Abbreviations: indel: insertion/deletion; VAF: Variant Allele Frequency; NT: Nucleotide; AA: Amino Acid. *
(asterisk) = translation termination (stop) codon.
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Figure 2. PPM1D phosphatase function in B-cells. Intracellular signaling initiated on the B-cell surface
receptors CD19, BCR, and TLR leads to inhibition of the tumor suppressor p53 and to cell survival and
proliferation. Radiation and genotoxic chemotherapy induce the activation of the tumor suppressor
p53 leading to cell cycle arrest, DNA repair, and/or apoptosis. Protein phosphatase PPM1D (Wip1)
and mutated/truncated PPM1D variants can dephosphorylate p53 and inhibit its activity. Anaphase-
promoting complex/cyclosome (APC/C) targets the PPM1D protein and promotes its degradation
by binding to the C-terminal degron region. Truncated PPM1D variants are not targeted by APC/C.
Oncogenic functions are indicated in red, tumor suppressor functions in green, and DNA damage-
inducing agents in yellow.

Table 2. Baseline clinical parameters of the r/r DLBCL cohort, univariate analysis.

Cohort
(n = 85)

PPM1Dwt
(n = 67)

PPM1Dmut
(n = 18) p-Value

Sex (female: male) 34:51 26:40 7:11 >0.99

Median age at ID (range) 61 (34–79) 61 (34–79) 61 (41–78) 0.85

Median age at CAR-T (range) 66 (35–82) 65 (35–82) 69 (52–79) 0.47

DLBCL, de novo 51 (60%) 39 (58%) 12 (67%)
0.42DLBCL, transformed 33 (39%) 27 (40%) 5 (28%)

Initial Disease Stage

0.73

I 3 (3%) 2 (3%) 1 (5%)
II 14 (16%) 12 (18%) 2 (11%)
III 14 (16%) 9 (14%) 5 (28%)
IV 33 (39%) 26 (39%) 6 (33%)
NR 21 (25%) 17 (25%) 4 (22%)

Prognostic Index (IPI)

0.98

1 1 (1%) 1 (2%) 0
2 8 (9%) 6 (9%) 2 (11%)
3 36 (42%) 28 (42%) 8 (44%)
4 33 (39%) 25 (37%) 8 (44%)

NR 7 (8%) 7 (10%) 0
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Table 2. Cont.

Cohort
(n = 85)

PPM1Dwt
(n = 67)

PPM1Dmut
(n = 18) p-Value

Number of treatment lines

>0.99
prior to CAR-T therapy

1 2 (2%) 2 (3%) 0
2 28 (33%) 22 (33%) 6 (33%)
≥3 55 (65%) 43 (64%) 12 (67%)

Bridging chemotherapy 35 (41%) 27 (40%) 8 (44%) 0.99

Bridging radiotherapy 16 (19%) 14 (21%) 2 (11%) 0.51

Stem Cell Therapy (SCT) 42 (49%) 30 (45%) 12 (67%)
0.31autologous 41 30 11

allogeneic 1 0 1

Number of CR prior to

0.59

CAR-T therapy
0 35 (41%) 28 (42%) 6 (33%)
1 35 (41%) 27 (40%) 8 (44%)
2 13 (15%) 9 (14%) 4 (22%)
≥3 1 (1%) 1 (2%) 0

Number of PR prior

0.77

to CAR-T therapy
0 32 (38%) 24 (36%) 8 (44%)
1 40 (47%) 31 (46%) 8 (44%)
2 9 (11%) 7 (11%) 2 (11%)
≥3 3 (4%) 3 (5%) 0

Significance of differences was calculated using chi-square test or Fisher’s exact test; differences in median values
were calculated using Mann–Whitney test. ID: initial diagnosis; DLBCL: diffuse large B-cell lymphoma; CAR T:
chimeric antigen receptor T-cell; SCT: stem cell therapy.

3.3. Disease Features and CAR T-Cell Treatment

Disease status at the time of CAR T-cell infusion is presented in Table 3. The median
time from first diagnosis to CAR T-cell infusion was 25 months for the PPM1Dwt and
33 months for the PPM1Dmut patient population, respectively. At the time of CAR T-
cell treatment, the majority (57%) of patients in the PPM1Dwt subgroup had progressive
disease (PD), while the majority (50%) of patients in the PPM1Dmut subgroup were in
partial remission (PR). All patients received lympho-depleting chemotherapy for 3 days
(day −5 to −3) with 300 mg/m2 cyclophosphamide and 30 mg/m2 fludarabine, with
2 days of washout prior to CAR T-cell infusion (day 0). Median pre-lympho-depletion
LDH levels were lower in the PPM1Dwt patients compared to the PPM1Dmut patients
(461 U/L vs. 602 U/L, p = 0.075). Three different CAR T-cell products were used: Kymriah®

(Novartis, tisagenlecleucel; 62%), Yescarta® (Gilead, axicabtagene ciloleucel; 31%), and
JCAR017-BCM-003 (Celgene®, 7%). The majority of the patients (56%) carried the CD19
gene polymorphism rs 2,904,880 with equal distribution in the PPM1D subgroups.

3.4. Clinical Outcome after CAR T-Cell Therapy

Table 4 illustrates the clinical outcome after CAR T-cell treatment. The majority of
patients (80%) had cytokine release syndrome (CRS) after CAR T-cell infusion, mostly
(62%) low grade 1. Immune effector cell-associated neuro-toxicity syndrome (ICANS)
was detected in a third of the patients. While the majority of ICANS in the PPM1Dwt
subgroup was low grade 1 or 2 (56%), ICANS in the PPM1Dmut subgroup tended to be
high grade 3 or 4 (75%). Patients with CRS grade >= 2 were treated with tocilizumab,
and patients with ICANS grade >= 2 were treated with steroids. The median duration of
hospitalization was 21 vs. 23 days for the PPM1Dwt vs. PPM1Dmut population (p = 0.34).
Inflammatory markers including C-reactive protein (CRP), ferritin, and IL-6 were elevated
in the PPM1Dmut subgroup (CRP, 30 mg/L vs. 64 mg/L, p = 0.105; ferritin, 1209 µg/L vs.
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1772 µg/L, p = 0.064; IL-6443 pg/mL vs. 559 pg/mL, p = 0.58). Treatment response differed
between the two subgroups (p = 0.044). While the most frequent response in the PPM1Dwt
cohort was CR (56%), the prevalent response in the PPM1Dmut subgroup was PR (60%).
In the PPM1Dwt subgroup, relapses occurred in 35 patients (52%) after a median interval
of 12 months and death in 29 patients (44%) after a median interval of 37 months after
CAR T-cell infusion. Among the PPM1Dmut population, relapses occurred in 13 patients
(72%) after a median interval of 3 months and death in 13 patients (72%) after a median
interval of 5 months after CAR T-cell infusion. Survival times were longer in the PPM1Dwt
compared to the PPM1Dmut population, with extended PFS (12 versus 3 months, p = 0.07)
and significantly extended OS time (37 versus 5 months, p = 0.004) (Figure 3).

Table 3. Clinical characteristics and details of CAR T-cell treatments, univariate analysis.

Cohort
(n = 85)

PPM1Dwt
(n = 67)

PPM1Dmut
(n = 18) p-Value

CAR-T Product
Kymriah®:Yescarta®:Celgene® 53:26:6 40:22:5 13:4:1 0.4

Target antigen variants

0.79
0.26

CD19 +/−rs2904880 48:37 (56%) 37:30 (55%) 11:7 (61%)
Stage at CAR-T cell infusion

CR 5 (5.9%) 5 (7.5%) 0
PR 30 (35.3%) 21 (31%) 9 (50%)
SD 4 (4.7%) 3 (4.5%) 1 (5.5%)
PD 46 (54.1%) 38 (57%) 8 (44%)

Median interval ID to CAR-T
cell infusion in months (range)

26 25 33
0.28(6–312) (6–312) (8–277)

Median LDH U/L prior CAR-T 490 461 602
0.075(range) (249–3949) (249–2355) (344–3949)

Significance of differences was calculated using chi-square test or Fisher’s exact test; differences in median values
were calculated using Mann–Whitney test. CR: complete remission; PR: partial remission; SD: stable disease; PD:
progressive disease; CAR T: chimeric antigen receptor T-cell; LDH: lactate dehydrogenase.

Table 4. Clinical outcome after CAR T-cell treatment, univariate analysis.

Total Cohort
(n = 85)

PPM1Dwt
(n = 67)

PPM1Dmut
(n = 18) p-Value

CRS 68 (80%) 52 (77%) 16 (89%) 0.57

grade 1 42 (62%) 32 (62%) 10 (62%)
grade 2 22 (32%) 17 (33%) 5 (31%)
grade 3 3 (4.4%) 3 (5.8%) 0
grade 4 1 (1.5%) 0 1 (6%)

ICANS 31 (36%) 23 (34%) 8 (44%) 0.19

grade 1 9 (29%) 7 (30%) 2 (25%)
grade 2 6 (19%) 6 (26%) 0
grade 3 11 (35%) 7 (30%) 4 (50%)
grade 4 5 (16%) 3 (13%) 2 (25%)

Median Peak CRP 41.5 30 64
0.105mg/L (range) (3–328) (3–323) (3–328)

Median Peak IL-6 556 443 559
0.58pg/mL (range) (4–157,117) (4–157,117) (7–42,209)

Median Peak Ferritin µg/L
(range)

1265
(99–13,393)

1209
(99–13,393)

1772
(290–12,398) 0.064

Admissions to IMC/ICU 16 11 5 0.34

Hospitalization time
in days (range) 21 (14–68) 21 (14–68) 23 (18–41) 0.34
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Table 4. Cont.

Total Cohort
(n = 85)

PPM1Dwt
(n = 67)

PPM1Dmut
(n = 18) p-Value

Best remission status n = 79 n = 64 n = 15

0.044

post CAR T-cell therapy
CR 41 (52%) 36 (56%) 5 (33%)
PR 26 (33%) 17 (27%) 9 (60%)
SD 4 (5%) 3 (5%) 1 (7%)
PD 8 (10%) 8 (13%) 0

Median Survival time
Progression free (PFS) 12

Significance of differences was calculated using chi-square test or Fisher’s exact test; differences in median values
were calculated with the Mann–Whitney test. CR: complete response; PR: partial response; SD: stable disease;
CRP: C-reactive protein; IMC/ICU: intermediate care unit.
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The standard approach of applying univariate tests on individual response variables
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and correlation in the data. The multivariate analysis supported the trend observed in
the univariate analysis for worse clinical outcomes in DLBCL patients carrying PPM1D
mutations treated with CAR T therapy, for example, in OS time with a hazard ratio of 2.37
at a p-value of 0.016 (Table 5). Similarly, older age at treatment start was associated with
worse clinical outcomes in OS time (HR 2.25, p = 0.012). Moreover, patients diagnosed
with transformed lymphoma had a better treatment outcome than de novo DLBCL, with
a hazard ratio of 0.44 (p = 0.027), similar to the results previously reported [15]. The
serum ferritin levels after CAR T-cell infusion were most significantly associated with
treatment outcome.
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4. Discussion

PPM1D is one of the most frequently mutated genes in the context of clonal hemato-
poiesis (CH). The majority of reported PPM1D genomic alterations linked to CH are non-
sense or frameshift mutations located within the terminal exon 6 [33,34]. These truncating
protein stop-gain or frameshift mutations, which entail a loss of the C-terminal degron
domain in Wip1, lead to a gain of function of PPM1D. The resulting hyperactive PPM1D
represses the normal p53-dependent G1 checkpoint, thereby promoting cell prolifera-
tion [39,40]. In lymphoma patients, mutations in PPM1D have been correlated with worse
response to standard systemic treatment, as well as shorter OS [30–33,36]. We hypothesized
that, by promoting cell cycle dysregulation and cell proliferation, the presence of PPM1D
mutations may impair optimal response to CAR T-cell therapy.

In our patient cohort, 20% out of the 85 r/r DLBCL patients treated with CAR T-cell
therapy harbored mutations within exon 6 of the PPM1D gene. This prevalence is consis-
tent with findings from previous publications reporting the prevalence of PPM1D somatic
mutations ranging between 2 and 23.5% in cancer patients with a history of chemother-
apy exposure [30,33,34,45,49]. Moreover, the frequency of PPM1D mutations increases
with age [33,35]. In our patient cohort, the median age of patients in the PPM1Dmut
cohort was 69 years, slightly older than in the PPM1Dwt subgroup, with a median age
of 65 years (p = 0.47). CH is defined by the presence of cancer-related mutations in
hematopoietic cells with a VAF of at least 0.02, in the absence of underlying hematologic
malignancy [30,32,34,37]. The mean VAF of 0.052 and median VAF of 0.036 of the PPM1D
gene variants in our study are reminiscent of the variant allele frequencies detected in CH
in response to cytotoxic chemotherapy [45]. Moreover, the identified PPM1D exon 6 muta-
tions resembled those previously described [30,32,45], with a majority of stop-gain changes
resulting in truncated protein products (15/19, 79%). All PPM1D variants with stop-gain
changes are translated into phosphatase protein variants which may not be effectively
targeted for degradation by the cellular APC/C complex. Consequently, the function of
the p53 tumor suppressor may be impaired in cells with stop-gain mutated PPM1D genes,
which may lead to enhanced cell survival and proliferation. As the presence of truncated
PPM1D proteins leads to inactivation of the tumor suppressor p53, it is possible that PPM1D
mutations generally associate with adverse outcomes in hematological diseases and other
cancers where treatment-induced p53 function is required. To improve treatment outcomes
in tumors with PPM1D mutations, a selective and potent allosteric PPM1D inhibitor with
acceptable pharmacokinetic properties may be applied in the future [50].

The r/r DLBCL patient population analyzed in our study was heavily pre-treated. All
carriers of a PPM1D mutation had received two or more therapy lines prior to CAR T-cell
therapy, in most cases including R-CHOP as standard first-line treatment. Additionally,
63% of the PPM1Dmut population had undergone SCT. Previous studies confirmed an
increased prevalence of PPM1D mutations in chemotherapy-exposed lymphoma patients.
Eskelund et al. reported the expansion of hematopoietic clones carrying mutations in
DDR-related genes, such as PPM1D or TP53, in lymphoma patients after receiving first-line
chemotherapy with R-CHOP [51]. Clones with PPM1D mutations experienced significantly
higher expansion, as compared to clones with other common CH mutations. Moreover,
Kahn et al. showed that PPM1D mutations were 60 times more likely to be present in
chemotherapy-exposed lymphoma patients, even after adjusting for age, as compared
to patients without previous malignancy [33]. High-grade CRS and ICANS have been
described in DLBCL patients with DTA gene mutations (DNMT3A, TET2, and ASXL1)
treated with axi-cel [30]. In our study, there was no significant association between the
frequency or severity of CAR T-cell-related adverse events and the presence of PPM1D
mutations. Nevertheless, there was a tendency for higher-grade ICANS in the PPM1Dmut
subgroup (p = 0.19). While the majority of ICANS in the PPM1Dwt subgroup was low
grade 1 or 2 (56%), ICANS in the PPM1Dmut subgroup tended to be high grade 3 or
4 (75%). Pretreatment serum levels of LDH and inflammatory markers, including CRP,
ferritin, and IL-6, however, were elevated in the PPM1Dmut population and negatively
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associated with clinical outcomes. Elevated ferritin levels in the sera of DLBCL patients
have previously been associated with aggressive disease and poor clinical outcome [52].
Likewise, CRP serum levels >30 mg/L have previously been associated with a shorter OS
in DLBCL treated with anti-CD19 CAR T-cell therapy [53].

The outcome of CAR T-cell treatment had previously been analyzed in the same (r,r)
DLBCL patient cohort stratified for age, disease status, and CD19 variant [12]: younger
patients had a better treatment outcome, with a median OS of 4 years in patients up to
65 years of age and only 7 months in patients over 65 years of age (p = 0.002); transformed
DLBCL had a better outcome than de novo DLBCL, with a median OS of 8 months for de
novo and 3 years for transformed DLBCL (p = 0.011); patients carrying the germline variant
CD19 L174 allele had a better treatment outcome, with a median PFS of 6 vs. 22 months
(p = 0.06). In the present study, we detected a significantly worse survival outcome for DL-
BCL patients with CH-related PPM1D mutations (5 versus 37 months; p = 0.004). While the
prevalent treatment outcome of anti-CD19 CAR T-cell therapy within the PPM1Dwt sub-
group was complete remission (56%), the majority of patients within the PPM1Dmut
subgroup had only partial remission (60%) and a short time of relapse-free survival
(3 versus 12 months; p = 0.07). These data suggest a prognostic and possibly predictive
impact of PPM1D mutations in patients with r/r DLBCL undergoing CD19-targeted CAR
T-cell therapy. To confirm the impact of low-frequency PPM1D mutations on treatment
outcome, a larger retrospective study in DLBCL patients treated with anti-CD19 CAR T-cell
therapy is required. Moreover, to improve treatment outcomes in PPM1D-mutated DLBCL
patients, the administration of a PPM1D inhibitor may present a valid treatment option.
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