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1 Introduction

A combination of a sufficiently strong magnetic field and nonzero baryon chemical potential
makes the vacuum of quantum chromodynamics (QCD) unstable with respect to the
formation of a periodically modulated neutral pion condensate [1]. The mechanism behind
the formation of this novel state, dubbed chiral soliton lattice (CSL) in analogy with similar
phenomena in condensed-matter physics [2], relies critically on the chiral anomaly [3],
similarly to the notorious two-photon decay of the neutral pion. The prediction of the CSL
phase in ref. [1] was made using the low-energy effective field theory of QCD: the chiral
perturbation theory (χPT). It is therefore model-independent. Its numerical accuracy relies
on the leading-order (LO), or tree-level, approximation of χPT.

The prediction of the CSL phase in the phase diagram of QCD raises a number of
immediate questions. The first of these concerns the phenomenological relevance. Nonzero
baryon density in combination with zero or low temperature and strong magnetic fields
suggests that the CSL state might appear in the cores of neutron stars. Indeed, the
average baryon density carried by the CSL lies in the ballpark [1]. On the other hand,
a sufficiently strong magnetic field might be hard to reach by conventional mechanisms.
However, the critical magnetic field needed for the formation of CSL might be lowered by a
positive-feedback loop arising from interaction with neutrons [4]. A similar mechanism for
spontaneous magnetization of QCD matter was proposed in ref. [5].

On a more conceptual side, one might also wonder how a solitonic pion state carrying
anomaly-induced baryon number might be dynamically created. This is a difficult question,
and first works in this direction only appeared recently [6, 7], suggesting nucleation of domain
walls from the QCD vacuum similar to bubble nucleation in first-order phase transitions.
Another important conceptual question is related to the one-dimensional modulation of the
CSL state. Namely, such one-dimensional ordered states should be unstable under thermal
fluctuations in the two tranverse directions [8, 9]; this is known as the “Landau-Peierls
instability.” Strictly speaking, the underlying reason for the instability is the softening of
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the spectrum of transverse fluctuations, enforced by rotational invariance of the system.
The instability can therefore be avoided thanks to the external magnetic field, which breaks
rotational invariance explicitly [10].

It is nevertheless important to explicitly take into account the effect of thermal fluc-
tuations, not only to rule out the presence of the Landau-Peierls instability, but also to
delineate more accurately the domain in the phase diagram of QCD, occupied by the CSL
phase. This was done in our previous paper [11], where we extended the analysis of ref. [1]
to the next-to-leading order (NLO) of the derivative expansion of χPT. For calculation
simplicity, we however only considered the domain wall limit of the general CSL state. This
is sufficient to locate the phase transition between the normal and CSL phases, assuming
that it occurs via the formation of the domain wall.

The primary goal of this paper is to justify this assumption, and thus to put our
previous work [11] on a solid basis. At the same time, we further extend our previous
results by computing the magnetization, carried by the CSL. This observable is important
for the dynamics of spontaneous generation of strong magnetic fields, and thus completes
the list of properties relevant for assessing whether the CSL state might occur in the cores
of neutron stars.

The plan of our paper is as follows. In section 2, we review the properties of the CSL
solution at LO, which forms a basis for the subsequent analysis. The strategy and main
ingredients of the NLO computation are laid out in section 3. The simpler case of the
domain wall is discussed in section 4. We fill in some details skipped in ref. [11], and add
the calculation of the magnetization. Section 5 extends the analysis to the general case of
CSL; this is the core of the present paper. While all of our calculations are done analytically,
the importance of the results is best assessed by illustrating them with concrete numerical
values. This is done in section 6. In section 7 we summarize and append some concluding
comments. In order to make the main text of the paper readable, many technical details
are relegated to four appendices.

2 Chiral soliton lattice phase at leading order

We work within the two-flavor version of χPT, whose LO Lagrangian reads

L = f2
π

4
[
Tr(DµΣ†DµΣ) + 2m2

π Re Tr(Σ− 1)
]

+ LWZW. (2.1)

Here Σ is a 2× 2 unitary unimodular matrix containing the three pion degrees of freedom.
Also,mπ and fπ are the pion mass and decay constant, respectively, and the latter determines
the intrinsic cutoff scale of χPT as 4πfπ. The covariant derivative captures the minimal
coupling to the electromagnetic gauge potential Aµ, DµΣ = ∂µΣ− iAµ[ τ3

2 ,Σ], with τ3 being
the third Pauli matrix. Finally, the Wess-Zumino-Witten (WZW) term LWZW incorporates
the effects of the chiral anomaly [12, 13] and can be written as [3]

LWZW =
(
Aµ
2 −A

B
µ

)
jµGW, (2.2)
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where AB
µ = (µ,0) is the auxiliary gauge field coupling to baryon number and

jµGW = − 1
24π2 ε

µναβ Tr
[
(ΣDνΣ†)(ΣDαΣ†)(ΣDβΣ†) + 3i

4 Fνατ3(ΣDβΣ† +DβΣ†Σ)
]

(2.3)

is the topological Goldstone-Wilczek current [14].
In sufficiently strong magnetic fields, B & m2

π, charged pions get a large effective mass
due to Landau level quantization and only neutral pions remain as relevant degrees of
freedom. Defining a dimensionless neutral pion field as φ ≡ π0/fπ, Σ = eiτ3φ can be then
inserted in eq. (2.1), leading to

Lφ = f2
π

2 (∂µφ)2 +m2
πf

2
π(cosφ− 1) + µ

4π2 B ·∇φ, (2.4)

where B denotes the background magnetic field, assumed to be constant and uniform from
now on.

The classical ground state of the theory is found by subsequent minimization of the
corresponding Hamiltonian with respect to φ. Let us note that the unit matrix 1 was
included in the second term of (2.1) to ensure that the “normal phase” (that is, the QCD
vacuum, corresponding to Σ0 = 1) has zero energy density. A negative (spatial average of)
energy density is then a smoking gun for a nontrivial ground state.

2.1 Classical ground state

As shown in ref. [1], the equation of motion corresponding to the Lagrangian (2.4) has
a class of topologically nontrivial solutions, modulated in the direction of the magnetic
field. We choose to orient B along the z-axis. The solutions, φ0, are parameterized by the
dimensionless elliptic modulus k (0 ≤ k ≤ 1), and given implicitly by

cos φ0(z̄)
2 = sn(z̄, k). (2.5)

Here z̄ ≡ zmπ/k is a suitably chosen dimensionless coordinate and sn is one of the Jacobi
elliptic functions. The solution φ0 is quasiperiodic in z in the sense that

φ0(z + L) = φ0(z) + 2π, (2.6)

where
L = 2kK(k)

mπ
(2.7)

is the period and K(k) is the complete elliptic integral of the first kind. As a consequence,
the corresponding unitary matrix Σ0 = eiτ3φ0 , which in turn determines the expectation
values of the quark scalar and pseudoscalar bilinears (condensates), is strictly periodic.

The average energy density of the CSL solution (2.5) at LO reads

F0,CSL
V

= 2m2
πf

2
π

[
1− 1

k2 + 2
k2
E(k)
K(k)

]
− mπµB

4πkK(k) . (2.8)

– 3 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
3

The energy density can in turn be minimized with respect to k in order to find the ground
state for given baryon chemical potential µ and magnitude of the external magnetic field B.
This leads to an implicit condition that uniquely fixes the value of k,

E(k)
k

= µB

16πmπf2
π

, (2.9)

where E(k) is the complete elliptic integral of the second kind. It follows from eq. (2.8)
that whenever the condition (2.9) is satisfied with 0 < k < 1, the LO energy of the CSL
state is negative, i.e., CSL is favored over the QCD vacuum. However, eq. (2.9) cannot be
satisfied for arbitrary values of µ and B, since its left-hand side is bounded from below,
E(k)/k ≥ 1. The condition for the existence of the CSL solution can be cast as a lower
bound on the magnetic field (for given µ),

B ≥ BCSL ≡
16πmπf

2
π

µ
. (2.10)

The equation B = BCSL defines the boundary between the normal and CSL phases at LO
of the derivative expansion of χPT.

At the phase transition, the optimum value of the elliptic modulus is k → 1. In this
limit, the lattice spacing (2.7) diverges. The CSL solution (2.5) turns into a domain wall,
which has a simple expression not requiring Jacobi elliptic functions,

φ0(z) = 4 arctan emπz. (2.11)

The domain wall solution is localized in the direction of the magnetic field, and its energy
thus does not scale with volume but rather with area in the two transverse directions. While
its average bulk energy density (2.8) vanishes, the domain wall still carries nonzero energy
per unit transverse area, which vanishes for B → BCSL,

F0,wall
S

= 8mπf
2
π −

µB

2π . (2.12)

2.2 Power counting

In order to include the contributions of quantum and thermal fluctuations to the free energy
in a controlled way, a power-counting scheme is needed. We modify the standard χPT power
counting [15] in the same way as in ref. [11], i.e., we assign an unconventional counting
order to the baryon chemical potential,

∂µ, mπ, T, Aµ = O(p1), ABµ = O(p−1). (2.13)

The advantage of this scheme is that it brings the term proportional to ABµ in the WZW
Lagrangian (2.2) to the LO, O(p2) part of the effective Lagrangian. This makes the tree-level
analysis of CSL in ref. [1] consistent.

Higher orders of the derivative expansion of the free energy density of χPT are then
organized by increasing powers of the dimensionless expansion parameter ε ∼ [p/(4πfπ)]2,
where p is the characteristic scale of mπ, T or

√
B. In order to determine the complete
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free energy at NLO, O(p4), we need to include one-loop contributions generated by the
LO Lagrangian as well as tree-level contributions from additional, O(p4) operators in the
effective Lagrangian.

Note that the baryon chemical potential does not correspond to any physical mass scale
in χPT. Consequently, assigning µ a counting order of −1 does not amount to restricting to
a particular range of values of µ. However, eq. (2.4) shows that the combination µB/(4π2f2

π)
controls the gradient of the neutral pion field in the CSL state. This is consistent with
the fact that µB is O(p1) according to our counting scheme. It can be checked that the
gradient of the neutral pion field in the CSL state given by eqs. (2.5) and (2.9) is indeed
smaller than 4πfπ in the relevant part of the parameter space.

3 Setup of the next-to-leading-order calculation

3.1 Expansion of free energy

Upon including the effects of fluctuations, the free energy becomes a nonlocal functional
of the field configuration φ. Minimizing such a functional directly to find the ground
(equilibrium) state would be a daunting task. Fortunately, in order to pin down the phase
diagram, we do not really need to know the exact CSL ground state, merely the difference
of its free energy compared to the normal phase. Let us see how far we can get by using
the systematic power counting of χPT.

In order to make our task feasible, we will restrict to the class of quasiperiodic functions
φ(z). Each such function can be represented by a profile function ϕ and the period L as

φ(z) = ϕ(z/L). (3.1)

The profile function is likewise quasiperiodic, but its period is rescaled to unity. Now recall
that already at LO, the procedure for finding the ground state was split into two steps.
In the first step, we found a broad class of stationary field configurations of the classical
action. In the second step, we then minimized the energy of these solutions with respect
to a single real parameter, k. With this in mind, we temporarily treat the average free
energy density as a functional of the profile ϕ and a function of the period L, F [ϕ,L]. In
the derivative expansion, the free energy of χPT can be expanded in powers of ε,

F [ϕ,L] = F0[ϕ,L] + ε1F1[ϕ,L] + ε2F2[ϕ,L] + · · · . (3.2)

Denoting the ground state configuration with a bar to distinguish it from a generic test
field, it can likewise be expanded in a power series,

ϕ̄ = ϕ0 + ε1ϕ1 + ε2ϕ2 + · · · ,
L̄ = L0 + ε1L1 + ε2L2 + · · · .

(3.3)

Up to the NLO, that is first order in ε, the free energy density then becomes

F [ϕ̄, L̄] = F0[ϕ0, L0]+ ε1
∫

dz ϕ1(z) δF0
δϕ(z)

∣∣∣∣ϕ=ϕ0
L=L0

+ ε1L1
∂F0
∂L

∣∣∣∣ϕ=ϕ0
L=L0

+ ε1F1[ϕ0, L0]+O(ε2).

(3.4)
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In order that the expansion (3.3) actually represents the ground state, the LO approxi-
mation must be a stationary state of F0, that is one of the solutions (2.5). This ensures
vanishing of the integral term in eq. (3.4); the fact that ϕ(z) has a fixed boundary condition
and a fixed period guarantees the vanishing of the boundary terms generated by integration
by parts when evaluating the variation δF0/δϕ. On the class of solutions (2.5), eq. (3.4)
therefore reduces to

F [ϕ̄, L̄] = F0[ϕ0, L0] + ε1L1
∂F0
∂L

∣∣∣∣ϕ=ϕ0
L=L0

+ ε1F1[ϕ0, L0] +O(ε2). (3.5)

This enables us to compute the NLO free energy of the LO ground state for given magnetic
field and chemical potential, for which also the derivative ∂F0/∂L vanishes. The calculation
of the contribution F1[ϕ0, L0] is the main subject of this work.

3.2 Fluctuation determinant

In any scalar field theory, the one-loop contribution to the free energy is given by the
determinant of the differential operator that defines the part of the Lagrangian quadratic
in fluctuations around the chosen ground state. Since the CSL state conserves electric
charge, we can consider separately the fluctuations of the neutral and charged pion fields.
Eventually, the one-loop free energy will be given by the formal expression

βF 1-loop
1 = 1

2 Tr log D (π0) + Tr log D (π±), (3.6)

where D (π0) and D (π±) are the fluctuation operators, specified concretely below. The
trace is taken over the spectrum of these operators, hence, detailed information about this
spectrum and the density of states will be needed.

In order to find the fluctuation operators D (π0) and D (π±), one needs to choose a
convenient parameterization of the matrix variable Σ, and to expand the Lagrangian (2.1)
to second order in the pion fields. This calculation was performed in appendix A of ref. [1]
and the fluctuation operator related to neutral pion fluctuations is easy to read off,

D (π0) = �+m2
π cosφ0. (3.7)

For the fluctuation operator in the charged pion sector, we need to choose a gauge for
the external magnetic field. With the standard asymmetric gauge, A = (0, Bx, 0), the
fluctuation operator becomes (see appendix C of ref. [1] for details)

D (π±) = �+ 2iBx∂y +B2x2 − (φ′0)2 +m2
π cosφ0, (3.8)

where the prime indicates a derivative with respect to z. Note that we are neglecting here
the contribution of the WZW term to the bilinear Lagrangian as it is of higher order when
the magnetic field is also counted as a small expansion parameter.

– 6 –
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3.2.1 Neutral pions

Combining equations (3.6), (3.7) and the CSL solution (2.5), the contribution of neutral
pions to the one-loop free energy of the CSL state follows. Upon analytical continuation to
imaginary time and Fourier transformation to the frequency-momentum space, it reads

βF
1-loop,(π0)
1,CSL = 1

2
∑

n,p⊥,λ

log
[
ω2
n + p2

⊥ +m2
π

(
λ

k2 − 1
)]

. (3.9)

Here ωn stands for the n-th bosonic Matsubara frequency, ωn ≡ 2πnT , p⊥ is the two-
vector of momentum in the directions transverse to the magnetic field, and λ labels the
(dimensionless) eigenvalues of the effective one-dimensional fluctuation Hamiltonian

H
(π0)

CSL ≡ −∂
2
z̄ + 2k2 sn2(z̄, k). (3.10)

This is a special case of the so-called Lamé Hamiltonian, whose spectrum is known in the
literature. We provide some further details with references in appendix A.

The expressions for the one-loop neutral pion free energy and effective one-dimensional
Hamiltonian in the case of the domain wall can in principle be obtained from eqs. (3.9)
and (3.10) by taking the limit k → 1. However, it turns out convenient to use another
definition of the eigenvalue λ, differing from that in eq. (3.9) by a constant shift,

βF
1-loop,(π0)
1,wall = 1

2
∑

n,p⊥,λ

log[ω2
n + p2

⊥ +m2
π(1 + λ)]. (3.11)

With this definition, λ runs over the eigenvalues of the one-dimensional Hamiltonian

H
(π0)

wall ≡ −∂
2
z̄ −

2
cosh2 z̄

. (3.12)

Here z̄ ≡ mπz is the dimensionless coordinate appropriate for the domain wall solution and
eq. (3.12) is a special case of the so-called Pöschl-Teller Hamiltonian. Its spectrum is also
well-known; see appendix A for a detailed derivation.

3.2.2 Charged pions

In the case of charged pions, the transverse directions cannot be dealt with by mere Fourier
transformation. Instead, we expect the different eigenstates to organize into Landau levels,
labeled by a non-negative integer quantum number m. Since the parts of D (π±) acting on
the x, y and z coordinates mutually commute, the Landau level problem can be solved in
the usual manner regardless of the background φ0(z). The final expression for the charged
pion contribution to the one-loop free energy of the CSL state thus parallels eq. (3.9),

βF
1-loop,(π±)
1,CSL = BS

2π
∑
n,m,λ

log
[
ω2
n + (2m+ 1)B + m2

π

k2 (λ− k2 − 4)
]
. (3.13)

We used the fact that the number of states in a given Landau level per unit transverse area
equals B/2π. The index λ now runs over the eigenvalues of the dimensionless Hamiltonian

H
(π±)

CSL ≡ −∂
2
z̄ + 6k2 sn2(z̄, k). (3.14)
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For the domain wall (k = 1), we again change the definition of λ by shifting it by a constant.
This leads to

βF
1-loop,(π±)
1,wall = BS

2π
∑
n,m,λ

log[ω2
n + (2m+ 1)B +m2

π(1 + λ)], (3.15)

with the corresponding one-dimensional effective Hamiltonian

H
(π±)

wall ≡ −∂
2
z̄ −

6
cosh2 z̄

. (3.16)

The Hamiltonians (3.14) and (3.16) are again special cases of the class of Lamé and Pöschl-
Teller Hamiltonians, respectively, and their spectra are described in appendix A. With all
the spectra of the one-dimensional fluctuation Hamiltonians known, the task to evaluate the
one-loop free energy of the CSL and domain wall solutions reduces to finding an efficient
way to perform the different sums.

3.3 Renormalization at one loop

Before proceeding to a detailed calculation, note that the naive one-loop free energy (3.6) is
divergent and requires renormalization. Within the power counting of χPT, this amounts to
adding a new set of NLO operators carrying the necessary counterterms. In the two-flavor
version of χPT, the NLO Lagrangian contains altogether 12 independent operators, see
for instance section 3.5.1 of ref. [15]. Fortunately, we do not need to carry out a complete
one-loop renormalization of χPT. All we need is renormalization of the one-loop effective
action on a neutral pion background. Moreover, we are only interested in the difference
of the free energies of the CSL and normal phases, which means that we can subtract
the effective action evaluated on the trivial vacuum, φ0 = 0. This reduces the required
counterterm Lagrangian to

Lc.t. = `1[(∂µφ)2]2 + `2(∂µφ)2m2
π cosφ+ `3m

4
π(cos2 φ− 1), (3.17)

where `1,2,3 are dimensionless couplings that can be fixed independently of the background,
that is, with the help of existing χPT results. In particular, rewriting the couplings `1,2,3
using the notation of [16], we find

`1 = l1 + l2, `2 = l4, `3 = l3 + l4. (3.18)

The divergent parts of l1,2,3,4 can in turn be fixed in the vacuum using the MS renormalization
scheme with dimensional regularization in D ≡ 4 − 2ε spacetime dimensions. If the
renormalization scale is chosen as mπ,1 they read [16]

li = − γi
2(4π)2

(1
ε

+ 1− l̄i
)
, (3.19)

1There is no residual dependence of our results on the choice of renormalization scale. Of course, one-loop
corrections to the free energy generate logarithmic dependence on the renormalization scale, but this can be
exactly compensated by suitable running of the NLO couplings. This is eventually because the predictions
of χPT are organized by powers of derivatives rather than couplings, and because the NLO free energy is
strictly linear in the NLO couplings.

– 8 –
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with the algebraic coefficients γi given by [17]

γ1 = 1
3 , γ2 = 2

3 , γ3 = −1
2 , γ4 = 2. (3.20)

As for the finite parts of the counterterms, we assume the following values,

l̄1 = −0.4± 0.6, l̄2 = 4.3± 0.1, l̄3 = 3.53± 0.26, l̄4 = 4.4± 0.2. (3.21)

The values of l̄1,2,4 were determined by matching of χPT to experimental input at interme-
diate energies via Roy equations (see refs. [18, 19] for details). On the other hand, the error
of l̄3 can be substantially reduced by taking into account lattice simulations. We therefore
use the value of l̄3 based on Nf = 2 + 1 + 1 simulations [20, 21]. For the sake of producing
our own numerical results, we will only use the mean values of l̄1,2,3,4; we display the errors
in eq. (3.21) just for a rough indication of the uncertainty of our results.

Another important consequence of the one-loop corrections to the effective action
of χPT is that beyond LO, the parameters fπ and mπ in eq. (2.1) no longer have the
interpretation as the pion decay constant and mass, respectively. In order to be able
to match these parameters correctly to physical observables, the part of the full 1-loop-
renormalized effective Lagrangian bilinear in the neutral pion field has to be found and
compared to the expression F 2

π
2 (∂µφ)2 − 1

2M
2
πF

2
πφ

2. A detailed calculation then allows for
the matching,

F 2
π = f2

π + m2
π

8π2 l̄4, (3.22)

M2
πF

2
π = m2

πf
2
π −

m4
π

32π2 (l̄3 − 4l̄4). (3.23)

Combining the physical input Mπ = 140MeV and Fπ = 92MeV with the mean values of
the finite counterterms (3.21) gives

mπ ≈ 142MeV, fπ ≈ 86MeV. (3.24)

We use these parameter values below in section 6 to map the part of the phase diagram
where the CSL is the ground state.

4 Domain wall at next-to-leading order

A complete expression for the NLO free energy of the domain wall appeared in ref. [11].
However, only the basic steps of the calculation were outlined therein, owing to space
restrictions of the letter format. Here we review the derivation in full detail. In addition,
we derive formulas for domain wall magnetization that were not published previously.

4.1 One-loop free energy

Let us start with evaluating explicitly the contribution to the free energy from the countert-
erm Lagrangian (3.17). To that end, we need the following elementary integrals, valid for
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the domain wall solution (2.11), ∫ +∞

−∞
dz [φ′0(z)]4 = 64m3

π

3 ,∫ +∞

−∞
dz [φ′0(z)]2 cosφ0(z) = −8mπ

3 ,∫ +∞

−∞
dz [cos2 φ0(z)− 1] = − 8

3mπ
.

(4.1)

The counterterm Lagrangian (3.17) then gives the following contribution to the free energy
of the domain wall per unit transverse area,

F c.t.
1,wall
S

= m3
π

(
−64

3 `1 −
8
3`2 + 8

3`3
)
. (4.2)

With the couplings `1,2,3 fixed according to section 3.3, this contribution serves to
cancel the divergences in the one-loop zero-temperature free energy that we shall calculate
next. Before doing so, let us outline the general strategy for evaluation of the sums over λ
in eqs. (3.11) and (3.15). Using the known properties of the spectrum and eigenstates of the
Pöschl-Teller Hamiltonian, one can derive the summation master formulas (see appendix A
for details) ∑′

λ

f(λ) = f(−1)− 2
π

∫ ∞
0

f(P 2)
1 + P 2 dP (4.3)

for the Hamiltonian (3.12), governing neutral pion fluctuations, and

∑′

λ

f(λ) = f(−4) + f(−1)− 1
π

∫ ∞
0

( 2
1 + P 2 + 4

4 + P 2

)
f(P 2) dP (4.4)

for the Hamiltonian (3.16), governing charged pion fluctuations. Both formulas hold for any
smooth function f satisfying lim

P→∞
f(P 2)/P = 0. The primes on the summation symbols

indicate regularization of the sums by subtraction of an analogous sum over the spectrum
of the “free particle” Hamiltonian H0 = −∂2

z̄ . If these formulas are used in eqs. (3.11)
and (3.15), the difference of free energies of the domain wall and the normal phase is
obtained. If not stated otherwise, we will have in mind this difference when speaking about
the free energy of the domain wall or CSL in the following text, i.e., the subtraction of the
normal phase will not be mentioned explicitly every time.

4.1.1 Zero-temperature part

The one-loop free energy can be split into a zero-temperature part and a thermal part in a
standard manner. We will first deal with the zero-temperature part, which is somewhat
easier to evaluate but requires renormalization. Starting with the contribution of neutral
pions, a combination of eqs. (3.11) and (4.3) gives

F
T=0,(π0)
1,wall
S

= 1
2

(
eγEΛ2

RG
4π

)ε ∫ ddP⊥
(2π)d

{
logP 2

⊥ −
1
π

∫ +∞

−∞
dP log[P 2

⊥ +m2
π(1 + P 2)]

1 + P 2

}
. (4.5)
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Here P⊥ denotes the transverse components of four-momentum (that is frequency ω that
becomes continuously-valued in the limit T → 0, and transverse momentum p⊥), and
d ≡ 3− 2ε is the number of spatial dimensions in dimensional regularization. As usual in
dimensional regularization, we have inserted an appropriate power of the renormalization
scale ΛRG to keep the mass dimension of the free energy fixed. As mentioned in section 3.3,
we set ΛRG = mπ in our final results. Recall also that the finite parts of the counterterms
are fixed within the MS renormalization scheme. In order to ensure the corresponding
subtraction in our calculation, we follow the convention of ref. [16] and introduce the factor
(eγE/4π)ε, with γE being the Euler constant.

The integral of logP 2
⊥ does not contain any scale and therefore vanishes in dimensional

regularization. The remaining contribution is evaluated by first integrating over P⊥ and
then over P , the final result being

F
T=0,(π0)
1,wall
S

= −2
d

(eγEΛ2
RG)εmd

π

(4π)2 Γ(1−d
2 ). (4.6)

The contribution of charged pions is considerably more involved due to Landau level
quantization. The starting point is eq. (3.15), where at zero temperature the Matsubara
sum has to be replaced with

T
∑
n

→
∫ dd−2ω

(2π)d−2 . (4.7)

Note that we treat ω as living in d − 2 dimensions for compatibility with dimensional
regularization, since the Pöschl-Teller Hamiltonian (3.16) is strictly one-dimensional, and
the Landau-levels to be summed over describe quantized eigenstates in two transverse
directions. With this in mind, we use eq. (4.4) and subsequently integrate over ω to find

F
T=0,(π±)
1,wall
S

= −B(eγEΛ2
RG)ε

2π
Γ(1− d

2)√
4π

∞∑
m=0

{[
(2m+ 1)B − 3m2

π

] d
2−1 +

[
(2m+ 1)B

] d
2−1

−
∫ ∞

0

dP
2π

[ 4
1 + P 2 + 8

4 + P 2

] [
(2m+ 1)B +m2

π(1 + P 2)
] d

2−1
}
. (4.8)

The next step is to sum over the Landau levels, which is done with the help of the
Hurwitz ζ-function,

ζ(s, q) ≡
∞∑
m=0

1
(m+ q)s . (4.9)

Specifically, we need sums of the form
∞∑
m=0

[
(2m+ 1)B + x

]−s = (2B)−sζ(s, 1
2 + x

2B ). (4.10)

In order to be able to extract the divergent part of the free energy analytically, we also need
the asymptotic expansion of the sum over Landau levels at large longitudinal momentum
P . To that end, one can use the so-called Hermite formula for the Hurwitz ζ-function, see
section 13.2 of ref. [22], to deduce the following expansion at large q,

ζ(s, q + v) = q1−s

s− 1 + q−s
(1

2 − v
)

+ sq−1−s
[ 1

12 + v

2(v − 1)
]

+O(q−2−s). (4.11)
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We use this formula to expand eq. (4.8) summed over m in powers of 1 + P 2 and 4 + P 2.
This makes it possible to evaluate the divergent part of the one-loop free energy of charged
pions in a closed form.

When combined with (4.6), one can check explicitly that the divergence of the one-loop
free energy of the domain wall is canceled by the counterterms (4.2). This is an important
consistency check of our calculation. The final form of the remaining finite, renormalized
NLO zero-temperature free energy of the domain wall is

F T=0
1,wall
S

=− m3
π

72π2 (70− 120 log 2 + 16l̄1 + 32l̄2 + 3l̄3)

+ B3/2
√

2π

{
ζ(−1

2 ,
1
2 −

3m2
π

2B ) + ζ(−1
2 ,

1
2)−

∫ ∞
0

dP
2π

4
1 + P 2

[
ζ
(
−1

2 ,
1
2 + m2

π(1+P 2)
2B

)
+ 2

3

(
m2
π

2B

)3/2
(1 + P 2)3/2

]
−
∫ ∞

0

dP
2π

8
4 + P 2

[
ζ
(
−1

2 ,
1
2 + m2

π(1+P 2)
2B

)
+
(
m2
π

2B

)3/2 (2
3(4 + P 2)3/2 − 3(4 + P 2)1/2

)]}
, (4.12)

using the notation for the finite counterterms, introduced in section 3.3.
The terms on the first line of eq. (4.12) arise from the finite part of the neutral

pion contribution (4.6) and the renormalization of the divergent parts of both eq. (4.6)
and eq. (4.8). The rest of eq. (4.12) corresponds to the finite part of the charged pion
contribution (4.8). Note that for B < 3m2

π, the magnetic-field-dependent part of the
zero-temperature free energy [in particular the first term on the second line of eq. (4.12)]
develops an imaginary part. This corresponds to the fact that the domain wall is unstable
with respect to charge pion fluctuations unless B ≥ 3m2

π [3]. In the opposite corner of the
parameter space, B � m2

π, the free energy is dominated by the charged pion contribution,
and eq. (4.12) is then well approximated by the very simple expression

F T=0
1,wall
S

∣∣∣∣∣
B�m2

π

' 3 log 2
4π2 mπB. (4.13)

4.1.2 Thermal part

Let us now turn to the thermal corrections to the free energy on the domain wall background.
While the charged pions turned out to dominate the zero-temperature loop corrections, we
expect the situation to be the opposite for thermal corrections. Namely, unlike the neutral
pion fluctuations that include the gapless phonon of the CSL (which in the limiting case of
the domain wall reduces to the translation zero mode of the wall), the charged pions are
gapped, and their contribution is, therefore, expected to be exponentially suppressed at low
temperatures.

The thermal part of the free energy of neutral pions is obtained by taking eq. (3.11)
and carrying out the Matsubara sum, the result being

F
T,(π0)
1,wall
S

= T
∑
λ

∫ d2p⊥
(2π)2 log

[
1− e−β

√
p2
⊥+m2

π(1+λ)
]
. (4.14)
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The sum over λ is then done using eq. (4.3). In the contribution of the bound state of the
Hamiltonian (3.12), λ = −1, the remaining integral over p⊥ can be evaluated analytically. In
the contribution of the continuous spectrum, in turn, the integral over p⊥ can be simplified
by introducing spherical coordinates and performing the angular integration. The final
result for the thermal free energy due to neutral pions can then be written as

F
T,(π0)
1,wall
S

= −ζ(3)T 3

2π − m2
πT

π2

∫ ∞
0

P arctanP log
(
1− e−βmπ

√
1+P 2

)
dP. (4.15)

This expression for F
T,(π0)
1,wall is suitable for numerical evaluation thanks to the exponential

convergence of the integral. To get analytic insight in this result, one can represent it as a
chosen scale, for instance T 3, times a function of the dimensionless parameter βmπ. For
T � mπ, the contribution of the continuous spectrum of the domain wall is exponentially
suppressed. The thermal free energy is dominated by the gapless surface mode on the
domain wall, that is the first term in (4.15). On the other hand, T � mπ can be interpreted
as the chiral limit, in which the spectra of neutral pion fluctuations above the CSL state
and normal states coincide. Indeed, it can be shown that eq. (4.15) vanishes in this limit.

Next we turn to the charged pion contribution to the thermal free energy. In order to
get a compact expression, we introduce the shorthand notation

ε(m,λ) ≡
√

(2m+ 1)B +m2
π(1 + λ). (4.16)

Carrying out the indicated Matsubara sum in eq. (3.15) and subsequently using eq. (4.4)
to do the sum over the eigenvalues λ, the thermal free energy of charged pion fluctuations
can be brought to the form

F
T,(π±)
1,wall
S

= BT

π

∞∑
m=0

{
log

[
1− e−βε(m,−4)

]
+ log

[
1− e−βε(m,−1)

]
−
∫ ∞

0

dP
2π

( 4
1 + P 2 + 8

4 + P 2

)
log

[
1− e−βε(m,P 2)

]}
.

(4.17)

Note that the instability of the domain wall at any B < 3m2
π manifests itself also in this

expression. Namely, the lowest-lying charged pion excitation, which is localized in all three
dimensions, contributes to the m = 0 part of the first term in eq. (4.17), which tends to
negative infinity as B approaches 3m2

π from above since

lim
B→3m2

π+
ε(0,−4) = 0. (4.18)

For the same reason, the free energy (4.17) becomes complex for any B < 3m2
π.

4.1.3 Asymptotic expansion of the free energy

The renormalized NLO free energy of the domain wall is given by the combination of the
contributions (4.12), (4.15) and (4.17),

F1,wall = F T=0
1,wall + F

T,(π0)
1,wall + F

T,(π±)
1,wall . (4.19)
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This expression depends on three different scales: mπ, T and
√
B. A useful, simple analytic

approximation to the NLO free energy exists when mπ is much smaller than the other two
scales, that is close to the chiral limit. As mentioned above, the zero-temperature free energy
is then dominated by the charged pion contribution, whereas the thermal contribution due
to neutral pions vanishes in the chiral limit. Furthermore, eq. (4.17) is dominated by the
second line and can be simplified by introducing the dimensionless ratio γ ≡

√
B/T and

the auxiliary function [23]

ϕ(γ) ≡
∞∑
m=0

∫ ∞
0

dt
ωm(t)

[
eγωm(t) − 1

] , ωm(t) ≡
√

2m+ 1 + t2. (4.20)

Altogether, the complete (LO and NLO) free energy of the domain wall in the asymptotic
regime mπ � T,

√
B can be written in the simple form

Fwall
S
≡ F0,wall

S
+ F1,wall

S
' 8mπf

2
π −

µB

2π + 3 log 2
4π2 mπB −

mπT
2

6 − 6mπB

π2 ϕ(γ). (4.21)

Remarkably, this approximation to the free energy can be interpreted solely in terms
of one-loop renormalization of the pion mass and decay constant [23],

M2
π(B, T ) = m2

π

[
1− T 2

24f2
π

− B log 2
16π2f2

π

+ B

2π2f2
π

ϕ(γ)
]

+ · · · ,

F 2
π (B, T ) = f2

π

[
1 + B log 2

8π2f2
π

− B

π2f2
π

ϕ(γ)
]

+ · · · . (4.22)

Equation (4.21) can also be used to get some insight into the position of the phase transition
from the normal to the CSL phase. This can be located by requiring that Fwall = 0. At
zero temperature, eq. (4.21) tells us that unlike at LO, the CSL phase can no longer be
the ground state at arbitrary small µ. The threshold value of the chemical potential is
µmin = 3 log 2

2π mπ ≈ 0.33mπ. Moreover, eq. (4.21) indicates that the CSL phase is stabilized
by thermal corrections. A numerical study of the phase diagram based on the full NLO free
energy will be presented in section 6.1, and confirms the above expectations.

4.2 Next-to-leading-order magnetization

The magnetization of a system can in general be calculated from the free energy as

M = −∂F

∂B
. (4.23)

At LO, the magnetization of the domain wall per unit surface follows at once from (2.12),
M0,wall
S

= µ

2π , (4.24)

independently of the magnetic field [24]. To find the NLO correction to the magnetization,
we need to differentiate eqs. (4.12) and (4.17) with respect to the magnetic field.2 To that

2Recall that these expressions give the difference of free energies of the domain wall and the normal
phase. However, in the normal phase, both the free energy and the magnetization are distributed uniformly
in the bulk. What we calculate here is the excess magnetization associated with the domain wall. Note also
that the neutral pion contribution to the NLO free energy (4.15) is independent of the magnetic field and
thus does not contribute to the magnetization.
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end, we use the identity
∂ζ(s, q)
∂q

= −s ζ(s+ 1, q), (4.25)

which follows directly from the definition (4.9). One then finds

MT=0
1,wall
S

= −
√
B√
2π

{3
2ζ(−1

2 ,
1
2 −

3m2
π

2B ) + 3m2
π

4B ζ(1
2 ,

1
2 −

3m2
π

2B ) + 3
2ζ(−1

2 ,
1
2) (4.26)

−
∫ ∞

0

dP
2π

( 4
1 + P 2 + 8

4 + P 2

)[3
2ζ
(
−1

2 ,
1
2 + m2

π(1+P 2)
2B

)
− m2

π(1 + P 2)
4B ζ

(1
2 ,

1
2 + m2

π(1+P 2)
2B

)]}
for the NLO contribution to the magnetization of the domain wall per unit surface at zero
temperature, and

MT
1,wall
S

= − 1
π

∞∑
m=0

{
T log

[
1− e−βε(m,−4)

]
+ (2m+ 1)B

2ε(m,−4)
[
eβε(m,−4) − 1

] (4.27)

+ T log
[
1− e−βε(m,−1)

]
+ (2m+ 1)B

2ε(m,−1)
[
eβε(m,−1) − 1

]
−
∫ ∞

0

dP
2π

( 4
1 + P 2 + 8

4 + P 2

)(
T log

[
1− e−βε(m,P 2)

]
+ (2m+ 1)B

2ε(m,P 2)
[
eβε(m,P 2) − 1

])}
for the additional thermal contribution. The zero-temperature contribution to magnetization
diverges in the limit B → 3m2

π thanks to

lim
x→0+

ζ(1/2, x) = +∞. (4.28)

The thermal contribution likewise diverges in the same limit due to the property (4.18).

5 Chiral soliton lattice at next-to-leading order

5.1 General strategy

In case of the more general CSL solution, we have to follow the same steps to evaluate
the neutral and charged pion contributions to the one-loop free energy, given by eqs. (3.9)
and (3.13). Before we split up the calculation into the zero-temperature and thermal parts,
it is, however, worth outlining the strategy for evaluation of the sums over the eigenvalues
λ of the effective Hamiltonians (3.10) and (3.14), similarly to the domain wall case.

5.1.1 Neutral pions

Let us illustrate the strategy in detail on the simple case of the neutral pion contribution.
Upon explicitly subtracting the corresponding contribution to the free energy of the normal
phase, eq. (3.9) can be written as

βF
1-loop,(π0)
1,CSL = 1

2
∑

n,p⊥,P

{
log

[
Ω2

0 + λ(P )− 2k2
]
− log

(
Ω2

0 + P 2
)}

, (5.1)
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where P ≡ pzk/mπ is the dimensionless quasi-momentum in the direction of the magnetic
field, λ(P ) is the corresponding eigenvalue of the operator (3.10), and

Ω2
0 ≡

k2

m2
π

(ω2
n + p2

⊥ +m2
π). (5.2)

Now that the background is periodic and the spectrum can accordingly be characterized by
a momentum variable, the discrete sum over p⊥ and P can be converted into a continuous
integral through the usual replacement

∑
p⊥,P

→ V
mπ

k

∫ dd−1p⊥
(2π)d−1

dP
2π . (5.3)

The factor mπ/k relates the dimensionless variable P to the physical quasi-momentum pz
and d = 3− 2ε will again be used for dimensional regularization.

The integral over P cannot be performed directly because an explicit expression for
the dimensionless “energy” λ(P ) is not available. What is known is the group velocity [25]

dλ
dP = 2

√
(λ− 1)(λ− k2)(λ− 1− k2)

k2 + E(k)
K(k) − λ

≡ f1(λ). (5.4)

This is sufficient to convert the integral over P into one over λ. The latter requires some
care since the spectrum of neutral pion fluctuations of the CSL solution spans two bands
covering the intervals

k2 ≤ λ ≤ 1 and 1 + k2 ≤ λ. (5.5)

(See appendix A for more details on the spectrum of the corresponding Lamé Hamiltonian.)
Remembering to add an overall factor of 2 to account for the double degeneracy of energy
levels in the continuous spectrum, we then arrive at the following expression for the neutral
pion contribution to the one-loop free energy of the CSL state,3

βF
1-loop,(π0)
1,CSL
V

= 1
2
mπ

k

(
eγEΛ2

RG
4π

)ε∑
n

∫ dd−1p⊥
(2π)d−1

{
(5.6)

×
∫ dλ
πf1(λ) log(Ω2

0+λ−2k2)
[
χ(k2,1)−χ(1+k2,∞)

]
−
∫ dP

2π log(Ω2
0+P 2)

}
.

Here χI is the characteristic function of an interval I. The different signs in front of the
two characteristic functions in eq. (5.6) are related to the fact that f1(λ) arising from the
change of variables from P to λ has a different sign in the two energy bands.

Remarkably, the difference of the two integrals in the curly brackets in eq. (5.6) can be
evaluated analytically. By using an alternative approach to the calculation of the functional
determinant of D

(π0)
CSL , based on the Gelfand-Yaglom theorem [26], one can show that this

difference of integrals equals

Z(u, k) + cs(u, k) dn(u, k)− Ω0, (5.7)
3The one-dimensional integral without specified integration bounds is to be understood as an integral

over the whole real axis; this notation will be used throughout the text.
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where Z(u, k) is the Jacobi zeta function and u is given implicitly by solving the condition

cs2(u, k) = Ω2
0 − k2 = k2

m2
π

(ω2
n + p2

⊥). (5.8)

See appendix C for some details of the derivation of eq. (5.7).
Although it might be tempting to replace the complicated integrals in eq. (5.6) with the

compact expression (5.7), it is in fact the former expression that is more useful. Namely, the
fact that the Matsubara frequency ωn and the transverse momentum p⊥ only enter eq. (5.6)
through the logarithms therein makes it possible to carry out the Matsubara sum and the
integral over p⊥ in a closed form, without having to worry about the band spectrum of CSL.

5.1.2 Charged pions

The strategy for the charged pion case is analogous, albeit technically more involved. Again,
the free energy of the normal phase is explicitly subtracted from the contribution of eq. (3.13)
and the sum over the dimensionless quasi-momenta P is turned into a continuous integral
in the standard way,

βF
1-loop,(π±)
1,CSL
V

= mπB

2πk
∑
n,m

∫ dP
2π

{
log

[
ω2
n + (2m+ 1)B + m2

π

k2 (λ(P )− 4− k2)
]

− log
[
ω2
n + (2m+ 1)B + m2

π

k2 (P 2 + k2)
]}
. (5.9)

Like in the neutral pion case, an expression for the dimensionless energy λ(P ) is not known
explicitly, but the group velocity can be inferred, e.g., from ref. [27],

dλ
dP =

2
√

Π5
j=1(λ− λj)

2− (λ− 4k2)(λ− 2− k2) + 3(λ− 2− 2k2)E(k)
K(k)

≡ f2(λ), (5.10)

where

λ1 = 2
(
1 + k2 −

√
1− k2 + k4

)
, λ2 = 1 + k2, λ3 = 1 + 4k2,

λ4 = 4 + k2, λ5 = 2
(
1 + k2 +

√
1− k2 + k4

)
.

(5.11)

The spectrum of the operator (3.14) (the n = 2 Lamé Hamiltonian) consists of three bands
spanning the intervals

λ1 ≤ λ ≤ λ2, λ3 ≤ λ ≤ λ4, λ5 ≤ λ; (5.12)

see figure 4 in appendix A for a visualization of this band spectrum.
As pointed out already in ref. [1], the bottom of the lowest Landau level can reach

zero for sufficiently strong magnetic fields, which indicates an instability of CSL under
Bose-Einstein condensation (BEC) of charged pions. The critical magnetic field BBEC for
this BEC can be inferred from eq. (5.9). Namely, the argument of the first logarithm therein
for m = n = 0 and λ = λ1 reaches zero if

BBEC = m2
π

k2

(
4 + k2 − λ1

)
. (5.13)
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Here k = k(µ,BBEC) is fixed by the condition (2.9). Hence, eq. (5.13) determines the
critical field BBEC implicitly in terms of the baryon chemical potential. Further analytic
insight is possible in certain limiting regimes. First, in the limit k → 1, BBEC → 3m2

π,
which is consistent with the observed instability of the domain wall spectrum. Second, for
B � m2

π (i.e., k � 1), the condition (2.9) simplifies to [28]

k ≈ 8π2f2
π

µ

mπ

B
. (5.14)

Using this in eq. (5.13) and discarding terms that are subleading in the limit k � 1, one
can then easily solve for the critical field,

BBEC ≈
16π4f4

π

µ2 (for B � m2
π). (5.15)

Note that the regime k � 1 is equivalent to the chiral limit, mπ → 0. It was shown in
ref. [29] that in the chiral limit, a nontrivial configuration of charged pion fields is indeed
energetically preferable above the critical magnetic field (5.15).

5.2 One-loop free energy: zero-temperature part

We now start with the zero-temperature part of the one-loop free energy, which can be
extracted from eqs. (5.6) and (5.9) by converting the Matsubara sum into a continuous
frequency integral. This part of the CSL free energy requires renormalization, which is
accomplished by adding extra contributions arising from the counterterms in eq. (3.17).
Since the free energy of the CSL state scales with volume, it is sufficient to evaluate the
spatial averages of the counterterm operators in eq. (3.17). These are given by identities
similar to eq. (4.1),

〈[φ′0(z)]4〉 = 16m4
π

3

[
− 1
k4 + 1

k2 +
( 4
k4 −

2
k2

)
E(k)
K(k)

]
,

〈[φ′0(z)]2 cosφ0(z)〉 = 8m2
π

3

[ 1
k4 −

1
k2 +

(
− 1
k4 + 1

2k2

)
E(k)
K(k)

]
, (5.16)

〈cos2 φ0(z)− 1〉 = 8
3k4 −

8
3k2 +

(
− 8

3k4 + 4
3k2

)
E(k)
K(k) ,

where the CSL solution (2.5) has been used. The corresponding counterterm free energy
then reads

F c.t.
1,CSL
V

= −`1〈[φ′0(z)]4〉+ `2m
2
π〈[φ′0(z)]2 cosφ0(z)〉 − `3m4

π〈cos2 φ0(z)− 1〉. (5.17)

5.2.1 Neutral pion contribution

Let us now turn to the zero-temperature part of eq. (5.6). Analogously to eq. (4.5), we
combine the frequency ω with the transverse momentum p⊥ into a single transverse energy-
momentum variable P⊥. The integral over P⊥ can be done in a closed form. This brings
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eq. (5.6) into a form where only a one-dimensional integral remains to be done,

F
T=0,(π0)
1,CSL
V

= −
(
eγEΛ2

RG
)ε
md+1
π

2k
Γ(−d

2)
(4π)3/2

{∫ dλ
πf1(λ)

(
λ

k2 − 1
)d/2 [

χ(k2, 1) − χ(1+k2,∞)
]

−
∫ dP

2π

(
P 2

k2 + 1
)d/2}

. (5.18)

The integral over the lower energy band arising from the term proportional to χ(k2, 1) is
finite and can be evaluated in a closed form. As for the remaining integrals, we need to
extract their divergent parts, which is best done using a momentum variable instead of λ.
Thus, in the integral over the upper energy band, we substitute λ = 1 + k2 + P 2. This
brings eq. (5.18) to the form

F
T=0,(π0)
1,CSL
V

= −
(
eγEΛ2

RG
)ε
md+1
π

2k
Γ(−d

2)
(4π)3/2

{∫ 1

k2

dλ
πf1(λ)

(
λ

k2 − 1
)d/2

(5.19)

+ 1
kd

∫ dP
2π

[
(P 2 + 1)d/2

P 2 + 1− E(k)
K(k)√

(P 2 + 1)(P 2 + k2)
− (P 2 + k2)d/2

]}
.

The next step is to expand the integrand on the second line in powers of P 2 + 1. In this
way, the divergent part of eq. (5.19) can be identified and combined with the appropriate
counterterm. In particular, one third of the `3 operator in eq. (5.17) is necessary to cancel
the divergence of the integral. For the sake of bookkeeping, we choose to add solely the
pole part of the counterterm here; all the finite parts of the counterterm Lagrangian will be
added to the charged pion contribution (5.23) below.

In the finite part of eq. (5.19), d = 3 can be set and all the remaining integrals can be
evaluated analytically. A closed, analytic expression for the renormalized contribution of
neutral pions to the zero-temperature part of the free energy of the CSL state follows,

F
T=0,(π0)
1,CSL
V

= m4
π

24π2k4

{
− 7

6(1− k2) + 5
3

(
1− k2

2

)
E(k)
K(k) +

[
−3

2 + 3k2

4 + E(k)
K(k)

]√
1− k2

+
[
2− 2k2 + 3k4

4 +
(
−2 + k2

) E(k)
K(k)

]
log 1 +

√
1− k2

k

}
. (5.20)

5.2.2 Charged pion contribution

The temperature-independent part of (5.9) can be extracted using the replacement (4.7),

F
T=0,(π±)
1,CSL
V

= mπB

2πk

(
eγEΛ2

RG
4π

)ε ∫ dd−2ω

(2π)d−2

∑
m

∫ dP
2π

{
(5.21)

×log
[
ω2+(2m+1)B+m2

π

k2 (λ(P )−4−k2)
]
−log

[
ω2+(2m+1)B+m2

π

k2 (P 2+k2)
]}
.

The integral over frequency can be easily evaluated and the sum over Landau levels can
be turned into the Hurwitz ζ-function as in the case of the domain wall background. The
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integral over P can then be turned into one over λ using (5.10). As a result,

F
T=0,(π±)
1,CSL
V

= −mπ
(
eγEΛ2

RG
)ε

k

Γ(1− d
2)

(4π)3/2 (2B)d/2
{

×
∫ dλ
πf2(λ) ζ

(
1− d

2 ,
1
2 + m2

π
2Bk2 [λ− 4− k2]

) [
−χ(λ1,λ2) + χ(λ3,λ4) − χ(λ5,∞)

]
−
∫ dP

2π ζ
(
1− d

2 ,
1
2 + m2

π
2Bk2 [P 2 + k2]

)}
, (5.22)

where again the signs in front of the different characteristic functions arise from the signs
of f2(λ) in different energy bands. The divergent part of this expression comes from the
integration over the third energy band and the contribution of the normal phase. In order
to combine these two contributions into a single integral, the substitution λ = P 2 + λ5 can
be introduced in the former integral. The resulting integrand can be expanded in powers of
P 2 +k2 with the help of eq. (4.11) in order to find the asymptotic behavior for large P . The
divergence for d→ 3 is canceled by the remaining piece of the counterterm Lagrangian (5.17).
Recalling that we are now to include the entire finite part of the counterterm Lagrangian, a
careful evaluation of all the contributions leads to

F
T=0,(π±)
1,CSL
V

= m4
π

24π2k4

{
15−14k2+3k4+

(25
2 k

2−19
)
E(k)
K(k)−

(
4+12E(k)

K(k)

)√
1−k2+k4

+(1−k2)
(4

3 l̄1+ 8
3 l̄2+ l̄3

)
−
(

1− k
2

2

)
E(k)
K(k)

(16
3 l̄1+ 32

3 l̄2+ l̄3
)}

+mπB
3/2

√
2kπ

{∫ dλ
πf2(λ) ζ

(
−1

2 ,
1
2 + m2

π
2Bk2 [λ−4−k2]

)[
−χ(λ1,λ2)+χ(λ3,λ4)

]
+
∫ ∞

0

dP
π

[
− 2P
f2(P 2+λ5)ζ

(
−1

2 ,
1
2 + m2

π
2Bk2 [P 2+λ5−4−k2]

)
−ζ
(
−1

2 ,
1
2 + m2

π
2Bk2 [P 2+k2]

)
(5.23)

−
(
m2
π

2Bk2

)3/2 [
C1(k)(P 2+k2)1/2+C2(k)(P 2+k2)−1/2

]]}
;

the auxiliary functions C1 and C2 of the elliptic modulus k are defined by

C1(k) ≡ 2
3

(
1 + k2 + 3E(k)

K(k) − 2
√

1− k2 + k4
)
,

C2(k) ≡ 2− 7
3k

2 − 1
3k

4 + 2
3k

2
√

1− k2 + k4 −
(
6− 2k2

) E(k)
K(k) . (5.24)

Note that the Hurwitz ζ-function on the third line of eq. (5.23) can pick up an imaginary
part if its second argument turns negative, which, in turn, happens if the magnetic field
is larger than the critical value (5.13) for BEC of charged pions. However, the value of
eq. (5.23) remains finite at this critical magnetic field.
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The full zero-temperature NLO free energy of CSL is given by the sum of eqs. (5.20)
and (5.23). It tends to zero in the limit k → 1 as expected since k = 1 corresponds to the
domain wall case where only the free energy per unit surface is nonzero. However, let us
inspect the asymptotic behavior for k → 1 in more detail since this can give us a nontrivial
check of the correctness of our result. To this end, recall that [30]

lim
k→1

[
K(k)− 1

2 log 16
1− k2

]
= 0, (5.25)

hence K(k) ∝ log(1 − k) as k → 1. Consequently, the terms in the NLO free energy
proportional to 1/K(k) are dominant for k → 1. To extract the asymptotic behavior for
k → 1, one can take the limit k → 1 everywhere except for the very 1/K(k) terms. In doing
so, the first two energy bands in the charged pion spectrum shrink to points, yet the third
line of eq. (5.23) remains nonzero. This is because after setting k = 1 wherever possible,
the integrals over the first and second energy bands can be reduced to the form∫ c

0

dx√
x(c− x)

= π, (5.26)

where c is a constant that tends to zero as k → 1. Keeping this subtlety in mind, one
recovers the domain wall result of eq. (4.12),F

T=0,(π0)
1,CSL
V

+
F

T=0,(π±)
1,CSL
V

∣∣∣∣∣
k→1

' mπ

2K(k)
F T=0

1,wall
S

. (5.27)

The normalization of the right-hand side agrees with the fact that the period of the CSL
solution is 2kK(k)/mπ.

5.3 One-loop free energy: thermal part

The thermal part of the free energy is in a sense more straightforward to evaluate since it
does not require renormalization. On the other hand, the presence of the Matsubara sum
makes the analytic expressions necessarily more involved, especially in combination with
the sum over Landau levels in the part coming from charged pions.

5.3.1 Neutral pion contribution

The neutral pion contribution is obtained from eq. (5.6) by taking the limit d → 3 and
keeping only the thermal part of the Matsubara sum. The remaining integration over
transverse momenta can be carried out analytically using the formula

T

2
∑
n

∫ d2p⊥
(2π)2 log(ω2

n + p2
⊥ +M2)→T

∫ d2p⊥
(2π)2 log

(
1− e−β

√
p2
⊥+M2

)
(5.28)

= − 1
2π
[
T 3 Li3

(
e−βM

)
+ T 2M Li2

(
e−βM

)]
,

where Lin(z) is the polylogarithm, and the arrow indicates dropping the zero-temperature
part of the Matsubara sum.
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Armed with eq. (5.28), we can write down the thermal part of the neutral pion free
energy (5.6) in terms of a one-dimensional, exponentially convergent integral. It makes the
resulting expressions somewhat simpler to trade the variable λ for a new variable t. In the
integral over k2 ≤ λ ≤ 1, the natural choice of the substitution is λ = k2 + k′2t2, where
k′2 ≡ 1− k2 is the complementary elliptic modulus. In the integral over 1 + k2 ≤ λ <∞,
either the same substitution, or alternatively λ = 1 + k2 + k2t2, can be used. The most
compact expression for the thermal free energy we can thus get is

F
T,(π0)
1,CSL
V T 4 =− x

2π2k

∫
dt

k′2t2− E(k)
K(k)√

(1−t2)(1−k′2t2)
[
χ( 1

k′ ,∞)−χ(0,1)
][

Li3
(
e−

k′
k
xt)+ k′

k
xtLi2

(
e−

k′
k
xt)]

− 1
2π2

∫ ∞
0

dt t2 log
(
1−e−

√
t2+x2

)
, (5.29)

where x ≡ mπ/T . The thermal free energy can also be cast in an entirely different form
by trading the polylogarithms for elliptic integrals via integration by parts. Using the fact
that the first factor under the integral on the first line of eq. (5.29) can be integrated in a
closed form, we can differentiate the combination of the polylogarithms, arriving at

F
T,(π0)
1,CSL
V T 4 = − x

4πkK(k)

[
Li3
(
e−

k′
k
x)+ k′

k
xLi2

(
e−

k′
k
x)]− 1

2π2

∫ ∞
0

dt t2 log
(
1− e−

√
t2+x2

)
− x3

2π2k

∫ ∞
0

dt t log
(
1− e−

x
k

√
1+k2t2

){[E(k)
K(k) − 1

]
F (arctan t, k′)

+ E(arctan t, k′)− t
√

1 + k2t2

1 + t2

}

− k′2x3

2π2k3

∫ 1

0
dt t log

(
1− e−

k′
k
xt
){[

1− E(k)
K(k)

]
F (arcsin t, k′)− E(arcsin t, k′)

}
,

(5.30)
where F (u, k) and E(u, k) are the elliptic integrals of the first and second kind, respectively,
and the very first contribution comes from the surface term of the integral over 0 ≤ t ≤ 1.

The expression (5.30) for the thermal free energy is a suitable starting point for taking
various analytical limits. First of all, let us again inspect the limit k → 1 as a consistency
check. Following the steps outlined above for the zero-temperature part of the CSL free
energy, we find

F
T,(π0)
1,CSL
V

∣∣∣∣∣
k→1

' mπ

2K(k)
F

T,(π0)
1,wall
S

, (5.31)

in agreement with the domain wall result (4.15).
Next we look at the low-temperature regime, T � mπ (or x � 1). In this limit, all

parts of eq. (5.30) but the last line are exponentially suppressed. In the last integral over
0 ≤ t ≤ 1 it is only small values of t that matter. We can therefore expand everything but
the logarithm in powers of t, work out the integral in a closed form, and eventually expand
the result in x. The final result reads

F
T,(π0)
1,CSL
V

= −π
2T 4

90
E(k)
k′K(k) −

2π4T 6

945m2
π

k2

k′3

[
(1 + k′2)E(k)

K(k) − 2k′2
]

+O(T 8). (5.32)
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The leading, O(T 4) term is just the free energy of a gas of free phonons with linear dispersion
relation and phase velocity calculated in ref. [1]. The next-to-leading, O(T 6) term represents
the leading correction due to the nonlinearity of the phonon dispersion relation.

5.3.2 Charged pion contribution

The temperature-dependent part of eq. (5.9) is extracted using the replacement

T

2
∑
n

log(ω2
n + ε2)→ T log

(
1− e−βε

)
. (5.33)

The momentum integral over the energy bands of the CSL spectrum can be converted into
one over the energy eigenvalue λ using eq. (5.10). This leads to

F
T,(π±)
1,CSL
V

= mπBT

kπ

∞∑
m=0

{∫ dλ
πf2(λ) log

[
1− e−βεCSL(m,λ)

] [
−χ(λ1,λ2) + χ(λ3,λ4) − χ(λ5,∞)

]

−
∫ dP

2π log
[
1− e−βε0(m,P )

]}
, (5.34)

with the shorthand notation

εCSL(m,λ) ≡

√
(2m+ 1)B + m2

π

k2 (λ− 4− k2),

ε0(m,P ) ≡

√
(2m+ 1)B + m2

π

k2 (P 2 + k2).

(5.35)

It is straightforward to show that the asymptotic behavior of the thermal free energy of
charged pions satisfies a relation analogous to eq. (5.31), consistent with the domain wall
result (4.17). Note also that εCSL(0, λ1) tends to zero for B → BBEC. Hence, the thermal
free energy (5.34) tends to negative infinity in this limit.

Altogether, the complete (LO and NLO) renormalized free energy of the CSL is given
by a combination of eqs. (2.8), (5.20), (5.23), (5.29) and (5.34),

FCSL = F0,CSL + F
T=0,(π0)
1,CSL + F

T=0,(π±)
1,CSL + F

T,(π0)
1,CSL + F

T,(π±)
1,CSL . (5.36)

5.4 Next-to-leading-order magnetization

The magnetization of the CSL is in principle simply determined by eq. (5.36) in combination
with eq. (4.23). There are, however, two subtleties to keep in mind. First, when taking a
derivative of the free energy with respect to the magnetic field, only the explicit dependence
on B is to be taken into account. The implicit dependence on B through the elliptic
modulus k can be disregarded on the LO CSL state thanks to the chain rule. (This is a
variation on the Feynman-Hellmann theorem known in quantum mechanics.) Second, one
must keep in mind that eq. (5.36) represents the difference of free energy densities of the
CSL and normal states. In order to recover the magnetization of CSL alone, one must add
to −∂FCSL/∂B the magnetization of the QCD vacuum.
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At LO, the magnetization of the QCD vacuum vanishes, and the magnetization of CSL
then descends directly from eq. (2.8),

M0,CSL
V

= mπµ

4πkK(k) . (5.37)

Note that the LO magnetization of one period of the CSL configuration per unit transverse
area is equal to the LO domain wall surface magnetization (4.24).

5.4.1 Zero-temperature part

As explained above, the NLO magnetization of the CSL state is naturally decomposed into
two parts. The first of these descends from the difference of the CSL and normal state free
energies. At zero temperature, its entire dependence on the magnetic field comes from the
charged pion contribution (5.23). Using eq. (4.25) to work out the derivative with respect
to B, we thus find

∆MT=0
1,CSL
V

=
√
Bmπ√
2π2k

{∫ dλ
f2(λ)

[
3
2 ζ
(
−1

2 ,
1
2 + m2

π
2Bk2 [λ− 4− k2]

)
− (λ− 4− k2)m2

π

4Bk2 ζ
(1

2 ,
1
2 + m2

π
2Bk2 [λ− 4− k2]

)] [
χ(λ1,λ2) − χ(λ3,λ4)

]

+
∫ ∞

0
dP
[

2P
f2(P 2 + λ5)

{3
2 ζ
(
−1

2 ,
1
2 + m2

π
2Bk2 [P 2 + λ5 − 4− k2]

)
− (P 2 + λ5 − 4− k2)m2

π

4Bk2 ζ
(1

2 ,
1
2 + m2

π
2Bk2 [P 2 + λ5 − 4− k2]

)}
+ 3

2 ζ
(
−1

2 ,
1
2 + m2

π
2Bk2 [P 2 + k2]

)
− (P 2 + k2)m2

π

4Bk2 ζ
(1

2 ,
1
2 + m2

π
2Bk2 [P 2 + k2]

)]}
. (5.38)

Note that this expression diverges when the magnetic field approaches the critical value for
BEC of charged pions (5.13) due to the property (4.28).

On the other hand, the NLO magnetization of the QCD vacuum at zero temperature
can be extracted, e.g., from ref. [16],

MT=0
1,vac
V

= m2
π

16π2

{
2 ζ(1,1)(−1, 1

2 + m2
π

2B
)
− m2

π

2B

− B

m2
π

[
8 ζ(1,0)(−1, 1

2 + m2
π

2B
)

+ 1
6

(
2 log m

2
π

2B − 1
)]}

. (5.39)

Here the two superscripts of ζ refer to the order of derivative with respect to the first and
second argument of the Hurwitz ζ-function, respectively.

The complete NLO contribution to the magnetization of the CSL at zero temperature
is given by the sum of eqs. (5.38) and (5.39),

MT=0
1,CSL
V

=
∆MT=0

1,CSL
V

+
MT=0

1,vac
V

. (5.40)
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5.4.2 Thermal part

The thermal part of the NLO magnetization can be calculated more straightforwardly than
its zero-temperature counterpart. Namely, the contribution of the QCD vacuum to the
B-dependent part of the thermal free energy (5.34) is recognized as the second line thereof.
Consequently, according to (4.23), the full thermal contribution to the NLO magnetization
of the CSL state can be calculated by differentiation of the first line of eq. (5.34),

MT
1,CSL
V

= mπT

kπ

∞∑
m=0

{∫ dλ
πf2(λ)

[
log

[
1− e−βεCSL(m,λ)

]
+ (2m+ 1)B

2TεCSL(m,λ)
(
eβεCSL(m,λ) − 1

)]

×
[
χ(λ1,λ2) − χ(λ3,λ4) + χ(λ5,∞)

]}
. (5.41)

Also this expression diverges in the limit B → BBEC.

6 Numerical results

6.1 Phase diagram

With all the analytical results at hand, we now revisit the phase diagram of χPT at nonzero
baryon chemical potential µ, magnetic field B and temperature T , published previously
in ref. [11]. As pointed out in section 3.1, we do not have a self-consistently determined
free energy as a functional of an arbitrary pion field configuration. As a consequence, we
are not able to find the exact ground state, or even its NLO approximation. What we are
able to calculate is the NLO correction to the free energy of a field configuration, found by
solving the LO equation of motion.

With this in mind, we deploy two different strategies to locate the phase transition
between the normal and CSL phases, and discuss their mutual consistency. The first strategy
was used in ref. [11], and is based on the assumption that the phase transition proceeds via
the formation of a domain wall. The phase boundary is then defined by the condition of
vanishing free energy on the domain wall background. Within this “domain wall method,”
one can explicitly solve for the critical chemical potential at the phase transition as a
function of the magnetic field and temperature,

µCSL = 16πmπf
2
π

B
+ 2π
B

F1,wall
S

, (6.1)

where the NLO contribution to the domain wall free energy is given by eq. (4.19). The
phase boundary obtained in this way is plotted in figure 1, the black and red solid lines
corresponding, respectively, to T = 0 and T = 80MeV. These results show that the CSL
state is stabilized by thermal corrections.

Our second strategy relaxes the assumption that the ground state at the phase transition
is the domain wall. What we do instead is to stick to the LO CSL state (2.5), where the
elliptic modulus k is fixed in terms of the chemical potential and magnetic field by the
condition (2.9). For this state, the free energy up to order ε1 in the chiral counting can
be obtained by summing the F0 and F1 pieces as explained in section 3.1. Consequently,
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Figure 1. Phase diagram of χPT at nonzero baryon chemical potential µ and magnetic field B and
fixed temperature. The thin gray line corresponds to the LO phase transition between the normal
and CSL phases. The solid and dashed lines indicate the same phase transition after having taken
into account NLO corrections to the free energy using two different approaches. If one assumes the
transition to proceed via the formation of a domain wall, one obtains the solid lines (“domain wall
method”). Alternatively, the dashed lines mark the points where the NLO free energy (5.36) evaluated
on the LO CSL ground state drops to zero (“CSL method”). The black and red lines correspond,
respectively, to T = 0 and T = 80MeV. Furthermore, the dash-dotted line is defined by eq. (5.13) and
marks the instability of the charged pion spectrum on the LO CSL background. Finally, the magnetic
field B = 3m2

π below which the domain wall becomes unstable is represented by the dotted line.

the NLO phase boundary can be approximated by the set of points (µ,B) at which the
complete free energy (5.36) of the LO ground state vanishes: FCSL = 0. The drawback
of this “CSL method” is that eq. (2.9) cannot be satisfied for any B < BCSL. Hence, the
part of the parameter space with B < BCSL (at given µ) is out of reach for this method,
although the “domain wall method” suggests that CSL might be favored for B < BCSL at
sufficiently large chemical potentials.

Numerical results for the phase boundary using the “CSL method” are shown in figure 1
as the black and red dashed lines for, respectively, T = 0 and T = 80MeV. Also this
method confirms that the CSL state is stabilized by thermal fluctuations: the red dashed
line always lies below the black one.

Let us now argue that the two methods described above give consistent results. First,
note that the dashed and solid lines of the same color (that is, corresponding to the same
temperature) meet at points where the domain wall is the LO ground state (the gray
line4 in figure 1). Specifically, the zero-temperature phase boundaries (black lines) meet

4Here we choose to evaluate both BCSL and BBEC using values of the parameters mπ and fπ (3.24) fixed
by NLO matching. This allows for an easier interpretation of the difference between the displayed LO and
NLO phase transitions. This is in contrast to ref. [1], where the physical values of pion mass and decay
constant were used to plot the phase diagram.
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at (µ,B) = (631MeV, 0.0837GeV2), whereas the T = 80MeV phase boundaries (red lines)
meet at (µ,B) = (506MeV, 0.104GeV2). Second, for smaller chemical potentials, each of
the dashed lines lies above the corresponding solid line. In other words, along the phase
boundary obtained with the “CSL method” (dashed lines), the domain wall state has lower
NLO free energy than the LO CSL ground state. This indicates that the phase transition
may indeed proceed via the formation of a domain wall.

Finally, the dash-dotted line in figure 1 corresponds to the magnetic field BBEC (5.13);
this marks the instability of the charged pion spectrum on the CSL background minimizing
the LO free energy. The corresponding instability for the domain wall background appears
at B = 3m2

π and is displayed in figure 1 as the dotted line. The fact that the thermal
contribution to the NLO free energy of the domain wall diverges for B → 3m2

π explains
why the “domain-wall-method” phase boundary at nonzero temperature appears to move
towards vanishing baryon chemical potential in this limit. We stress, however, that this
result should be taken with a grain of salt. Namely, such a large deviation of the NLO
phase boundary from the LO one hints at a large one-loop correction to the free energy,
which may merely signal a breakdown of the derivative expansion of χPT.

We would like to stress that this work focuses solely on the phase transition between
the vacuum and CSL phases appearing at B & 3m2

π. The points of instability of the charged
pion spectrum are marked in figure 1 only for illustration; the exact location of the charged
pion BEC phase transition and the form of the new ground state featuring a condensate
of charged pions are beyond the scope of our work. We come back to this point in the
discussion (see section 7).

6.1.1 Chiral limit

Let us briefly comment on the limit of vanishing pion mass, which is for simplicity often
assumed in literature on inhomogeneous chiral phases of quark matter. In the chiral limit,
the LO CSL ground state simplifies to

φ0(z) = µBz

4π2f2
π

. (6.2)

The energy density of this state relative to the QCD vacuum is

F0,CSL
V

∣∣∣∣
mπ=0

= − µ2B2

32π4f2
π

. (6.3)

The CSL state thus becomes energetically favored over the normal state for arbitrarily small
µ and B. We have checked that this remains true when the NLO contribution is added to
the free energy (see appendix D for explicit results). As a consequence, the phase diagram
becomes significantly simpler in the chiral limit. The only nontrivial phase boundary that
persists is the one corresponding to BEC of charged pions, given in the chiral limit by
eq. (5.15).

6.2 Magnetization

Here we illustrate numerically the results obtained in sections 4.2 and 5.4.
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Figure 2. NLO contribution to the magnetization of the domain wall per unit surface given by
eqs. (4.26) and (4.27). The black, purple and red line corresponds respectively to T = 0, T = 40MeV
and T = 80MeV. Note that in order to obtain the complete magnetization of the domain wall, the
LO contribution µ/2π has to be added.

6.2.1 Domain wall

The LO magnetization per unit surface of the domain wall equals µ/(2π), independently of
the magnetic field. On the other hand, the NLO contributions to the magnetization (4.26)
and (4.27) are independent of µ. We therefore choose to plot solely the NLO contribution
to the magnetization as a function of B, see figure 2.

6.2.2 Chiral soliton lattice

The LO magnetization per unit cell of the lattice and unit transverse area equals µ/(2π)
analogously to the domain wall. However, the spatially averaged magnetization per unit
volume depends implicitly on the magnetic field through the value of the elliptic modulus
k, fixed by eq. (2.9). For the same reason, the NLO contributions to magnetization (5.40)
and (5.41) depend implicitly on the baryon chemical potential. In figure 3, we therefore
show the complete magnetization of the CSL state,

MCSL
V

= M0,CSL
V

+
MT=0

1,CSL
V

+
MT

1,CSL
V

, (6.4)

as a function of the magnetic field for several values of the baryon chemical potential. The
solid and dashed lines correspond to T = 0 and T = 80MeV, respectively.

For comparison, we also show in figure 3 the magnetization density of the QCD vacuum
(black solid and dashed lines). Note that as the magnetic field approaches the critical value
BCSL from above, the magnetization of the CSL converges, not surprisingly, towards that
of the vacuum. To visualize this feature, we display the magnetization for the values of
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Figure 3. The complete (LO plus NLO) magnetization of the CSL per unit volume as given by
the sum of eqs. (5.37), (5.40) and (5.41). The solid lines show numerical values for T = 0; the blue,
yellow, green and red color corresponds respectively to µ equal to 400, 500, 600 and 700MeV. The
dashed lines of the same colors correspond to the temperature of 80MeV and the same µ. For
given µ and magnetic field B, the elliptic modulus k is fixed by the condition (2.9) on the LO CSL
ground state. For comparison, the black solid and dashed lines show the magnetization of the QCD
vacuum [16] for T = 0 and T = 80MeV, respectively.

B all the way to the LO phase boundary although, strictly speaking, the CSL state is
not energetically favorable at NLO for the lowest magnetic fields in case of µ = 400, 500
and 600MeV. For example, in case of µ = 400MeV, the LO phase boundary appears for
B = 0.132GeV2 whereas the NLO phase boundary for T = 0 and T = 80MeV appears
respectively for B = 0.144GeV2 and B = 0.140GeV2 within the “domain wall method”.

7 Summary and discussion

Sufficiently strong magnetic fields and large baryon chemical potentials trigger the formation
of a periodic condensate of neutral pions out of the QCD vacuum. In ref. [1], the domain in
the QCD phase diagram, occupied by this novel CSL state of matter, was determined at
the LO of the derivative expansion of χPT, which restricts the validity of the analysis to
zero temperature. In our preceding paper [11] and here, we extended the analysis to NLO
by including the one-loop corrections induced by fluctuations above the CSL state. The
main conclusion is that the CSL phase is stabilized by thermal fluctuations.

We used two different strategies to locate the phase transition between the normal
and CSL phases. In the first approach, we assumed that the phase transition proceeds via
domain wall formation, and defined the phase boundary by the condition Fwall = 0. In
the second approach, we evaluated the NLO free energy on the LO ground state at given
magnetic field and chemical potential, and then imposed the condition FCSL = 0. Within
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the part of the parameter space where both these methods are applicable, they agree up
to an error expected in our perturbative expansion of the free energy (3.4). Namely, the
difference between the two predictions for the phase boundary is much smaller than the
difference between the LO and NLO phase boundaries; see figure 1. Moreover, the position
of the phase boundary obtained using the “CSL method” suggests that the phase transition
may indeed proceed via the formation of a domain wall.

As observed already in ref. [1], the lowest-lying charged pion excitation of the CSL state
becomes massless at the critical magnetic field BBEC (5.13), which indicates an instability
of CSL under BEC of charged pions. The question what the new, even more energetically
favored ground state at B > BBEC is, was addressed in ref. [29]. It was shown that, in
analogy with type-II superconductors, the ground state configuration features a periodic
array of magnetic flux tubes and a periodic condensate of charged pions.

The analysis of ref. [29] is, however, restricted to the limit of vanishing pion mass.
While its results therefore cannot be directly applied to the real world where pions are
massive, one can make at least an educated guess based on the hierarchy of the different
scales at play. For B � mπ, the chiral limit gives a reasonably accurate description of
the interplay between the CSL and charged pion BEC. Hence, we expect the Abrikosov
vortex lattice carrying a charged pion BEC to appear at B & BBEC. On the other hand, the
features of the phase diagram in figure 1 arising from the instability of the domain wall for
B < 3m2

π are clearly not accessible by a chiral limit analysis. We do know that at very low
B, the QCD vacuum will prevail. It would therefore be very interesting to explore whether
and where a transition between this normal phase and the BEC of charged pions appears.

The CSL is not the only inhomogeneous phase proposed to appear in the phase diagram
of QCD. While all our results have been obtained using model-independent effective
field theory and thus constitute genuine predictions of QCD within the limitations of the
derivative expansion of χPT, it is nevertheless instructive to compare these predictions
with other works, typically based on simplified models of QCD. In refs. [31, 32], the effect
of a magnetic field on the ground state of QCD in presence of the chiral anomaly was
studied using a Ginzburg-Landau-type approach. This generally leads to the prediction
of an inhomogeneous phase that appears in the literature under different names such as
“chiral spiral” or “(dual) chiral density wave,” and coincides with the CSL in the chiral limit.
The same problem was addressed in refs. [33, 34] using the Nambu-Jona-Lasinio model, yet
only in the chiral limit. Our results generally agree with such model studies in the part
of the phase diagram, accessible to χPT in the derivative expansion, that is for chemical
potentials well below the onset of nuclear matter.

Finally, note that the original prediction of the CSL phase in QCD under strong magnetic
fields [1] was subsequently extended to related setups where either the external conditions or
the dynamical theory itself may differ. This applies in particular to dense QCD matter under
uniform rotation in presence of a baryon or isospin chemical potential or both [35–37], QCD
in external magnetic field and with nonzero isospin chemical potential [38, 39], and a class
of QCD-like theories with nonzero magnetic field and baryon chemical potential [40, 41].
We expect the computational techniques developed here to be useful also in these other
contexts, should one be interested in the effects of quantum or thermal fluctuations therein.
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A Spectrum of effective one-dimensional Hamiltonians

A.1 Pöschl-Teller Hamiltonian

The Hamiltonians (3.12) and (3.16) are both special cases of the Pöschl-Teller Hamiltonian,

Hn ≡ −∂2
z̄ −

n(n+ 1)
cosh2 z̄

. (A.1)

Let us briefly recall how to find the eigenvalues and eigenstates of this class of Hamiltonians
for positive integer n. Introducing a set of annihilation and creation operators,

an ≡
d
dz̄ + n tanh z̄, a†n ≡ −

d
dz̄ + n tanh z̄, (A.2)

the Hamiltonian Hn can be expressed as

Hn = a†nan − n2 = an+1a
†
n+1 − (n+ 1)2. (A.3)

This implies a pair of important intertwining relations,

anHn = Hn−1an, a†nHn−1 = Hna
†
n. (A.4)

Using these relations, one can prove the following basic facts about the spectrum of the
Pöschl-Teller Hamiltonians:

• The Hamiltonian Hn has n bound states |n, k〉, labeled by an integer k, 1 ≤ k ≤ n.
The corresponding eigenvalue is λn,k = −(n− k + 1)2.

• The continuous spectrum of Hn consists of doubly degenerate energy levels covering
the open set (0,∞).

• The eigenstates in the continuous spectrum are obtained by applying a chain of
creation operators on a plane wave,

|n, P 〉 ∝ a†n · · · a
†
1|0, P 〉, (A.5)

where 〈z̄|0, P 〉 ≡ eiP z̄. The corresponding eigenvalue of the Hamiltonian is

λn,P = P 2. (A.6)

• The eigenstates |n, P 〉 have the asymptotic behavior of reflectionless scattering states
with momentum P . The corresponding phase shift δP is given by

eiδP = iP − 1
iP + 1 · · ·

iP − n
iP + n

. (A.7)
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As we will now show, the information about the phase shift δP is sufficient to convert the
sum over eigenvalues of the Pöschl-Teller Hamiltonian into an integral over the continuous
momentum variable P .

Let us for simplicity focus on the simplest case of n = 1, relevant for neutral pion
fluctuations of the domain wall; the n = 2 case relevant for charged pion fluctuations can
be dealt with in exactly the same manner. In the case of n = 1, the phase shift δP is a
monotonously decreasing function of P such that

lim
P→0+

δP = π, lim
P→+∞

δP = 0. (A.8)

This is consistent via Levinson’s theorem with the fact that the Hamiltonian H1 has a
single bound state.

To be able to count the states in the continuous spectrum, we temporarily enclose our
system in a finite box, −L/2 ≤ z̄ ≤ +L/2, and impose the Dirichlet boundary condition. In
order to obtain a real eigenstate of H1 satisfying this boundary condition, we have to take
a linear combination of the two states |1,±P 〉, where P is from now on implicitly assumed
to be positive. Assuming that L is sufficiently large so that the exponentially decaying
tails of the eigenstates (A.5) can be neglected, the boundary condition at z̄ = −L/2 can be
satisfied by taking

ψP (z̄) = sin[P (z̄ + L/2)] for z̄ → −∞,
ψP (z̄) = sin[P (z̄ + L/2) + δP ] for z̄ → +∞.

(A.9)

On the second line, we used the fact that δP is an odd function of P up to a multiple of
2π. The boundary condition at z̄ = +L/2 then isolates a discrete set of standing-wave
eigenstates, labeled by integer N such that

PL+ δP = Nπ. (A.10)

For sufficiently large L, the left-hand side is a monotonously increasing function of P that
approaches π as P → 0+. Hence the discrete set of eigenstates satisfying our boundary
condition is labeled by integers N ≥ 2.5 The condition (A.10) is to be compared to the
corresponding condition for the “free-particle” Hamiltonian H0,

PL = Nπ, (A.11)

which gives a normalizable standing-wave eigenstate of H0 for any integer N ≥ 1.
Suppose now that we want to evaluate the sum of some given function f(λ) over all

eigenvalues λ of the Hamiltonian H1. In order to ameliorate the expected divergence of
the sum, we will subtract the corresponding sum over eigenvalues of the “free-particle”
Hamiltonian H0. Given the relation (A.6), the result, which we will for the sake of brevity
call Tr f , then reads

Tr f = f(−1)− f(0) +
∞∑
N=1

[f(P 2
N )− f(P̃ 2

N )]. (A.12)

5Note that N = 1 corresponds to the “half-bound state” with P = 0. Being nondegenerate, this cannot
satisfy the boundary condition exactly.
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Here PN is the solution of eq. (A.10), and P̃N the solution of the corresponding condi-
tion (A.11) for the free particle. Since only N ≥ 2 give a stationary state satisfying the
Dirichlet boundary condition, the N = 1 contribution, for which P1 = 0, has to be explicitly
subtracted. Finally, the first term, f(−1), is the contribution of the bound state.

As the next step, we will convert the sum into an integral over the dimensionless
momentum P by taking the limit L → ∞. Note that upon taking the difference of
eqs. (A.10) and (A.11), we get

(PN − P̃N )L = −δPN . (A.13)

For L→∞, PN − P̃N is infinitesimally small so that we can approximate

f(P 2
N )−f(P̃ 2

N )≈ (P 2
N−P̃ 2

N )f ′(P̃ 2
N )≈ 2P̃N (PN−P̃N )f ′(P̃ 2

N ) =−2P̃NδPN
L

f ′(P̃ 2
N ). (A.14)

The sum over N corresponds to the spacing of momentum ∆P̃ = π/L, which gives the
correct measure for the integral over P , the result being

Tr f = f(−1)− f(0)− 2
π

∫ ∞
0

PδP f
′(P 2) dP. (A.15)

This expression can be further simplified by integration by parts. The boundary contribution
at P = 0 exactly cancels the obnoxious −f(0) term before the integral. Upon further using
the fact that dδP /dP = −2/(1+P 2), we arrive at our final result for the n = 1 Pöschl-Teller
Hamiltonian,

Tr f = f(−1)− 1
π

lim
P→∞

[δP f(P 2)]− 2
π

∫ ∞
0

f(P 2)
1 + P 2 dP, (n = 1). (A.16)

Given the asymptotic behavior of the phase shift at P →∞, δP = 2/P + · · · , the remaining
surface term vanishes for functions such that limP→∞[f(P 2)/P ] = 0.

The evaluation of the sum over eigenvalues in the n = 2 case follows exactly the same
steps, the result being

Tr f = f(−4) + f(−1)− 1
π

lim
P→∞

[δP f(P 2)] (A.17)

− 1
π

∫ ∞
0

( 2
1 + P 2 + 4

4 + P 2

)
f(P 2) dP, (n = 2).

A.2 Lamé Hamiltonian

The Hamiltonians (3.10) and (3.14) are both special cases of the Lamé Hamiltonian

Hn ≡ −∂2
z̄ + n(n+ 1)k2 sn2(z̄, k). (A.18)

In general, the spectrum of these Hamiltonians is known to consist of n+1 energy bands. In
the limit k → 1, sn(z̄, k)→ tanh z̄. As a consequence, the Lamé Hamiltonian (A.18) reduces
to the Pöschl-Teller Hamiltonian (A.1) up to a constant shift, n(n+ 1). Accordingly, the
lowest n bands of the Lamé Hamiltonian collapse to n discrete energy levels, corresponding
to the bound states of the Pöschl-Teller Hamiltonian. In the opposite limit of k → 0, the
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Figure 4. Dependence of the band spectrum of the n = 2 Lamé Hamiltonian (A.18) on the elliptic
modulus k. For k → 1, the two lowest-lying bands collapse to two discrete bound states. For k → 0,
the spectrum of the free Hamiltonian is recovered. The exact expressions for the five edges of the
three bands are given in eq. (5.11).

Lamé Hamiltonian tends to the “free-particle” Hamiltonian −∂2
z̄ , hence the gaps between

the different bands close. To visualize how the spectrum interpolates between the two limits,
that is for 0 < k < 1, we display in figure 4 the band structure in the special case of n = 2,
as a function of k. The expressions for the edges of the energy bands, given in eqs. (5.5)
and (5.11), were extracted from refs. [25, 27].

The Lamé Hamiltonian has no bound states. Accordingly, all the energy levels can be
parameterized by a dimensionless momentum variable P . Owing to the periodicity of the
potential in the Hamiltonian, this is identified with the crystal (Bloch) momentum of the
eigenstate. An explicit expression for the eigenvalue λ as a function of P is not known. For
the purposes of this paper, it is however sufficient to know the group velocity dλ/dP , given
in eqs. (5.4) and (5.10) [25, 27].

For later convenience, let us add that in the special case of the n = 1 Lamé Hamiltonian,
the spectrum can also be specified parametrically in terms of a complex parameter α [25],

λ(α) = dn2 α+ k2, P (α) = −iZ(α) + π

2K(k) . (A.19)

It can be shown that the function P (α) defined by eq. (A.19) is real either for purely
imaginary α = iη or for α = K(k) + iη. The two options with η ∈ (0,K(k′)) span,
respectively, the states in the upper and lower bands of the spectrum of H1.
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B Spectrum of excitations above the CSL background

With the insight in the spectrum of the Lamé Hamiltonian gained in appendix A, it is
possible to be more explicit about the dispersion relations of the fluctuations of the CSL. It
follows from eqs. (3.9) and (3.13) that the energy (frequency) of neutral and charged-pion
fluctuations is given, respectively, by

ω2
π0 = p2

⊥ +m2
π

[
λ(P )
k2 − 1

]
,

ω2
π± = (2m+ 1)B + m2

π

k2 [λ(P )− k2 − 4].
(B.1)

The dimensionless momentum P is related to the physical momentum pz along the magnetic
field, P ≡ kpz/mπ. The dispersion relations will thus be completely fixed once we know the
functions λ(P ) for the n = 1 (neutral pions) and n = 2 (charged pions) Lamé Hamiltonians.

As already stressed, a closed expression for λ(P ) is not known. However, it is possible
to determine implicitly P as a function of λ by integrating the inverse of the group
velocities (5.4) and (5.10). Below, we demonstrate how to do so explicitly in the case of
n = 1, that is neutral pions. To that end, we use the various representations of elliptic
integrals from ref. [30]. The dispersion relations presented below generalize the result of
ref. [1], where the phase velocity of CSL phonons, that is neutral pion excitations near the
bottom of the lower, gapless energy band, was calculated.

B.1 Neutral pion excitations: lower band

For the lower, gapless energy band, we find

P = E(arcsin τ, k′) +
[
E(k)
K(k) − 1

]
F (arcsin τ, k′),

τ ≡
√
λ− k2

k′
= k

k′

√
ω2 − p2

⊥

mπ
,

(B.2)

where k′ ≡
√

1− k2 is the complementary elliptic modulus. This gives the dispersion
relation parametrically as ω = ω(p⊥, τ) and P = P (τ). Expanding the function P (τ) to
linear order in τ recovers the phonon phase velocity derived in ref. [1]. The upper edge of
the band corresponds to λ = τ = 1, whence we find the energy

ω−edge =

√
p2
⊥ + k′2

k2 m
2
π. (B.3)

The corresponding momentum is

Pedge = π

2K(k) , or pz,edge = π

L
, (B.4)

where L is the lattice spacing of the CSL state (2.7).
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Figure 5. Dispersion relation of neutral pion excitations on the CSL background with k2 = 1/2 and
p⊥ = 0. According to eq. (B.4), the edges of the first Brillouin zone are at pz = ±πmπ/(

√
2K) where

K is a shorthand for K(1/
√

2). The energy gap appears between ω = mπ and
√

2mπ according to
eqs. (B.3) and (B.6).

B.2 Neutral pion excitations: upper band

For the upper energy band, we find likewise

P = π

2K(k) +
[
1− E(k)

K(k)

]
F (arctan τ, k′)− E(arctan τ, k′) + τ

√
1 + k2τ2

1 + τ2 ,

τ ≡
√
λ− 1− k2

k
= 1
mπ

√
ω2 − p2

⊥ −
m2
π

k2 .

(B.5)

The lower edge of the band corresponds to λ = 1 + k2 or τ = 0, and has the energy

ω+
edge =

√
p2
⊥ + m2

π

k2 . (B.6)

The energy gap at vanishing transverse momentum is therefore

ω+
edge − ω

−
edge

∣∣∣
p⊥=0

= 1− k′
k

mπ = k

1 + k′
mπ. (B.7)

It equals mπ for the domain wall solution where k = 1, and then rapidly drops until it
eventually disappears in the limit k → 0.

For illustration, we plot the dispersion relation in both bands for k2 = 1/2 in figure 5.
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C Alternative evaluation of neutral pion free energy at NLO

The Gelfand-Yaglom theorem is a practically useful tool to evaluate functional determinants
of one-dimensional differential operators [26]. It can help us to efficiently evaluate the sum
over λ in eq. (3.9) thanks to the fact that the argument of the logarithm therein is linear
in λ. It is important that this is done before the Matsubara sum or the integral over p⊥
is carried out. Throughout this appendix, we heavily rely on the properties of the Jacobi
elliptic functions and further identities that can be found in ref. [30].

The sum over λ in eq. (3.9) is equivalent to a sum over the eigenvalues of the operator

ω2
n + p2

⊥ −m2
π + m2

π

k2 H
(π0)

CSL . (C.1)

Finding the latter is in turn equivalent to solving the eigenvalue problem

H
(π0)

CSL ψ = (2k2 − Ω2
0)ψ, (C.2)

where Ω0 is defined by eq. (5.2). This is a special case of the Lamé equation. According to
ref. [25], the two linearly independent solutions of this equation are

ψ±(z̄) ∝ H(z̄ ± ξ, k)
Θ(z̄, k) e∓z̄Z(ξ,k), (C.3)

where the constant ξ is given implicitly as the solution to the condition

2k2 − Ω2
0 = k2 + dn2(ξ, k). (C.4)

This is equivalent to

dn2(ξ, k) = − k2

m2
π

(ω2
n + p2

⊥). (C.5)

It follows that dn(ξ, k) is necessarily imaginary. This constrains possible values of ξ to

ξ = u+ i(2n+ 1)K(k′), (C.6)

where n is an integer that can without loss of generality be set to zero. This allows one
to trade the complex parameter ξ for the real parameter u so that dn2(ξ, k) = −cs2(u, k),
which reproduces the condition (5.8) for u.

Now that the imaginary part of ξ is fixed, the solutions (C.3) can be cast in a manifestly
real form

ψ±(z̄) = Θ(z̄ ± u, k)
Θ(z̄, k) e∓z̄Ξ(u,k), (C.7)

where we used the shorthand notation Ξ(u, k) ≡ Z(u, k) + cs(u, k) dn(u, k) and fixed the
otherwise arbitrary normalization of the solutions. From the definition of the Jacobi zeta
function, one gets the derivative of the solutions with respect to z̄,

ψ′±(z̄) = [Z(z̄ ± u, k)− Z(z̄, k)∓ Ξ(u, k)]ψ±(z̄). (C.8)

We are now ready to apply the Gelfand-Yaglom theorem. This requires enclosing the
system in a finite box, −L ≤ z̄ ≤ +L, and finding a solution ϕ(z̄) to the Lamé equation (C.2)
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satisfying the initial conditions ϕ(−L) = 0, ϕ′(−L) = 1. Such a solution is easily constructed
from the expressions for ψ±(z̄) and ψ′±(z̄). What we need is then the value of this solution
at z̄ = +L,

ϕ(L) = 1
∆(L, k)

[Θ(L+ u, k)
Θ(L− u, k)e

−2LΞ(u,k) − Θ(L− u, k)
Θ(L+ u, k)e

2LΞ(u,k)
]
, (C.9)

where
∆(L, k) ≡ Z(L+ u, k)− Z(L− u, k)− 2Ξ(u, k). (C.10)

This looks rather complicated, but we should keep in mind that we are going to take the
logarithm of the functional determinant, and are really only interested in its leading part
for large L,

logϕ(L) = 2LΞ(u, k) +O(L0). (C.11)

We still need to evaluate in the same manner the analogous functional determinant for
the normal phase, which corresponds to taking ω2

n+p2
⊥+m2

π−(m2
π/k

2)∂2
z̄ instead of eq. (C.1).

This is equivalent to replacing eq. (C.2) with the eigenvalue condition −∂2
z̄ψ = −Ω2

0ψ. In
this case, the linearly independent solutions are simply e±Ω0z̄. The equivalent of eq. (C.9)
for the free particle is therefore

ϕ0(L) = 1
2Ω0

(
e2LΩ0 − e−2LΩ0

)
. (C.12)

The Gelfand-Yaglom theorem then tells us that the logarithm of the regularized fluctuation
determinant is simply

log ϕ(L)
ϕ0(L) = 2L[Ξ(u, k)− Ω0] +O(L0). (C.13)

Upon returning to eq. (3.9) and recalling that the size of the system in the rescaled variable
z̄ = zmπ/k is 2L, we arrive at the conclusion that the one-loop free energy of neutral pion
fluctuations above the CSL state, relative to the normal phase, equals

βF
1-loop,(π0)
1,CSL
V

= 1
2
mπ

k

(
eγEΛ2

RG
4π

)ε∑
n

∫ dd−1p⊥
(2π)d−1 [Ξ(u, k)− Ω0]. (C.14)

This is eq. (5.6) where the difference of the integrals in the curly brackets has been replaced
with the expression (5.7).

We now have two different derivations of the one-loop free energy of neutral pions,
leading to eqs. (5.6) and (C.14). The equivalence of these two expressions can be shown
directly using the residue theorem. In particular, the parametric expression for the dispersion
relation of the n = 1 Lamé Hamiltonian (A.19) can be used to convert the integrals in the
curly brackets of (5.6) into an integral over a closed curve in the complex plane. It turns
out that the integrand has poles in the interior of this integration curve and the residue
gives exactly the expression (5.7).
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D Next-to-leading-order results in the chiral limit

The limit of vanishing pion mass often leads to considerable simplification of computations.
Also, it is a good first approximation when the pion mass is much smaller than other
physical scales of the system such as the temperature or magnetic field. With this in mind,
we work out here the NLO free energy of the CSL in the chiral limit.

This can in principle be extracted from our results valid for nonzero mπ by taking
simultaneously the limit mπ → 0 and k → 0 while keeping the ratio mπ/k fixed according
to eq. (5.14). This procedure is, however, not completely straightforward. It appears easier
to repeat the calculation of the free energy from scratch, assuming the chiral limit from the
outset. Here one can benefit from the fact that in the chiral limit, the spectra of neutral
pion fluctuations above the QCD vacuum and the CSL state are identical. Thus, the entire
difference of the NLO free energies of the two states comes from the charged pion sector.

Specifically, the zero-temperature part of the renormalized NLO free energy becomes

F T=0
1,CSL
V

∣∣∣∣
mπ=0

= (φ′0)4

32π2

(
log 2B

Λ2
RG
− l̄1

3 −
2 l̄2
3

)

+ B2

4π2

[
ζ(1,0)(−1, 1

2 −
(φ′0)2

2B
)
− ζ(1,0)(−1, 1

2
)]
, (D.1)

where the superscripts of ζ refer to the number of derivatives of the Hurwitz ζ-function
with respect to its first and second argument. Also,

φ′0 = µB

4π2f2
π

(D.2)

is the gradient of the CSL ground state (6.2). Note that we can strictly speaking no longer
use the values of the finite counterterms l̄i, fixed in section 3.3, since those were obtained
at the renormalization scale ΛRG = mπ. In the chiral limit, it appears sensible to choose
ΛRG = fπ, which sets the characteristic scale of χPT and is of the same order of magnitude
as the physical value of mπ. In order to be able to explore the properties of the NLO free
energy in the chiral limit numerically, we nevertheless resorted to the values of l̄i shown
in eq. (3.21) as a first estimate of the counterterms in the chiral limit. We found that in
different regions of the parameter space, the sign of eq. (D.1) varies, yet its sum with the
LO free energy (6.3) remains negative. This confirms the finding made at LO that in the
chiral limit, the CSL state is favored over the QCD vacuum for any nonzero magnetic field
and baryon chemical potential. As an aside, the contribution (D.1) picks an imaginary part
if the magnetic field increases above the critical value (5.15), but is finite at B = BBEC.

Finally, the thermal part of the NLO free energy in the chiral limit reads

F T
1,CSL
V

∣∣∣∣
mπ=0

= BT

2π2

∞∑
m=0

∫
dpz

{
log

[
1− e−βεCSL(m,pz)

]
− log

[
1− e−βε0(m,pz)

]}
, (D.3)

where this time

εCSL(m, pz) ≡
√

(2m+ 1)B + p2
z − (φ′0)2,

ε0(m, pz) ≡
√

(2m+ 1)B + p2
z.

(D.4)
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The contribution of eq. (D.3) is manifestly negative for any µ, T and B ≤ BBEC and
diverges in the limit B → BBEC.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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