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A B S T R A C T

The interpretability of ML models is important, but it is not clear what it amounts to. So far, most philosophers have discussed the lack of interpretability of 
black-box models such as neural networks, and methods such as explainable AI that aim to make these models more transparent. The goal of this paper is to clarify 
the nature of interpretability by focussing on the other end of the “interpretability spectrum”. The reasons why some models, linear models and decision trees, are 
highly interpretable will be examined, and also how more general models, MARS and GAM, retain some degree of interpretability. It is found that while there is 
heterogeneity in how we gain interpretability, what interpretability is in particular cases can be explicated in a clear manner.
1. Introduction

Machine learning (ML) models, and deep neural networks (DNNs) 
in particular, are very successful at solving problems both within and 
outside of science. However, many of these successful models are black 
boxes. The interpretability of ML models – understanding or gaining in-

sight into how they work – is an important area of research in computer 
science.1 Philosophers have started to pay more attention to inter-

pretability; see Beisbart and Räz (2022) for a survey. Some philosophers 
have discussed more theoretically-oriented approaches (Buckner, 2019, 
Räz, 2022, Sterkenburg & Grünwald, 2021); there have been proposals 
for frameworks of explainable AI (Zednik, 2021); and it has been dis-

cussed whether understanding ML models is relevant to their usefulness 
in application (Sullivan, 2022, Räz & Beisbart, 2022).

The goal of the present paper is to explore the prospects of expli-

cating the concept of interpretability in precise and unified terms. If 
we want to increase the interpretability of models such as DNNs, we 
have to get clear on what interpretability is. Computer scientists like 
Lipton (2018) have noted that interpretability is not a “monolithic con-

cept”; Doshi-Velez and Kim (2017) call for a more “rigorous” notion 
of interpretability. Philosophers like Krishnan (2020) concur that inter-

pretability lacks a clear meaning and question whether interpretability 
is an important problem in its own right.

✩ Funding: This work is funded by the Swiss National Science Foundation through grant number 197504.

E-mail address: tim.raez@posteo.de.
1 Efforts to understand ML models in computer science run under different names. One kind of effort is towards what is called a theory of deep learning (Berner 

et al., 2023, Bahri et al., 2020). Another kind of effort, explainable AI (xAI, see, e.g., Adadi and Berrada 2018) aims to provide ML practitioners with tools to 
understand predictions made by the ML models they deploy.

2 This approach is inspired by the distinction, stressed by Rudin (2019), between designing “inherently interpretable” models as opposed to applying xAI methods 
to opaque models.

3 There are many useful discussions of interpretability in Hastie et al. (2009); the four cases discussed below can be found there. See Rudin (2019, 2021) for more 

So far, philosophers have approached interpretability with a focus 
on black-box models like DNNs. The present paper takes a different 
approach. Instead of focusing on the black-box end of the spectrum, 
where models lack interpretability, the focus here is on the other, in-

terpretable end.2 In computer science, interpretability has a tradition 
that predates the recent ascent of DNNs. The present paper follows the 
traces of this tradition in order to get a clearer picture of interpretabil-

ity. Four interpretable ML models will be examined, with a focus on the 
properties that make these models interpretable, and how a higher de-

gree of generality affects interpretability in two cases.3 The pessimistic 
upshot of the paper is that even if we focus on a minimal notion of in-

terpretability, it is still heterogeneous. This heterogeneity is traced back 
to four dimensions along which interpretability varies. The optimistic 
upshot is that there are common themes to the interpretability of dif-

ferent models, and that it is possible to explicate, in a reasonably clear 
manner, what it means to have a certain degree of interpretability for 
particular classes of models.

Section 2 introduces important aspects of ML models, and spells out 
how the debate on (scientific) understanding will be put to work to clar-

ify interpretability. In section 3, linear models and (binary) decision 
trees, two interpretable regression models, are discussed. The proper-

ties that make these models interpretable are compared to identify core 
properties of interpretability. Section 4 turns to the question of how in-
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terpretability scales with the generality of models. MARS and GAMs, 
two regression models that retain a certain degree of interpretability 
are examined, with a comparison of the properties that make the two 
models interpretable. Section 5 discusses general lessons about inter-

pretability to be learned from the four cases. Section 6 concludes.

2. Preliminaries

2.1. Aspects of ML

The focus of the paper is on supervised learning (Hastie et al., 2009); 
other paradigms of machine learning like unsupervised learning and 
reinforcement learning are neglected. In supervised learning, we start 
with a dataset  = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1...𝑛}, sampled from an unknown distri-

bution 𝑃 (𝑋, 𝑌 ), with instances 𝑥𝑖 of 𝑋 (inputs), labeled by instances 𝑦𝑖
of 𝑌 (outputs). The variables 𝑋 and 𝑌 can be continuous or discrete. 
The focus here is on regression problems, i.e., both 𝑋 and 𝑌 are as-

sumed to be continuous. The goal of supervised learning is to find a 
function 𝑓 (𝑋) = 𝑌 that is able to make predictions 𝑓 (𝑥𝑖) = 𝑦𝑖 which are 
close to the “true values” 𝑦𝑖 according to some loss function. Crucially, 
the accuracy of 𝑓 is tested on samples from 𝑃 (𝑋, 𝑌 ) that were not used 
to construct 𝑓 . If 𝑓 performs well on such samples, it generalizes well. 
The goal of finding 𝑓 is achieved by specifying a model 𝑀 that com-

putes 𝑓 , and an optimization procedure, or learning algorithm, that 
adapts the parameters of the model 𝑀 in a learning process, such that 
the model approximates the relation between the 𝑥𝑖 and the 𝑦𝑖 in . 
In what follows, 𝑓 will be assumed to be a mathematical function, and 
variables to be ranging over sets; the probabilistic perspective, in which 
𝑋, 𝑌 are random variables and 𝑓 a distribution, will be neglected.

The concept of interpretability explored in this paper – the degree to 
which we understand an ML model – focuses on some aspects of super-

vised learning, while bracketing others. First, we can try to understand 
an ML model itself, or we can try to understand something about the 
world with the model. In the case of understanding with a model, the 
model plays an instrumental role in understanding something about the 
system from which the data  is sampled. In the case of understanding 
of a model, we are trying to understand the model itself. Here the fo-

cus is on understanding of a model; the question whether an ML models 
faithfully captures aspects of the world is bracketed.4 Second, we can 
try to understand how a model arises through training, or we can try 
to understand a fixed trained model; see Räz (2022) for a discussion of 
the former. Here the focus is on the latter, i.e., understanding a fixed, 
trained model, or a family of such models. Finally, we can try to un-

derstand the inner workings of a model, or we can try to understand 
the function 𝑓 computed by the model. Here the focus is on under-

standing the predictor function 𝑓 . Understanding the inner workings 
of a model, its algorithmic properties etc. is important, and sometimes, 
there is no absolute distinction between model and predictor. Here, the 
inner workings of a model will be considered insofar as this serves the 
purpose of understanding the function 𝑓 .

In short, the kind of interpretability to be investigated here, dubbed 
functional interpretability, is concerned with understanding the predictor 
function 𝑓 computed by an ML model. This notion has been discussed 
in the philosophical literature on ML, in particular in the normative 
framework for xAI proposed by Zednik (2021). In Zednik’s terminol-

ogy, the goal is to understand what the predictor is doing, as opposed 
to understanding how (in terms of process) or why (in terms of a repre-

sentational relation between model and world). In terms of the kinds of 
transparency distinguished by Creel (2020), the notion to be discussed 

4 In the philosophical literature, it has been discussed to what extent under-

standing of a model is relevant to understanding with a model, which seems the 
primary concern. Sullivan (2022) argues that our current understanding of ML 
models is sufficient to use them to understand the systems modeled; this has 
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here is a variety of functional transparency. Functional interpretability 
concerns the behavior of a predictor function as a whole, and thus re-

quires a global kind of understanding, as opposed to local notions, which 
focus on understanding (or explaining) single predictions; the latter case 
is the usual setting of xAI methods.5

Why is functional interpretability important? First, because the main 
goal of supervised learning is to make predictions; therefore, it is crucial 
to understand how a model is behaving for various inputs. While under-

standing what an ML model predicts will not tell us everything about 
that model – it is not sufficient for full-blown understanding – it is ar-

guably necessary: we do not understand an ML model unless we know 
what it does (to some extent). This is so because, e.g., understanding 
why a model behaves in a certain way presupposes some understanding 
of what the model does. Understanding why concerns the relation be-

tween the predictive behavior of a model and the model’s target system 
in the world. However, we can only understand this relation if we have 
some prior knowledge or understanding of the predictive behavior of 
the model, i.e., some functional interpretability. Second, and relatedly, 
understanding what a model is doing is probably the aspect of ML mod-

els that affects most stakeholders – it is not only of interest to model 
builders, or model users, but also to decision subjects and policymak-

ers. For example, in order for decision subjects to be able to challenge 
predictions that impact them, they have to know what these predictions 
are in the first place. Therefore, a clear concept of understanding this 
aspect of ML models is of high practical relevance.

2.2. Interpretability and scientific understanding

In the last section, the object of interpretability, the function 𝑓 , was 
specified. This section discusses the notion interpretability itself. The 
idea is to explicate interpretability through understanding. It is assumed 
that a model with high interpretability is a model for which the degree 
of understanding is high. Thus, it should be spelled out what the degree 
of understanding is. To do so, we draw on discussions of understanding 
from philosophy. Understanding is arguably one of the central goals of 
science (de Regt & Dieks, 2005) and has been discussed in philosophy 
of science and epistemology. For a long time, understanding was seen 
as a mere psychological by-product of explanation (Woodward & Ross, 
2021); only more recently has it been recognized as an achievement in 
its own right.6

For present purposes, understanding is taken to have several distinct 
but related dimensions (see also Wilkenfeld 2017). First, the agents or 
subjects who want to understand a model (or its representation) need 
to be able to grasp this model, it needs to be intelligible to them. The 
grasping dimension of understanding is not purely subjective, it does 
not reduce to a sense of understanding (Trout, 2002). The grasping 
of a model should be such that it can be taught, acquired, and ver-

ified an intersubjective manner. We do not want to simply replace 
interpretability with grasping; this would only move the challenge of 
spelling out interpretability to grasping. In order to proceed, concrete, 
operational criteria for grasping are needed. There have been differ-

ent proposals in the literature for such criteria. One proposal is that 
the representation of a model can be grasped to the extent that it 
is possible for an agent to reason about the representation, manipu-

late the representation, and/or use it to make counterfactual inferences 
(Kuorikoski & Ylikoski, 2015). A second proposal is that a represen-

tation can be grasped (is intelligible) to the extent that an agent can 
anticipate qualitative consequences of the representation, without cal-

culations or quantitative inferences (de Regt & Dieks, 2005), for exam-

ple through visualization (de Regt, 2014). Below, these ideas will be 

5 Functional interpretability is thus a more general notion that the explana-

tion of particular predictions, as analyzed by, e.g., Watson and Floridi (2021), 
Zerilli (2022).

6 See Baumberger et al. (2017) for a survey and Beisbart and Räz (2022) for 

a discussion of the relation between understanding and intelligibility/grasping.
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put to use in the analysis of the models. We will see that manipulating 
a model and visualizing it are useful ways of grasping that model, of-

ten in combination. Further, important ways of grasping will be added 
to this list during the analysis.

A second important dimension of understanding is accuracy, the ex-

tent to which a representation allows us to grasp something about the 
system that is represented. In the present paper, the question of ac-

curacy (degree of correspondence between model predictions and the 
world) is bracketed, because the focus is on understanding an aspect of

an ML model itself, not understanding with a model, i.e., whether the 
model provides an adequate representation of something in the world. 
A third issue is whether understanding is taken to be categorical – we 
either have understanding, or we do not – or graded, that is, understand-

ing is taken to come in degrees; see Baumberger (2019), Jebeile et al. 
(2021). Here a graded notion of understanding will be used. It will be 
argued that a graded notion should be preferred over a categorial no-

tion in the analysis of the cases and in the discussion.

In sum, the object we want to understand is the function 𝑓 ∶𝑋 → 𝑌

computed by a trained ML model 𝑀 . We understand the function to 
the extent we grasp it, e.g., by observing how manipulating the input 
changes the output, or by examining how the function behaves qualita-

tively through visualizations. This proposal, which is still general and 
vague, will be refined in the discussion below.

3. Interpretable models

In this section, linear models and decision trees are examined; these 
two models are considered to have a high degree of interpretability by 
ML researchers. Properties that contribute to the intelligibility of these 
models are discussed. It is argued that while the two models share some 
of these properties, their formal properties and the way in which we 
grasp these models are so different as to yield two different paradigms 
of interpretability.

3.1. Linear models

Linear models are an important class of interpretable models. In “El-

ements of Statistical Learning” (ESL), a standard textbook, we find the 
following (typical) description: “[Linear models] are simple and often 
provide an adequate and interpretable description of how the inputs 
affect the output” (Hastie et al., 2009, p. 43). A linear model of 𝑛 (con-

tinuous) input variables 𝑋 = (𝑋1, ..., 𝑋𝑛) and one continuous output 
𝑌 = 𝑓 (𝑋) is of the form

𝑓 (𝑋) = 𝛽 +𝑤1𝑋1 +𝑤2𝑋2 + ...+𝑤𝑛𝑋𝑛, (1)

where we have added the intercept 𝛽.7 The model parameters 𝛽, 𝑤1, ...,
𝑤𝑛 are estimated in the learning process. Fig. 1 provides an illustration.

Why are linear models considered to be interpretable? Here are 
some relevant properties.

1. The linear model has a simple geometrical meaning: it corresponds 
to a hyperplane over the input space (Fig. 1). Additionally, such 
hyperplanes can be easily visualized for one- and two-dimensional 
inputs. Note that while models with more variables cannot be fully 
visualized, it is implausible that linear models with more variables 
are fully non-interpretable for that reason.

2. Model parameters have an intuitive meaning: The 𝑤𝑖 correspond 
to the strength with which the input 𝑋𝑖 is weighted in the com-

7 Strictly speaking, the function 𝑓 is affine rather than linear due to the 𝛽
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term, but this issue will be ignored here.
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Fig. 1. Linear model with inputs 𝑋1, 𝑋2 and output 𝑌 ; the (red) dots are the 
data points to be approximated by 𝑌 = 𝑓 (𝑋1, 𝑋2). From Hastie et al. (2009), 
© 2009 Hastie, Tibshirani & Friedman. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

putation of the output. For linear models, the model parameters 
directly translate into how the predictor function 𝑓 behaves.8

3. Linear models are additive, which means that there are no interac-

tions between input variables. Once we know the contribution of 
individual features, the overall output is a sum of these contribu-

tions, i.e., additive. This is a weak form of decomposability.9

4. For linear models, the same change in an input 𝑑𝑋 leads to the 
same change in the output 𝑑𝑌 everywhere. Or, put differently, the 
local shape of the function is also its global shape. This property 
uniquely characterizes linear models.10

Note that this list may be incomplete, and that the properties are not 
mutually exclusive. Consider how these properties fit into the discussion 
of grasping models from the previous section. The first property sug-

gests that linear models are graspable through visualization; the fourth 
property may be recast in terms of grasping through local manipula-

tion. The second and the third property suggest a way of grasping not 
mentioned above: we grasp linear models through the form of the pre-

dictor function. Of course, it is not surprising that linear models have 
these formal properties – this is how they are defined. The point is that 
grasping linearity encompasses the grasping of form: by using mathe-

matical notation, we can see that the form of a function is linear. The 
suggestion here is that all of the above properties contribute to our un-

derstanding of linear models: we grasp through formal properties, as 
well as geometrical interpretation, visualization, and local behavior.11

It is not universally accepted that linear models are interpretable 
tout court. Lipton (2018) states several reasons why linear models are 
only interpretable with some qualifications. First, if the input space is 

8 Lipton (2018) calls this decomposability. This property distinguishes linear 
models from, say, DNNs, where the relation between model parameters and 
output is not straightforward.

9 Additivity is a weaker property than linearity; not all additive models are 
linear; see the discussion of generalized additive models in section 4.2 below.
10 This is true because linear models are the only models with constant deriva-

tives everywhere. Note that we subsume constant functions under linear ones 
because we do not require the intercept 𝛽 to be zero.
11 From a computational point of view, it should be added that there are ef-

ficient and well-known procedures to fit a linear model to data. This makes 
sure we are able to find a linear model in the first place. Also, given any input, 
we can compute the corresponding output of the model in an efficient manner. 

Lipton (2018) calls this simulatability.
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Fig. 2. CART: A binary regression tree in two variables (left) and the corre-

sponding regression function (right). From Hastie et al. (2009), © 2009 Hastie, 
Tibshirani & Friedman.

high-dimensional, then carrying out computations, be it finding a model 
or computing particular outputs, becomes harder and harder. What is 
more, it may also be hard to gain an overall picture of how inputs affect 
outputs for high-dimensional models, and we may lose our overall grasp 
of the model’s behavior, even if we understand how linear models work 
in general.

These qualifications are reasonable. However, they do not apply to 
linear models exclusively, they are a general feature of interpretability: 
The interpretability of models decreases as the dimension of the input 
space increases.12 It seems natural to say that, generally speaking, the 
degree of interpretability decreases as the dimension of the input space 
increases. This is compatible with the possibility that we may lose our 
grasp of a certain kind of model above a certain threshold of the input 
dimension.

Lipton (2018) raises further points: linear models are fragile in that 
they sensitively depend on the selection of input variables, and also on 
pre-processing data, and, in order to get a degree of accuracy from lin-

ear models that is comparable to more complex models, linear models 
require pre-processed or pre-engineered features, which, in turn, may 
compromise interpretability. These arguments are valid in substance; 
the sensitive dependence on variable selection is a real problem. How-

ever, these are issues of understanding with the model, or how the model 
and the world are related, which are bracketed here. Importantly, even 
in cases where stability is not an issue, we still need a clear notion of 
understanding a given predictor function.

3.2. Decision trees (CART)

The second family of interpretable models are decision trees. Here 
we consider a simple kind of decision tree, so-called classification and 
regression trees (CART). Decision trees are taken to be interpretable by 
many computer scientists. Hastie et al. (2009) write: “Tree-based meth-

ods partition the feature space into a set of rectangles, and then fit a 
simple model (like a constant) in each one. They are conceptually sim-

ple yet powerful” (p. 305).13 Here is a short description of CART.14

CART are recursive, binary decision trees that correspond to partitions 
of the input space into regions. The regions are obtained by recursively 
splitting the range of variables; see Fig. 2 for an illustration.

We start with training data , defined for variables 𝑋 = (𝑋1, ..., 𝑋𝑛)
and 𝑌 . In the first step, we search through all possible partitions of the 
input space into two regions 𝑅1, 𝑅2. The two regions have the form 

12 To counteract a loss of interpretability in higher dimensions in the linear 
case, one can construct sparse models (models with dependence on few vari-

ables), e.g. using LASSO regularization, and use variable selection methods. 
One purpose of these techniques is to make high-dimensional models more in-

terpretable, cf. Hastie et al. (2009, Ch. 3).
13 See also Rudin (2021), Lipton (2018) for similar assessments.
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𝑅1 = 𝑋𝑖 ≤ 𝑡; 𝑅2 = 𝑋𝑖 > 𝑡, that is, we split each variable 𝑋𝑖 at values 𝑡
of datapoints in . We choose the variable 𝑋𝑖 and the split 𝑡 such that, 
if we calculate the average value of the inputs in the two regions, and 
compare the result with the data, we get a minimal empirical loss. The 
recursive procedure is continued in the different regions until a certain 
tree size is reached; afterwards, the tree is pruned (internal nodes are 
collapsed) until a given tradeoff between model complexity (size of the 
tree) and predictive accuracy is satisfied. The resulting predictor func-

tion 𝑓 ∶𝑋 → 𝑌 can be written as follows:

𝑓 (𝑥) =
∑

𝑖

𝑐𝑖 ⋅ 𝐼(𝑥 ∈𝑅𝑖). (2)

Here, 𝑅𝑖, 𝑖 = 1...𝑚, are the regions of the partition, 𝑐𝑖 ∈ 𝑌 the pre-

diction values in these regions (the average value of  in region 𝑅𝑖), 
and 𝐼 the indicator function: 1 for 𝑥 ∈𝑅𝑖, and 0 else.

What are the properties that make decision trees (CART) inter-

pretable?

1. CARTs have a simple geometrical interpretation, they correspond 
to functions that are constant over (simple) regions of the input 
space; see Fig. 2 above. CARTs also allow for intuitive visualiza-

tions as trees, and the corresponding partitions can also be visual-

ized, at least for low dimensions. Visualizability is very restrictive 
as a necessary requirement for interpretability, as in the linear case.

2. The regions 𝑅𝑖 with constant predictions have a simple description 
in terms of the input variables. Hastie et al. (2009) consider CART 
to be particularly interpretable for this reason. They note that if we 
were to consider any (rectangular) partition of the input space, the 
resulting regions could be complicated to describe. This problem is 
solved by using recursive binary partitions.15

3. The prediction of CART is based on a sequence of binary decisions, 
which is easy to grasp. This means that the model represents a 
simple prediction process.16 Note that this is a property of how the 
model processes the input, whereas the goal here is to characterize 
the interpretability of the resulting predictor function.

According to these properties, the interpretability of decision trees is 
closely tied to their representation. For one, it is important to grasp the 
partition associated with the decision tree. In the case of CART, the par-

tition is grasped through the binary tree, which provides us with simple 
descriptions of the partition regions 𝑅𝑖: Every region is characterized 
through the sequence of splits at the internal nodes leading to 𝑅𝑖. This 
description is implicit in the form of the predictor function (2) via the 
regions 𝑅𝑖. For decision trees, visualization is also important, but it 
plays a different role than in linear models: the visual representation of 
the tree helps us grasp the structure of the partition associated with it. 
Also, a tree visualization (cf. left of Fig. 2) may help us grasp a func-

tion of more than two variables, where a visualization of the graph of 
a function may not be available. Thus, grasping a decision tree appears 
to work quite differently from grasping a linear model; a systematic 
comparison follows in the next section.

Decision trees, like linear models, are not interpretable without qual-

ification. First, Lipton’s argument about the dimension of the input 
space applies to decision trees as well. An important difference between 
linear models and decision trees is that we may be able to grasp a small 
decision tree even if the input space is large. A small decision tree is a 
tree with few splits, which means that the variables that are not split do 

15 “A key advantage of the recursive binary tree is its interpretability. The 
feature space partition is fully described by a single tree. With more than two 
inputs, partitions [...] are difficult to draw, but the binary tree representation 
works in the same way” (Hastie et al., 2009, p. 305).
16 “[The tree representation] is also popular among medical scientists, perhaps 
because it mimics the way that a doctor thinks. The tree stratifies the population 
into strata of high and low outcome, on the basis of patient characteristics” 

(Hastie et al., 2009, p. 305).
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not contribute to the prediction and can be ignored. Note that the same 
can be said about sparse linear models.

Second, decision trees can overfit the data if they become too large. 
If no stopping condition is used, and the tree is allowed to grow indef-

initely, a tree can fit any (finite) dataset perfectly. This means that a 
tree can be made to agree with arbitrarily complex functions. However, 
such functions are not interpretable, and neither are trees that can be 
made to agree with such functions at any finite set of points. Thus, if 
the size of trees is not limited, they are not intrinsically interpretable. 
This feature of decision trees is not shared by linear models, which do 
not overfit the data to the same extent. Thus, the interpretability of de-

cision trees has to be qualified: It applies to small trees only. This is, 
again, a point where a graded notion of understanding is important: 
With a categorical notion of interpretability, it would be necessary to 
say what “small” means, whereas on a graded notion, we can say that 
interpretability decreases as the tree grows. Third, decision trees can 
be sensitive with respect to small changes in the training data; see, e.g. 
Hastie et al. (2009, p. 312). As in the case of linear models, this prob-

lem is outside the scope of the concept of functional interpretability 
explored here.

3.3. Linear models and trees: two paradigms of interpretability

Now we examine whether there is a common explication of the 
interpretability of these two kinds of models. If interpretability is a 
monolithic concept, we should be able to identify common properties 
of these two highly interpretable models, and spell out what makes a 
model highly interpretable on this basis. If interpretability is not mono-

lithic, but heterogeneous, we may still be able to characterize the main 
features that make these kinds of models interpretable separately, but 
without overlap of the main properties.

One way in which we might explicate interpretability is via common 
mathematical properties of predictor functions. This, however, does not 
seem to work: If we want to assign a high degree of interpretability to 
both linear models and decision trees, then highly interpretable predic-

tor functions are not necessarily a) linear, b) differentiable or smooth, 
c) continuous, d) monotone, because small decision trees lack all of 
these properties in general.17 Thus, there is no straightforward char-

acterization of a high degree of interpretability through mathematical 
properties of predictor functions. Defining a monolithic concept of inter-

pretability with these mathematical properties does not work. There is 
a very limited class of functions that belongs to both linear models and 
decision trees, the functions at the “intersection” of the two families: a 
decision tree with no splits, which corresponds to a linear model where 
all coefficients except for the intercept are 0. These globally constant 
functions are maximally interpretable. They compress the data into one 
number, which can be chosen to be the mean value or the median of 
the data.

Now let us examine the properties that make the two kinds of models 
interpretable. Both linear models and decision trees allow for visualiza-

tion in low dimensions, and both models have a simple geometrical 
interpretation. However, many aspects of the interpretability of the two 
models are different. First, linear models are grasped through the form 
of the predictor function: the form of the linear function means that the 
(constant) contributions of individual variables to the output can be 
considered separately and contribute additively to the output. The pre-

dictor function of a decision tree, on the other hand, is grasped through 
the form of the partition, which is represented by the structure of the tree. 
If you want to grasp the predictor function of a tree, you need to grasp, 

17 Selbst and Barocas (2018) discuss to what extent so-called “inscrutable” 
functions lack properties such as linearity, continuity, and monotonicity. The 
argument made here suggests that a certain, low degree of “inscrutability” is 
compatible with functional interpretability. Note that it is assumed that the 
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first, how the tree partitions the entire input space (through the visu-

alization of the tree), and, second, you need the values assigned to the 
regions of the partition to get outputs. A second, related dissimilarity 
is that linear models allow for local-to-global inference: once you know 
how a linear model behaves at one point, you know how it behaves 
everywhere. You can grasp a linear model through local manipulation. 
This is not true for decision trees. The behavior of the predictor func-

tion of a tree in one region does not tell you anything about its behavior 
elsewhere. Put differently, linear functions can be grasped bottom-up, 
while a decision tree is grasped top-down – you start with the entire 
partition and proceed to the values in the regions. A third dissimilarity 
is that decision trees are not intrinsically interpretable. To make them 
interpretable, a tradeoff between accuracy and simplicity has to be cho-

sen. Linear models, on the other hand, intrinsically do not overfit the 
data.

These dissimilarities suggest that linear models and decision trees 
belong to two different paradigms of interpretability. On the linear 
paradigm, we grasp through the form of the predictor function, and in-

terpretability is high because this form is simple. On the tree paradigm, 
interpretability hinges on the way in which we partition the input space, 
and a high degree of interpretability results from the fact that the form 
of the partition is simple (description/visualization as a binary tree). 
Thus, even on the minimal kind of functional interpretability consid-

ered here, interpretability is not a monolithic concept. The point is that 
we grasp the predictor functions in two different ways: via the represen-

tation of the function itself, and via the representation of the partition 
with a tree.

Let us return to the discussion of grasping in section 2.2 with these 
findings in mind. On the one hand, several of the criteria for grasping 
from the literature prove to be useful in the present context. We can 
grasp linear functions through local manipulation, and we can reason 
qualitatively on the basis of visualizations about both linear models and 
trees. On the other hand, some aspects of grasping a predictor function 
identified here do not feature prominently in the literature. Importantly, 
we grasp both linear functions and trees through the form in which they 
are represented, be it the predictor function or the partition associated 
with the predictor. From a mathematical point of view, this is not sur-

prising: Understanding mathematical objects works as much through 
geometrical interpretation and visualization as through the formal, al-

gebraic representation of the objects.18

4. Generalized interpretable models

In this section, MARS and GAMs are discussed. These are two more 
general models that retain a certain degree of interpretability. This will 
help us understand how the degree of interpretability changes with gen-

erality. The comparison between the models will show that a unified 
explication of interpretability is hard to come by, but that there is a 
reasonably clear way in which these models are interpretable if consid-

ered in isolation. The possibility of unifying the linear paradigm and the 
tree paradigm is explored, and it is argued that MARS provides a weak 
form of a unification of these two paradigms, with an explicit tradeoff 
between them.

4.1. Multivariate adaptive regression splines (MARS)

“Multivariate Adaptive Regression Splines” (MARS), a kind of re-

gression model, combines (stepwise) linear regression and the CART 
regression tree model.19 The model is built in two stages, a building 

18 The importance of combining principled, formal modes of reasoning with vi-

sualization in the context of data analysis is also stressed by Rosenstock (2021). 
Topological data analysis uses methods from algebraic topology to understand 
topological features of data clouds. Note that the primary application of this 
method appears to be cluster analysis, a form of unsupervised learning.

19 The presentation here follows Hastie et al. (2009, Sec. 9.4).
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Fig. 3. Pair of basis functions (ReLUs) for MARS. From Hastie et al. (2009), 
© 2009 Hastie, Tibshirani & Friedman.

Fig. 4. A prediction function resulting from the MARS procedure; the function 
is ℎ(𝑋1, 𝑋2) = (𝑋1 −𝑥51)+ ⋅ (𝑥72 −𝑋2)+; 𝑥51 and 𝑥72 are data points. From Hastie 
et al. (2009), © 2009 Hastie, Tibshirani & Friedman.

stage and a pruning stage, similar to regression trees. In the first stage, 
the model is built recursively from a set  = {(𝑋𝑖 − 𝑡)+, (𝑡 − 𝑋𝑖)+} of 
pairs of piecewise linear functions in one variable, with knots 𝑡 at the 
data points, see Fig. 3.

The starting point is the constant function. At each step of the build-

ing stage, two new terms are added to the model.20 All possible products 
of pairs from  with terms already in the model are considered, and the 
two terms that lead to the largest decrease of the empirical error are 
added to the model. At the end of the building stage, the model consists 
of a sum of products of piecewise linear functions:

𝑓 (𝑋) = 𝛽0 +
𝑀∑

𝑚=1
𝛽𝑚ℎ𝑚(𝑋), (3)

where each of the functions ℎ𝑚 is one of the functions in , or a product 
of such functions. The building stage terminates once the sum contains 
a preset number of terms. After the first stage, the model will usually 
overfit the data. In the second, pruning stage, the model is reduced 
by sequentially eliminating the term whose removal increases the em-

pirical error the least. This yields a sequence of models of decreasing 
size. From this sequence of models, the final model is chosen through 
what is called generalized cross-validation, which selects the model that 
presents the best tradeoff between fit and simplicity – more on this 
below. An example of a prediction function resulting from the MARS 
procedure is shown in Fig. 4.

20 MARS has several meta-parameters at the building stage that determine 
what kind of predictor function is constructed. First, an input variable can only 
feature once in a term. This means that there are no non-linear terms of one 
variable. Second, the degree of interaction terms, that is, the size of products 
can be chosen. If the upper limit is 2, then interactions are quadratic; if the limit 
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After this brief account of how MARS works, let us turn to its inter-

pretability, which is one of the main objectives of MARS.21 The property 
of MARS that contributes most to its interpretability is that its predictor 
function can be represented in a certain way.22 The predictor function 
resulting from the construction process described above is of the form 
(3), which is not particularly telling. However, the terms in (3) can be 
rearranged to yield what Friedman (1991) calls an ANOVA decomposi-

tion:

𝑓 (𝑋) = 𝛽0 +
∑

𝐾𝑚=1
𝑓𝑖(𝑋𝑖) +

∑

𝐾𝑚=2
𝑓𝑖𝑗 (𝑋𝑖,𝑋𝑗 ) +

∑

𝐾𝑚=3
𝑓𝑖𝑗𝑘(𝑋𝑖,𝑋𝑗 ,𝑋𝑘) + ...

(4)

𝛽0 is the intercept term. The index 𝐾𝑚 = 1 runs over all functions ℎ𝑚
which contain one function from ; 𝐾𝑚 = 2 runs over all functions that 
are a product of two functions from , and so on. The functions 𝑓𝑖(𝑋𝑖)
in the first sum consist of the piecewise linear functions from  in the 
variable 𝑋𝑖 that enter into the model; the functions 𝑓𝑖𝑗 (𝑋𝑗, 𝑋𝑗 ) consist 
of all products of piecewise linear functions from  in the variables 
𝑋𝑖, 𝑋𝑗 that enter into the model, and so on.

How does the ANOVA decomposition (4) make MARS interpretable? 
First, the decomposition (4) reveals which variables enter additively 
into the model (and which ones do not), which pairs of variables enter 
quadratically into the model (and which ones do not), and so on. Sec-

ond, at least the additive and the quadratic parts of (4) can be further 
investigated through visualization. If the degree of interaction is limited 
to two, this enhances the interpretability of the model significantly. If 
interaction terms are excluded, then MARS is additive, and thus even 
more interpretable, because plotting and interpreting one-dimensional 
functions is easier than interpreting two-dimensional ones.

Does MARS provide a “unification” of linear models and regression 
trees? The stepwise introduction of functions that are zero on part of 
the domain corresponds to a splitting or “breaking up” of the input 
space. At the same time, MARS generalizes stepwise linear regression, 
thus using aspects of the linear paradigm. In stepwise linear regression, 
the number of input variables in a linear model is controlled by only 
adding those input variables that contribute most to the accuracy of the 
model. MARS constructs the predictor function one variable at a time 
in the building stage.23 These are aspects that MARS inherits from the 
two paradigms in the optimization phase.

The two paradigms appear most explicitly in the model selection 
during the second phase of construction. In this phase, the best model 
from the sequence of models 𝑓𝜆 is chosen, where 𝜆 corresponds to the 
number of terms in (3). For the choice of the best model, the criterion 
for generalized cross-validation (GCV) is used. GCV constitutes a trade-

off between predictive accuracy and simplicity. Both the use of many 
variables and the use of many splits make a model less simple accord-

ing to the measure of complexity embedded in GCV. This means that 
the simplicity in MARS is itself not simple, but complex – it is literally 
a sum of two different “parameters of simplicity”, one associated with 
the linear paradigm, one with trees. In this sense, MARS is an entire 
family of interpretable models, given by a parameter controlling for a 
tradeoff between two paradigms of simplicity. What is more, there is no 
theoretical justification for how to choose this tradeoff. The tradeoff is 
a pragmatic choice, which can be based on empirical accuracy. MARS 

21 Other objectives are accuracy, smoothness, and computability; see the intro-

duction of Friedman (1991). Note that Hastie et al. (2009, Table 10.1, p. 351)

classifies MARS as an interpretable method.
22 See the discussion in Friedman (1991, Sec. 3.5), on which the following 
discussion is based.
23 Building sparse linear models is partially motivated by interpretability; see 

the discussion of stepwise linear regression in Hastie et al. (2009, Sec. 3.3.2).
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thus inherits the two paradigms of interpretability, between which we 
have to choose.24

4.2. Generalized additive models (GAMs)

Generalized Additive Models (GAMs)25 are a generalization of lin-

ear models. Linear models have the form (1), and thus assign constant 
weights to individual inputs. Additive models are more general in fit-

ting smooth functions to individual inputs, while retaining additivity, 
that is, there are no interactions between inputs. An additive model has 
the following form26:

𝑓 (𝑋) = 𝛼 + 𝑓1(𝑋1) + ...+ 𝑓𝑛(𝑋𝑛). (5)

The 𝑓𝑖 may be non-linear, smooth functions, but it is also possible to 
choose some of the 𝑓𝑖 to be linear and some to be non-linear, depending 
on what is known about the variables; GAMs are modular in this respect.

GAMs can be fit to data using the so-called backfitting algorithm. 
The idea of backfitting is to choose some initial values for the 𝑓𝑖, and 
then iteratively fit the 𝑓𝑖 to the data using a procedure 𝑆(𝑓𝑖) until the 
fit stabilizes.27 To elaborate, we first fit 𝑓1 to the data in a smooth 
way, while keeping the 𝑓𝑗 , 𝑗 ≠ 1 constant, then we fit 𝑓2, using the new 
estimate of 𝑓1 and the initial estimates for the remaining 𝑓𝑖, and so 
on; after one round, we start again with 𝑓1, using the estimates for the 
𝑓𝑗 , 𝑗 ≠ 1 from the previous round. We continue estimating in this round-

robin fashion until the differences between the 𝑓𝑖 in two consecutive 
rounds are below a certain threshold.

Why are GAMs considered to be interpretable? Hastie and Tibshi-

rani (1990, Sec. 4.3), who invented GAMs in the 1980s, note that GAMs 
are useful to analyze data. The form of the predictor (5) yields a gen-

eralization of the interpretability of linear models, which is based on 
additivity: If you change only one input variable, while holding all oth-

ers fixed, the corresponding change in the output does not depend on 
the values of the other input variables. Hastie and Tibshirani write: “In 
practice this means that once the additive model is fitted to the data, we 
can plot the [functions 𝑓𝑖] separately to examine the roles of the predic-

tors in modelling the response” (Hastie & Tibshirani, 1990, p. 88). Thus, 
the interpretability of GAMs is based on the fact that the predictor has 
the additive form (5) by design, and that, as a consequence, it is possi-

ble to examine the separate contributions of the 𝑓𝑖 to the prediction by 
examining the plots (visualization) of the 𝑓𝑖.28

4.3. MARS and GAMs: compare and contrast

Which aspects of interpretability do MARS and GAMs have in com-

mon, and which are dissimilar? The two models are similar in how they 

24 The tradeoff in ML between accuracy and simplicity is well-known both in 
computer science and philosophy; see, e.g., the discussion in Forster and Sober 
(1994) of this tradeoff with respect to model selection. The above discussion of 
GCV does not concern the tradeoff between accuracy and simplicity. GCV con-

stitutes a three-way balance between accuracy and two ways of conceptualizing 
simplicity.
25 The presentation here follows Hastie et al. (2009, Sec. 9.1).
26 Here I gloss over some aspects of GAMs, such as the fact that GAMs may 
allow the response 𝑌 = 𝑓 (𝑋) to be a smooth transformation of the sum on the 
RHS of (5), via a so-called link function.
27 There are different possible choices for the procedure 𝑆 , e.g. so-called cu-

bic smoothing splines. What is important is that there are efficient procedures 
to find a good and smooth approximation of a non-linear function 𝑓𝑖 in one 
variable.
28 In the above description, GAMs are a fully automatic procedure. One prob-

lem with this approach is that the backfitting algorithm fits all variables, even 
those that do not contribute much to the output. It is possible to select and 
exclude variables by hand. GAMs are usually applied in this more interactive 
way in data analysis. However, there are also automatic procedures for finding 
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achieve interpretability. In both cases, interpretability is a two stage 
process. In the first stage, we grasp through the form of the predictor 
function, a decomposition that shows what individual variables (or low-

degree interactions) contribute to the prediction. In the second stage, 
the parts of this decomposition, the summands, are investigated sepa-

rately, either through visualization (by plotting the individual functions 
of the decomposition), or by qualitatively investigating higher-degree 
interactions (in the case of MARS). By looking at the plots of individual 
functions, we can grasp qualitative aspects of the contributions of indi-

vidual variables; of course, it is also possible to analyze the component 
functions in a more quantitative way.29

The two models are dissimilar in several respects. First, they con-

stitute generalizations in different directions. GAMs are generalizations 
of linear functions in that they preserve additivity. They place no a pri-

ori restrictions on the form of the component functions, which can have 
almost arbitrary form (usually, they are nonparametric smooth func-

tions). MARS, on the other hand, are geared towards discovering (low 
degree) interactions through the products of piecewise linear functions; 
this is a generalization in the spirit of trees. However, the component 
functions in the decomposition of MARS (basically low degree polyno-

mials) are usually much simpler than the component functions in GAMs 
(nonparametric smooth functions). This facilitates an interpretation of 
the components of the ANOVA decomposition of MARS via the form of 
the component functions.

Second, MARS and GAMs differ in the way the predictor function is 
constructed, and, as a consequence, what the representation of the pre-

dictor function tells us. GAMs place the global constraint of additivity 
on the predictor function. There is no variable selection (at least in the 
automatic version), and all component functions are treated equally. 
MARS, on the other hand, is an adaptive procedure that automatically 
selects variables and interactions that are important for prediction. The 
ANOVA decomposition only contains variables and interactions that are 
important. The selective nature of the decomposition provides us with 
more information about the data – this is absent in GAMs. However, the 
ANOVA decomposition of MARS depends on the choice of the tradeoff 
in GCV, and this choice is pragmatic. The variable selection in MARS is 
at least partially determined by our preference for a more tree-like or a 
more smooth (linear) predictor function.

5. Discussion

Patterns of interpretability The four models exhibit some common pat-

terns of interpretability. Most importantly, we grasp a predictor through 
a combination of two different means: First, the predictor function is 
grasped in virtue of the form of their representation (either the form of 
the predictor function itself or the form of the domain partition). Sec-

ond, certain aspects, or parts, of this formal representation are grasped 
through visualization or other modes of qualitative reasoning. These 
two steps are used in sequence, not in parallel; this can be seen most 
clearly in the case of GAMs and MARS, but also in the case of trees. 
Thus, one important lesson for interpretability gained here is that at 
least some predictor functions are grasped by both looking at their vi-

sualization and inspecting their form, their algebraic representation, in 
combination.30

The importance of visualizations for interpretability is well known; 
they are an important part of explainability methods in xAI, cf. Molnar 
(2020). However, the fact that the formal representation of predictors 
(and the domain) is a key ingredient for interpretability is relatively un-

explored. This may be related to the fact that little attention has been 

29 Note that visualization can be generalized to a certain extent and applied to 
functions with higher-degree interactions, e.g. through so-called partial depen-

dence plots, cf. (Hastie et al., 2009, p. 369), and also Molnar (2020).
30 There have been few discussions of the importance of the right kind of 
representation/notation in the context of mathematical explanation, cf. Colyvan 

(2012, Ch. 8), Räz (2018).
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paid to formal dimensions along which interpretability varies, such as 
the size of the input space, the degree and complexity of interactions, 
and the nature of nonlinearities. The above discussion helps us to ap-

preciate how these different dimensions interact and how we may have 
to trade them off against each other.

Four dimensions of interpretability From the above case studies, we can 
extract four dimensions that contribute to the degree of interpretability 
of ML models. First, generally speaking, the degree of interpretability 
decreases as the size of the input space grows. Second, and relatedly, the 
degree of interpretability increases as the size of the model decreases, 
e.g. by making a linear model sparse, or by controlling the size of a 
decision tree. Third, the degree to which we allow non-linearities in 
one variable affects interpretability. For example, using nonparamet-

ric smooth functions in GAMs results in less interpretable one-variable 
functions than piecewise-linear functions in the additive part in MARS. 
Fourth, interpretability decreases as we allow interactions of higher de-

gree and complexity.

Recognizing these four dimensions of interpretability allows us to 
diagnose why it may be hard, or even impossible, to obtain a singu-

lar degree of interpretability. The reason is that while interpretability 
does vary along these four dimensions, there are complex tradeoffs be-

tween the dimensions that make it hard to assign a consistent, singular 
degree of interpretability. To give an example, it may be tempting to 
assign a degree of interpretability based on the degree of interaction 
terms, arguing that once we move beyond two-degree interactions, we 
lose the possibility to visualize, and thus the possibility to achieve inter-

pretability. This suggests that we should define interpretability in terms 
of degrees of interactions. This, however, neglects the fact that even 
relatively small trees can exhibit higher degrees of interaction, while 
arguably still being interpretable. Trees are interpretable because their 
interactions are of a very simple kind – a sequence of binary decisions 
in the case of CART. Thus, interpretability does not simply decrease 
as the degree of interactions considered increases. A second example 
is the tradeoff implicit in the choice between MARS and GAMs, which 
is a tradeoff between using a global constraint on interactions while 
allowing for complex nonlinearities (GAMs), and allowing for some in-

teractions, while restricting the form of nonlinearities (MARS).

The benign heterogeneity of interpretability The four case studies sug-

gest that we should not expect a monolithic notion or degree of inter-

pretability. Even the narrow notion of functional interpretability investi-

gated here is heterogeneous. This strengthens a point made by Lipton 
(2018). Heterogeneity is witnessed by the linear paradigm and the tree 
paradigm. These do not only correspond to two kinds of predictor func-

tions, but they also differ in the way we grasp them. The possibility of 
unifying the two paradigms in the form of MARS was discussed, and it 
was argued that MARS does retain aspects of both linear models and 
trees. However, the two paradigms do not vanish through generaliza-

tion, but remain encoded in an explicit tradeoff in the GCM criterion. 
Note that the two paradigms are just one manifestation of heterogene-

ity. There are similar, subtler differences between the interpretability 
of MARS and GAMs. These points let us appreciate why functional in-

terpretability is heterogeneous.

However, heterogeneity does not mean that we should not strive 
for interpretability as a goal in and of itself, pace Krishnan (2020). It 
also does not mean that interpretability is “ill-defined”, pace Lipton 
(2018), or that anything goes. There are different means to obtain in-

terpretability. But once these means are identified in particular cases, 
it is possible to get a clear sense of what we do understand about the 
corresponding models. To make an analogy, proving different mathe-

matical propositions is heterogeneous as well, in that different methods 
may be necessary to establish different propositions. It is comparatively 
easy to check whether and why a given proof of a proposition is ac-

ceptable, and the criteria for checking this are also clear. Similarly, the 
166

ways in which we achieve interpretability are heterogeneous, they have 
Studies in History and Philosophy of Science 103 (2024) 159–167

to be adapted to particular kinds of models, and they are not yet avail-

able for many models. Still, the tools we do have to interpret GAMs, or 
MARS, are clear and understandable, and they do show some common 
patterns.

The prospects of a conceptual analysis of “interpretability” The idea that 
interpretability is a graded notion that varies along several dimensions 
is more general than the more traditional approach of identifying nec-

essary and sufficient conditions for the concept of interpretability. If 
one is unwilling to give up on the project of identifying necessary and 
sufficient conditions, it is, in principle, possible to obtain a conceptual 
analysis on the basis of a graded notion of interpretability by introduc-

ing thresholds, i.e., by declaring that a model is interpretable if and only 
if it is interpretable at least to a fixed degree 𝑑. This presupposes that 
a singular degree of interpretability is available, and that a principled 
choice of threshold can be made. The challenge of coming up with such 
a singular degree of interpretability, discussed above, suggests that it 
will be even harder to find necessary and sufficient conditions for inter-

pretability than to assign a degree of interpretability.

Ramifications for black-box models and xAI What are the ramifications 
of the above discussion for the interpretability of black-box models? 
If we try to locate black-box models such as DNNs along the four di-

mensions of interpretability, we have to assign them a low degree of 
interpretability, because they lie at the low-interpretability end of all 
four dimensions: They are usually applied in high-dimensional settings 
(e.g. image recognition), they have a lot of free parameters, and they 
are not only highly non-linear, but capture high-degree interactions. It 
is one of the main open puzzles about these models that they are pre-

dictively successful despite these properties. One of the messages of the 
present paper is that even if we focus on functional interpretability, 
there is not just one method of grasping a predictor function. Rather, 
we may need to employ different methods in combination for black-box 
models, as in the case of MARS and GAMs, where both formal proper-

ties of the representation of the predictor as well as visualizations play 
key roles in grasping.

Functional interpretability aims at global understanding (of an en-

tire function) and is therefore different from local xAI methods (Adadi & 
Berrada, 2018), which rely on local and linear approximations in com-

bination with visualizations. We can nevertheless glean some lessons 
from the above discussion for local explanations. For one, if we can 
gain a high degree of functional interpretability, our grasp of a pre-

dictor is global and should thus be preferred over local explanations 
of black-box predictions, other things being equal.31 What is more, the 
discussion in the present paper suggests that obtaining visualizations of 
linear approximations is by no means the only way to gain interpretabil-

ity. If the story presented here is correct, we can gain understanding of 
black-box models through a combination of understanding formal prop-

erties and visualizations. This is not to say that we will be able to use 
the methods from MARS, GAMs or trees on DNNs in a straightforward 
manner. Dealing with DNNs will require us to move beyond the lin-

ear paradigm and to discuss how we can grasp complex interactions in 
high-dimensional settings.

6. Conclusion

Interpretability was analyzed by examining four case studies of mod-

els with a certain degree of interpretability. There is a considerable 
heterogeneity with respect to the means by which we achieve functional 
interpretability. In particular, linear models and decision trees belong to 

31 Other things encompassing, in particular, the accuracy of a predictor. It is 
stressed, e.g., by Rudin (2019) that the use of interpretable models will not 
depreciate accuracy in many cases and should therefore be preferred over xAI 

methods.
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two different paradigms of how interpretability is achieved. The same 
is true for the two more general, but still interpretable models, MARS 
and GAMs. However, interpretability is not ill-defined for these reasons. 
Rather, we can spell out clearly what interpretability amounts to in par-

ticular cases.

The above discussion is limited in several respects and should be ex-

tended. First, the case of classification problems, and of different kinds 
of inputs (discrete, mixed etc.) should be taken into consideration. Sec-

ond, it would be desirable to extend the limited notion of functional 
interpretability explored here and relate it to existing analyses of in-

terpretability, giving more weight to optimization, the representational 
role and the inner workings of models. Third, the investigation of inter-

pretability should be extended to unsupervised learning, reinforcement 
learning, and other paradigms of ML.
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