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ABSTRACT Federated Learning (FL) in edge Internet of Things (IoT) environments is challenging
due to the heterogeneous nature of the learning environment, mainly embodied in two aspects. Firstly,
the statistically heterogeneous data, usually non-independent identically distributed (non-IID), from
geographically distributed clients can deteriorate the FL training accuracy. Secondly, the heterogeneous
computing and communication resources in IoT devices often result in unstable training processes that slow
down the training of a global model and affect energy consumption. Most existing solutions address only the
unilateral side of the heterogeneity issue but neglect the joint problem of resources and data heterogeneity
for the resource-constrained IoT. In this article, we propose Dynamic Federated split Learning (DFL) to
address the joint problem of data and resource heterogeneity for distributed training in IoT. DFL enhances
training efficiency in heterogeneous dynamic IoT through resource-aware split computing of deep neural
networks and dynamic clustering of training participants based on the similarity of their sub-model layers.
We evaluate DFL on a real testbed comprising heterogeneous IoT devices using two widely-adopted
datasets, in various non-IID settings. Results show that DFL improves training performance in terms of
training time by up to 48%, accuracy by up to 32%, and energy consumption by up to 62.8% compared
to classic FL and Federated Split Learning in scenarios with both data and resource heterogeneity.

INDEX TERMS Federated Learning, Split Learning, Internet of Things, Resource and Data Heterogeneity.

I. INTRODUCTION
With the rapid development of the Internet of Things (IoT)
technology, an enormous amount of data is being gener-
ated by various edge devices [1]. These devices can range
from simple sensors to complex devices with computing
capabilities [2]. The generated data can be utilized for
training Machine Learning (ML) models to provide insights
and make predictions, leading to better decision-making
processes and intelligent applications [3]. Recently, we have
witnessed the rise of new distributed learning paradigms,
such as Federated Learning (FL), which protects user privacy
by allowing remote devices to train the model collaboratively
without sharing privacy-sensitive data over the network [4].

FL enables the training of ML models by aggregating
local updates from edge devices instead of centralizing the
data [5]. It also helps to save communication bandwidth
by eliminating the need to transmit large raw data samples.
Each device trains only using its local data to overcome the
limitations of the computing power and hardware storage of
a single device, allowing training tasks to be executed in par-

allel. However, despite recent breakthroughs, the deployment
of FL still faces many challenges due to the heterogeneous
learning environments that significantly limit its performance
and hinder its real-world applications [6].

The heterogeneous learning environment is mainly embod-
ied in two aspects. The first one is statistical heterogeneity,
usually non-Independent Identically Distributed (non-IID)
training data dispersed across participant devices [7], [8].
Studies have shown that learning from a balanced dataset,
where the samples are uniformly distributed across classes,
is crucial in boosting the model performance [9], [10]. The
characteristics of the data in distributed IoT devices are
often highly skewed in a non-IID manner, which can be at-
tributed to the distinct geographical locations of the devices,
diverse application preferences, and other environmental
influences [11]. The data on the devices cannot be audited
by the centralized server due to privacy constraints, as doing
so would necessitate transmitting sensitive information over
the network. Thus, skewed data distribution inherent in IoT
scenarios can significantly deteriorate the distributed training
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performance, leading to suboptimal model accuracy and
learning instability [12].

The second critical aspect contributing to the heteroge-
neous learning environment in IoT systems is the diversity
in computing and communication resources across IoT de-
vices. This heterogeneity manifests in various forms, from
differences in processing power and memory capacity to
variability in network connectivity and bandwidth. The wide
spectrum of computational capabilities leads to significant
challenges for training a global model. Devices with limited
processing power or memory, often referred to as stragglers,
can significantly slow down the overall training process [13].
Furthermore, devices with poor network connectivity or lim-
ited bandwidth face challenges in transmitting data or model
updates efficiently. In typical IoT systems, especially those
comprising resource-constrained devices, these disparities
give rise to hybrid heterogeneous computing clusters [14].
Addressing this heterogeneity is crucial for optimizing both
the training process and the energy consumption, ensuring
that the distributed learning framework is scalable, efficient,
and effective across the diverse landscape of IoT devices.

Previous studies have explored various grouping and clus-
tering strategies to address the challenges of the heteroge-
neous learning environments [15], [16], [17], [18]. These
aimed at creating multiple disjoint clusters based on some
pre-defined clustering criteria to group devices with similar
or complementary training data or computing resources.
Other approaches aim at creating personalized models for
various devices to reduce the impact of resource heterogene-
ity in edge devices [19], [20], [21]. However, most existing
studies address only one aspect of system heterogeneity:
either the statistical, i.e., non-IID data distribution, or the
heterogeneity of computing resources. It is worth noting that
the resource heterogeneity among various devices does not
necessarily correlate with the distribution of their training
data. Furthermore, previous studies have paid less attention
to the heterogeneous learning environment in the dynamic
distributed resource-constrained IoT [3], [22].

In this paper, we propose Dynamic Federated split Learn-
ing (DFL) to address the joint problem of data and resource
heterogeneity for distributed training in heterogeneous dy-
namic IoT. DFL enhances training efficiency in heteroge-
neous dynamic IoT through resource-aware split computing
of deep neural networks and dynamic clustering of train-
ing participants based on the similarity of their sub-model
layers. Through resource-aware split learning, the allocation
of the training tasks to resource-constrained participants is
adjusted to align with the varied computational capabili-
ties and the dynamic nature of communication resources
of the participating devices. To navigate the complexities
of training data heterogeneity without compromising data
privacy or necessitating the transmission of raw data over
networks, DFL utilizes Centered Kernel Alignment (CKA).
This approach effectively assesses the similarity between
neural network layers, enabling a more tailored and efficient

training approach. We envision the adoption of DFL for effi-
cient distributed training in dynamic edge IoT environments
with heterogeneous training data and resources. In summary,
this paper makes the following contributions:

• We introduce dynamic federated split learning for ef-
ficient distributed training of deep neural networks in
heterogeneous dynamic edge IoT environments.

• We analyze the heterogeneous learning environment in
decentralized resource-constrained IoT and model the
joint problem for minimizing the effects of heteroge-
neous training data and resources, both computing and
communication, on distributed model training in IoT.

• We propose an iterative solution that enhances the train-
ing efficiency through resource-aware split computing
of deep neural networks and dynamic clustering of
training participants based on the similarity of their sub-
model layers without directly accessing data.

• We consider the tradeoffs in minimizing the training
time, model loss, and energy consumption on the IoT
devices by introducing time-energy-accuracy sensitivity
parameters for the optimization that account for the
application’s constraints in cases of tradeoffs.

• We implement and evaluate the DFL prototype on a real
testbed comprising heterogeneous IoT devices and non-
IID training data. The evaluation results demonstrate
the effectiveness of the proposed DFL scheme.

The rest of the paper is organized as follows. Section II
discusses the background and related work in distributed
ML techniques, including FL for edge IoT environments.
Section III presents the DFL scheme and its components
in detail. Section IV evaluates the performance of DFL
through experiments, and Section V concludes the paper with
a summary of the contributions.

II. BACKGROUND AND RELATED WORK
Previous studies have proposed various distributed ML tech-
niques, focusing on addressing the challenges of the hetero-
geneity of resources and heterogeneous data distributions.
Distributed learning algorithms require the participation of
multiple edge devices to collaborate in the model training
process, which requires efficient resource management and
communication techniques as well as useful training data.

In the ML algorithm [5], model aggregation, Federated
Averaging (FedAvg), is carried out on the server where a
global model is generated by averaging local model updates.
Figure 1 shows an illustration of FL process with two clients,
Device A and Device B, involved in the training of a global
model. Each device carries out local training to update the
weight of its local model, e.g., ωA for device A. The local
training is carried out using the devices’ local dataset, e.g.,
dA ∈ D for device A, where D is the overall dataset
available on all devices. A global model ω initialized on a
server is shared with client devices (1a/b) for Device A and
Device B, respectively. Over the entire training of FL, only
the model parameters are communicated between clients
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1a

Device A Device B

2a 1b 2b

FIGURE 1. Federated learning representation with two devices.

and the server for global aggregation (2a/b). Therefore, the
clients are not required to share their raw training data with
the server or with other clients. The local data remains
local and confidential, which makes FL a privacy-preserving
ML technique. However, in the case of resource-constrained
devices, training an entire model is often too computationally
demanding and can lead to prolonged training times [19]. FL
is known to be less efficient for heterogeneous devices that
have different computational capabilities, which is common
in IoT systems. Thus, the model computation on resource-
constrained devices is a significant bottleneck for the FL
training process [23], [22].

Konecny et al. [24] proposed a synchronous FedAvg
approach for aggregating the model updates from multiple
devices. However, this algorithm assumes that the devices
have the same computational capabilities, which is imprac-
tical for IoT environments. To address this issue, Gui et
al., [16] proposed an approach that partitions the training
process among multiple devices based on their computing
resources. The approach combines the clustering of training
participants with similar training speeds with a resource
allocation algorithm to optimize the computational resources.
However, their method does not account for the variations
in the distribution of the non-IID training data among
devices. Furthermore, the classic FL technique does not
account for the resource-constrained nature of devices in IoT
systems [22].

The Split Learning (SL), training technique was first pre-
sented by Gupta et al. [25]. Figure 2 shows a representation
of the SL with two client devices, Device A and Device B,
in which the server does not directly access raw data on
client devices. From one specific layer, called split layer or
cut layer, the neural network is split into two sub-networks.
On the device side, the model is trained up to the split
layer. Then, the activation feature maps of the split layer

Device A Device B

1a 2a 1b 2b

FIGURE 2. Split learning representation with two client devices.

(intermediate activations) are sent to the server, i.e., process
indicated by (1a/b) for Device A and Device B, respectively.
The server continues training until the last layer of the
model. After the training loss is calculated and the gradient
is updated, the respective intermediate gradients of the split
layer is sent to the device so that the gradients are updated
on the device (2a/b). An iteration of the above process over
the entire client dataset is often referred to as training round.
The training rounds are repeatedly carried out until the model
converges. SL is also referred to as Split Computing as a
generalization of both model training and inference with
model partitioning.

An advantage of SL compared to FL is that each client
trains only a portion of the whole neural network, made
of just a few layers, which considerably reduces the com-
putational burden on clients [26]. This is essential for the
advancement of artificial intelligence-enabled IoT, where
ML methods enhance both applications and management of
IoT networks [27]. However, classic SL does not consider
the computational heterogeneity of devices in IoT systems
and the variable network channel conditions that affect data
transmission throughput and computing resources, which, in
turn, impact the total training time and energy consumption.

FL and SL have recently been blended to take advantage of
both, namely Federated Split Learning or SplitFed Learning
(SFL) [28], [29]. Figure 3 shows a representation of the
SFL with two clients, Device A and Device B. In this
approach, all clients compute in parallel with the server, e.g.,
1a (intermediate activations) and 2a (intermediate gradients)
for Device A, and similarly, 1b and 2b for Device B. The
client-side sub-model synchronization can be carried out
by aggregating all client-side local networks in a separate
parameter server. Initial or aggregated sub-models are shared
from the server to the devices (3a/b) for Device A and Device
B, respectively. Trained models are then sent from individual
devices to the server for aggregation (4a/b).

VOLUME , 3
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FIGURE 3. Federated split learning representation with two client devices.

Deep Neural Networks (DNN)s consists of layers with
different computational requirements and output data vol-
umes [30]. Splitting the model enables the distribution of
computation across multiple devices during model training.
Additionally, the split layer determines the amount of data
transmitted over the network during the training process. To
ensure efficient distributed execution, it is crucial to identify
the optimal split layer for performance. The choice of the
split layer can impact the time needed to complete a training
task and the energy consumption of the system involved [31].
As the set of possible model split points is limited, there is
a model splitting configuration that minimizes training time,
energy consumption, or both. However, it should be noted
that the optimal model splitting for training time and energy
may not always align due to variations in training time and
energy requirements across different devices.

The computing and network resources in IoT systems,
which are usually subject to change, can impact both the
training time and energy consumption [31]. IoT devices
may require less time to transmit data from an intermediate
layer in scenarios with high network throughput. However, in
low network throughput scenarios, the transmission time can
be significantly longer. Moreover, the available computing
resources on the IoT devices and servers can change over
time as a result of third-party processes.

On the other hand, for the heterogeneity of the learning
environment, the non-IID data distribution in IoT environ-
ments is also a significant challenge for FL algorithms [9].
Tu et al. [32] proposed FedDL, a clustering-based approach
for grouping devices with similar data distributions during
FL training. FedDL utilizes a reference distribution in the
form of a common dataset at the server to measure the
model affinities of different clients using Kullback–Leibler
divergence. Furthermore, Wang et al., [33] proposed a meta-
learning-based approach for addressing the non-IID data

distribution issue. The approach uses a meta-learner to adapt
the model parameters based on the data distribution of each
device, enabling the model to generalize better on new
devices. While the previous studies have made significant
contributions to addressing the challenges of heterogeneous
FL training data, they still face challenges in solving the
joint problem of resource heterogeneity and non-IID data
distribution since they pay less attention to the heterogeneity
of computing and communication resources in the training
devices.

Gui, et al., [16] proposed Group Synchronous Parallel
(GSP), which uses a density-based algorithm to group edge
nodes with similar training speeds together. Their method
is also responsible for coordinating the communication of
nodes in the group to eliminate stragglers during the training
process. However, their proposed solution does not account
for the heterogeneous training data available in the dis-
tributed IoT devices. Moreover, the similarity of computing
resources among different sets of devices may not coincide
with the similarity of their training data distributions.

FedMask [19] allows computation and communication
efficient federated learning on heterogeneous devices through
personalization of the models. However, FedMask does not
account for the varying network and computation conditions
that affect the training and resource-constrained nature of IoT
devices. Furthermore, the process of creating neural network
masks can have an effect on the resulting training accuracy.

Thapa et al. [29] introduced Split Federated Learning
as a method to achieve parallel training and accelerate
device training. Similarly, FedSL [34] combines parallel
training and acceleration of device training for sequentially
partitioned data, specifically in health applications. Turina
et al. [28] proposed a new hybrid Federated Split Learning
architecture that combines the benefits of FL and SL in terms
of efficiency and privacy. However, these approaches do not
consider the computational heterogeneity of target devices
and disregard energy consumption in their optimization
process. In contrast, Wu et al. [13] proposed FedAdapt,
a mechanism for adaptive offloading in federated learn-
ing. However, FedAdapt does not account for differences
in energy consumption between on-device processing and
data transmission. Moreover, these approaches disregard the
heterogeneity (non-IID) of the training data on participant
devices that affect the model’s accuracy.

Krouka et al. [35] introduced a technique for energy-
efficient collaborative inference in time-varying channels
through model compression and splitting. However, their
approach impacts the model’s accuracy during inference
operations. In various studies, researchers have proposed
different methods to improve inference efficiencies, such as
early exit mechanisms and offloading model layers from de-
vices to servers. These approaches aim to enhance inference
performance but do not consider training efficiency [36], [1].

In our previous work, we introduced Adaptive REsource-
aware Split-learning (ARES) for efficiency distributed learn-
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FIGURE 4. System Model with partition set G = {{1, 2, 3}, {4, 5}, {6}}.

ing in IoT systems [31]. ARES jointly accelerate model
training time and minimizes energy consumption in resource-
constrained IoT devices through device-targeted split points
while accounting for time-varying network throughput and
dynamic computing resources. ARES considers the time-
varying network conditions and available computing re-
sources to determine the optimal distribution of DNN models
during the training. However, ARES focuses only on the
unilateral side of the heterogeneity issue (i.e., computing and
communication resources) and the dynamic IoT networks.

DFL aims to address the challenges of resource het-
erogeneity and heterogeneous training data that comprise
the heterogeneous learning environment. DFL dynamically
creates clusters of devices based on their sub-model layers
and utilizes resource-aware split computing to minimize
the impact of the heterogeneous training resources. On
the other hand, resource-capable participants carry out the
normal FL training. We utilize centered kernel alignment
for determining the similarity of neural network layers to
address the heterogeneity of the training data on devices
without sending the raw data over the network. Furthermore,
DFL carries out layerwise sub-model aggregation within
clusters of similar participants during the FL training. We
envision the adoption of DFL for efficient distributed model
training in heterogeneous IoT systems, including industrial
IoT, healthcare IoT, and environmental IoT.

III. DYNAMIC FEDERATED LEARNING IN
HETEROGENOUS ENVIRONMENTS
A. SYSTEM MODEL
We consider a scenario containing a set Φ of IoT de-
vices with heterogeneous computation and communication
resources, which can communicate with a logically cen-
tralized server through wireless links and wired backbone
connectivity (Figure 4). The devices cooperate with the
parameter server to perform distributed training of a set of
DNN models shared within groups of devices with ”simi-
lar” data. In particular, the training can be carried out by
clusters (groups) of devices to minimize the impact of the
heterogeneous data and resource distribution over the system.
Clustering is a process of dividing a given set of objects

TABLE 1. Symbol table

Symbol Description

Φ Index set of devices in the distributed learning task

G Index set of groups in the training task

R Total number of training rounds in the task

dϕ Dataset on device ϕ

Dg Combined dataset on a set of devices g

ξ Minibatch size for the training

N Total number of layers of the model

Li i-th layer of the model

Vs Total volume of intermediate activations from layer Ls of
the model for the current minibatch of size ξ

V ′
s Total volume of intermediate gradients from layer Ls+1

during backpropagation for the current minibatch of size ξ

k Training round k

γ
(k)
i (ϕ) Forward propagation time for layer Li on device ϕ at round k

γ′(k)
i (ϕ) Backward propagation time for layer Li on device ϕ at

round k

γ
(k)
i (C) Forward propagation time for layer Li on the server at round

k

γ′(k)
i (C) Backward propagation time for layer Li on the server at

round k

ωi Weights of layer Li of a DNN model

ωg Aggregated weights for federated group g

δ
(k)
s,T (ϕ) Training for the k-th training round on the IoT device ϕ when

the model is split at layer Ls

δ
(k)
s,ω(ϕ) Model placement time for the k-th training round on the IoT

device ϕ when the model is split at layer Ls

B
(k)
ϕ Network throughput (transmitting) at round k for device ϕ

B
′(k)
ϕ Network throughput (receiving) at round k for device ϕ

s
(k)
ϕ Split point for device ϕ at round k

sk Round k split vector of device-specific split points

∆
(k)
s (ϕ) Training time at round k for device ϕ

∆k(sk) System-wide training time at round k

Pc(ϕ) Device ϕ power consumption during computation

Pt(ϕ) Device ϕ power consumption during data transmission

Pr(ϕ) Device ϕ power consumption during receiving

E
(k)
s (ϕ) Total energy consumption for device ϕ for round k

β Application time-energy-accuracy sensitivity coefficient

α Non-IID degree of the training data determined by Dir(α)
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into multiple disjoint clusters based on some pre-defined
clustering criteria such that the objects in the same cluster
are more similar to each other than those in different clusters.
Various studies have shown that grouping devices with
similar training data distributions (IID) improves the learning
stability and increases the model accuracy [37], [38], [11].
Thus, clustering can potentially minimize the effects of the
heterogeneous learning environment in FL with the non-IID
training data. On the other hand, clustering devices based on
their computing and communication resources have shown
to be effective in improving training time and minimizing
the effects of stragglers on training [16]. Moreover, with
regards to the SL approach, grouping devices based on the
distribution of their resources impacts the model split points,
which in turn affects both the training time and energy
consumption.

We assume that each IoT device ϕ ∈ Φ hosts a local
dataset dϕ, with size |dϕ| > 0, that does not change during
the training period. Let us define the ϕ device loss Fϕ(ω)
given the model parameters ω as in Equation 1, where
f(ω, x, y) is the local loss on the sample (x, y) ∈ dϕ. The
particular definition of the local loss function (e.g., sum of
squares or cross entropy [39]) depends on the specific ML
task (e.g., classification, regression).

Fϕ(ω) =
1

|dϕ|
∑

(x,y)∈dϕ

f(ω, x, y) (1)

We denote g ⊆ Φ as a subset of devices, and define
the group dataset Dg of size |Dg| as the union of all
local datasets dϕ owned by the members of group g, i.e.,
Dg =

⋃
ϕ∈g dϕ. Let us define the device ϕ’s local model

ωϕ as the model parameters associated with device ϕ, and
assume that all devices ϕ ∈ g share a common model ωg,
i.e., ∀ϕ : ωg = ωϕ. We can now define the group loss for
group g as

Lg(ωg) =
∑
ϕ∈g

|dϕ|
|Dg|

Fϕ(ωg) (2)

Let us define the partition set G = {g|g ⊆ Φ∧
⋃

g∈G g =
Φ ∧ ∀gi, gj ∈ G : gi ̸= gj =⇒ gi ∩ gj = ∅} as a possible
set of all disjoint groups of devices covering the whole
set Φ, which satisfy specific clustering criteria, i.e., hosting
datasets with similar data distributions (i.e., IID datasets). We
denote the set of all possible partition sets on Φ as P(Φ).
Our proposed scheme’s goal is to compute, for each group
g ∈ G in the partition set, an optimal model ω∗

g common
for all devices member of the same partition g ∈ G, which
minimizes the group loss (Equation 3).

ω∗
g = argmin

ωg

Lg(ωg), ∀g ∈ G (3)

Finally, we define the optimal global group loss as the sum
of all group losses for all groups g ∈ G in the partition set G
computed for the optimal model ωg for all devices in group
g (Equation 4).

L(G) =
∑
g∈G

Lg(ω
∗
g) (4)

We consider a scenario where the optimization (training)
is performed using minibatches [40]. We assume that the
dataset on each IoT device ϕ is partitioned in equal-sized
subsets called minibatches, containing ξ entries each. The
size ξ of each minibatch is defined as a training hyper-
parameter and remains constant during training. An epoch
is the process of training the DNN over all minibatches (i.e.,
the whole dataset) one time, and we indicate each of them
with k. Similarly, we also refer to k as a training round
during the distributed training process.

We consider FL training, where tasks on resource-
constrained participants are adjusted to match their heteroge-
neous computing capabilities using resource-aware SL [41].
On the other hand, resource-capable participants carry out
the normal FL training. Let us denote ω(k)

g as the group g’s
common model at the beginning of the k-th epoch. During
each epoch k, each device ϕ performs a local training on
its local dataset dϕ, then sends the updated model to the
server, which returns the aggregated model of all group
members. In particular, model aggregation for Federated
and Split Learning is carried out using weighted averaging,
whereas local training is performed using gradient descent
with learning rate η (Equation 5).

ω(k+1)
g =

∑
ϕ∈g

|dϕ|
|Dg|

[
ω(k)
g − η∇Fϕ(ω

(k)
g )
]

(5)

We assume that every model ωg,∀g ∈ G shares the
same architecture (but not the weights) composed of N
consecutive layers, each denoted by Li, with i ∈ {1, . . . , N}.
To facilitate distributed learning between IoT devices and the
edge server, the model is partitioned into two separate sub-
models for each device engaged in the training process. For
an IoT device ϕ during any given round k, the first s(k)ϕ layers
{Li|1 ≤ i ≤ s

(k)
ϕ , i ∈ N} are executed on the IoT device ϕ,

while the last N − s(k)ϕ layers {Li|s(k)ϕ +1 ≤ i ≤ N, i ∈ N}
are executed on the edge server. We call s(k)ϕ the model split
point for the IoT device ϕ at training round k. We assume
that during any given training round k the IoT device ϕ can
transfer data to the edge server with an average throughput
B

(k)
ϕ and receive data from the edge server with an average

throughput B′(k)
ϕ .

During the training process, for every minibatch with size
ξ, the intermediate activations produced by the layer L

s
(k)
ϕ

at the split point are transferred to the layer L
s
(k)
ϕ +1

on the
edge server via wireless communications with throughput
B

(k)
ϕ . Conversely, during the backpropagation phase, the

intermediate gradients produced by layer L
s
(k)
ϕ +1

are sent
back to layer L

s
(k)
ϕ

on the IoT device through the network

with throughput B′(k)
ϕ . We model the transmission time

for intermediate activations from the IoT device ϕ to the
edge server for each training round k. Given the volume of
activations Vs and the wireless channel throughput B(k)

ϕ , the
transmission time is Vs

B
(k)
ϕ

. Similarly, the transmission time

6 VOLUME ,



for intermediate gradients of volume V ′
s for the current

minibatch from the edge server to the IoT device ϕ over
a wireless channel with bandwidth B′(k)

ϕ , during training
round k is V ′

s/B
′(k)
ϕ . Once the server has completed forward

propagation for all data entries in the minibatch during
training round k, it computes a loss function over all outputs,
which takes a time Θ(k) for each minibatch.

We account for the variability in computing capabilities
of the IoT devices and the edge server, which may fluctuate
over time due to different computation loads from third-
party processes. We define γ(k)i (ϕ) and γ′(k)i (ϕ) as the time
taken by the IoT device ϕ to execute forward and backward
propagation, respectively, at layer Li of the model during
training round k for a training sample. We define γ(k)s (ϕ) as
the time taken by the IoT device ϕ to execute forward and
backward propagation on a sub-model with split at layer
L
s
(k)
ϕ

(i.e., the first s layers of the model) during training
round k. For a minibatch with size ξ during training round
k on the IoT device ϕ, the device processing time is the
sum of the time required to perform forward and backward
propagation on all layers between L1 and Ls deployed on
the IoT device ϕ, multiplied by the minibatch size, i.e.,
γ
(k)
s (ϕ) = ξ

∑s
i=1

(
γ
(k)
i (ϕ) + γ′

(k)
i (ϕ)

)
. The methodology

for determining forward and backward propagation times on
the devices is further elaborated in Section III B.

We now define γ(k)i (C) and γ′(k)i (C) as the time taken for
forward and backward propagation, respectively, of layer Li

of the model on the edge server during training round k for a
single entry of the dataset. Let’s denote γ(k)s (C) as the time
taken to execute forward and backward propagation of the
last N − s layers of the model on the server during training
round k. If the last N − s layers of the model run on the
edge server, the total time to perform the training task for all
entries of a minibatch of size ξ during training round k on the
edge server is the sum of the time required to perform for-
ward and backward propagation on all layers between Ls+1

and LN deployed on the edge server, times the minibatch
size, i.e., γ(k)s (C) = ξ

∑s
i=1

(
γ
(k)
i (C) + γ′

(k)
i (C)

)
.

The process of forward propagation, intermediate data
transmission, and backward propagation is sequential. There-
fore, we can define the time taken to complete the k-th
training round on the IoT device ϕ when the model is split
at layer Ls, denoted as δ(k)s,T (ϕ).

δ
(k)
s,T (ϕ) =

dϕ
ξ

(
γ(k)s (ϕ) + γ(k)s (C) +

Vs

B
(k)
ϕ

+
V ′

s

B
′(k)
ϕ

+Θ(k)

)
(6)

This time is the sum of the minibatch-wise quantities defined
so far (training times on the IoT device, training time on
the edge server, transmission time from IoT device to edge
server and back, and loss function computation on the edge
server) divided by the minibatch size ξ (to obtain the average
training time for each data entry), multiplied by the number
dϕ of data entries in the dataset on ϕ (Equation 6).

The variables upon which δ(k)s,T (ϕ) depends are either con-
stant or variable depending on the computing and networking
resources. The formulation in Equation 6 also describes the
scenario where the training is carried out using classical FL,
where the round training time is determined by the value of
the total local forward and backpropagation time γ(k)s (ϕ). In
such cases, the forward and backward propagation time on
the server γ(k)s (C) = 0, the transmission time for interme-
diate activations from IoT device to edge server Vs

B
(k)
ϕ

= 0,

and he transmission time for intermediate gradients from the
edge server to device V ′

s

B
′(k)
ϕ

= 0.

After each epoch, the model or submodel weights are
collected from the IoT devices to the server for aggregation.
Then, the aggregated model is transmitted back to the clients
to be utilized for further training rounds. We denote ωi as
the weights of layer Li in the DNN model. As such, the
concatenation of all the layer weights represents the model
weights, i.e., ωϕ = (Li, · · · , LN ), where |Li| represents the
size of the model weights for layer Li. We define δ(k)s,ω(ϕ) as
the total communication time need to transmit the weights
of the current model layers from the IoT to the server
with throughput B(k)

ϕ and receive back from the server with

throughput B
′(k)
ϕ after model aggregation (Equation 7).

δ(k)s,ω(ϕ) =

s∑
i=1

|Li|
B

(k)
ϕ

+

s∑
i=1

|Li|
B

′(k)
ϕ

(7)

Note that the number of layers whose weights are updated
back to the IoT device after aggregation can be different
than the number of layers whose weights are transmitted
to the parameter server for aggregation, as the server may
compute a different optimal split point during each epoch’s
optimization. We can therefore define the total training time
for a round ∆

(k)
s (ϕ) on a device ϕ as the time needed to carry

out the classic FL training or the SL training, plus the time
needed to exchange model or submodel weights between the
server and the IoT device (Equation 8).

∆(k)
s (ϕ) = δ

(k)
s,T (ϕ) + δ(k)s,ω(ϕ) (8)

We define the computing power consumption of the IoT
device ϕ as Pc(ϕ), the power required by the IoT device ϕ to
transmit data to the edge server over the wireless channel as
Pt(ϕ), and the power required to receive data from the edge
server as Pr(ϕ). We assume that Pc(ϕ), Pt(ϕ), and Pr(ϕ)
are device-specific characteristics that do not change over
time and that are known, for instance, through a benchmark
to be performed offline. In line with previous studies, we
assume that the edge server is not constrained by energy
considerations, as usually it is powered by a stable and
cost-effective power grid. Consequently, we postulate that
the energy required to complete the distributed training of a
model between IoT devices and the edge server is equivalent
to the energy consumed by the IoT devices, resulting in
system-wide energy conservation.
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FIGURE 5. Dynamic federated learning via resource-aware split computing and similarity-based layerwise model aggregation for five client devices.

It is important to note that the energy required by device
ϕ to perform forward and backpropagation for a minibatch
at training round k is the product between its computing
power consumption Pc(ϕ) and the time δ

(k)
s (ϕ) needed to

compute the activations and updated weights for the first
s layers {Li|1 ≤ i ≤ s, i ∈ N} of the model for all the
minibatch of size ξ. The energy for transmitting intermediate
activations generated by layer Ls on the IoT device ϕ for
all entries of a minibatch of size ξ to the edge server via
a wireless channel with upload throughput of B(k)

ϕ bit/s
is determined as the product of the wireless upload power
consumption Pt(ϕ) and the time needed to upload a total
volume Vs of data to the edge server (Vs/B

(k)
ϕ ). Likewise, we

determine the energy consumed by IoT device ϕ to receive
the intermediate gradients generated by layer Ls+1 for a
minibatch of size ξ, a total volume V ′

s, from the edge server
through the wireless channel with download throughput of
B′(k)

ϕ bit/s as the product between the wireless download
power consumption Pr(ϕ) and the time needed to download
a volume V ′

s of data to the edge server (V ′
s/B

′(k)
ϕ ).

We can now define the training energy consumption for
a round E

(k)
s (ϕ) ∈ R as the energy consumed by the

IoT device ϕ during the whole k-th training round of a
model split at layer Ls. The quantity E

(k)
s (ϕ) is the sum

of the energy consumed by the IoT device ϕ during forward
and backpropagation for all entries of a minibatch of size
ξ during training round k for the first s layers, plus the
energy needed to exchange the intermediate activations and
gradients for all entries of the minibatch with the edge server,
all multiplied by a normalization factor dϕ/ξ (Equation 11).

The parameters D(k)
s (ϕ), B

(k)
ϕ , B

′(k)
ϕ can vary according to

the available computing and networking resources.

E
(k)
s,T (ϕ) =

dϕ
ξ

(
Pc(ϕ)δ

(k)
s (ϕ) + Pt(ϕ)

Vs

B
(k)
ϕ

+ Pr(ϕ)
V ′

s

B
′(k)
ϕ

)
(9)

We, therefore, define E(k)
s,ω(ϕ) as the total communication

energy needed to transmit the weights of the current model
layers from the IoT to the server with throughput B(k)

ϕ and

receive back from the server with throughput B
′(k)
ϕ after

model aggregation (Equation 10).

E(k)
s,ω(ϕ) = Pt(ϕ)

s∑
i=1

|Li|
B

(k)
ϕ

+ Pr(ϕ)

s∑
i=1

|Li|
B

(k)
ϕ

(10)

Note that the model weights can be of different numbers
of layers between uploaded and received after aggregation.
We can there define the total total energy consumption for a
round E(k)

s (ϕ) for a device ϕ as the energy needed to carry
out the classic FL training or the SL training plus the time
needed to exchange model weights between the server and
the IoT device (Equation 11).

E(k)
s (ϕ) = E

(k)
s,T (ϕ) + E(k)

s,ω(ϕ) (11)

In our scenario, we assume that each of the Φ IoT devices
has its own model split point s(k)ϕ ∈ {1, . . . , N}, which can
be different at each training round k according to the variable
system context (e.g., available wireless throughput, computa-
tional load on IoT devices and edge server, etc.). We define
the system split vector sk as the vector of device-specific
split points sk =

(
s
(k)
1 , . . . , s

(k)
ϕ

)⊺
∈ S = {1, . . . , N}Φ for
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each IoT device ϕ during training round k. The symbol S
identifies the space of all possible split vectors.

This formulation is a generalization that includes the
classic FL. For resource-capable participant devices with
considerable computing speed and network throughput, it
may not be necessary to split the computation of the models
during the training process. Thus, for such a device ϕ, the
split point is generally the same, and at the end of the model,
i.e., s(1)ϕ = s

(2)
ϕ · · · s

(k)
ϕ = s

(k+1)
ϕ · · · = s

(R)
ϕ = N This

means no intermediate activations or gradients are transferred
during the training round (i.e., Vs = V ′

s = 0). Furthermore,
the server does not carry out any processing during forward
and backward propagation (i.e., γ(k)s (C) = 0). We can
therefore express the total training time for a basic FL round
through Equations 6 to 8. Similarly, we can determine the
energy consumption for a classic FL on a resource-capable
IoT device.

We can now define the system-wide training time ∆k(sk)
for training round k and split vector sk as the sum, for all
groups g ∈ G of devices in the system, of the longest training
time of any IoT device ϕ in each group (Equation 12).
It is worth noting that reducing the training time of the
slowest device within each group (straggler) reduces the total
training time for a training round, as the model aggregation
on the parameter server can be performed only when all
devices in each cluster g have completed one training epoch
and transmitted their local model update to the server.

∆k(sk, G) =
1

|G|
∑
g∈G

max
ϕ∈g

∆
(k)

s
(k)
ϕ

(ϕ) (12)

Similarly, we define the system-wide energy consumption
E(k) as the sum of the energy consumed by all IoT devices
for all the groups in the system during training round k
(Equation 13).

Ek(sk) =
∑
g∈Φ

E
(k)

s
(k)
ϕ

(ϕ) (13)

The main goal of DFL is to determine the split vector
sk, for each training round k, and a clustering vector a
that jointly optimizes the objectives: minimizing the global
model’s training time, minimizing the energy consumption
on the devices and minimizing the training loss. Minimizing
the training loss L(G), system-wide training time ∆k(sk, G),
and minimizing the IoT devices’ total energy consumption
Ek(sk) are potentially conflicting objectives. For an IoT
device ϕ, a split point that minimizes energy does not
necessarily coincide with the split point that minimizes
model training time [31]. Besides the allocation of training
devices in clusters of similar data distributions affect the
split vector. Therefore, the clustering and the split vector that
jointly optimizes model training time and energy depend on
the considered application requirements. In particular, some
applications may be energy-sensitive, meaning that extending
the devices’ lifetime is more important than reducing the
global model training time. While some other applications

consider training accuracy more important. Some other appli-
cations may be more time-sensitive, meaning that minimiz-
ing training time is more important than extending device’s
lifetime. Figure 5 shows a representation of the DFL method
for five client devices.

We define the parameter β as a coefficient that represents
the application’s preferences of the optimization toward
minimizing the training loss, time, or energy. We define βi
such that the closer β1 is to one (β1 → 1) the lower the
training time. The closer β2 is to one (β2 → 1) the low
the system’s energy consumption. While the closer β3 is
to one (β3 → 1) the application is more biased towards
minimizing the training loss. We can express the applica-
tion’s training time-energy-accuracy sensitivity coefficient
β = (β1, β2, β3) = (βi)i∈{1,2,3} ∈ [0, 1]1×3. The values
of β1, β2, β3 are selected to guarantee that

∑3
i=1 |βi| = 1

In this work, we assume that the particular value of β does
not change over time and is initially fixed by a policy maker
that interprets the application’s requirements.

This definition of β allows us to convert a multi-objective
optimization problem that aims at minimizing training time,
energy, and prediction loss, separately in a single-objective
optimization problem. In particular, we design a round
cost function Uk(sk, G) ∈ R, which depends on the split
vector sk at training round k and the partition set G, as a
linear combination of the training loss, training time and
energy consumption, mediated by the coefficient β i.e.,
β1·∆k(sk, G)+β2·Ek(sk)+β3·L(G). For generalization, we
define a performance vector X(sk, G) = (∆k, Ek,L) for the
training that indicates the training time, energy consumption,
and model loss, respectively. We can, therefore, define a
compact form of the utility function as (Equation 14), where
βT indicate the vectorized training optimization coefficients.

Uk(sk, G) = βTX(sk, G) = βT (∆k, Ek,L) (14)

It is worth noting that when βi = 1 the round cost function
will consider only the i-th objective, while when βi = 0, the
round cost function will disregard the i-th objective.

For a training round k, the optimal split vector s∗k and
optimal partition set G∗

(s∗k, G
∗) = argmin

(sk,G)∈S×P(Φ)

Uk(sk, G) (15)

minimize the round cost function Uk to achieve the best
tradeoff between global model training time, system energy
consumption, and training loss. Let us now assume that the
model needs R training rounds for its generalization error
to be minimized (model convergence). The ultimate goal of
our proposed approach is to compute a split vector sk for
each of the R training rounds and a partition set G so that
the training time, prediction accuracy, and system energy
consumption until convergence is minimized. We assume
that the partition set G does not change over the subsequent
training rounds once established since the training data Dϕ

on each device remains the same during a training session.
This is because the federated clustering mechanism is based
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on the heterogeneity of the training data on the individual
devices. For the split vector, we introduce the split matrix
σ ∈ SR = {1, . . . , N}Φ×R as a matrix with Φ rows
and R columns, in which the k-th column contains the
elements of the split vector sk. We, therefore, define a
general optimization for the R rounds cost functions for
every training round k until convergence in Equation 16.

(σ∗, G∗) = argmin
(σ,G)∈SR×P(Φ)

R∑
k=1

Uk(sk, G) (16)

The optimal split matrix σ∗ and the partition set G∗ minimize
the general cost function and achieve the best tradeoff be-
tween model training time, prediction accuracy, and system
energy consumption.

B. DFL ARCHITECTURE AND OPERATION
To enhance the efficiency and effectiveness of the distributed
model training in the heterogenous learning environment,
DFL utilizes a strategy to group devices based on the
similarity of their local training data distributions without the
need to directly access or share this data. This is achieved
by examining the representations of specific layers within
the DNN submodels trained on the devices. Analyzing these
weights provides insights into the data distributions and
learning patterns of each participant without compromising
the privacy of their local data while enabling efficient and
effective collaborative learning across the network. The core
idea is to use the weights of these submodel layers as a basis
for comparison. The similarity between devices is quantified
using Centered Kernel Alignment (CKA) [42], a measure
that compares kernal matrices of corresponding layers from
different devices’ models.

For a comparison of two layers from different submodels,
we initially determine the normalized weights WA and WB

from the submodels from devices A and B respectively. This
is done to ensure that the scale of weights does not affect
the comparison. Following the normalization, the next step
involves the computation of the kernel matrices KA and KB .
This is achieved by applying a suitable kernel function, such
as a linear or Gaussian kernel, to the normalized weight
matrices. Previous studies have indicated that the linear
kernel is more efficient [43]. Using the linear kernel, we have
KA = WAW

T
A and KB = WBW

T
B , which are the kernel

matrices for the respective weight sets. The CKA between
the two kernel matrices is computed as follows:

CKA(KA,KB) =
HSIC(KA,KB)√

HSIC(KA,KA) · HSIC(KB ,KB)
(17)

In this equation, HSIC stands for Hilbert-Schmidt Inde-
pendence Criterion [44], which measures the dependence
between the two sets of variables. The HSIC is computed
as follows:

HSIC(KA,KB) =
1

(ζ − 1)2
tr(KAKB) (18)

In this formula, ζ is the number of dimensions in the weight
matrices and tr(·) indicates the trace of a matrix.

DFL utilizes a clustering approach to group the IoT
devices based on the average similarity index of their sub-
model layers. DFL leverages the layerwise CKA values of
each set of participating devices to determine a pairwise
similarity matrix. Let us denote KA,i and KB,i as the kernel
matrices of layer Li from device A ∈ Φ and B ∈ Φ
respectively. We define H = {HA,B}A,B∈Φ as the pairwise
similarity matrix of any all IoT devices in the system,
where its elements are the average similarity scores of
the first N ′ < N model layers from the participant pair
(Equation 19).

HA,B =
1

N ′

N ′∑
i=1

CKA(KA,i,KB,i) (19)

The pairwise similarity matrix is utilized to determine a
dissimilarity matrix H ′ = {1 − HA,B}A,B∈Φ. It is worth
noting that the layerwise similarity scores can be determined
for a set of participants with any given number of submodel
layers for each participant. However, a considerable num-
ber of layers is required to achieve significant similarity
scores. Furthermore, an offline bench-marking process has
shown that the layerwise similarity results in better similar-
ity/dissimilarity scores.

DFL operates through the synergy of various modules:
the estimation module, the network module, the neural
network clustering module, and the optimization module.
The estimation module’s role is to periodically estimate the
time each layer of the model {Li|1 ≤ i ≤ N, i ∈ N}
requires for forward and backpropagation on the servers
and across the Φ participating IoT devices. During every
training round k, an estimation module on IoT device ϕ

assesses γ(k)s (ϕ),∀s ∈ {1, . . . , N}, representing the time for
executing forward and backward propagation on a sub-model
split at layer L

s
(k)
ϕ

. Likewise, an estimation module on the

edge server calculates γ(k)s (C),∀i ∈ {1, . . . , N}, indicating
the time to process the last N − s layers during training
round k. This estimation is based on benchmarking the
forward and backpropagation time for each layer. Typically,
it’s not required to update these estimates every training
round. We assume that benchmarks for the IoT devices and
the edge server are performed every MD and MC training
rounds, respectively. The estimations for all rounds between
two benchmarks are set to identical values, where MD and
MC denote the intervals for device and server computation
benchmarking, depending on the variability of resources.

The network module is designed to periodically calcu-
late the values of B(k)

ϕ and B′(k)
ϕ for every ϕ in the set

{1, . . . ,Φ}. These values represent the average throughput
of the wireless channel from the IoT device ϕ to the edge
server and vice versa, at each training round k. The module
operates on the edge server. During training round k, for each
minibatch processed by the model split at layer Ls, a volume
of intermediate activations Vs is sent from the IoT device to
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the edge server, and a volume of intermediate gradients V ′
s

is sent back from the edge server to the IoT device. For each
minibatch, the network module calculates the transmission
time for the volume Vs of intermediate activations to the
edge server and then computes the average wireless channel
throughput as the ratio of Vs to the transmission time. Sim-
ilarly, the module assesses the time required to transmit the
volume V ′

s of intermediate gradients back to the IoT device
and calculates the average wireless channel throughput as
the quotient of V ′

s to its transmission time. Additionally,
the module estimates the time needed to transmit the data
volume

∑s
i=1 |Li| of model layers to the parameter server for

aggregation and the initial volume
∑s

i=1 |Li| during model
placement. At the end of a training round k, the network
module estimates the average wireless channel throughput
for the entire round. This estimate is based on the average
throughput values obtained during the transmission of each
minibatch’s intermediate activations and gradients, as well
as during model placement operations.

Let us define the clustering vector a = (a1, · · · , a|Φ|) ∈
G|Φ| as a vector whose ϕ-th component aϕ ∈ G indicates
the group to which device ϕ belongs. It is worth noting
that any partition set G ∈ P(Φ) in the set P(Φ) of
all possible partition sets is fully described by a unique
clustering vector a ∈ G|Φ|, so that G is a function G(a)
of a. The neural network clustering module’s task is to
determine the optimal allocation vector that minimizes the
group loss sum. To determine the groups of devices, the
network clustering module utilizes the similarity matrix H
determined from the average layerwise CKA values of all
submodel pairs. This similarity matrix is crucial as it captures
the nuanced relationships between devices based on their
learned representations. The use of CKA as a metric ensures
that the similarity matrix reflects the true alignment in feature
space of the neural network models, making it a reliable
basis for clustering. DFL utilizes the density-based clustering
approach, DBSCAN, to determine the clusters of participant
devices using the dissimilarity matrix. The transformation
from a similarity matrix to a dissimilarity matrix H ′ is a
key step, allowing DBSCAN to effectively identify clusters
based on density, which is essential for handling varying
cluster shapes and sizes in the device network. By clustering
devices based on weight similarities, DFL ensures that
devices with similar data distributions are grouped together.
This targeted grouping based on similarity not only enhances
the robustness of the clustering process but also ensures a
more homogeneous data distribution within each cluster. This
approach can lead to more efficient training and potentially
enhanced overall model performance. The devices in each
cluster collaborate to train sub-models that are then sent to
the server for aggregation.

The optimization module utilizes the estimates from the
estimation module, the network module, and the allocation
vector from the neural network similarity module solves the
optimization problem described in Equation 16 by exploring

Algorithm 1: Layerwise Neural Network Similarity-
based Participant Clustering
Input:
F (ω) ∈ [0, 1]: local loss function l(xj , yj , ω) on the
samples ∀(xj , yj) ∈ dϕ given the model parameters ω
λ ∈ (0,+∞) ⊂ R: training loss updating threshold
for participant clustering
ϑ ∈ N: training loss tracking window size
Output:
a = (a1, · · · , a|Φ|) ⊆ Φ|G| : clustering vector
/* Initialization: loss vectors */

1 ψ(0) ← 0
/* Loops for each round k */

2 for k ∈ {1, . . . , R} do
/* Compute cumulative loss for all

devices */
3 for ϕ ∈ Φ do
4 ω

(k)
ϕ ← ω

(k−1)
ϕ − η∇Fϕ(ω

(k−1)
ϕ )

Fϕ(ω
(k))← 1

|dϕ|
∑

(x,y)∈dϕ
f(ω(k), x, y)

/* Rolling window loss tracking

*/
5 j ← max{1, k − ϑ+ 1}
6 ψ

(k)
ϕ ← 1

k−j+1

∑k
i=j Fϕ(ω

(i))

7 ψ(k) ← 1
|Φ|
∑

ϕ∈Φ ψ
(k)
ϕ

8 if |ψ(k−1) − ψ(k)| > λ then
9 ψ(k−1) ← ψ(0)

10 else
/* Updating group allocation

vector via neural networks
layerwise similarity */

11 for A,B ∈ Φ do
12 HA,B ← 1

N ′

∑N ′

i=1 CKA(KA,i,KB,i)

13 (a1, · · · , a|Φ|)← DBSCAN(1− {HA,B})
14 return (a1, · · · , a|Φ|)

the space S × G|Φ| to find the optimal split vector and
device group allocation vector (s∗k, a

∗) that minimizes the
cost function Uk according to the current estimated system
context for every training round k. The optimization module
iteratively explores the sub-spaces of S and the correspond-
ing allocation vectors by utilizing the output of the neural
network module and determining the model distribution
within device groups. The optimization module is deployed
and executed on the server. After the optimal split vectors
s∗(k) for all groups g ∈ G are computed, the edge server
communicates the new split points to each of the Φ IoT
devices in the system via the downlink wireless channel.

The comprehensive workflow and sequential interactions
of the different components within DFL are delineated in
Algorithms 1 and 2. DFL tracks the training loss for the
IoT devices to determine the effective clusters of the devices
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Algorithm 2: Dynamic Resource-Aware Distributed
Neural Network Training
Input:
τ
(k)
i : returns the average time needed to transmit

activations from the i-th layer during round k
f
(k)
device(Li), f

(k)
edge(Li): return the average computation

time on the IoT device and server for split point i
Ω : R→ N,Ω(x) = ⌊x/Q⌋: discretizes throughput in
equal intervals of Q bit/s
Γ ∈ N: throughput measurement window size
MD,MC: device and server computation benchmark
intervals
(βi)i∈{1,2,3} ∈ [0, 1]1×3: training
time-energy-accuracy sensitivity coefficient
Output:
(sk, a) ∈ S ×G|Φ| : split vector for each round and
clustering vector
/* Initialization */

1 b(1) ← Q
2 |G| ← 1
/* Loops for each round k */

3 for k ∈ R do
/* Device computation benchmark */

4 if k mod MD = 1 then
5 for ϕ ∈ Φ do
6 for s, i = 1, · · · , N do
7 γ

(k)
s (ϕ)← f

(k)
device(Li)

/* Server computation benchmark */
8 if k mod MC = 1 then
9 for s, i = 1, · · · , N do

10 γ
(k)
s (C)← f

(k)
edge(Li)

11 for g ∈ G do
12 if k > 1 then
13 b(k) ← Vs(k−1)/τ

(k−1)

s(k−1)

14 b′
(k) ← V ′

s(k−1)/τ ′
(k−1)

s(k−1)

/* Rolling window throughput
estimations */

15 j ← max{1, k − Γ + 1}
16 B(k) ← 1

k−j+1

∑k
i=j b

(i)

17 B′(k) ← 1
k−j+1

∑k
i=j b

′(i)

/* Changed resources? */
18 if Ω(B(k−1)) = Ω(B(k)) and

Ω(B′(k−1)
) = Ω(B′(k)) and

19 k mod MD ̸= 1 and k mod MC ̸= 1 then
20 s

(k)
g ← s

(k−1)
g

21 else
22 for ϕ ∈ g do
23 Compute {∆(k)

1 (ϕ), . . . ,∆
(k)
N (ϕ)}

24 Compute {E(k)
1 (ϕ), . . . , E

(k)
N (ϕ)}

25 (sk, a)← argminβT (∆k, Ek,L)

based on the training progress as delineated in Algorithm 1.
This process is facilitated through the implementation of
rolling window averages for loss monitoring during the
distributed training on IoT devices (refer to lines 3 to 9
in the algorithm). The employment of a rolling window
for tracking loss is instrumental in reducing the variance
associated with loss measurements, thereby ensuring a more
stable and accurate representation of the training progress.
The size of the rolling window is tailored to align with
the dynamics of the training process. It should be large
enough to smooth out transient fluctuations in loss but small
enough to reflect meaningful accuracy changes in the training
progression and can be set as a parameter for the process.

Upon achieving a predefined threshold in loss change,
DFL proceeds to construct the pairwise dissimilarity matrix.
This matrix is derived using layerwise neural network simi-
larity, specifically the CKA metrics, which provide a nuanced
understanding of the similarity in feature representations
learned by different devices. Subsequently, a density-based
clustering approach is applied to categorize the devices into
groups based on this dissimilarity matrix (lines 11 to 14).

At every training round k, DFL initially determines if
the estimation module needs to perform benchmarking, as
outlined in Algorithm 2. The estimation module can then de-
termines the values γ(k)s (ϕ) and γ′(k)s (ϕ),∀s ∈ {1, . . . , N},
and γ

(k)
s (C) and γ′

(k)
s (C),∀i ∈ {1, . . . , N}. These values

represent the forward and back propagation times (refer to
lines 4 to 10 in the algorithm). The time intervals MD
and MC, designated for these measurements, are adaptable
to reflect the fluctuating computational capabilities of both
the edge server and the IoT devices. Then, DFL estimates
the average uplink and downlink throughput values B

(k)
ϕ

and B′(k)
ϕ ,∀ϕ ∈ {1, . . . ,Φ} at every training round k

between each IoT device ϕ. This estimation is accomplished
by employing rolling-window averages (refer to lines 12
to 17 in the algorithm). Utilizing rolling-window averages
for throughput estimation is beneficial as it mitigates the
impact of transient, erratic fluctuations in throughput, thereby
yielding more precise channel estimations.

For each group g ∈ G encompassing all devices, DFL
evaluates whether any benchmarking has been conducted
during the current training round or if there has been a
change in the system context. If either condition is met,
the optimal split vector for the group is recalculated to
adapt to the new circumstances. In the absence of such
changes, the previously computed split vector is retained
(Algorithm 2 lines 18 to 25). This approach ensures that the
device clusters and their respective training strategies remain
aligned with the most current performance and network
conditions, optimizing the efficiency and effectiveness of the
distributed training in heterogeneous dynamic environments.

IV. EVALUATION
In this section, we assess the performance of the DFL. We
start by describing the hardware and setup of our testbed.
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We highlight the methods and share the results from testing
the DFL in different scenarios and compare its performance
to classic FL and SFL. We consider heterogeneous and
dynamic IoT resources and non-identically distributed (non-
IID) training data. We implemented DFL1 in Python, and
the deep learning framework in DFL is PyTorch2. The key
metrics for the evaluation are training time, energy use,
model accuracy convergence and accuracy.

A. EXPERIMENTAL SETUP
1) Testbed Setup
In our experiments, we deployed a real testbed made of
10 heterogeneous IoT devices. The specifications of these
devices are detailed in Table 3. Each Jetson Nano in our
setup has onboard power sensors situated at its power input.
These sensors can be accessed either automatically using
the tegrastats tool 3 or manually through the Sysfs
pseudo-file system 4 on Linux. For power measurements,
we tapped into the Sysfs pseudo-file, particularly from the
I2C folder of the Jetson Nano. We designed a multithreaded
power consumption benchmarking class to observe power
variations in the I2C during different training tasks on the
Jetson Nano. For the Raspberry Pi devices, we ultilized a
plugin power monitor to track power usage.

All Raspberry Pis in our setup ran the Raspbian
GNU/Linux 10 (Buster) OS, with Python 3.7 and PyTorch
1.4.0 installed. The Jetson Nanos are operated with the
NVIDIA JetPack SDK, which contains the Jetson Linux
Driver package (L4T) responsible for managing hardware
resources and power. Both the Jetson Nanos and our server
used the same Python and PyTorch versions. All devices are
connected to the server in a network using a router. The IoT
devices and the edge server can directly communicate via an
IEEE 802.11 wireless link, whose available throughput can
be controlled by a traffic shaping tool (Linux tc 5).

We select the Visual Geometry Group (VGG) DNN
model [45] as the global model deployed on the edge server
and IoT devices.The VGG model is well-suited to assess
a split learning scenario, as the compared algorithms can
select a split point among 10 layers (VGG-8). We selected
VGG as the evaluation model because it is widely adopted in
IoT applications based on edge intelligence. These include
image classification in industrial IoT [46], smart security [2],
smart vehicles [47], edge based speech commands process-
ing [22], and smart health applications such as Electrocar-
diography [48], and COVID-19 screening [49]. Furthermore,
DFL models a DNN as a sequential connection of indepen-
dently executable layers and not as an indivisible executable
unit. Therefore, our approach is generalizable and can be
applied to any other sequential DNNs composed of any

1Repository link to be added on final version
2https://pytorch.org/
3https://github.com/topics/tegrastats
4https://man7.org/linux/man-pages/man5/sysfs.5.html
5https://man7.org/linux/man-pages/man8/tc.8.html

Edge server

IEEE 802.11

FL - parameter server

SL server

FIGURE 6. Overview of the testbed used for the evaluation.

TABLE 2. Testbed Specifications

Raspberry Pi 3B

CPU 1.2GHz core ARM Cortex-A53

RAM 900MHz 1GB LPDDR2

Operating System Raspbian GNU/Linux 10 (Buster)

NVIDIA Jetson Nano

CPU Quad-core ARM Cortex-A57 MPCore

RAM 900MHz 2GB LPDDR4

Nano GPU NVIDIA Maxwell arch. CUDA core

Operating System NVIDIA JetPack SDK

Jetson Linux Driver package (L4T)

Edge Server

GPU NVIDIA GeForce RTX 2060

CPU Intel Core i9-10900 10th Gen

RAM 2933MHz 32GB DDR4

Operating System Ubuntu 20.04.2 LTS

TABLE 3. Jetson Nano Power Modes

Modes HIGH MEDIUM LOW

CPUS ONLINE 4 2 1

CPU MAX FREQ 1200MHz 900MHz 900MHz

GPU MAX FREQ 900MHz 600MHz 600MHz

MEM MAX FREQ 900MHz 600MHz 600MHz
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different arrangement of independently executable layers.
This evaluation approach is commonly used in the related
literature [35], [22].

2) Datasets
We utilize two widely adopted datasets, CIFAR-10 [50] and
CINIC-10 [51], for our training and testing processes. The
CIFAR-10 dataset consists of 60k 32x32x3 color images in
10 classes, with 6k images per class. The dataset contains a
large set of 50k training and 10k testing labeled images.
The CINIC-10 dataset was developed to bridge the gap
between standard academic benchmarks and real-world data.
CINIC-10 is compiled by merging CIFAR-10 with images
from the ImageNet database, providing a larger and more
diverse set of images. It consists of 32x32x3 color images
and is organized into 10 classes. The dataset comprises
a total of 270,000 images with 90,000 images in each
of the training, validation, and testing splits. Each class
in every split contains 9,000 images, ensuring a balanced
representation of categories. This dataset, due to its larger
size and diversity, presents a more challenging benchmark
and is suitable for evaluating the robustness capabilities of
ML models and methods.

We split each dataset into 10 subsets according to the
Dirichlet distribution Dir(α) with α ∈ {0.1, 0.5, 1} to simu-
late scenarios with non-IID data [52]. The non-IID degree is
determined by α. When α is very small, e.g., α = 0.1, the
data non-IID degree is more significant, implying that the
data owned by a particular client cannot cover all classes,
i.e., |Yi| ≤ |Y |, where Yi is the label space of data distributed
on the i-th client. As α increases, the distribution of the data
among the clients becomes less heterogeneous, i.e., the non-
IID degree reduces. The non-IID degree is more significant
when α is smaller. Additionally, we introduce variations
in the number of images per class within each device,
further enhancing the non-IID nature of the dataset. By
manipulating the allocation of subsets across client devices
and introducing imbalances, we generated a non-IID version
of the CIFAR-10 and CINIC-10 datasets, enabling us to
evaluate the distributed learning schemes under realistic and
challenging conditions.

B. VARIABLE COMPUTING RESOURCES AND POWER
MONITORING
We employed NVIDIA drivers on the Jetson Nano to manage
hardware resources and oversee power control. The avail-
able computational resources on the Jetson Nano can be
adjusted by altering its power modes. NVIDIA’s JetPark
software provides two standard power modes, with an ad-
ditional option to customize power modes via its drivers.
To categorize the power consumption, we established three
distinct configurations for CPU, GPU, and Memory clock
speeds. These configurations represent three tiers of power
consumption: HIGH, MEDIUM, and LOW. Table 3 displays

HIGH MEDIUM LOW

2
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Jetson Nano Power Modes
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w
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]
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FIGURE 7. Computing, network transmission, and receiving power for the
three Jetson Nano computing modes (power modes).

HIGH MEDIUM LOW
0

0.2

0.4

0.6

0.8

On-Device Computing Resources

ξ
·∆

(k
)

s
(ϕ
)/
W

ϕ
[s

]

DFL SFL FL

FIGURE 8. Average training time for Jetson Nano with various computing
resources for minibatch with size ξ = 100 for CIFAR-10 dataset.

the specific hardware resource configurations for each tier.
We tracked parameters Pc, Pt, and Pr by separately executing
computational processes (both forward and back propaga-
tion). During these processes, we captured power readings
from the I2C sensors. Figure 7 presents a visualization of
the Jetson Nano’s power consumption during computation,
data transmission, and reception across the three predefined
power modes: HIGH, MEDIUM, and LOW.

We evaluate the performance of DFL in the contexts
with varying computational resources. Specifically, we assess
DFL’s behavior across the three distinct power modes of
the Jetson Nano, each providing a different computational
resource availability. For comparison, we examined the per-
formance of DFL against FL, where the model training is
entirely completed on the device, and the SFL approach in
which the model computation is split during the training,
but the split points remain consistent regardless of available
resources. Our metric of interest is the average training time
for a mini-batch, represented by ξ ·∆(k)/dϕ for a mini-batch
size of ξ. In our experiments, we standardized the mini-
batch size ξ to 100 across all evaluation scenarios. Figure 8
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FIGURE 9. Average training time per round for the system for CIFAR-10
dataset on the heterogeneous IoT devices.
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FIGURE 10. Average energy consumption for training minibatch with size
ξ = 100 on Raspberry Pi for CIFAR-10 dataset.

illustrates the comparative average training times for a mini-
batch under DFL, SFL, and FL in varying computational
resource contexts provided by the Jetson Nano. We have
marked the confidence intervals at a 95% significance level.
Notably, DFL consistently outperforms both FL and SFL in
all three power configurations, achieving the shortest average
mini-batch training time. The most pronounced efficiency of
DFL is evident in the LOW power mode, where it realizes
a 51% reduction in the training time compared to FL. This
is attributed to the ability of DFL to adapt the training tasks
based on the available training resources on the devices and
their heterogeneity.

C. TRAINING TIME AND ENERGY OPTIMIZATION ON
HETEROGENOUS IOT DEVICES
We examine the performance of DFL, focusing on optimiz-
ing training time and energy consumption across a variety
of heterogeneous devices under different network throughput
conditions. Initially, we varied the network throughput be-
tween the IoT devices and the server from 10 Mbit/s to 40
Mbit/s. During this phase, we closely monitored how DFL

optimized training time per round. The findings, illustrated
in Figure 9, reveal that DFL consistently outperforms both
FL and SFL in average training time across all examined
throughput levels, achieving reductions in training time by
as much as 48% and 37.5% compared to FL and SFL,
respectively. This enhancement in training time is largely
due to DFL’s capability to dynamically account for the
diverse range of resources available within the IoT systems.
Specifically, DFL efficiently allocates a fewer number of
layers to devices with limited resources during training,
thereby effectively minimizing the impact of strugglers.
Additionally, DFL takes into consideration the available
network throughput for the transmission of intermediate
activations or model updates between training rounds, further
optimizing the training process.

Subsequently, we assessed the energy consumption re-
quired to train a minibatch of size ξ on a Raspberry Pi
across varying network throughput (from 10 Mbit/s to 40
Mbit/s). The results, depicted in Figure 10, demonstrate
the average energy consumption ξ · ∆(k)/dϕ by the Rasp-
berry Pi for completing a minibatch training session. DFL
significantly lowers average energy consumption compared
to both FL and SFL across all network throughput levels,
achieving reductions up to 62.8% and 49.8% respectively.
These reductions in energy consumption are attributable to
DFL’s adaptive approach in model training. It strategically
minimizes energy use on the devices by considering both
computing and communication power requirements for the
effective distribution of the training tasks. This adaptability
ensures that DFL not only enhances training efficiency but
also promotes energy conservation in IoT devices, which
is vital for sustainable and long-term deployment of IoT
systems in various applications.

D. CONVERGENCE AND ACCURACY PERFORMANCE:
IMPACT OF NON-IID DEGREE AND LOCAL DATA SIZE
In this evaluation, we delve into the influence of differing
levels of non-IIDness and the volume of training samples
available on each device on model convergence and accuracy.
Specifically, we evaluate the training test accuracy over a set
number of rounds for the schemes DFL, SFL, and FL using
the two datasets: CIFAR-10 and CINIC-10. Notably, since
SFL and FL employ a logically congruent mechanism for
model parameter aggregation through Federated Averaging,
we present a singular result set (SFL) to depict their conver-
gence and accuracy trends. To induce variability in training
data distributions, we manipulated the non-IID degree (het-
erogeneous level of data distributions) by modulating the α
value within the range {0.1, 0.5, 1}. When α is very small,
e.g., α = 0.1, the data non-IID degree is more significant,
implying that the data owned by a particular client cannot
cover all classes, i.e., |Yi| ≤ |Y |, where Yi is the label
space of data distributed on the i-th client. As α increases,
the distribution of the data among the clients becomes less
heterogeneous, i.e., the non-IID degree reduces. For every
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FIGURE 11. Accuracy comparison for DFL and SFL for CIFAR-10 dataset for various values of α and local data sizes for 100 training rounds.

degree of non-IIDness, the performance of DFL and SFL
was evaluated contingent on the number of training samples,
denoted as n = |Dϕ|.

For CIFAR-10, at each chosen α, the number of local
samples on devices was methodically drawn from sub-
sets n ∈ {50, 100, 150}, n ∈ {300, 600, 900}, and n ∈
{1000, 3000, 5000}. Meanwhile, for the CINIC-10 dataset,
owing to its more extensive sample repository, the number of
local samples was chosen from the sets: n ∈ {50, 100, 150},
n ∈ {300, 600, 900}, and n ∈ {5000, 7000, 9000}. This
deliberate stratification not only facilitated the examination
of model behavior across varying data volumes but also
probed the model’s response to incremental shifts in data
availability for different values of ′α. As the data reposi-
tory expands, the model’s sensitivity to these incremental
sample size augmentations decreases since each additional
data point (or small set of data points) contributes less to
the overall diversity or information content of the dataset.
Thus, more substantial jumps in data volume become nec-
essary to discern tangible variations in training dynamics
and model outcomes. Furthermore, since CINIC-10 dataset
amalgamates CIFAR-10 with elements from the ImageNet
repository, it naturally contains a more generous cache of
training samples than its CIFAR-10 counterpart.

Figure 11 shows the average test accuracy performance
for DFL and SFL, given the various degrees of non-IIDness
α and local data size n for the CIFAR-10 dataset. Similarly,
Figure 12 shows the average test accuracy performance for
DFL and SFL for various degrees of non-IIDness α and
local data size n for the CINIC-10 dataset. Notably, DFL
consistently outperforms SFL in terms of test accuracy and
model convergence for both datasets. DFL improves the
accuracy by up to 29% for CIFAR-10 and up to 32.7% for
CINIC-10 datasets in extreme non-IID scenarios.

A pivotal reason for the superior performance of DFL
lies in its underlying methodology. DFL leverages user
clustering, where participant devices with similar data dis-
tributions are grouped together. This strategy capitalizes on
the inherent data similarities, enabling more efficient and
focused learning within clusters. Such clustering mitigates
the challenges presented by extreme non-IIDness. When
users with alike data patterns are clustered, the local updates
within that cluster tend to be more consistent, leading to
improved global aggregation results. In contrast, without
such clustering, as seen in SFL, the model has to rec-
oncile vastly different local updates, which can impede
convergence and potentially compromise model accuracy.
The adaptability and precision of DFL in handling diverse
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FIGURE 12. Accuracy comparison for DFL and SFL for CINIC-10 dataset for various values of α and local data sizes for 100 training rounds.

data distributions via user clustering, therefore, provide it
with a distinct edge in performance. This is essential to
enable multitask learning in real-world dynamic IoT where
a single aggregated model does not efficiently capture the
heterogeneous learning landscape as a result of distinct
geographical locations of the devices, diverse application
preferences, and other environmental influences.

In the context of both CIFAR-10 and CINIC-10 datasets, it
is evident that the volume of samples available on a device
plays a crucial role in determining the test accuracy and
convergence speed of the models. When dealing with varying
degrees of non-IIDness, represented by the α value in the set
{0.1, 0.5, 1}, it’s observed that the performance of both DFL
and SFL diminishes as the number of local data samples
n decreases. This decline in performance is attributed to
the models’ limited exposure to data, hindering their ability
to effectively generalize across the diverse underlying data
distributions. The impact of this limitation is particularly
prominent in SFL, which aggregates models from hetero-
geneously distributed clients. Due to the divergent nature of
data across these clients, especially under high non-IID con-
ditions, the SFL model experiences fluctuations in accuracy
with high variance. This variability is a direct consequence
of the challenges posed by aggregating models trained on

datasets that significantly differ from one another, leading to
inconsistencies and instability in the learned model.

DFL demonstrates a more robust performance relative to
SFL, especially in scenarios with limited data availability.
This superior performance is attributed to DFL’s proficiency
in leveraging inherent data similarities among devices, fos-
tering a more focused and efficient learning process. As
the local training data volume on the devices increases,
DFL shows a consistent improvement in accuracy. This
improvement is facilitated by the increased data availability,
which provides a more comprehensive representation of
the underlying distributions and is especially beneficial in
clustered groups of devices with similar data characteristics.

Overall, while both DFL and SFL are influenced by
the quantity of local data and the non-IID nature of that
data, DFL’s approach to harnessing data similarities and
effectively managing the challenges of non-IID data results
in steadier gains in model accuracy, particularly as the local
data volume increases.

E. ADAPTABILITY TO CHANGING NETWORK
CONDITIONS
We examine the training time and energy consumption op-
timization of DFL, FL, and SFL, through different available
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FIGURE 13. Average training time per round under variable network
throughput context for CINIC-10 dataset.
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FIGURE 14. Energy consumption on Jetson Nano under variable network
throughput context for CINIC-10 dataset.

network throughputs. We further examine the adaptiveness
of the three schemes, i.e., how the performance of each
solution changes according to variations in link throughput
over time. Therefore, we utilize the traffic shaper to set the
network throughput, for every round k, to a random value
extracted by a uniform distribution from 5 Mbit/s to 40
Mbit/s during the training. We utilize the CINIC-10 dataset
for the training using the three schemes, DFL, FL, and SFL,
with the number of local samples per device n = 5000 and
the non-IID degree α = 0.5 The DFL training optimization
coefficient is set at βi = 0.3.

Figure 13 illustrates the effect of varying system context
on the training time and energy consumption of IoT devices
during each training round k. The link throughput B(k) fluc-
tuates at each round k, following a uniform distribution from
5 Mbit/s to 40 Mbit/s. For clarity, the results are presented
in a sorted manner. In all scenarios of network throughput,
DFL consistently outperforms both FL and SFL in terms of
average training time per round. DFL’s reduces training time
by up to 37.9% compared to SFL and 46.2% compared to FL.
This efficiency stems from DFL’s dynamic adaptability in
allocating neural network training tasks based on the current

communication resources. Particularly in situations of low
network throughput, DFL prioritizes local computation over
transmission by minimizing the transmission of intermediate
results and model placements. Conversely, at higher through-
put levels, DFL leverages increased transmission to minimize
training time.

Conversely, SFL lacks this adaptability to the available
resources in a heterogeneous learning environment. Conse-
quently, the training time under the SFL approach shows
significant variability in response to changes in network
throughput. In contrast, FL primarily involves transmission
during model aggregation, leading to comparatively less
variability in training time. At some point, the training times
of SFL and FL converge or even where SFL surpasses FL
in terms of longer training durations. This is primarily due
to the increased overhead of transmitting intermediate acti-
vations and gradients, particularly in scenarios characterized
by lower network throughput.

Figure 14 illustrates the impact of different system con-
texts on the energy consumption of IoT devices during
their training sessions for the Jetson Nano. In all scenarios
of network throughput, DFL consistently outperforms both
FL and SFL in terms of average energy consumption per
round. The efficiency of DFL is highlighted by its capacity
to reduce training time significantly by up to 32% when
compared to SFL and 42.7% in relation to FL. This notable
enhancement is the result of DFL’s deliberate integration of
energy consumption considerations into its training process.
By doing so, DFL not only speeds up the training but also
ensures it is executed with optimal energy efficiency.

Conversely, traditional FL approaches exhibit the high-
est energy consumption among the devices. This increased
energy usage is largely attributable to the substantial com-
putational demands of resource-intensive models in FL. The
burden of processing these complex models on the devices
leads to heightened energy requirements, underscoring the
advantage of DFL’s more resource-aware approach in IoT
training environments.

V. CONCLUSION
In this article, we introduced DFL, a novel solution designed
to tackle the challenges arising from heterogeneous data
and resource landscapes in edge IoT environments. DFL
effectively counters the dual challenges of heterogenous,
usually non-IID, data and the diversity in computing and
communication resources, which are major obstacles in tra-
ditional FL methodologies. DFL offers resource-aware split
computing tailored for deep neural networks coupled with
the dynamic clustering of training participants. The latter
is achieved through layerwise neural network similarity,
facilitated by CKA, allowing for efficient training processes
without sacrificing data privacy. By clustering IoT devices
based on the similarity of their sub-model layers, DFL
adeptly addresses data heterogeneity and enhances the use
of available computational resources across IoT devices.
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Empirical evaluation of DFL conducted on a diverse,
dynamic testbed of IoT devices with non-IID datasets has
shown significant improvements in training time, model
accuracy, and energy consumption, particularly when bench-
marked against classic FL and SFL approaches. These results
underscore the efficacy of DFL in enhancing the performance
of distributed learning IoT environments. By enabling more
efficient and effective distributed model training, DFL has
the potential to accelerate the adoption of FL in real-world
IoT systems, paving the way for more intelligent, responsive,
and efficient IoT solutions.
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