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The Monetary Dynamics of

Hyperinflation Reconsidered∗

Luca Benati

University of Bern†

Abstract

Data from 20 hyperinflations provide no evidence of a Laffer curve for

seignorage: rather, the relationship between money growth and seignorage has

been uniformly positive at all inflation rates. Consistent with this, evidence

shows that the most plausible money demand specification for hyperinflations is

not Cagan’s ‘semi-log’, which imposes a Laffer curve upon the data, but rather

either the ‘log-log’, or a functional form close to it such as Benati, Lucas, Nicol-

ini, and Weber’s (2021), which produce a monotonically increasing relationship

between money growth and seignorage. Compared to the semi-log, functional

forms close to the log-log imply different properties for theoretical models of

hyperinflations along two dimensions: () the equilibria’s stability properties

are reversed, with the high-inflation equilibrium being unstable under rational

expectations; and () there is the possibility of explosive inflation even in the

presence of well-defined steady-states. I discuss the implications of this for the

interpretation of specific historical episodes. Under the Weimar Republic, a

plausible interpretation of the macroeconomic consequences of the invasion of

the Ruhr is that it pushed the economy beyond the unstable steady-state, into

the region of explosive inflation.
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1 Introduction

Since the classic study of Phillip Cagan (1956), the literature on hyperinflation has

been consistently dominated by a single narrative, featuring two main elements:

(I) the relationship between money growth and seignorage is hump-shaped–i.e.,

it exhibits a Laffer-curve property–and

(II) historically, governments have near-uniformly inflated in excess of the revenue-

maximizing rate, i.e., they have been on the ‘wrong side’ of the Laffer curve.

This view, first introduced by Cagan (1956), can be found in all of the most

prominent subsequent papers in the literature, from Sargent and Wallace (1973, 1987),

to Sargent (1977), and Salemi and Sargent (1979). The dominance of this view is

further testified by the fact that it can be found in all of standard graduate textbooks’

treatments of hyperinflation, from (e.g.) Blanchard and Fischer (1990, Chapter 4, pp.

195-201), to Obsteld and Rogoff (1996, Chapter 8, pp. 515-530), to Walsh (2017,

Chapter 4, pp. 153-162).

In spite of its ubiquity and its dominance, this narrative suffers from a crucial

problem: as I show, it is sharply at odds with the data.

In this paper I revisit the monetary dynamics of hyperinflations based on data

from 20 episodes, from the French Revolution to Venezuela under Nicolas Maduro.

Evidence of a Laffer curve for seignorage is virtually non-existent : rather, in nearly

all cases the relationship between money growth and seignorage had, and has been

positive at all inflation rates.

Although, in principle, several alternative rationalizations for the absence of a

Laffer curve for seignorage could be possible, I argue that in fact the explanation is

straightforward. Following Cagan (1956), the literature on hyperinflations has been

consistently dominated by the semi-log money demand specification, relating the

logarithm of real money balances to a measure of the level of an opportunity cost of

money (within the present context, expected inflation). As it is well known,1 a Laffer

curve for seignorage is a mathematical property of the semi-log specification that is

independent of the specific value taken by the semi-elasticity of money demand. As

a result, when a researcher estimates a semi-log (s)he is not ‘discovering’ a Laffer

curve: (s)he is imposing it upon the data. It should therefore come as no surprise

that the notion of a Laffer curve for seignorage has been part of macroeconomists’

conventional wisdom for the last six decades. As my evidence shows, however, such

a notion is incorrect.

In fact, evidence clearly suggests that the most plausible money demand spec-

ification for hyperinflations is not Cagan’s (1956) semi-log, but rather either Allan

Meltzer’s (1963) ‘log-log’, or a functional form close to it such as Benati, Lucas,

Nicolini, and Weber’s (2021) benchmark specification, which for empirically plausible

values of the structural parameters produce a monotonically increasing relationship

between money growth and seignorage.

1See e.g. Lucas (2000).
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In several cases the data’s preference for the log-log (or a specification close to

it) is so strong that it is apparent even to the naked eye. Stark illustrations of this

are provided by Yugoslavia, Zimbabwe, Germany, post-WWII Hungary and Greece,

and, to a slightly lesser extent, China: for all these episodes, the logarithm of inflation

tracks log real money balances remarkably closely,2 whereas its level exhibits a scant

connection to it.

Overall, evidence therefore suggests that both the finding of a Laffer curve for

seignorage, and Cagan’s paradox of policymakers inflating in excess of the revenue-

maximizing rate during hyperinflations, are the product of the literature’s focus on

the semi-log functional form, which automatically imposes a Laffer curve upon the

data.

I show that, compared to the semi-log, functional forms close to the log-log imply

materially different properties for theoretical models of hyperinflations along two

dimensions:

() the equilibria’s stability properties are reversed, with the high-inflation equi-

librium being unstable under rational expectations; and

() as a consequence of () there is the possibility of explosive inflation even in the

presence of well-defined steady-states–which is instead not possible with the semi-

log–if a shock pushes the economy to the right of the high-inflation equilibrium, into

the region of ‘runaway inflation’.

I discuss the implications of () and () for the interpretation of specific historical

episodes. In particular, under the Weimar Republic inflation had been very high, but

not explosive, until the end of 1922. The occupation of the Ruhr on the part of France

in January 1923, however, caused a dramatic increase in the German government’s

budget deficit. A plausible interpretation of the explosive inflationary dynamics that

followed the occupation of the Ruhr is therefore that the dramatic and sudden deteri-

oration of Germany’s fiscal position pushed the economy to the right of the unstable

high-inflation steady-state, into the region of explosive inflation.

The paper is organized as follows. The next section discusses the relationship be-

tween money growth, inflation, and seignorage within three alternative models of the

demand for real money balances, proposed respectively by Cagan (1956), Meltzer

(1963), and Benati et al. (2021). Section 3 briefly discusses the previous literature.

Section 4 discusses the main features of the 20 hyperinflation episodes in terms of

duration, and of median and maximum inflation, whereas the data and their sources

are discussed in detail in Appendix A. Section 5 explores the empirical relationship

between money growth and seignorage based on either simple visual inspection of

the raw data, or panel regressions with country-specific fixed effects. Evidence clearly

suggests that across all of the 20 episodes the two series have been near-uniformly

positively correlated. Section 6 shows that both for the comparatively short-lived

hyperinflation episodes, and for longer samples characterized by high, or very high

inflation rates, the most plausible functional form for the demand for real money

2Quite obviously, once appropriately rescaled.
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balances is either the log-log, or a specification close to it. On the other hand, Ca-

gan’s semi-log specification clearly appears to be at odds with the data. Section 7

presents evidence from panel VARs for the logarithms of inflation and real money

balances, whereas Section 8, working within the same framework, estimates the elas-

ticity of money demand. Section 9 discusses the implications of these findings for

the interpretation of specific historical episodes, focusing in particular on Weimar’s

hyperinflation. Section 10 concludes, and outlines three directions for future research.

2 Money Growth and Seignorage Within Alterna-

tive Models of Money Demand

By defining the money stock, real GDP, and the price level as , , and , the

instantaneous revenue from money creation–i.e. seignorage–expressed as a fraction

of GDP is defined as

 ≡




1


=

µ




1



¶
| {z }






= 




(1)

where  is instantaneous money growth, and () is the demand for real money

balances expressed as a fraction of GDP.

I start by comparing the relationship between money growth and seignorage within

the two models of the demand for real money balances that have dominated the post-

WWII literature, i.e. Cagan’s (1956) and Meltzer’s (1963). Since a limitation of

these models is that neither of them had been derived from first principles, I then

consider the micro-founded model proposed by Benati et al. (2021), which produces

a functional form for the demand for real money balances very close to the log-log.

As the opportunity cost of money I take a nominal instantaneous interest rate,

 = ∗+ , where ∗ and  are respectively the real interest rate, which without loss

of generality I assume to be constant, and expected inflation. Since for hyperinflations

∗ is negligible compared to  , in what follows I ignore it, and I set  =  . I also

assume real GDP to be constant. Again, the rationale is that its fluctuations are

negligible compared to fluctuations in money growth and inflation.

2.1 Cagan (1956) versus Meltzer (1963)

The demand for real money balances as a fraction of GDP is described by either

Cagan’s (1956) semi-log functional form,

ln

µ




¶
=  −  , (2)
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or Meltzer’s (1963) log-log,

ln

µ




¶
= −  ln() (3)

where , ,  and  are positive constants. Expected inflation evolves according to




= ( − ) (4)

with 0. In what follows I focus on the case of perfect foresight, which is obtained

for  →∞.

From (1) and (2) Bruno and Fischer (1990) show that for the semi-log specification

the first equilibrium condition of the model (in Bruno and Fischer’s notation, the ‘GG

curve’) is given by

ln  = ln  −  (5)

By the same token, from (1) and (3) it can be shown that for the log-log the GG

curve is given by

ln  = ln  −  ln (6)

Since (1) represents the government’s budget constraint, which ought to be satisfied

at each point in time, the economy always ought to be on the GG curve. Within this

context , the amount of seignorage the government needs to raise, is assumed to be

exogenously given, and acts as a shifter for either GG curve.

Finally, by taking time-derivatives of either (2) or (3) and setting them to zero, we

obtain that for either functional form in equilibrium (i.e., when  =  =

 = 0)

 =  =  (7)

The equilibria of the economy lie at the intersection of the ‘45 degree line’ (7), and

of either of the two GG curves, i.e. either (5) or (6).

2.1.1 Money growth and seignorage in the steady-state

With semi-log money demand steady-state seignorage is given by  =  exp[ − ],

which traces out a Laffer curve as a function of . Specifically, (i) for  = 0,  = 0; (ii)

for  = 0,  = exp()0, so that starting from a steady-state with  =  = 0,

an increase in  generates a positive amount of seignorage; (iii)  reaches a maximum

corresponding to  = −1; and (iv) for  → +∞,  → 0.

With log-log money demand, on the other hand, steady-state seignorage is  =

exp()1−, which implies that, as long as 0    1, seignorage increases monoton-

ically with . Specifically, (i) for  = 0,  = 0; (ii) for  → 0,  → +∞; and (iii)

for  → +∞,  → +∞.

In fact, as I will discuss in Section 8, panel estimation of  for all of the 20 episodes

considered jointly produce estimates that are either virtually identical or very close
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Figure 1  Money growth and seignorage for Cagan’s (1956) semi-log and Meltzer’s 
             (1963) log-log specifications for the demand for real money balances 
 
 



to Baumol and Tobin’s theoretical value of 1/2. Further, the fraction of bootstrap

replications for which  is estimated to be greater than 1 is consistently equal to

0. Splitting the overall sample into the 10 episodes with the lowest and respectively

the highest median inflation, on the other hand, produces clear evidence that for the

latter group  has consistently been higher than for the former. Crucially, however,

even for the 10 episodes with the highest median inflation there is little to no evidence

that  may have been greater than 1.

Overall, a plausible interpretation of the evidence is that  is indeed an increasing

function of  (and ). Therefore, if money growth crosses a certain threshold ∗, we

can safely expect that  will become greater than 1, with the implication that for

all   ∗ seigniorage will be a decreasing function of money growth (i.e., we will

obtain a Laffer curve even with the log-log). The crucial point is that, historically,

the threshold ∗ appears never to have been crossed. I now turn to a discussion of

the dynamical properties of the system under the two money demand specifications.

2.1.2 The dynamical properties of the system

The left-hand side panel of Figure 1 shows the equilibria for the semi-log specification,

whereas the right-hand side panel shows the corresponding equilibria for the log-log.

Although either case features two equilibria, the dynamical properties of the system

under the two money demand specificatons are very different. It can be trivially

shown that for the semi-log specification  is unstable and  is stable, which is the

classic paradox first highlighted by Cagan (1956): the government could raise the

same amount of revenue at a lower inflation rate in equilibrium . However, for

the log-log specification the opposite is true:  is stable, and  is unstable. A key

implication is that if a shock pushes the economy beyond  we enter a region of

‘runaway inflation’, and inflation explodes without limits. With the semi-log on the

other hand this is not possible, because the high-inflation equilibrium  is stable.

Discussion In several cases inflation quite clearly exhibits an explosive dynamics

towards the end of the hyperinflation. This is the case, e.g., for the seven episodes

reported in Figure 2. With the semi-log functional form, the only way for the model

to generate explosive inflation is for the government to attempt to collect an amount

of seignorage greater than the maximum feasible (i.e., that associated with the peak

of the Laffer curve). Under these circumstances, the GG curve and the 45 degrees line

in the left hand-side panel of Figure 1 do not touch, so that there is no steady-state

to speak of, and as a result inflation simply explodes to infinity.

With the log-log functional form, on the other hand, explosive inflation can result

even if in fact any amount of seignorage is feasible, in the sense that it can be collected

in a steady-state. Consider the economy described by the right hand-side panel of

Figure 1: if  and  are sufficiently close, a large shock may cause the economy to

jump to a point on the GG curve to the right of . In Section 7 I will discuss a

6
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Figure 2  Selected evidence on explosive inflation in the latest stages of hyperinflations 
 
 



plausible historical example of such a shock, i.e. the invasion of the Ruhr on the part

of France in January 1923, and its devastating impact on Germany’s finances.

As mentioned, a limitation of either Cagan’s (1956) or Meltzer’s (1963) model

is that they had not been derived from first principles. I therefore now turn to a

micro-founded model of the transaction demand for money.

2.2 Benati, Lucas, Nicolini, and Weber (2021)

Appendix A describes in detail the model of the transaction demand for money pro-

posed by Benati et al. (2021). The model generalizes the framework proposed by

Baumol (1952) and Tobin (1956) by allowing for several alternative functional forms

for the cost of making transactions as a function of the number of ‘trips to the bank’,

. Notice that within this framework  is the velocity of money, i.e. the ratio be-

tween nominal GDP and nominal money balances, and its inverse is therefore the

demand for money balances as a fraction of GDP:

1


=




 (8)

Whereas Baumol and Tobin assumed that the cost of making transactions increases

linearly with , Benati et al.’s (2021) benchmark functional form is given by

() =  (9)

where  and  are positive constants (with  = 1 we obtain the Baumol-Tobin case).

Notice that  is the welfare cost of inflation expressed as a fraction of maximum

potential output.

When the cost of making transactions is described by (9), the solution for  is


+1

1− 
=  =  (10)

This expression implicitly defines a solution for  as a function of  . As discussed

by Benati et al. (2021, p. 46), at low inflation, and therefore low interest rates the

welfare costs  are negligible, so that 1−  ' 1, and the solution (10) becomes

+1 '  . Then, taking logarithms we obtain

ln
1


= ln




' 1

 + 1
[ln − ln ] (11)

which is Meltzer’s log-log specification, with elasticity 1( + 1).

For the present purposes, a crucial point to stress is that although expression (11)

provides a good approximation to the exact solution (10) only at low inflation levels, in

fact expression (10) exhibits features very close to those of the log-log at all inflation

levels. Figure 3 provides simple evidence on this for Bolivia, which experienced a
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Figure 3  Evidence on the similarity between Meltzer’s (1963) log-log and Benati, 
             Lucas, Nicolini and Weber’s (2021) money demand specification 
 
 



hyperinflation in the mid-1980s, and for Israel and Mexico, which although never

experienced hyperinflations went through episodes of very high inflation in the early

1980s. The top row shows scatterplots of the logarithms of a short-term nominal

interest rate and the ratio between nominal M1 and nominal GDP, together with

estimates of log-log and Benati et al.’s (2021) demand curves for real money balances.3

The bottom row shows the actual logarithm of the short rate together with the values

predicted based on either of the two estimated money demand curves. The overall

message from Figure 3 is that for any of the three countries the estimates of the two

functional forms are very close.

In order to replicate the fall in real money balances associated with increases in

the inflation rate, and therefore in expected inflation, in expression (10) it ought to be

the case that 1−   0, which implies that the welfare cost of inflation expressed

as a fraction of maximum potential output ought to be smaller than one. Since all of

the 20 hyperinflations analyzed herein have been characterized by dramatic collapses

in real money balances, in what follows I assume that this condition is satisfied.

By combining expressions (1) and (8), log seignorage is given by

ln  = ln  − ln (12)

Taking logarithms of (10), and then taking derivatives with respect to time, we obtain

 ln


=
(1 + )− 
1− 

∙
 ln



¸
(13)

By the same token, taking logarithms of (8), and then taking derivatives with respect

to time, we obtain
 ln


=  −  (14)

Combining (13) and (14) we obtain

 ln


=
(1 + )− 
1− | {z }

Ψ()

[ − ] = Ψ() [ − ] (15)

As previously discussed, the empirically relevant case is 1 −  = Ψ()  0. The

solution for money growth, money velocity (and therefore its inverse, the demand

for real money balances as a fraction of GDP), inflation, and seignorage is fully

characterized by equations (10), (12), and (15).

3The log-log demand curves have been estimated via a simple OLS regression of log M1 velocity

on the logarithm of the short rate. Since Elliot et al.’s (1996) unit root tests strongly suggests that

both series are I(1) for all countries, this regression is in fact a cointegrating regression. Benati et

al.’s demand curve, on the other hand, has been obtained by estimating (10) via non-linear least

squares.
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Figure 4  Money velocity, seignorage, and the welfare costs of inflation  
             in the model of Benati, Lucas, Nicolini, and Weber (2021) 
 
 



2.2.1 Steady-state and dynamics

In the steady-state  ln = 0 and  =  , so that once again expression (7),

 =  = . holds. Within the present context the GG curve becomes

 = 
+1 −(+1)

1−  
− (16)

where once again , which is assumed to be exogenously given, acts as a shifter for the

GG curve. The steady-state equilibrium lies at the intersection between this curve

and the 45 degree line (7).

It can be trivially shown that, from a qualitative point of view, both the shape

of the GG curve, and the dynamical properties of the system, are exactly the same

as those for the log-log that are shown in the right hand-side panel of Figure 1. In

particular, since in equation (15) Ψ()  0, this expression implies once again that

when the economy’s position on the GG curve is below (above) the 45 degrees line,

so that  −   0 ( 0),  ln  0 ( 0). Once again the implication is that

the steady-state A is stable, whereas the steady-state B is unstable, and beyond it

lies a region of explosive inflation.

2.2.2 Money growth, velocity and seignorage in the steady-state

Figure 4 shows money velocity (i.e. ), together with seignorage and the welfare

costs of inflation, both expressed as a fraction of GDP, as functions of  for alternative

values of  and . For  I consider values from 0 to 35, which is just slightly higher

than the maximum inflation rate ever recorded (for Hungary’s post-WWII episode)

of 33.67 (see the next section). Irrespective of the values of  and , all of the three

objects are monotonically increasing in . Notice that the welfare costs of inflation as

a fraction of maximum output, , are uniformly smaller than one, and as a result

of this velocity is monotonically increasing in . For our purposes the feature of main

interest is the fact that seignorage is uniformly increasing in money growth, so that

there is no evidence of a Laffer curve for seignorage at any value of .

I now turn to a brief overview of the literature.

3 Related Literature

Cagan’s (1956) paper spawned a vast literature. In this section I provide a brief

overview, by narrowly focusing on two groups of studies: (1) classic papers, such as

those of Sargent and Wallace (1973) and Sargent (1977), and (2) the very few studies

containing results in line with this paper’s position. Before delving into this, however,

I start by providing a brief summary of Cagan’s discussion of the most appropriate

functional form for the demand for real money balances.

9



3.1 Cagan (1956) on the most appropriate functional form

for the demand for real money balances

Cagan (1956) did not derive the semi-log specification (2) within a micro-founded

framework, but rather simply postulated it.4 In reaction to the empirical shortcom-

ing of the postulated specification for the latests stages of hyperinflations, for which

the models’ fit had typically been worse than for the initial stages,5 he speculated

that an alternative functional form may be needed in order to provide a better char-

acterization of the data. In particular, he conjectured6

‘[...] that the function that determines the demand for real cash balances

does not conform to [the semi-log functional form]. To be consistent with the

data, this hypothesis requires that all observations that lie to the right of the

linear regression shall fall in order along some curved regression function [...].’

In practice, this means that the alternative specification he was speculating about

should have been either a log-log, or a functional form close to it. In the end, however,

Cagan’s solution7 was neither to use a log-log, nor a specification close to it, but rather

to simply exclude, in some cases, the latest observations from the empirical analysis:

‘The periods covered by the statistical analysis exclude some of the ob-

servations near the end of the hyperinflations. The excluded observations are

from the German, Greek, and second Hungarian hyperinflations [...]. All the

excluded observations lie considerably to the right of the regression lines, and

their inclusion in the statistical analysis would improperly alter the estimates

of  and  derived from the earlier observations of the hyperinflation.’

It is to be noticed that the three episodes whose latest observations Cagan ex-

cluded from the analysis are the most extreme in his dataset, i.e. those which, for

the purpose of discriminating between the semi-log and the log-log, are the most

informative.

I now turn to briefly discuss the two previously mentioned groups of studies. An

important point to stress is that all of the four classic studies discussed in the next

4See Cagan (1956, p. 35).
5This problem has been repeatedly documented by several authors. E.g., for Yugoslavia’s episode,

see Petrovic and Mladenovic (2000).
6To be precise, Cagan (1956, p. 55) also discussed an alternative possible explanation, based on

the notion that, towards the latest stages of hyperinflations, agents may come to expect a currency

reform. Although, in principle, perfectly plausible, this alternative explanation suffers from the

crucial limitation that it appears as implausible that expectations of a currency reform should have

been such as to make the historical paths for inflation and real money balances, in several instances

(Yugoslavia, Zimbabwe, post-WWI Greece and Germany, post-WWII Hungary, and, to a slightly

lesser extent, China), to so clearly conform to those implied by a log-log specification (see Section

6.1).
7See Cagan (1956, Section IV.3, ‘Observations that do not fit the regression’, p. 55).

10



sub-section, as well as the overwhelming majority of existing studies of the demand

for money during hyperinflations, have been based on Cagan’s semi-log specification.

3.2 Classic studies

Sargent and Wallace (1973) pointed out that Cagan’s (1956) estimator of the semi-

elasticity of money demand was inconsistent under rational expectations, and doc-

umented how, in Cagan’s dataset, inflation Granger-caused money growth, whereas

money growth failed to Granger-cause inflation.

Sargent (1977) showed how, under rational expectations, the semi-elasticity of

money demand could in fact be identified by assuming that shocks to money demand

and money supply be contemporaneously uncorrelated. A key result he obtained was

that estimates of the semi-elasticity of money demand based on Cagan’s dataset were

characterized by a very large uncertainty. In particular,

‘[t]he estimates are so loose that confidence bands of two standard errors on each side

of them include values that would imply that the creators of money were inflating at rates

that maximized their command over real resources, thus maybe resolving [Cagan’s] paradox

[...].’

Salemi and Sargent (1979) postulated a vector autoregressive (VAR) represen-

tation for the joint dynamics of inflation and money growth, and estimated it 

maximum likelihood conditional on the rational expectations restrictions implied by

Cagan’s semi-log functional form. Consistent with Sargent (1977), a main finding

was that the extent of econometric uncertainty surrounding the point estimates of

the semi-elasticity of money demand was much more substantial than for Cagan’s

(1956) estimates, which, again, could be taken to provide a possible explanation for

Cagan’s paradox.

Taylor (1991) introduced cointegration methods to the study of the demand for

real money balances during hyperinflations. As he first pointed out, if both inflation

and real money balances are I(1), and under the minimal assumption that the forecast

errors are I(0), cointegration allows to test for the presence of a demand for real money

balances–rather than postulating it, as it was done in the previous literature–

and to estimate it via maximum likelihood. Following Taylor (1991), several papers

have applied cointegration techniques to the study of the demand for money during

hyperinflations. A key limitations of these studies is that, to the very best of my

knowledge, they have all been based on asymptotic critical values, which, in small

samples, have been shown to be essentially unreliable.8 In the next sub-section I

discuss a specific example, Zhao’s (2018) study of the Chinese hyperinflation.

8E.g. Johansen (2002), with reference to his trace and maximum eigenvalue tests, showed that

asymptotic critical values are essentially unreliable in small samples.
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3.3 Studies conceptually in line with the present work

Barro (1970), still working within a pre-rational expectations framework, developed

a sophisticated model for the demand for real money balances allowing for currency

substitution, which produced a markedly better fit than Cagan’s (1956) semi-log

specification.9 For the present purposes, the crucial point is that Barro’s empirical

specification–see his equations (74)-(75)–boiled down to a linear relationship be-

tween log real money balances and the logarithm of the sum of expected inflation,

the real interest rate, and additional terms. The superior fit of Barro’s specification,

compared to Cagan’s (1956), is therefore in principle compatible with the present

work’s results.

Zhao (2017) is, to the very best of my knowledge, the paper which is closest, in

terms of its main objective, to the present work. Based on data for China’s hyperin-

flation, it uses cointegration techniques in order to address the issue of which, among

the semi-log and the log-log functional forms, provides a a better characterization

of the data. Taken at face value, his results are in line with mine: whereas he de-

tects cointegration between log real money balances and the logarithm of inflation,

he does not detect it between log real balances and inflation’s level. A limitation of

Zhao’s results is that his cointegration tests are based on asymptotic critical values,

which should be regarded as unreliable because of the short sample length. In fact,

performing the same Johansen’s tests reported in Zhao’s (2017) Table 6, but boot-

strapping them as in Cavaliere, Rahbek, and Taylor (2012), I obtain p-values for the

trace and maximum eigenvalue test statistics equal to 0.245 and 0.156, respectively,

based on the logarithm of inflation, and equal to 0.514 and 0.617 based on its level.

This suggests that although, from the perspective of the present work, Zhao (2017)

did obtain the correct result, in fact he produced it based on an unreliable procedure.

I now turn to discussing the data and exploring the empirical relationship between

inflation and seignorage.

4 The Data

Table 1 reports, for each individual episode, the number of observations, together with

the maximum and median inflation rate.10 Whenever possible, I follow Cagan (1956),

and I set the end of the hyperinflationary episode at 12 months after inflation had

last exceeded the threshold he proposed, of 0.5 on a log scale.11 The dataset features

9As he pointed out (see p. 1257), ‘[i]n general, the average errors in Cagan’s form are about

twice as large as those [based on Barro’s specification], and the serial correlation of residuals is

substantially more pronounced’.
10Based on monthly data, inflation has been computed as the month-on-month log-difference (in

natural logarithms) of the relevant price index, whereas based on weekly data it has been computed

as the week-on-week log-difference multiplied by 4.
11In fact, in several cases this was not possible due to either lack of, or discontinuities in one

or more series. E.g., for China and Yugoslavia the dataset ends in May 1949 and January 1994,
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Table 1 Maximum and median inflation during hyperinflationary

episodes

Sample

length Maximum Median

Monthly data

France (January 1794-June 1796) 27 0.761 0.154

Based on Cagan’s (1956) data

Austria (January 1921-August 1922) 20 0.852 0.212

Germany (September 1920-November 1923) 39 5.885 0.157

Hungary (July 1922-February 1924) 20 0.683 0.215

Hungary (July 1945-July 1946) 13 33.670 1.677

Poland (April 1922-January 1924) 22 1.322 0.302

Russia (January 1922-February 1924) 26 1.142 0.420

Greece (January 1943-November 1944) 23 13.659 0.470

Based on Barro’s (1970) data

Austria (January 1921-December 1922) 24 0.852 0.149

Poland (January 1922-January 1924) 25 1.229 0.289

Germany (January 1921-August 1923) 32 2.931 0.136

Hungary (October 1921-February 1924) 29 0.683 0.152

Other datasets

Germany (December 1919-December 1923) 60 5.736 0.090

China (August 1945-May 1949) 45 4.446 0.240

Chile (January 1972-November 1974) 35 0.575 0.106

Bolivia (February 1983-August 1986) 43 1.039 0.155

Argentina (January 1987-April 1991) 52 0.992 0.135

Brazil (August 1988-March 1991) 33 0.592 0.199

Peru (January 1987-September 1991) 57 1.512 0.147

Yugoslavia (January 1991-January 1994) 37 11.290 0.496

Congo (May 1991-July 1995) 51 2.144 0.241

Angola (December 1995-January 1998) 26 0.610 0.061

Bulgaria (January 1996-February 1998) 26 1.230 0.039

Zimbabwe (January 2004-June 2008) 53 3.912 0.300

Venezuela (January 2016-March 2019) 39 1.313 0.200

Weekly data

Germany (September 7, 1922-November 15, 1923) 57 13.285 0.804

Hungary (December 31, 1945-July 23, 1946) 26 35.280 3.280
 Based on monthly data, inflation is computed as the month-on-month log-diffe-

rence of the price level. Based on weekly data, it is computed as the week-on-week

log-difference multiplied by 4.  Based on Graham’s (1930) data.



a dramatic extent of variation of inflationary experiences, ranging from post-WWII

Hungary’s peak of 33.67;12 to the second and third most extreme episodes, Greece

and Yugoslavia, with peak inflation rates of 13.66 and 11.29, respectively; down to

the mildest, Chile, with a maximum inflation rate of 0.58. Exactly two thirds of the

episodes had inflation rates in excess of 1, whereas 18.5 and 11.1 per cent had rates

in excess of 5 and 10, respectively.

Appendix B provides a detailed description of the data and of their sources for

all of the episodes in chronological order, from the French Revolution to Venezuela.

Since evidence based on weekly data is uniformly in line with that based on monthly

data, in what follows I will mention it only briefly, and I will instead near exclusively

focus on the results based on monthly data.

I now turn to exploring the empirical relationship between inflation and seignor-

age, both at the level of individual countries, and based on panel regressions with

country-specific fixed effects.

5 Exploring the Empirical Relationship Between

Inflation and Seignorage

5.1 Evidence for Cagan’s (1956) dataset based on Sargent

and Wallace’s (1973) measure of seignorage

The top row of Figure 5 shows, for the seven episodes in Cagan’s (1956) dataset,

scatterplots of the logarithm of Sargent and Wallace’s (1973, Table 6, p. 345) measure

of seignorage plotted against the logarithm of money growth from Cagan’s dataset,13

whereas the bottom row shows the evolution of the two series over time (with different

scales for the left and right hand-side axes). With the single exception of Russia,14

for all other six countries the relationship between the two series clearly appears to

have been positive at all levels of money growth.

respectively, when the inflation rate (month-on-month log-difference) had been equal to 4.44 and

8.35.
12Hungary’s peak of 33.67 was reached in July 1946. The data for Hungary shown in Figure 1

stop in June 1946 (for which the inflation rate was 11.34) because Sargent and Wallace’s (1973)

Table 6 does not report the seignorage figure for the month of July.
13To be precise, Cagan’s dataset features, for each month, the log-difference of the price level

and the logarithm of the ratio between the price level and the money stock. Based on these series,

however, the log-difference of the money stock can be trivially computed.
14The evidence for Russia should be treated with some caution. E.g., Barro (1970) eschewed

Russian data because (see his footnote 36) ‘the assumption of constant real income appeared unrea-

sonable and adequate income data was unavailable’. In what follows I will instead use Cagan’s data

for Russia, because since we are here dealing with hyper inflations, even an unaccounted-for deep

recession should reasonably be thought of as only introducing a minor distortion in the estimates.
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Figure 5  The logarithm of Sargent and Wallace’s (1973) measure of seignorage 
             plotted against the logarithm of money growth from Cagan (1956) 
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Figure 6  The logarithms of money growth and seignorage for the 20 hyperinflations (monthly data)  
 
 
 



5.2 Evidence based on a measure of seignorage in the spirit

of Bresciani-Turroni (1937)

One possible caveat to the evidence in Figure 5 is that Sargent and Wallace (1973, see

p. 341, and Table 6) computed their measure of seignorage based on the arithmetic

average

̃ ≡
 −−1
1
2
( + −1)

 (17)

where  and  are the money stock and the price level in month . As discussed

by Bresciani-Turroni’s (1937, pp. 146-154), however, within the context of hyper-

inflations, which expecially in their very last stages are characterized by explosive

growth in money and the price level, geometric averages should logically thought of

as superior. In Appendix C I perform an extensive investigation of this issue, and I

show that Bresciani-Turroni’s conjecture is indeed correct. In particular, I show that

under a wide range of empirically plausible circumstances the geometric average

∗ ≡ ∗

"µ
−1
−1

¶ µ




¶1−#
(18)

where ∗ ≡ ln()-ln(−1)=-−1, and =0.5, exhibits a vastly superior perfor-

mance compared to the arithmetic average (17). This is the case, in particular, when

money and prices evolve according to exponential, as opposed to linear trends, as it

seems quite clearly to be the case under hyperinflations. In the rest of the paper I

will therefore exclusively work with measures of seignorage computed based on the

geometric average (18).

Figure 6 shows for all 20 episodes, and when possible based on alternative datasets,15

the same evidence shown in the top row of Figure 5, with seignorage computed based

on (18). Once again, the impression of a uniformly positive relationship between

money growth an seignorage at all levels of money growth is very clear. This is the

case in particular for Germany, Hungary, Poland, Chile, Bolivia, Argentina, Brazil,

Congo, Angola, Bulgaria, Zimbabwe, and Venezuela. On the other hand, evidence is

less than clear-cut for the French Revolution, Russia, and China. Even these three

episodes, however, provide essentially no evidence of a Laffer curve for seignorage.16

15E.g., for Germany based on either Graham’s (1930), Cagan’s (1956), or Barro’s (1970) data.
16Figure A.4 in the Appendix shows evidence for the Confederacy during the U.S. Civil War

based on data from Lerner (1956). Although neither the Union nor the Confederacy experienced

a hyperinflation (for the Confederacy the maximum quarterly log-difference of the price level was

equal to 0.465), the evidence in Figure A.4 is starkly in line with that in Figures 5 and 6.

14
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Figure 7  Evidence from regressing log seignorage on log money growth: logarithm  
             of seignorage minus estimated country-specific fixed effects 
 
 



5.3 Evidence from panel regressions with country-specific

fixed effects

Figure 7 reports evidence from Least Absolute Deviations17 (LAD) panel regressions

of the logarithm of seignorage on the logarithm of money growth and country-specific

fixed-effects,18

ln  = 1 ln∆ + 2(ln∆)
2 +  (19)

where  indexes the country and  indexes the month, based on both all of the 20

episodes considered jointly, and the 10 episodes with either the highest or the lowest

median inflation rates.19 The number of observations is 636 based on all of the 20

episodes, and 291 and 345 based on the two datasets with the high- and low-inflation

episodes, respectively. The figure shows scatterplots of ln∆ and [ln ∗-̂


 ]–

i.e. log seignorage minus the estimated country-specific fixed effects–together with

the LAD regression line. Results are robust to adding a cubic term, 3(ln∆)
3, in

the regression (these results are available upon request).

The evidence in the figure is quite clear: first, the LAD regression lines are

monotonically increasing, showing no evidence of the hump shape associated with

a Laffer curve; second, the three scatterplots clearly suggest that, historically, higher

money growth has been associated on average with higher seignorage at all inflation

levels. These results, together with the evidence in Figure 5 and 6, provide a clear

refutation of the notion of a Laffer curve for seignorage.

5.4 Rationalizing the absence of a Laffer curve for seignorage

How can we explain the absence of a Laffer curve in the data from 20 hyperinflations?

Although in principle several alternative rationalizations might be possible, Occam’s

razor suggests to consider the simplest one. As discussed in Section 2, a Laffer

curve for seignorage is a mathematical property of the semi-log specification that is

independent of the specific value taken by the semi-elasticity of money demand (see

e.g. Lucas, 2000.). As a result, when a researcher estimates a semi-log money demand

curve (s)he is not ‘discovering’ a Laffer curve: (s)he is imposing it upon the data.

Following Cagan (1956), the overwhelming majority of the papers in the literature–

17Evidence from the corresponding OLS regressions is qualitatively the same as that in Figure 2,

and it is available upon request.
18There are two reasons for including country-specific fixed effects in the regressions. First, in

order to control for country-specific idiosyncratic factors. Second, whereas inflation and money

growth, being defined as the log-differences of the relevant objects, are pure numbers, (/) in

the expression for ∗ is the ratio between a quantity expressed in national currency units and an

index number, and it is therefore an index number itself. As a result, ∗ is also an index number,

and its value is therefore defined up to a factor of proportionality.
19For Austria, Germany, post-WWI Hungary, and Poland, for which I have multiple data sources,

I used Cagan’s data.
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in particular, the most notable and influential among them,20 i.e. Sargent and Wallace

(1973), Sargent (1977), and Salemi and Sargent (1979)–have been based on the semi-

log functional form. It should therefore come as no surprise that the notion of a Laffer

curve for seignorage has become part of macroeconomists’ conventional wisdom. As I

have shown, however, evidence quite clearly suggests that such a notion is incorrect.

Based on Meltzer’s log-log, on the other hand, the relationship between inflation

and seignorage is positive at all inflation levels for any value of the elasticity of

money demand smaller than one in absolute value, whereas based on Benati et al.’s

(2021) functional form it is uniformly positive at all inflation levels in the empirically

relevant in which velocity is increasing in inflation. A straightforward explanation

for the previously documented absence of a Laffer curve in the data is therefore that

either the true functional form for the demand for real money balances is Benati et

al.’s (2021), or it is the log-log with the elasticity being smaller than one in absolute

value.

In fact, as I show in the next section, the data provide strong support to this

position.

6 Which Functional FormBest Describes the Data?

6.1 The dynamics of real money balances and inflation

Figure 8 shows, for the six most extreme hyperinflations, the logarithm of real money

balances together with either the level of inflation (in the top row), or its logarithm21

(in the bottom row), whereas Figures A.5 and A.6 in the Online Appendix show

the same evidence for the remaining episodes. The evidence in the top and bottom

rows therefore corresponds to a semi-log and, respectively, a log-log specification for

the demand for real money balances, relating log real balances to either the level or

the logarithm of inflation. The episodes have been ranked in decreasing order based

on the median inflation values reported in Table 1, from post-WWII Hungary (with

20An important exception is represented by Barro (1970), who developed a model of the demand

for real money balances allowing for currency substitution, which produced a substantially better

fit than the semi-log specification (see Barro (1970, p. 1257): ‘[i]n general, the average errors in

Cagan’s form are about twice as large [...], and the serial correlation of residuals is substantially

more pronounced’). For the present purposes, the crucial point is that Barro’s specification–see

his equations (74)-(75)–boiled down to a linear relationship between log real money balances and

the logarithm of the sum of expected inflation and additional terms. The superior fit of Barro’s

specification compared to Cagan’s is therefore compatible with the notion that the true money

demand specification is not the semi-log, but rather the log-log (or a functional form close to it).
21Because of the very high-frequency of the data, even if we are here dealing with hyperinflationary

episodes, in a few instances inflation turned out to be negative. In all of these cases, the corresponding

observations for log inflation are plotted as missing. It is important to stress that based on either

(3) or (10), the demand for real money balances depends on expected inflation, which within the

context of a hyperinflation should be thought to have been uniformly positive.
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Figure 8  Monthly raw data for log real money balances and (log) inflation for extreme hyperinflations 
 
 



median inflation equal to 1.677) to Chile (0.106). The following facts emerge quite

clearly from the figures:

(1) for the most extreme episodes the logarithm of inflation tracks log real money

balances remarkably closely,22 whereas its level exhibits a uniformly weaker, or even

scant connection to it. This is especially clear for post-WWII Hungary, Greece,

Yugoslavia, Germany, and Zimbabwe, whereas evidence for China in slightly weaker.

This suggests that for extreme hyperinflations–i.e., the episodes which should be

regarded as the most informative–the log-log specification (or a functional form

close to it, such as Benati et al.’s) provides a more plausible description of the joint

dynamics of the two series than the semi-log.

(2) For all other episodes, visual evidence suggests that the two specifications

are on an essentially equal footing in terms of their ability to characterize the joint

dynamics of the data.

Overall, the evidence in Figures 6, A.5 and A.6 therefore suggests that if we had to

choose which, between the semi-log and the log-log, best describes the joint dynamics

of inflation and real money balances, the natural choice would be the log-log.

6.2 Long-run evidence on money velocity and nominal inter-

est rates

Figure 9 provides additional evidence based on long-run data for M1 velocity23 and

a short-term nominal interest rate for six high-inflation countries from Benati et al.’s

(2021) dataset. Specifically, the figure shows the logarithm of M1 velocity together

with either the level of a short-term rate (in the top row), or its logarithm (in the

bottom row). The evidence in the top and bottom rows therefore corresponds to

a semi-log and, respectively, a log-log specification for the demand for real money

balances with unitary income elasticity, relating log velocity to either the level, or

the logarithm, of a short-term rate. Once again, the episodes have been ordered from

the most to the least extreme (based on the maximum value taken by the nominal

interest rate).

The evidence in the figure is once again vely clear: whereas fluctuations in log M1

velocity bear a uniformly weak, or even scant connection to movements in the level of

the short-term rate, they are typically strongly correlated with its logarithm. This is

starkly apparent for Israel and Bolivia, for which the logarithms of M1 velocity and

22Up to a scale factor, which in the three figures is accounted for by allowing the right hand-side

and the left hand-side scales to differ.
23I focus on velocity (defined as the ratio between nominal GDP and nominal M1), rather than

real money balances, because of the sizeable increases in GDP that have taken place over such long

sample periods. On the other hand, following Cagan (1956), in the literature on hyperinflation

real GDP is typically assumed to be costant. Since, historically, hyperinflations have consistently

been short-lived episodes, this assumption is, for the purpose of these studies, innocuous. When

considering longer sample periods, however, changes in real GDP cannot be ignored, and the most

appropriate variable becomes velocity.
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Figure 9  Long-run data for M1 velocity and a short-term nominal interest rate for high-inflation countries 
 



of the short-term rate have very closely co-moved over the entire sample periods; it is

just slightly less so for Argentina–which had exhibited some temporary deviations

between the two series around 1950 and following the disinflation of the end of the

1980s–and for Chile with the single exception of the early 1970s, a period of excep-

tional economic and social turmoil which culminated in Augusto Pinochet’s military

coup of 1973; and it is also apparent for Mexico, and for Brazil during the entire

course of the XX century, whereas the two series have been moving out of synch since

the start of the new millenniun.

The reason why this evidence is so stark is straightforward. Historically, hyperin-

flations have uniformly been short-lived episodes, lasting at most a few years. Over

such short periods of time it may therefore be difficult to discriminate between al-

ternative functional forms for the demand for real money balances. The longer the

sample period, however, the more extreme the range of inflationary experiences–

from hyperinflation to (near) price stability–typically becomes, with the result that

the inferiority of the semi-log specification becomes manifestly apparent even to the

naked eye.

A counter-argument to this is that, as the economy approaches, and then enters

a full-blown hyperinflation, the demand for real balances may change in fundamen-

tal ways, as phenomena such as currency substitution, which are either negligible or

second-order at lower inflation rates, become more and more relevant, thus causing

a progressive increase in the elasticity of money demand. Under these circumstances

the log-log specification, with its constant elasticity of the demand for real balances,

might provide a less accurate characterization of the data than the semi-log, for which

the elasticity is increasing (in absolute value) with the opportunity cost of money. Un-

der this interpretation, the evidence in Figure 9 should be regarded as uninformative,

and only data pertaining to hyperinflationary episodes should be regarded as rele-

vant for the issue of determining which functional form best describes hyperinflation

data. As shown in the previous sub-section, however, even when narrowly focusing

on hyperinflation episodes, evidence quite clearly suggests that the most plausible

description of the data is provided by the log-log, rather than by the semi-log.

The bottom line is therefore that whether we narrowly focus on the comparatively

short windows of time associated with hyperinflations, or we consider much longer

sample periods of several decades, there is simply no evidence in favor of the semi-log,

whereas there is strong evidence in favor of the log-log, or a functional form close to

it.

6.3 Evidence from a VAR-based model comparison exercise

The evidence in the previous two sub-sections is especially persuasive because it is

based on the raw data. In this section I complement it with the following model

comparison exercise. Based on both all of the 20 episodes considered jointly, and the

10 episodes with either the highest or the lowest median inflation rates, I estimate

18



via maximum likelihood the following two specifications for the joint dynamics of the

logarithm of real money balances and inflation:∙
̃



¸
=

∙
̃ +()̃-1 +()-1 + ̃
 + ()̃-1 +()-1 + 

¸
(20)

and ∙
̃



¸
=

∙
̃ +()̃-1 +()̃-1 + ̃
 + exp {()̃-1 +()̃-1}+ 

¸
(21)

where  indexes the country;  indexes the month; ̃ ≡ ln(); ̃ ≡ ln();
(), (), (), and () are polynomials in the lag operator, ; ̃ and 
are country-specific intercepts; and ̃ and  are country-specific residuals, which

I postulate to follow a bivariate normal distribution with a non-diagonal covariance

matrix. Equation (20) describes a panel VAR model with country-specific fixed-

effects for log real money balances and inflation, and it therefore corresponds to

the semi-log specification. Expression (21), on the other hand, postulates that, up to

country-specific dummies and random disturbances, the joint dynamics of real money

balances and inflation is described by∙
̃

̃

¸
=

∙
() ()

() ()

¸ ∙
̃-1

̃-1

¸
(22)

corresponding to the log-log specification. By casting (22) into the form (21)–i.e,

taking as the dependent variable, in the second equation, the level of inflation, rather

than its logarithm–it is possible to meaningfully compare, in terms of log-likelihood,

which of the two functional forms provides the most plausible description of the data.

As we will see, evidence overwhelmingly favors the log-log.24

I estimate either (20) or (21) via maximum likelihood. Specifically, I estimate the

mode of the log-likelihood via simulated annealing as described in Corana, March-

esi, Martini, and Ridella (1987), and I then proceed to stochastically map the log-

likelihood’s surface  Random-Walk Metropolis (RWM). The only difference be-

tween the ‘standard’ RWM algorithm which is routinely used for Bayesian estimation

and what I am doing here is that the jump to the new position in the Markov chain

is accepted or rejected based on a rule which does not involve any Bayesian priors,

as it uniquely involves the likelihood of the data.25 All other estimation details are

24For the log-log I have also considered an alternative to (21) in which, in the equation for ,

the country-specific dummies are inside the exponential function, i.e.  = exp[

 + ()̃-1 +

()̃-1 ] + . The results produced by this alternative specification are qualitatively the same

as those produced by (21), and they are available upon request.
25So, to be clear, the proposal draw for , ̃, is accepted with probability min[1, (−1, ̃ |  ,

)], and rejected otherwise, where −1 is the current position in the Markov chain, and

(−1 ̃ | ) =
(̃ | )

(−1 | )
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identical to Benati (2008), to which the reader is referred to. I use one million draws

for the burn-in period, and twenty million for the ergodic distribution, which I ‘thin’

by sampling every 10,000 draws in order to reduce the draws’ autocorrelation, thus

obtaining 2,000 draws for the ergodic distribution. For any of the three panels of

countries, either of the two lag orders I consider (2 or 4), and based on either (20) or

(21), the fractions of accepted draws are uniformly very close to the 23 per cent ideal

acceptance rate in high dimensions.26 Figure A.7 in the Appendix reports, for each

individual model parameter, the inefficiency factor27 for the draws from the ergodic

distribution. The inefficiency factors are uniformly around 1-2, i.e. significantly below

the value of 20-25 which is typically taken as signalling problems in convergence.

Table 2 Evidence from the model comparison

exercise: minima, maxima, and medians of the

distributions of the log-likelihoods produced by

Random-Walk Metropolis

Model (20) Model (21)

Min Median Max Min Median Max

Based on all 20 episodes

p=2 303.1 324.8 337.1 557.9 583.1 596.2

p=4 219.5 245.4 259.7 470.0 494.6 508.4

Based on 10 episodes with highest median inflation

p=2 -6.4 9.6 20.3 102.0 119.0 129.0

p=4 -34.9 -13.3 -1.6 81.0 109.0 122.2

Based on 10 episodes with lowest median inflation

p=2 599.8 625.4 635.5 660.0 678.8 689.3

p=4 549.5 570.7 582.9 646.6 667.9 678.8

Table 2 reports the minima, medians, and maxima of the ergodic distributions of

the log-likelihood produced by RWM.28 The key result in the table is that the minima

of the distributions based on model (21) are uniformly greater than the corresponding

which uniquely involves the likelihood. With Bayesian priors it would be

(−1 ̃ | ) =
(̃ | ) (̃)

(−1 | ) (−1)
where  (·) would encodes the priors about .

26See Gelman, Carlin, Stern, and Rubin (1995).
27The inefficiency factor is defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),  = (2)−1 1
(0)

R 
− (), where () is the spectral density of the sequence

of draws from the ergodic distribution for the parameter of interest at the frequency . I estimate

the spectral densities based on the Fast Fourier transform.
28Notice that with =2 the number of overall observations is equal to 555 for the panel of 20

countries, and to 247 and 308 for the panels of 10 countries with the highest and lowest inflation

rates, whereas the corresponding figures with =4 are 481, 206, and 275. This explains why, ceteris

paribus, log-likelihoods are uniformly greater for =2 than they are for =4. In terms of likelihood
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maxima of the distributions based on model (20), thus suggesting that the log-log

provides a more plausible characterization of the data than the semi-log.

I now turn to estimating panel VARs for the logarithms of real money balances

and inflation.

7 Evidence from Panel VARs for the Logarithms

of Inflation and Real Money Balances

I estimate via OLS the following panel VAR specification for the logarithms of the

two series, ∙
̃

̃

¸
=

∙
̃


¸
+

∙
() ()

() ()

¸ ∙
̃-1

̃-1

¸
+

∙
̃


¸
(23)

where the notation is the same as before, characterizing uncertainty about the esti-

mates via standard bootstrapping methods,29 based on 10,000 bootstrap replications.

I set the lag order to either 2 or 4.

Table 3a reports, for any of three panels and for either lag order, the point es-

timates of the four largest eigenvalues of the VAR, together with the fractions of

bootstrap replications for which they are estimated to be smaller than one. The

main findings in the table can be summarized as follows:

(1) in all cases, all eigenvalues except the largest one are significantly smaller than

one. In particular, () their point estimates range between 0.279 and 0.859 and ()

the fractions of bootstrap replications for which they are estimated to be smaller than

one are consistently greater than 99 per cent, and in fact in most cases they are equal

to 100 per cent.

(2) As for the largest eigenvalue of any of the VARs, () in nearly all cases it is not

possible to reject the null hypothesis that it is equal to one at the 10 per cent level,

and () the point estimates are exactly equal to one based on the 10 most extreme

episodes; they are equal to 0.98 based on all of the 20 episodes; and they are somehow

smaller (0.926 and 0.945) only for the 10 least extreme episodes.

These results are compatible with the notion that the joint dynamics of the log-

arithms of real money balances and inflation is driven by a single unit root process,

which implies that the two series are cointegrated. As I will discuss in Section 9.2,

a natural conjecture is that the unit root in the system originates from permanent

variation in the amount of seignorage the government is attempting to raise, which,

per data point (i.e., dividing the log-likelihood by the number of observations), the difference between

=2 and =4 is, ceteris paribus, small to negligible.
29To be clear, the methodology is exactly the same as (e.g.) Barsky and Sims (2011), with the

only difference that they performed estimation for a single country, whereas I am doing it for panels

of either 20 or 10 (and I therefore have country-specific intercepts).
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in turn, is due to the often explosive behavior of the government budget deficit during

hyperinflations.

Table 3a Evidence from panel VARs for the logarithms of

real money balances and inflation: point estimates for the

four largest eigenvalues, and fractions of bootstrap replica-

cations for which the eigenvalues are greater than 1

Point estimates for the Fractions of bootstrap

four largest eigenvalues replications for which 1

1 2 3 4 1 2 3 4
Based on all 20 episodes

p=2 0.314 0.314 0.672 0.980 1.000 1.000 1.000 0.770

p=4 0.582 0.582 0.834 0.981 1.000 1.000 0.992 0.741

Based on 10 episodes with highest median inflation

p=2 0.313 0.313 0.459 1.009 1.000 1.000 1.000 0.283

p=4 0.505 0.505 0.509 1.009 1.000 1.000 1.000 0.269

Based on 10 episodes with lowest median inflation

p=2 0.279 0.279 0.765 0.926 1.000 1.000 1.000 0.935

p=4 0.731 0.731 0.859 0.945 1.000 1.000 0.999 0.838
 The bootstrapped distributions have been rescaled so that the median

of the distribution is equal to the point estimate.

7.1 Comparison with the semi-log

It is instructive to compare the results in Table 3a with those produced by the cor-

responding VARs for the logarithm of real money balances and the level of inflation.

These results are reported in Table 3b. The main findings are that () estimates of

the largest eigenvalue range between 1.249 and 1.729, and () in most cases, they

are estimated to be significantly greater than one. This suggests that the semi-log

functional form distorts the inference along an additional, and crucial dimension, by

spuriously suggesting that the joint dynamics of real money balances and inflation is

explosive, rather than simply possessing a unit root.
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Table 3b Evidence from panel VARs for inflation and the

logarithm of real money balances: point estimates for the

four largest eigenvalues, and fractions of bootstrap replica-

cations for which the eigenvalues are greater than 1

Point estimates for the Fractions of bootstrap

four largest eigenvalues replications for which 1

1 2 3 4 1 2 3 4
Based on all 20 episodes

p=2 0.330 0.330 0.937 1.728 0.876 0.816 0.534 0.124

p=4 0.631 0.631 0.924 1.680 0.795 0.746 0.550 0.063

Based on the 10 episodes with highest median inflation

p=2 0.061 0.094 0.936 1.729 0.953 0.891 0.539 0.035

p=4 0.674 0.969 0.969 1.584 0.799 0.536 0.522 0.105

Based on the 10 episodes with lowest median inflation

p=2 0.367 0.367 0.970 1.249 1.000 1.000 0.761 0.000

p=4 0.550 0.610 1.008 1.273 0.961 0.913 0.431 0.000
 The bootstrapped distributions have been rescaled so that the median of

the distribution is equal to the point estimate.

I now turn to estimating the elasticity of the demand for real money balances,

starting from (23), which I re-estimate by imposing that the largest eigenvalue is

exactly equal to one, which amounts to imposing one cointegration vector.

8 Estimating the Elasticity of Money Demand

8.1 Evidence from panel VARs

I start by estimating the panel VARs (23) in its vector error-correction (VECM) form,

imposing in estimation one cointegration vector. As mentioned, this is equivalent

to imposing the restriction that the largest eigenvalue in (23) is exactly equal to

one, which is near-uniformly accepted by the data. I estimate the models via the

two-stage procedure discussed by Luetkepohl (1991, Section 11.2.2, pp. 370-372),

which is appropriate when, as in the present case, there is just one cointegration

vector. Specifically, in the first stage I estimate the cointegration vector between the

logarithms of real money balances and inflation based on Stock and Watson’s (1993)

‘dynamic OLS’ (DOLS) estimator, setting , the number of leads and lags in the

DOLS procedure, to either 1 or 2. In the second stage I then estimate the VECM

form of (23) via OLS, imposing in estimation the cointegration residual obtained

in the first stage. I characterize uncertainty about the estimates by bootstrapping

the estimated VECM as in Cavaliere, Rahbek, and Taylor (2012). I estimate the

elasticity of money demand as the second element of the normalized cointegration
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vector (with the normalization being performed on log real money balances). Table

4 reports the point estimates of the elasticity, the 90 per cent coverage bootstrapped

confidence intervals, and the fraction of the bootstrapped distribution below -1, which,

as mentioned, is the threshold below which an increase in inflation is associated with a

decrease in seignorage with log-log money demand. For reasons of space I only report

results based on =2. Results for the alternative lag order (=4) are numerically very

close, and are available upon request.

Table 4 Evidence from panel cointegrated VARs for

the logarithms of real money balances and inflation:

point estimates of the elasticity, 90% bootstrapped

confidence interval, and fractions of bootstrap repli-

tions for which the elasticity is smaller than -1

Fractions of bootstrap

Point estimates, and replications for which

90% confidence interval elasticity is below -1

Based on all 20 episodes

k=1 -0.502 [-0.593; -0.412] 0.000

k=2 -0.554 [-0.656; -0.454] 0.000

Based on 10 episodes with highest median inflation

k=1 -0.792 [-0.896; -0.681] 0.001

k=2 -0.926 [-1.041; -0.796] 0.143

Based on 10 episodes with lowest median inflation

k=1 -0.295 [-0.392; -0.191] 0.000

k=2 -0.312 [-0.412; -0.202] 0.000

Evidence is reported in Table 4. Based on the joint panel of all 20 episodes the

estimated elasticity is either equal to Baumol and Tobin’s benchmark value of -1/2,

or very close to it, and there is no evidence that it might have been smaller than -1.

The implication is that, historically, the relationship between inflation and seignorage

has consistently been monotonically increasing at all inflation levels.

Splitting the overall sample into the most and the least extreme 10 episodes,

however, uncovers two important differences between the two sets.

First, the most extreme episodes have consistently been characterized by a larger

elasticity (in absolute value), with the difference between the point estimates for the

two groups of episodes being equal to -0.497 based on =1, and to -0.614 based on

=2. Further, as Figure A.8 in the Appendix shows, there is essentially no overlapping

between the bootstrapped distributions for the estimated elasticities for the two sets

of episodes. This suggests that the most extreme episodes have been characterized by

a significantly more elastic demand for real money balances than comparatively milder

episodes. Two possible, non mutually exclusive explanations for this pattern are that

the most extreme the hyperinflation, () the more widespread the phenomenon of

currency substitution becomes, so that, ceteris paribus, the elasticity of the demand
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for real money balances in national currency progressively increases; and () agents

devote more and more resources to forecasting inflation, with the result that they get

surprised less and less (i.e., expectations become ‘more and more rational’).

Second, there is some, although admittedly weak evidence that for the most ex-

treme episodes the elasticity might have been greater than one in absolute value. As

we will now see, these results are confirmed by two alternative approaches to the

estimation of the elasticity of money demand.

8.2 Evidence from two alternative approaches

Salemi and Sargent (1979) postulated a VAR representation for the joint dynamics

of inflation and money growth, and estimated it via maximum likelihood conditional

on the rational expectations restrictions implied by Cagan’s semi-log functional form.

In Appendix D I adopt an approach combining Salemi and Sargent’s (1979) insight of

postulating a time-series representation for the series of interest, and imposing upon it

the restrictions implied by a theoretical specification for the demand for real money

balances, with elements borrowed from Hamilton (1985) and Burmeister and Wall

(1982, 1987). Specifically, I postulate a VAR representation for the logarithms of real

money balances and the expectation of inflation at +1 conditional on information at

, and I estimate it via MLE by imposing the restrictions implied by Meltzer’s log-

log specification. As in Section 6.3 I characterize uncertainty about the estimates by

stochastically mapping the log-likelihood’s surface via RWM. Consistent with the use

of country-specific dummies in Sections 5.2, 6.3, 7, and 8.1 I allow the intercepts in

the VAR representation for ln () and ln(+1|) to be country-specific, whereas I

impose that all of the remaining parameters be the same for all of the countries in the

panel. The first panel of Figure A.10 in the Appendix shows the distributions of the

draws from the ergodic distributions for the elasticity of real money balances, both

for all of 20 the episodes considered jointly, and for the 10 episodes with either the

highest or the lowest median inflation rates, respectively. Evidence is qualitatively in

line with, and quantitatively very close to, that based on panel VARs discussed in

the previous sub-section. In particular,

() evidence strongly suggests that higher inflation has consistently been associated

with a larger (in absolute value) elasticity. In particular, whereas based on all of the

20 episodes the median and the 5th and 95th percentiles of the distribution of the

elasticity are equal to -0.573 [-0.669; -0.486], the corresponding figures for the 10

most and least extreme episodes are -0.932 [-1.094; -0.759] and -0.306 [-0.135; -0.468],

respectively.

() Only for the panel featuring the 10 most extreme episodes there is some

evidence that the elasticity may have been greater than one in absolute value, with

22 per cent of the draws being associated with values of the elasticity below -1. On

the other hand, for either the 10 least extreme episodes, or all of the 20 episodes

considered jointly, all of the draws are associated with values of the elasticity greater
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than -1.

Finally, Appendix D.2 reports evidence from a third approach in which, at each

point in time, expected inflation next period is computed based on either an AR()

model for inflation, or a VAR() model for inflation and money growth, which are

estimated via constant-gain recursive least squares. The gain parameter is estimated

via MLE together with the other structural parameters of the model, and uncertainty

about the estimates is characterized, once again, via RWM. Evidence based on the

univariate and bivariate schemes for forecasting inflation are qualitatively the same,

and numerically very close, which is in line with Sargent and Wallace’s (1973) classic

result that, within a bivariate VAR representation for money growth and inflation,

the former does not Granger-cause the latter. The second panel of Figure A.10 in

the Appendix shows the distributions of the draws from the ergodic distributions for

the elasticity of real money balances, based on the univariate forecasting model for

inflation (results based on the bivariate model are available upon request). Evidence

is broadly in line with that discussed so far, with the only difference that, for any of

the three sets of episodes, the estimated elasticities are uniformly greater in absolute

value. In particular, for the panel of 10 most extreme episodes, there is strong evidence

that the elasticity may have been slightly below -1, with the median and the 5th and

95th percentiles of the distribution being equal to -1.034 [-1.055; -1.016], and the

fractions of draws below -1 being equal to 0.999. On the other hand, based on either

all of the 20 hyperinflations jointly considered, or the 10 least extreme episodes, not

a single draw is associated with values of the elasticity greater than one in absolute

value, with the median and the 5th and 95th percentiles of the distribution being

equal to -0.905 [-0.918; -0.892], and -0.741 [-0.759; -0.722, respectively.

I now turn discussing the implications of my findings, starting from the interpre-

tation of historical episodes of hyperinflation.

9 Implications

9.1 The standard view of hyperinflation is incorrect

As mentioned in the Introduction, since Cagan’s (1956) landmark study the literature

on hyperinflation has been dominated by a narrative featuring two main elements:

(1) the relationship between money growth and seignorage exhibits a Laffer-curve

property, and (2) historically, governments have near-uniformly inflated in excess of

the revenue-maximizing rate, i.e., they have been on the ‘wrong side’ of the Laffer

curve. This view of the world can be found in all graduate textbooks–from from

(e.g.) Blanchard and Fischer (1990, Chapter 4, pp. 195-201), to Obsteld and Rogoff

(1996, Chapter 8, pp. 515-530), to Walsh (2017, Chapter 4, pp. 153-162)–and it

has been taught in PhD courses for decades. As my evidence has shown, this view

is incorrect: the relationship between money growth and seignorage had, and has

been uniformly positive at all inflation rates. This suggests that previous studies of
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Figure 10  The budget deficit, money growth and seignorage in the Weimar Republic 
 



hyperinflation are incorrect along several dimensions.

9.2 Interpreting historical episodes of hyperinflation

If the true functional form for the demand for real money balances were Cagan’s

semi-log, what we would need are theories explaining why a rational government

may end up on the ‘wrong’ side of the Laffer curve for seignorage. The standard

explanation, due to Sargent and Wallace, is that under rational expectations only the

high-inflation steady-state is stable, whereas the low-inflation one is unstable.

If, on the other hand, the true functional form is Meltzer’s log-log (or a specifica-

tion close to it such as Benati et al.’s), and in the light of the fact that historically

the relationship between seignorage and inflation had been uniformly positive, what

we rather need are theories explaining why a rational government may have decided

to move the economy along such a monotonically increasing relationship.

Consider e.g. once again the last four panels of Figure 5. Why would the Polish,

German, Hungarian, and Greek governments have decided to create money at ever-

increasing rates, thus raising ever-increasing amounts of seignorage? In line with

Bresciani-Turroni (1937) and Sargent (1982), a plausible explanation is that they

were attempting to plug ever-increasing holes in the government budget, i.e. to

finance progressively increasing deficits via money creation.

Some of the available evidence on the evolution of budget deficits during hy-

perinflations is compatible with this notion. For Germany’s episode, the data from

Bresciani-Turroni’s (1937) Table I, page 437, plotted in the first panel of Figure 10,

show for the latest stages of the hyperinflation (i.e., since early 1923) a strong positive

correlation between money growth and the budget deficit, computed as the difference

between the expenditures and the income (i.e., essentially taxes) in million of Gold

Marks (i.e., in real terms).30

One possible explanation for such a strong correlation could be the phenomenon

described by Bresciani-Turroni (1937) and by Olivera and Tanzi: since taxes are

specified in nominal terms at time , and they are due at a later date, + , an inflation

outburst between  and + would have reduced their real value, thus increasing,

ceteris paribus, the budget deficit. The second panel of Figure 10 shows evidence on

this, based on the same data from Bresciani-Turroni (1937). The inflation explosion

of 1923 had indeed been associated with a decrease in the government’s income.

Such a decrease, however, was minor compared to both previous decreases in 1921

and 1922, when inflation had been comparatively more stable, and especially the

contemporaneous evolution of expenditures in 1923, which literally skyrocketed. Even

if we are willing to attribute the entire decrease in income in 1923 to the Bresciani-

30For countries other than Germany evidence is not clear cut, because (to the very best of my

knowledge) the data for government income and expenditures are routinely reported in nominal

terms for individual fiscal years (see e.g. the data in Sargent (1982)). This implies that it is not

possible to reconstruct the month-on-month evolution of the real government budget deficit.
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Turroni-Olivera-Tanzi effect, still the explosion in expenditures appears to have played

the dominant role in the corresponding explosion in the budget deficit.

In fact, as discussed by Bresciani-Turroni (1937, Section VIII, pp. 62-64) the key

event under this respect was the occupation of the Ruhr:

‘In the first months of 1923 the occupation of the Ruhr gave the coup de

grâce to the national finances and the German mark. Because of it some

important sources of income were lost to the State [...]. In addition, the German

Governments [...] did not think to cover the heavy expenses caused by Passive

Resistance with new taxes. It conceded very large credits to the Ruhr industry

to put it in a position to continue production.’.

The evidence in Figure 10 therefore suggests that the Bresciani-Turroni-Olivera-

Tanzi effect had only played a minor role in the explosion of the budget deficit that

took place in 1923, and that the dominant cause had rather been the invasion of the

Ruhr on the part of France.

9.3 Interpreting explosive inflation in the latest stages of hy-

perinflations

As shown in Figure 2, in several cases inflation exhibits an explosive dynamics towards

the end of hyperinflations. With Cagan’s semi-log the only way for the model to

generate explosive inflation is for the government to attempt to collect an amount of

seignorage greater than the maximum feasible (i.e., that associated with the peak of

the Laffer curve). Under these circumstances, the GG curve and the 45 degrees line

in the left hand-side panel of Figure 1 do not touch, so that there is no steady-state

to speak of, and as a result inflation simply explodes to infinity. With the log-log

or (e.g.) Benati et al.’s (2021) functional form, on the other hand, explosive inflation

can result even if in fact any amount of seignorage is feasible, in the sense that it can

be collected in a steady-state. Consider the economy described by the right hand-

side panel of Figure 1: if  and  are sufficiently close, a large shock may cause the

economy to jump to a point on the GG curve to the right of .

10 Conclusions, and Three Directions for Future

Research

Since it was first documented by Cagan (1956), policymakers’ (alleged) tendency

to inflate in excess of the revenue-maximizing rate during hyperinflations has been

confirmed by several subsequent studies, to the point that it has nearly achieved

the status of a stylized fact in empirical macroeconomics. Based on data from 20

hyperinflations I have shown that in the data there is nearly no evidence of a Laffer
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curve for seignorage. I have argued that a likely explanation for this is that the

money demand specification which best describes the joint dynamics of inflation and

real money balances during hyperinflations is not Cagan’s semi-log, which features

the Laffer curve as a mathematical property independent of the value of the semi-

elasticity of money demand, but rather Meltzer’s log-log (or a specification close to

it), which for values of the elasticity smaller than 1 in absolute value produces the

monotonically increasing relationship between inflation and seignorage seen in the

data. My evidence suggests that Cagan’s paradox is the product of the literature’s

predominant focus on the semi-log functional form.

An obvious direction for future research is to explore the issue issue of whether,

during hyperinflations, the economy may have been operating under indeterminacy,

so that hyperinflatonary episodes may have been influenced by sunspots. Sargent and

Wallace (1987) developed a model of monetary financing of the government budget

deficit via the inflation tax allowing for the possibility of indeterminate equilibria, but

they did not take it to the data, neither (to the very best of my knowledge) they did

in subsequent work. Based on the evidence reported in the present work, the starting

point should therefore be to perform a theoretical analysis along the lines of Sargent

and Wallace’s (1987) based on the log-log functional form, and to then estimate the

model based on the dataset I have used in the present work, possibly expanded with

additional series pertaining to government finances.

A second natural extension is to apply to the context of hyperinflations the

methodology proposed by Ascari, Bonomolo, and Lopes (2019) for computing tem-

porarily unstable paths within rational expectations DSGE models. Within the con-

text of the U.S. Great Inflation of the 1970s, Ascari et al. (2019) show that when

allowing for temporarily unstable paths the data quite clearly select them as the most

plausible explanation of the Great Inflation. Given the extreme nature of hyperinfla-

tions, Ascari et al.’s (2019) results logically suggests that we should expect to obtain

the same results.

A third possible extension is to apply to the context of hyperinflations the method-

ology proposed (e.g.) by Angeletos, Collard, and Dellas (2018) in order to introduce

‘hall of mirrors’ effects into DSGE models, thus allowing to capture the impact of

higher-order expectations on macroeconomic dynamics. The very nature of hyperin-

flations logically suggests that such effects may have played an important role, since

individuals’ propensity to ‘run away from money’ (i.e., shrink their real money bal-

ance in order to minimize the inflation tax) crucially depends on what they expect

other individuals to do, which in turns depends on what other individuals expect

other individuals to do, and so on.
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A Benati, Lucas, Nicolini, andWeber’s (2021)Model

of the Transaction Demand for Money

The model of the transaction demand for money I briefly summarize in Section 2

of the main text is the one analyzed in Benati, Lucas, Nicolini, and Weber (2017,

2021). The model features a labor-only, representative agent economy in which making

transactions is costly. Preferences are described by

0

∞X
=0

()

where  1,  is consumption at date , and the function  is differentiable, increas-

ing in its argument, and concave. In each period the agent is endowed with a unit of

time, with  allocated to goods production and 1- used to carry out transactions.

The goods production technology is given by  =  =  , where  is an exogenous

stochastic process. Households choose the number  of ‘trips to the bank’ as in the

classic Baumol-Tobin model. At the beginning of a period, a household begins with

some nominal wealth that can be allocated to money  or to risk-free government

bonds . During the first of the  subperiods, one member of the household uses

money to buy consumption goods. During this same initial subperiod, another mem-

ber of the household produces and sells goods in exchange for money. At the end of

the subperiod, producers transfer to the bank the proceeds from their transactions.

Thus, the situation at the beginning of the second subperiod exactly replicates the

situation at the beginning of the first. This process is repeated  times during the

period. The choice of this variable  is the only economically relevant decision made

by households. Purchases over a period are subject to a cash-in-advance constraint,

 ≤.

Notice that  is the velocity of money, and its inverse in equilibrium is the money-

to-output ratio, or the demand for real money balances. Baumol and Tobin assumed

that the cost of carrying out these transactions increases linearly in the number of

trips. Benati et al. (2017, 2021) consider more general specifications in which the

total cost of making transactions, measured in units of time, is given by either

() =  (A.1)

where  and  are positive constants, or

() =
 +  ln 


−  +  ln( + )

 + 
 (A.2)

Expression (A.1) becomes the Baumol-Tobin linear case when  = 1. In expression

(A.2) it is assumed that    (1− ln ), so that the function is always increasing in

. This function is also concave as the one before. The main difference between (A.2)
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and (A.1) is that it asymptotes a constant as the number of trips grows arbitrarily

large.

When the cost of making transactions is given by (A.1), Benati et al. (2021) show

that the solution for  is


+1

1− 
=  (A.3)

where  is the nominal interest rate. Note that  is the cost of inflation in units

of time, and therefore it represents the welfare cost of inflation as a ratio of maximum

potential output. Taking logs we obtain

ln + ln+1 − ln(1−  ) = ln (A.4)

As discussed in the main text of the paper, at low inflation rates the welfare costs of

inflation are negligible, so that 1 −  ' 1, ln(1 −  ) ' 0, and (A.4) therefore

becomes

ln
1


= ln




' 1

 + 1
[ln − ln]  (A.4)

which is Meltzer’s log-log with elasticity 1( + 1). The Baumol-Tobin case is the

one obtained by assuming that  = 1 which implies an interest rate elasticity of 12

By the same token, when the cost of making transactions is given by (A.2) the

solution is
2

( + )
2

[ (ln(+ )− 1) + ]

1− ()
=  (A.5)

Ignoring as before the term 1 − (), and considering relatively small values for 

produces a linear relationship between the log of velocity and the interest rate,

ln
1


= ln




'  − 


− 1


 (A.6)

which corresponds to the semi-log specification.

B The Data

Here follows a detailed description of the data and of their sources.

B.1 The data for hyperinflations

B.1.1 Monthly data

Data for the French Revolution have been generously provided by Eugene White.

A monetary aggregate labelled as ‘Total assignats in circulation less demonetized
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issues’31 is from Table 9 of White (1990). The corresponding price index, labelled

as ‘French Treasury exchange rate: market rate. French paper assignats per gold

French livre’, is from Table 2 of White (1991), and it represents the ‘conversion rate’

of paper assignats which had been issued at a specific date into gold French livre,

meaning that, in fact, this was an assignats-specific price index.32

Cagan’s (1956) data for Austria, Germany, Hungary (both post-WWI and post-

WWII), Poland, Russia and Greece are from his Appendix B.33

Barro’s (1970) data for Austria, Germany, post-WWI Hungary, and Poland are

from Tables A1-A4 in the Appendix, and feature the logarithm of real money balances

and inflation, computed as the log-difference of the relevant price index.

Graham’s data for Germany are from Table XII of Graham (1930), and feature

indices of wholesale prices and of total monetary circulation.

The data for China are from Zhao and Li (2015), and they have been kindly

provided by L. Zhao. As detailed in Zhao and Li (2015), the data for currency are

from Wu (1958, pp. 92 and 122), whereas the price index is from Wu (1958, pp.

160-163).

For Chile and Argentina, data for M1 and the CPI are from the Banco Central

do Chile and the Banco Central de la República Argentina, respectively.

For Bolivia, data for M1 are from Bolivia’s central bank, and they have been

kindly provided by Carlos Gustavo Machicado, whereas data for the CPI are from

the Instituto Nacional de Estadistica.

For Brazil the CPI is from the Instituto Brasileiro de Geografia e Estatística

(IBGE), whereas M1 is from the Banco Central do Brazil.

For Peru the CPI is from the Banco Central de Reserva del Peru, whereas a

monetary aggregate defined as ‘Money plus quasi money’ is from the International

Monetary Fund’s International Financial Statistics (henceforth, IMF and IFS).

The data for Yugoslavia–a retail price index (RPI), M1, and the black market

exchange rate of the Yugoslav dinar vis-à-vis the Deutsche Mark–are from Petrovic

and Mladenovic (2000; henceforth PM), and they were kindly provided by Z. Mlade-

31To be clear, what this label means is that the stock was computed as the sum of the total

amount of assignats which had been issued by the Revolutionary government, minus the amount

which had been retired from circulation and destroyed (as it was periodically done).
32I ignore the other currency issued by the Revolutionary government, the mandat, because be-

tween February 1796, when the mandats were first issued, and June 1796, when my sample ends, the

stock of mandats consistently represented a tiny fraction of the stock of assignats (ranging between

0.06 per cent in February, and 3.8 per cent in June).
33Cagan’s dataset features the logarithms in base 10 of (/) and of (/−1), where  and

 are the nominal money stock and the price level, respectively, for month . I converted the

original data to natural logarithms. Then, I computed the index of log prices as the cumulative sum

of the log-difference of the price level, and based on this, and the logarithm of real money balances,

I recovered an index for log nominal money balances.
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novic.34 Since, as discussed by PM,35 several observations of the RPI are unreliable,

in what follows I will work with the exchange rate, which, as discussed by PM in

footnote 10, was collected directly by them from daily newspapers.

Data for Congo, Angola, and Bulgaria are from the IMF ’s IFS. For Congo they

feature a series for ‘Money’ and the exchange rate vis-à-vis the U.S. dollar; for Angola

the central bank’s ‘Reserve Money’ and the CPI; for Bulgaria, M1 and the CPI.

For Zimbabwe, a series for ‘Reserve Money’ is from the IMF ’s IFS, whereas the

black-market exchange rate of Zimbabwe’s dollar vis-à-vis the U.S. dollar, which

was used in McIndoe-Calder (2018), has been generously provided by Tara McIndoe-

Calder. As discussed by McIndoe-Calder (2018, Section III, pp. 1661-1663) the official

CPI series (available from the IMF ’s IFS) is unreliable, and in what follows I will

therefore exclusively focus on the black-market exchange rate.

For Venezuela, data for M1 are from the Banco Central de Venezuela. As for the

price index, the government stopped publishing official CPI figures in December 2015,

and it resumed publishing them in June 2019. Although, strictly speaking, an official

monthly CPI series is available on a continuous basis since December 2007, I have

preferred to resort, once again, to the black-market exchange rate (in the present case,

for the Bolivàr vis-à-vis the U.S. dollar), which is available at the daily frequency at

the website https://dolartoday.com.36

B.1.2 Weekly data

As for Germany, a weekly series for the money stock (labelled as ‘Notenumlauf’,

i.e. ‘Banknotes in circulation’), available from December 14, 1918 to November 15,

1923, is from Flood and Garber’s (1980) Table B.1 in Appendix B until the end of

December 1922–with the original source of the data being Wirtschaft und Statistik

(WS)37–and it is from WS after that.38 A daily series for the spot exchange rate

of the German Reichsmark vis-à-vis the British Pound is available nearly without

interruptions from September 7, 1922 to November 15, 1923 from WS. An important

point to stress is that since, with a couple of exceptions, this series is available for each

single business day during this period, I can almost always exactly match the dates

34The data’s original sources are discussed in detail in footnote 10 of Petrovic and Mladenovic

(2000).
35See p. 787, and especially footnote 4.
36The key reason for doing so is that for a sizeable portion of the sample period the profile of the

official CPI series is materially different from that of the black-market exchange rate, and among

the two there are probably good reasons for putting more trust in the latter, rather than in the

official statistics produced by the government. (E.g., for Argentina, it is worth recalling that under

Christina Kirchner’s government The Economist stopped reporting the official CPI statistics, on the

grounds that, as it was widely known, they were being manipulated.)
37See at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00000012?list=all
38The original series contains a periodic pattern at the monthly frequency (so that in the last day

of the month the series temporarily increases compared to adjacent observations), which I removed

it via ARIMA X-12.
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in which the monetary aggregate had been released with the dates for the exchange

rate. A weekly price series (labelled as ‘Großhandelindexziffer’, i.e. ‘Wholesale price

index’), available from August 7, 1922 to November 15, 1923, is fromWS. A limitation

of this series, compared to the series for the Reichsmark/Pound exchange rate, is that

it had been released at the weekly frequency on dates which sometimes did not match

the release dates for the monetary aggregates. As a result, a dataset comprising this

series and the ‘Notenumlauf’ monetary aggregate suffers from the shortcoming that

the two series are not exactly matched on a day-by-day basis. Because of this, in what

follows I will almost exclusively focus on the results based on the exchange rate, and

I will largely eschew those based on the wholesale price index.

As for post-WWII Hungary, two series for a monetary aggregate (labelled as

‘Notes’) and a price index are from the appendix of Anderson, Bomberger, and Maki-

nen (1988).

B.2 Long-run data

B.2.1 Annual data

All of the annual data for Brazil, Argentina, Chile, and Bolivia shown in Figure 9 are

from the dataset assembled by Benati, Lucas, Nicolini, and Weber (2021).

B.2.2 Quarterly data

The sources of the quarterly data for Israel and Mexico used for Figure 3 are as

follows.

For Israel, a seasonally adjusted series for nominal GDP is from the International

Monetary Fund’s International Financial Statistics. A seasonally adjusted monthly

series for M1 is from the Bank of Israel, and it has been converted to the quarterly

frequency by taking averages within the quarter. A monthly series for the central

bank’s discount rate is from the International Monetary Fund’s International Finan-

cial Statistics, and it has been converted to the quarterly frequency by taking averages

within the quarter.

For Mexico, a seasonally adjusted series for nominal GDP is from INEGI. A

seasonally unadjusted series for M1 is from Banco de México (Mexicos’ central bank),

and it has been seasonally adjusted via ARIMA X-12. A monthly series for a short-

term rate (91 day Cetes) is from Banco de México, and it has been converted to the

quarterly frequency by taking averages within the quarter.
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C Computing Seignorage Based on Discretely Sam-

pled Observations for Money and Prices39

What is the most reliable way of computing seignorage based on discretely sampled

observations for money and the price level? In continuous time there is no ambiguity

about how to compute it: by defining the money stock and the price level as 

and , the instantaneous revenue from money creation is given by expression (1)

in the main text.40 Working with observations for  and  sampled at discrete

intervals, on the other hand, things are not clear-cut, since the explosive dynamics

that typically characterize hyperinflations causes alternative, and apparently equally

sensible ways of computing seignorage to often produce materially different estimates.

This is the case, in particular, for the latest–and typically most extreme–stages of

hyperinflations, i.e. precisely those which are most informative about the presence,

or absence, of a Laffer curve for seignorage.

As a simple illustration, consider the following discrete-time version of (1), which

as I will show works well under a wide range of empirically plausible circumstances:

∗ ≡ ∗

"µ
−1
−1

¶ µ




¶1−#
(C.1)

where ∗ ≡ ln()-ln(−1)=-−1, and  ∈ [0 1]. I what follows I will work

with =0.5, although, as I discuss in footnote 42 below, I have also experimented

with alternative values. Table C.1 reports, for Yugoslavia and Zimbabwe, empirical

measures of seignorage based on (C.1) for the month corresponding to the inflation

peak, as well as for 6 and 12 months before the peak, together with the inflation rate,

computed as the log-difference of the price level, i.e.  ≡ ln()-ln(−1)=-−1.
The table also reports the corresponding measures based on an alternative expression

found in the literature:41

̃ ≡
 −−1
1
2
( + −1)

 (C.2)

In either case, seignorage measures have been rescaled so that, 12 months before the

inflation peak, they are equal to 1.

39This Appendix is conceptually in line with Bresciani-Turroni’s (1937, pp. 146-154) analysis

of the superiority of geometric averages, compared to their arithmetic counterparts, within the

context of Germany’s hyperinflation. A key difference is that whereas Bresciani-Turroni considered

numerical examples based on actual data, I work based on continuous-time theoretical models.
40Working in continuous time, Drazen (1985) presents a measure of the revenue from money

creation which is conceptually correct across alternative models. Drazen’s measure–see his equation

(5)–is equal to (in my notation) the sum of () in (1), and (-), where , , and 
are the real interest rate, population growth, and ‘the (per capita real) value of assets held by

government by virtue of people holding real balances’ (see Drazen, 1985, p. 328). Since (-) is

negligible compared to , and  is of the same order of magnitude of , it logically follows

that Drazen’s measure is, for all practical purposes, near-identical to ().
41See e.g. Sargent and Velde (1995, p. 506).
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Table C.1 Empirical measures of seignorage for Yugoslavia and

Zimbabwe based on alternative discrete-time approximations

Yugoslavia Zimbabwe

 ∗ ̃  ∗ ̃
12 months before inflation peak 0.59 1 1 1.00 1 1

6 months before inflation peak 1.22 0.56 0.52 0.92 0.60 0.61

Inflation peak 11.29 1.11 0.16 3.91 1.41 0.57

The table clearly illustrates the problem: whereas ∗ and ̃ are very close 6 months

before the inflation peak, for the month associated with the peak they diverge quite

significantly. Further, for the most extreme episode, Yugoslavia (and to a much

lesser extent for Zimbabwe), ∗ points towards amonotonically increasing relationship

between inflation and seignorage, whereas ̃ points towards a Laffer curve, with the

inflation explosion over the last 6 months leading to the peak being associated with

a decrease in seignorage. These results, which are representative of the overall set

of 20 episodes,42 suggest that whereas the two measures tend to produce similar

results for the comparatively milder stages of hyperinflations, for the most extreme,

and therefore most informative stages they sometimes produce significantly different

estimates. This raises the obvious question of which, between ∗ and ̃, should be

regarded as the most reliable measure of the revenue from money creation. Or is it

the case that, in fact, neither of them provides a reliable approximation to the true

amount of seignorage collected by the government?

C.1 Approximations based on discretely sampled observa-

tions

In order to address this issue, in this appendix I explore how to best estimate the

amount of seignorage raised by the government between two specific points in time,

1 and 2, based on observations for money and the price level corresponding to those

specific dates, i.e. [1 2]
0 and [1 2 ]

0. The true amount of seignorage collected

between 1 and 2 is defined as the integral of (1) over this interval:

TRUE

1→2
≡
Z 2

1






 (C.3)

As for the evolution of real money balances as a function of expected inflation, I

consider both Cagan’s (1956) semi-log money demand specification,

ln

µ




¶
=  +  , (C.4)

42The entire set of results is available upon request.
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and Meltzer’s (1963) log-log,

ln

µ




¶
=  +  ln() (C.5)

where  is expected inflation, and   0 and  are constants. In order to explore

which discrete-time approximation works best across a range of possible empirical

scenarios, I consider three alternative assumptions about the evolution of inflation,

i.e. either that it is constant, or that it evolves according to either a linear or an

exponential time trend.43

C.1.1 A steady-state with constant inflation, seignorage, andmoney growth

With  ≡  ln =  = ̄, the logarithm of the price level evolves according

to  = 0 + ̄, where 0 is an integration constant, so that its level is given by

 = 0 exp(̄). With ==̄, from either (C.1) or (C.2) real money balances,

and therefore money growth, are also constant, and they are equal to (/) =

(00) ≡ exp(̄) and  = ̄, respectively. Finally, from  = ̄ the logarithm and

the level of the money stock evolve according to  = 0+ ̄ and  =0 exp(̄).

The instantaneous value of seignorage is therefore equal to  = ̄ exp(̄), so that the

amount of seignorage raised by the government between -1 and  is equal to

TRUE

-1→ ≡
Z 

-1






 =

Z 

-1

̄ exp(̄) = exp(̄)̄ (C.6)

It can be trivially shown that ∗ is indeed equal to TRUE

-1→, whereas

̃ ≡ exp(̄)
exp(̄)− 1
1
2
[exp(̄) + 1]| {z }

(̄)

= exp(̄)(̄) (C.7)

A comparison between (C.6) and (C.7) shows that the ability of the latter to reliably

approximate the former hinges on the extent to which (̄) is, or is not, sufficiently

close to ̄. Whereas for ̄=0.5–Cagan’s threshold at the monthly frequency for an

episode to be classified as a hyperinflation–(̄)=0.490, progressively higher values

of ̄ quickly lead to large and increasing (in absolute value) negative deviations of (̄)

from ̄. E.g., for ̄=1.313 (Venezuela’s maximum inflation rate so far) (̄)=1.152,

43I define the alternative scenarios in terms of the evolution of inflation–rather than seignorage,

or money growth–for the following reasons. Since seignorage is what we aim to estimate, it is

not possible to state that (e.g.) a scenario with constant seignorage is more realistic, from the

perspective of the 20 episodes I analyze, than one in which seignorage evolves according to an

exponential trend. To put it differently, in order to be able to assess which scenarios are more, and

which are less realistic, we ought to focus on a variable which is unambiguously observed. Under

this respect, the key advantage of inflation over money growth is that the analysis is significantly

simpler from a mathematical point of view.
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corresponding to a 12.3 per cent underestimation of seignorage compared to its true

value. For ̄ equal to Zimbabwe’s maximum inflation rate of 3.912, however, the

extent of underestimation already reaches 50.9 per cent, whereas for ̄=5.885 (Ger-

many’s inflation peak) (̄)=1.989, with an underestimation of 66.2 per cent. For

̄ → ∞, (̄) → 2, so that underestimation tends to 100 per cent: in fact, such

an extent of underestimation already obtains for inflation rates corresponding, e.g.,

to Yugoslavia’s peak of 11.29. More generally, underestimation is non-negligible to

substantial (or much worse) for any inflation rate greater than about 1.5. The im-

plication is that even if most (or all) episodes could be characterized as fluctuations

around a steady-state with constant inflation, in the vast majority of cases ̃ would

provide a poor, or very poor estimate of the true amount of seignorage raised by the

government.

For many episodes, however, the notion that inflation may have been fluctuating

around a constant value appears as hardly reasonable. For the countries in Ca-

gan’s dataset, for example, this is the case only for the three comparatively milder

episodes (post-WWI Hungary, Austria, and Russia), whereas for the remaining four

cases inflation exhibits a clear upward trend. Evidence for the remaining episodes is

qualitatively the same.

In the next two sub-sections I therefore extend the previous analysis by considering

two alternative specifications for the inflation trend, first under the assumption of

perfect foresight, = (i.e. the equivalent, within the present context, to rational

expectations), and then under the assumption of adaptive expectations.

C.2 The case of perfect foresight

C.2.1 A linear time trend for inflation

With inflation following the linear time trend  ≡ 0 + –where 0 and   0 are

constants– and  evolve according to  = 0+0+22 and  = 0 exp(0+

22). The fact that inflation is monotonically increasing implies that, based on either

(C.4) or (C.5), real money balances are progressively decreasing, so that different from

the previous sub-section the analysis has to be performed for either of the two money

demand specifications.

Working as before it can be shown, after some math, that for the semi-log specifi-

cation ==0++, and (/)=exp(+0+), so that the amount

of seignorage raised by the government between -1 and  is equal to

TRUE

-1→ =

µ
1+

0



¶
[exp ()-1] exp(+0) exp[(-1)]+

+
1


exp(+0) exp[(-1)]

∙
 exp()-(-1)-

exp()-1



¸
(C.7)
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whereas for the log-log it is equal to

TRUE

-1→ = exp()
(0+)+2-[0+(-1)]

+2

(+2)
+

+exp() {(0+)-[0+(-1)]
} (C.8)

I now turn to the case of an exponential time trend for inflation.

C.2.2 An exponential time trend for inflation

With inflation following the exponential trend  ≡ 0 exp()–where, as before, 0
and   0 are constants– and  evolve according to  = 0 + (0) exp()

and  = 0 exp[(0) exp()]. Working as as before it can be shown that for the

semi-log specification the amount of seignorage raised by the government between -1

and  is equal to

TRUE

-1→ = exp()0(1 + )

Z 

-1

exp[ + 0 exp()] (C.9)

whereas for the log-log it is equal to

TRUE

-1→ = exp()

0 [exp()− 1] exp[(-1)]+

+exp()1+0

exp[(1+)]-1

(1+)
exp[(1+)(-1)] (C.10)

For given values of the structural parameters , , , and 0 the integral in (C.9)

can easily be computed numerically.

C.2.3 Evidence

Given how convoluted expressions (C.7)-(C.10) are, different form appendix C.1.1

it is not possible to assess in a straightforward manner the extent to which either

(C.1) or (C.2) may or may not provide a good approximation to the true amount

of seignorage raised by the government. Conditional on specific parametes values,

however, such an assessment can be easily performed.

Figure A.1 reports results from the following exercise. I set 0=0.5 and =1.44

As for , I set it to 0.1 for the linear trend, and to 0.07 for the exponential one, so

that in either case inflation reaches a value of about 3 after 25 periods.45 Finally,

as for  I consider the following values. For the semi-log specification, based on the

44As mentioned, 0.5 is Cagan’s threshold at the monthly frequency for an episode to be classified

as a hyperinflation. As for , I experimented with several alternative values, and they all produced

qualitatively the same results reported herein.
45This appears as broadly plausible based on the values for the maximum inflation rates reported

in Table 1 in the main text.
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range of estimates reported in Sargent (1977), I set  to either -0.5, -1, -2, -4, or -6.

As for the log-log I consider Baumol and Tobin’s benchmark value of -0.5, as well as

either smaller or larger values, specifically -0.25, -0.75, -1, and -1.25. An elasticity

of -1 is of particular interest because, for -1, an increase in inflation is associated

with a decrease in seignorage for all inflation levels. Finally, I also consider =-1.25

because, as I discussed in Section 8 in the main text, for the most extreme episodes

there is some evidence that the elasticity of money demand might have been below

-1. Figure A.1 reports, for either inflation trend, either money demand functional

form, and either of the two expressions for computing seignorage based on discretely

sampled data–i.e., either (C.1) or (C.2)–the approximation error, defined as the

percentage deviation of either ∗ or ̃ from TRUE

-1→,
46 with, e.g., -0.01 meaning minus 1

per cent. In the figure I label ∗ as the ‘geometric average’, and ̃ as the ‘arithmetic

average’.

The following main results emerge from Figure A.1:

(1) consistent with appendix C.1.1, the approximation based on ̃ is uniformly

poor, or very poor for any inflation rate beyond about 1.5.

(2) Based on ∗ the approximation errors are negligible in three cases out of

four. In particular, based on the log-log functional form this is the case for either

specification for the inflation trend. This is crucial because, as shown in Section 5 in

the main text, evidence clearly suggests that the log-log provides the most plausible

description of the data.

(3) For the single instance in which ∗ provides a mostly poor approximation (i.e.,

the case in which inflation follows an exponential trend, and money demand takes the

semi-log form) it is to be noticed that () seignorage gets uniformly underestimated,

and () for any value of , the magnitude of the approximation error is (in absolute

value) monotonically increasing with inflation. The implication is that the presence

of such approximation error tends to produce spurious evidence of a Laffer curve (to

be precise, since we are here dealing with the semi-log, the approximation error tends

to magnify the evidence of a Laffer curve which is a mathematical property of such

specification). This means that in no way the absence of a Laffer curve in the data for

 and ∗ documented in Section 4 in the main text can be ascribed to the possible

presence of an approximation error.47

As shown in Section 5 in the mai text the log-log functional form provides a sig-

nificantly more plausible description of the data than the semi-log. This implies that,

as the second column of Figure A.1 shows, ∗ provides an excellent approximation

to the true amount of seignorage for either of the two specifications for the inflation

trend. Since, as previously shown, this is also the case for a constant-inflation steady

46I.e., (∗ -
TRUE
-1→)/

TRUE
-1→ and (̃-

TRUE
-1→)/

TRUE
-1→, respectively.

47In an attempt to improve the quality of the approximation within this specific instance, I have

also experimented with values of  different from 0.5. Values around 0.35-0.4 lead to non-negligible

improvements for values of  greater than about -0.8, whereas the improvement for smaller values

of  is essentially negligible. These results are available upon request.

44



state, the implication is that under perfect foresight ∗ provides a reliable estimate

of the true amount of seignorage for any empirically plausible scenario.

C.3 The case of adaptive expectations

As pointed out by several authors,48 within the context of hyperinflations the as-

sumption of rational expectations (here, perfect foresight) may be too extreme, for

two reasons. First, the often explosive nature of the process–i.e., its extraordi-

nary speed, with inflation typically moving from near price stability to hyperinflation

within a matter of months–should logically be expected to have caught agents at

least partially by surprise. Second, in most episodes the hyperinflation had been

historically unprecedented for that country. A stark illustration is represented by the

Weimar Republic episode: up until WWI, Germany had been operating for centuries

under commodity standards–over the most recent decades, under a Gold Standard–

and it had therefore experienced the extreme price stability that is a hallmark of such

regimes. It is therefore highly implausible that the German public might have had

rational expectations about the Weimar Republic episode right from the beginning

of the hyperinflation.

In this appendix I therefore extend the previous analysis to the case in which

inflation expectations evolve according to the adaptive expectations mechanism




= ( − ) (C.11)

The case of perfect foresight is the limit of (C.11) for  →∞.

C.3.1 A linear time trend for inflation

As in appendix C.2.1 inflation evolves according to  = 0+, and  and  evolve

according to  = 0+0+ 22 and  = 0 exp(0+ 22). I conjecture that 
also evolves according to a linear time trend,  = +, with coefficients  and 

to be determined. It can easily be shown that  and  are equal to =0-/ and

=, so that  = 0−+. Working as before, it can be shown that for the semi-

log  and  evolve according to =0+(0+)+2/2, with 0=+0+0-

, and =0 exp[(0 + ) + 22], so that ==0++, and

(/)=exp(+0-+). A comparison with appendix C.2.1 shows that

the expression for money growth is identical, whereas the only difference between the

two expressions for real money balances is the term - within the exponential

function. Since 0, this implies that, as long as ∞, real money balances are

greater than the corresponding level under perfect foresight, so that for any level of

inflation the government collects a strictly greater amount of seignorage than under

48See e.g. Fischer’s (1987) discussion of Sargent and Wallace (1987).
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perfect foresight. Working as before it can be shown that for the semi-log specifica-

tion the amount of seignorage raised by the government between -1 and  is equal

to

TRUE

-1→ =

µ
1+

0



¶
[exp ()-1] exp(+0-) exp[(-1)]+

+
1


exp(+0-) exp[(-1)]

∙
 exp()-(-1)-

exp()-1



¸
(C.12)

By the same token, it can be shown that for the log-log it is equal to

TRUE

-1→ = exp() {(̃0+)-[̃0+(-1)]
}+

+
exp()

(1+)

©
(0+)(̃0+)1+-[0+(-1)][̃0+(-1)]1+

ª−
− exp()

(1+)(2+)

©
(̃0+)2+-[̃0+(-1)]2+

ª
(C.13)

where ̃0 = 0-. It can be trivially checked that for  → ∞ expressions (C.12)

and (C.13) converge to the corresponding expressions for the case of perfect foresight,

(C.7) and (C.8).

I now turn to the case of an exponential time trend for inflation.

C.3.2 An exponential time trend for inflation

As in appendix C.2.2 inflation evolves according to  ≡ 0 exp()–where, as before,

0 and   0 are constants– and  evolve according to  = 0 + (0) exp()

and  = 0 exp[(0) exp()]. I conjecture that  also evolves according to an

exponential time trend,  =  exp(), with coefficients  and  to be determined.

It can be shown that  and  are equal to =0/(+) and =, so that  =

[0( + )] exp(). Working as before, it can be shown that for the semi-log

TRUE

-1→ = exp()0

µ


+
+
1



¶Z 

-1

exp

∙
+0



+
exp()

¸
 (C.14)

whereas for the log-log

TRUE

-1→ = exp()

µ
0

+

¶

[exp()− 1] exp[(-1)]+

+exp()0

µ
0

+

¶
exp[(1+)]-1

(1+)
exp[(1+)(-1)] (C.15)

It can be trivially checked that for  →∞ expressions (C.14) and (C.15) converge to

the corresponding expressions for the case of perfect foresight, (C.9) and (C.10).
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C.3.3 Evidence

Figure A.2 shows the results from an exercise analogous to that performed in appendix

C.2.3. I only report results for the log-log which, as shown in Section 5 in the main

text, provides a significantly more plausible description of the data than the semi-log.

Results for the semi-log are qualitatively the same as those shown in Figure A.1 for

the case of perfect foresight, and they are available upon request.

Figure A.2 reports the approximation errors for ∗ , defined as in appendix C.2.3

as the percentage deviation of ∗ from TRUE

-1→. I do not report the corresponding

evidence for the arithmetic average because, once again, ̃ provides an extremely

poor approximation to the true amount of seignorage, but this evidence is available

upon request. I consider five values for , 0.5, 1, 2, 5, and 10. The evidence in Figure

A.2 is qualitatively in line with that shown in Figure A.1. Even focusing on the

case of adaptive expectations, as opposed to that of perfect foresight, the geometric

average ∗ still provides an excellent approximation to the true amount of seignorage

collected by the goverment.

D Two Alternative Approaches to Estimating the

Elasticity of Money Demand

D.1 A semi-structural approach in the spirit of Salemi and

Sargent (1979)

Salemi and Sargent (1979) postulated a VAR representation for the joint dynamics of

inflation and money growth, and estimated it  maximum likelihood conditional on

the rational expectations restrictions implied by Cagan’s semi-log functional form. In

this appendix I adopt an approach combining Salemi and Sargent’s (1979) insight of

postulating a time-series representation for the series of interest, and imposing upon

it the restrictions implied by a theoretical specification for the demand for real money

balances, with elements borrowed from Hamilton (1985), and from Burmeister and

Wall (1982, 1987).

I define the logarithms of real money balances and the expected inflation as ̃ ≡
ln () and ̃ ≡ ln(+1|) respectively, with +1| being the rational expectation

of inflation at time +1, conditional on information at time . Being conditional on

information at time , ̃ is, by its very nature, a dated- object.

Based on this notation, the demand for real money balances is given by

̃ =  + ̃ +  (D.1)

where  is a money demand disturbance. Whereas Sargent (1977) and Salemi and

Sargent (1979) postulate that  is a random walk,49 in what follows I assume that

49Theoretical models of seignorage in which the governments finances,  the inflation tax, a
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it evolves according to

 = −1 +  || ≤ 1 (D.2)

i.e. a specification nesting the random walk case, but also allowing for stationarity.

The key reason50 for doing so is the evidence in Figure 7, especially for episodes such

as post-WWII Hungary, Zimbabwe, Yugoslavia, Germany, and Greece. Focusing, e.g.,

on Yugoslavia, a comparison between the two panels in the third column of Figure 7

naturally suggests (at least) two possible interpretations of the joint dynamics of log

real money balances and expected inflation. One possibility is that the true money

demand specification is Cagan’s semi-log and that the disturbance is very highly per-

sistent, possibly a random walk, which is suggested by the very persistent divergence

between the two series in the top panel. An alternative interpretation–which ap-

pears (at least, to me) as distinctly more appealing–is that the true functional form

is Meltzer’s log-log and that the disturbance has very little persistence. This is sug-

gested by the fact that the logarithms of inflation51 and real money balances in the

bottom panel track each other very closely.52. This logically implies that imposing

=1 automatically ‘stacks the cards’ in favor of the semi-log, and against the log-log,

so that estimates obtained conditional on the assumption that  follows a random

walk should not be regarded as reliable. In what follows I will therefore assume that

 evolves according to (D.2), and I will estimate   maximum likelihood together

with the other parameters of the model.

Turning to the time-series characterization of the joint dynamics of the series of

interest, conceptually in line with Hamilton (1985) and Burmeister and Wall (1982,

1987) I postulate that it is described by∙
̃

̃

¸
=

∙
̄

̄

¸
+

∙
() ()

() ()

¸ ∙
̃−1
̃−1

¸
+

∙
̃

̃

¸
 +

∙
̃
̃

¸
(D.3)

where (), ..., () are polynomials in the lag operatior, ̄ and ̄, and ̃ and ̃,

are constants, and ̃ and ̃ are shocks. Before turning to the restrictions imposed by

(D.1) on (D.3), it is worth spending a few words discussing why, within the present

context, it is necessary to work with a model such as (D.3) postulating a linear VARX

representation for the joint dynamics of log real money balances and the logarithm of

expected inflation, rather than either inflation or expected inflation. The key reason

constant fraction of GDP, produce a random-walk disturbance in the money demand equation.
50Christiano (1987) produces some evidence against the random walk assumption based on Cagan’s

data for Germany’s episode.
51Although the theoretical relationship is between log real money balances and expected–rather

than actual–inflation, by the rational expectation hypothesis the difference between them should

be white noise. This logically implies that the fact that the logarithm of actual inflation tracks log

real money balances much more closely than its level should be taken as an indication that the same

holds for expected inflation.
52Obviously, once appropriately rescaled, which is implicitly implemented by allowing for different

scales in the left- and right-hand side axes.
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for this is that if we specified a linear VARX (or VAR) representation for the joint

dynamics of ̃, and either +1| or , this would be inconsistent with the non-linear

relationship between ̃ and +1| in equation (D.1).53 To the extent that we want

to work with a linear time-series representation for the joint dynamics of the series of

interest, the linear relationship between ̃ and ̃ in equation (D.1) logically implies

that such time-series representation ought to be for those two series.

Equation (D.1) imposes the following restrictions upon (D.3):

̄ =  + ̄ (D.4)

() = () (D.5)

() = () (D.6)

̃ = ̃ (D.7)

and

̃ = 1 + ̃ (D.8)

In what follows I normalize ̃ to be equal to 1, which implies that ̃=0.

Finally, imposing equality between specification (D.1) for the demand for real

money balances, and the equation for ̃ in the VAR representation (D.3), produces

the following restriction for the error term for ̃ in (D.3):

̃ = ̃ (D.9)

By defining the state vector as  = [ ̃ ̃−1  ̃−+1]
0, where  is the lag order

in the lag polynomials (), ..., (),54 the model can be cast in state-space form,

with state equation⎡⎢⎢⎢⎢⎢⎢⎣

̃
̃−1
...

̃−+2
̃−+1

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



=

⎡⎢⎢⎢⎢⎢⎢⎣
0

̄

0

...

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



+

⎡⎢⎢⎢⎢⎢⎢⎣
 0 0 ... 0

0 1 2 ... 
0 1 0 ... 0

... ... ... ... ...

0 0 0 1 0

0 0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



⎡⎢⎢⎢⎢⎢⎢⎣
−1
̃−1
̃−2
...

̃−+1
̃−+2

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }

−1

+ (D.10)

53The same logic would hold if, e.g., following Salemi and Sargent (1979), we postulated a linear

representation for the joint dynamics of inflation and money growth.
54As discussed by Salemi and Sargent (1979, p. 746), because of the short sample length which

is typical of nearly all hyperinflationary episodes, the lag order ought necessarily to be set to a

comparatively small value. I set it to  to either 1 or 2 with monthly data (in what follows I only

present results based on =2, but the alternative set of results based on =1, which is qualitatively

the same, is available upon request).
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+

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 ... 0

1 2 ... 
0 0 ... 0

... ... ... ...

0 0 0 0

0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



⎡⎢⎢⎣
̃−1
̃−2
...

̃−

⎤⎥⎥⎦
| {z }



+

⎡⎢⎢⎢⎢⎢⎢⎣

̃
0

...

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



with

 ≡ (
0
) =

⎡⎢⎢⎢⎢⎣
2 ̃ 0 ... 0

̃ 2̃ 0 ... 0

0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

⎤⎥⎥⎥⎥⎦ (D.11)

where (·) is the unconditional expectation operator.

As for the observation equations, the first is given by

 = |−1 +  = [̃−1 + 1]
1
 +  (D.12)

where  is a rational expectations forecast error, i.e. =-|−1, with |−1=0, and

the second equality comes from the very definition of ̃ as the Box-Cox transfor-

mation of +1|. I allow for  to be correlated with the disturbances in the state

equation, that is,

 ≡ (
0
) =

£
 ̃ 0 ... 0

¤
(D.13)

where  and ̃ are covariances which I estimate together with the other parameters

of the model. The key reason for this is that, from a general equilibrium perspective,

rational expectations forecast errors do originate from the shocks hitting the system,55

so that they ought to be allowed to be correlated to them.

As for the observation equation for ̃, there are two equivalent ways to proceed.

The first is to use the equation for ̃ in the VAR representation (D.3), whereas the

second is to simply use equation (D.1), which can be rewritten as

̃ =  + [1  0  0] (D.14)

Because of restriction (D.9), the two representations for ̃ are equivalent. In what

follows I will use equation (D.14).

The state-space model described by equations (D.10), (D.12), and (D.14) is linear

with the single exception of the observation equation for inflation, expression (D.12).

Following (e.g.) Harvey (1989), I therefore take a first-order Taylor expansion of

55E.g., any solution method for linear rational expectations models, such as Sims’ (2000) produces

a linear mapping between the model’s structural shocks and the rational expectations forecast errors.
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(D.12) around |−1, thus obtaining the following approximate expression for the

observation equation for inflation

 ' [̃−1|−1 + 1] 1 − ̃−1|−1[̃−1|−1 + 1]
1−
| {z }



+ [̃−1|−1 + 1]
1−
 ̃−1 +  =

=  + [̃−1|−1 + 1]
1−
 ̃−1 +  (D.15)

Replacing the original non-linear observation equation (3.12) with (3.15) results in

a fully linear system, which allows to compute the log-likelihood  the standard

‘prediction error decomposition’ formula–see e.g. Harvey (1989), or Hamilton (1994).

D.1.1 Maximum likelihood estimation

I maximize the log-likelihood via simulated annealing.56 Having found the parameter

vector which maximizes the likelihood, ̂, I stochastically map the log-likelihood’s

surface via Random-Walk Metropolis (RWM). The only difference between the ‘stan-

dard’ RWM algorithm that is routinely used for Bayesian estimation and what I am

doing here is that the ‘jump’ to the new position in the Markov chain is accepted or

rejected based on a rule which does not involve any Bayesian priors, as it uniquely

involves the likelihood of the data.57 Specifically, the proposal draw for , ̃, is ac-

cepted with probability min[1, (−1, ̃ |  )]–where  is the matrix of the data for

̃ and –and rejected otherwise, where −1 is the current position in the Markov

chain, and

(−1 ̃| ) = (̃ |  )
(−1 |  ) (D.16)

which uniquely involves the likelihood.58 All other estimation details–e.g., comput-

ing the Hessian at the mode of the log-likelihood Berndt, Hall, Hall, and Hausman’s

methodology–are identical to Benati (2008), to which the reader is referred to. I use

56Specifically, following Goffe et al. (1994), I implement simulated annealing via the algorithm

proposed by Corana et al. (1987), setting the key parameters to 0 =100,000,  = 0.9,  = 5,  =

20,  = 10−6, and  = 4, where 0 is the initial temperature,  is the temperature reduction factor,

 is the number of times the algorithm goes through the  loops before the temperature starts

being reduced,  is the number of times the algorithm goes through the function before adjusting

the step size,  is the convergence (tolerance) criterion, and  is the number of times convergence

is achieved before the algorithm stops. Finally, initial conditions were chosen stochastically by the

algorithm itself, whereas the maximum number of functions evaluations, set to 1,000,000, was never

achieved.
57So what I am doing can be interpreted as Bayesian estimation with flat priors for all parameters.
58With Bayesian priors it would be

(−1 ̃| ) = (̃ |  ) (̃)
(−1 |  ) (−1)

where  (·) encodes the priors about .
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1,000,000 draws for the burn-in period, and 1,000,000 draws for the ergodic distri-

bution, which I ‘thin’ by sampling every 1,000 draws in order to reduce the draws’

autocorrelation. The fractions of accepted draws are uniformly very close to the

23 per cent ideal acceptance rate in high dimensions59, and the draws exhibit little

autocorrelation based on the draws’ inefficiency factors.60

D.1.2 Evidence

Once again I consider three panels, featuring both all of 20 the episodes considered

jointly, and the 10 episodes with either the highest or the lowest median inflation

rates, respectively. Consistent with the use of country-specific dummies in the main

text, I allow both ̄ and ̄ (and therefore ) to be country-specific, whereas I impose

that all of the remaining parameters be the same for all of the countries in the panel.

The first panel of Figure A.10 shows the distributions of the draws from the ergodic

distributions generated  Random-Walk Metropolis for the elasticity of real money

balances. Evidence is qualitatively in line with, and quantitatively very close to,

that based on panel VARs discussed in Section 8 in the main text. In particular, as

discussed in Section 8.1, () only for the panel featuring the 10 most extreme episodes

there is some weak evidence that the elasticity may have been greater than one in

absolute value, whereas for either the 10 least extreme episodes, or all of the 20

episodes considered jointly, evidence strongly rejects such notion; and () evidence

strongly suggests that higher inflation has consistently been associated with a larger

(in absolute value) elasticity. In particular, whereas based on all of the 20 episodes

jointly the median and the 5th and 95th percentiles of the distribution of the elasticity

are equal to -0.573 [-0.669; -0.486], the corresponding figures for the 10 most and least

extreme episodes are -0.932 [-1.094; -0.759] and -0.306 [-0.135; -0.468], respectively.

D.2 A model with recursive least-squares learning about in-

flation

The second panel of Figure A.10 shows the distributions of the draws from the ergodic

distributions generated  Random-Walk Metropolis for the elasticity of real money

balances, based on a model in which, at each point in time, expected inflation next

period is produced based on either an AR() model for inflation, or a VAR() model

for inflation and money growth, which are estimated  recursive least squares.61

59See Gelman, Carlin, Stern, and Rubin (1995).
60The inefficiency factors are defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),  = (2)−1 1
(0)

R 
− (), where () is the spectral density of the sequence

of draws from RWM for the quantity of interest at the frequency . I estimate the spectral densities

as before, based on the FFT transform.
61The figure shows results based on the univariate scheme for inflation forecasting, but those based

on the VAR for money growth and inflation are numerically very close (these results are available

upon request). This is in line with Sargent and Wallace’s (1973) classic result that, within a bivariate
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Before discussing the details of the model and of the estimation, which are entirely

standard, it is worth stressing, how the results are qualitatively in line with those

in Section 8 in the main text, and in the previous subsection based on the semi-

structural model in the spirit of Salemi and Sargent (1979). The only difference is

that, for any of the three sets of episodes, the estimated elasticities are here uniformly

greater in absolute value. In particular, for the panel of 10 most extreme episodes,

there is strong evidence that the elasticity may have been slightly below -1, with the

median and the 5th and 95th percentiles of the distribution being equal to -1.034

[-1.055; -1.016], and the fractions of draws below -1 being equal to 0.999.

Entering into details, the demand for real money balances is given by

̃ =  +  ln+1 +  (D.17)

where  is, again, a money demand disturbance, and +1 is the expectation of

inflation at +1. At each point in time , agents estimate, based on data up to

time -1,62 either an AR() model for inflation, or a VAR() model for inflation and

money growth (computed as the log-difference of the nominal money stock), based on

recursive least squares (RLS) with a constant gain . Based on data up to time -1,

and on the estimated model, agents then produce the inflation forecast at +1, +1,

by projecting the model two periods into the future. Given the sequence of inflation

forecasts +1, model (D.17) can then be estimated via MLE as in the previous

sub-section. Specifically, details about () computing the mode of the log-likelihood

via simulated annealing, and () performing RWM in order to stochastically map

the log-likelihood’s surface, as well as all other estimation details, are the same as

in the previous sub-section. The only issue deserving a detailed discussion is the

inizialization of the RLS algorithm for estimating the two models used to produce

the inflation forecasts. Based on the AR() model for inflation

 = 0 + 1−1 + + − +  (D.18)

where the notation is obvious, I initialize ̂


1 =1, and ̂


0 =̂


2 =...̂


 =0, cor-

responding to the ‘Minnesota prior’ assumption that inflation is a random-walk. I

regard this assumption as a plausible one for hyperinflations. For a given value of the

constant gain , which I estimate via MLE together with the other parameters of the

model, the RLS estimates ̂


=[̂


0 , ̂


2 , ..., ̂


 ]0 get updated according to

̂


 = ̂


−1 + ̂−1−1−1[−1 − ̂


−1 −1] (D.19)

̂ = ̂−1 + [−1
0
−1 − ̂−1] (D.20)

VAR representation for money growth and inflation, the former does not Granger-cause the latter.
62The assumption that agents use data up to -1 in order to estimate the relevant model is standard

in the literature on recursive least squares.
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where  = [1 −1 ... −]0, and with ̂ being initialized as +1, i.e. a (+1) identity

matrix.

By the same token, based on the VAR() model for inflation and money growth∙



¸
=

∙
0
0

¸
+

∙
() ()

() ()

¸ ∙
−1
−1

¸
+

∙



¸
(D.21)

–where, again,  = ln()-ln(−1); () = 1 + 2
2 +  + 2

2; and (),

(), and () defined in the same way–I initialize 1=1=1; and I initialize

0, 0, and all of the other parameters in the lag polynomials (), (), (),

and () (except 1 and 1) to zero, corresponding once again to ‘Minnesota prior’

assumptions for either inflation or money growth. In each period , the VAR (D.21) is

estimated equation by equation via RLS based on information at time -1. Specifically,

for a given value of , the RLS estimates of the VAR’s parameters are updated

according to equations equivalent to (D.19) and (D.20), where ̂ is still initialized as

an identity matrix. Finally, based on either (D.18) or (D.21) I set the lag order to 2.
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