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Abstract

Introduction: A session at the 2023 International Consultation on

Incontinence – Research Society (ICI‐RS) held in Bristol, UK, focused on

the question: Is the time right for a new initiative in mathematical modeling of

the lower urinary tract (LUT)? The LUT is a complex system, comprising

various synergetic components (i.e., bladder, urethra, neural control), each

with its own dynamic functioning and high interindividual variability. This

has led to a variety of different types of models for different purposes, each

with advantages and disadvantages.

Methods: When addressing the LUT, the modeling approach should be

selected and sized according to the specific purpose, the targeted level of detail,

and the available computational resources. Four areas were selected as

examples to discuss: utility of nomograms in clinical use, value of fluid

mechanical modeling, applications of models to simplify urodynamics, and

utility of statistical models.

Results: A brief literature review is provided along with discussion of the

merits of different types of models for different applications. Remaining

research questions are provided.

Conclusions: Inadequacies in current (outdated) models of the LUT as well as

recent advances in computing power (e.g., quantum computing) and methods

(e.g., artificial intelligence/machine learning), would dictate that the answer is

an emphatic “Yes, the time is right for a new initiative in mathematical

modeling of the LUT.”
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1 | INTRODUCTION AND
MOTIVATION

A mathematical model describes a system with a set of
variables and a set of equations that establish quantitative
relationships between the variables. Mathematical models
can provide insights into physiology, pathophysiology, and
clinical decision‐making for different organ systems. The
lower urinary tract (LUT) is a complex system, comprising
various synergetic components (i.e., bladder, urethra,
neural control), each with its own dynamic functioning
and high interindividual variability. Notably, the bladder
and urethra undergo considerable shape changes during
micturition, therefore, nonlinear theory is required for
mechanical modeling.1 Several modeling approaches have
been developed for the different LUT components,
including nomograms which are designed to assist with
clinical decision making,2 machine learning models to
automate identification of pathology in clinical tests,3 as
well as biomechanical models,4 and neural control
models.5 These models can increase our understanding
of the complex interactions between different tissues and
organ systems that are required for proper function of the
LUT and can help identify targets for therapy in
pathological situations.6 However, to date, comprehensive
studies modeling the LUT in its entirety are limited. A
recent review of mathematical modeling of the LUT
determined that current models are missing important
physiologically‐based mathematical descriptions (e.g., neu-
ral connections).6 As a result of this and other deficiencies,
the authors concluded that no current mathematical model
is functionally predictive of the LUT.6

When addressing the LUT, the modeling approach
should be selected and sized according to the specific
purpose, the targeted level of detail and the available
computational resources. Simple models such as nomo-
grams can be utilized to determine clinical value and
thresholds for a specific dysfunction related to clinical
and laboratory tests. Several nomograms have been
developed for LUT assessment, most often, but not
exclusively for facilitating interpretation of clinical tests
for diagnosis based on LUT symptoms.7–10 However,
nomograms cannot describe the complexities involved in
LUT function and dysfunction.

Over the past few decades computing power has been
increasing at a dramatic rate, enabling more and more
complex models to be developed and then to be utilized
not only by academics and other experts, but also by
clinicians, patients, and other interested parties. Every-
day use of artificial intelligence (AI) is also exponentially
increasing. Programs such as ChatGPT and blockchain
technology are two examples of the broad daily utility
and widespread use associated with increasing

computational capacity. Novel computational paradigms
and use of large data sets, including quantum computing
can enable innovative complex mathematical models
that could improve our understanding of LUT physiology
and pathophysiology.11

Mathematical models should be targeted to address
specific hypotheses, which then determine what assump-
tions can be utilized and which aspects of the model need
to be developed in detail. The specific modeling approach
should be selected and tailored to address the scientific or
clinical question and/or hypotheses being tested. As-
sumptions must also be detailed. In this article, we
provide four examples of mathematical models which
could be used to improve our understanding of the LUT,
simplify clinical diagnostic tests, or provide input into
clinical decision‐making.

2 | MODELS TO NOMOGRAMS

Two models with clinical application to human urody-
namics are the Perugia urodynamic method of analysis
(PUMA),12 an empirical model, and the Valentini Besson
Nelson VBN model,2,13 a knowledge model. However,
because of their complexity, these and other mathemati-
cal models can be difficult to use by a team other than
the inventing team because of constraints such as size
and skills of required teams and the time required to
achieve reliable analysis. Other groups and clinical
practices may not have the computational power to be
able to efficiently run a model developed elsewhere.
Open source availability of models and other algorithms
has helped reduce this difficulty of translation of models
to other research groups, but has not eliminated it
entirely. In addition, the results of any model is only as
accurate as the data used to create it, placing a high
standard on data collection for use in mathematical
models. Thus, mathematical models of the LUT are
rarely used in daily practice.

The purpose of nomograms is very different from that
of models. A nomogram is a simplified description of a
process, making it a useful tool for reducing complexity
of complex phenomena. A nomogram applies to a single
type of dysfunction and is used to characterize that
dysfunction. If only two parameters are required (e.g.,
voiding pressure and flow rate for characterization of
benign prostatic obstruction, BPO) a nomogram can be
graphed in two dimensions for practical useability in
daily practice, or even easier still, can be calculated from
an index derived from the nomogram, in this case, the
bladder outlet obstruction index. When more than two
parameters are required, a nomogram usable by a clinical
practitioner can be proposed (e.g., detrusor contractility
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of women).14 Although nomograms cannot be used to
predict outcomes to unknown situations, they are easier
to use for clinicians than a mathematical model that fully
describes the LUT. However, nomograms need to be
externally validated for broad clinical use. Two examples
are the nomogram developed by Griffiths et al.7 and the
ICS nomogram8 for clinical evaluation of BPO in men,
both of which have been externally validated.

3 | FLUID MECHANICAL
MODELING OF THE LUT

The development of fluid mechanical models of the LUT
has been historically motivated to address scientific and
clinical questions. “Fluid” refers to a substance capable
of flowing and adapting to the shape of its container,
encompassing both liquids and gases. In this context,
“fluid” specifically addresses the liquid form, that is,
urine. Urine flow in the LUT is unsteady during voiding,
typically with large Reynolds number, up to 4000.15

Notably, while the bladder shape (and its changes during
contraction) drives the flow toward the urethra, known
as shape driven flow, the flow in the urethra depends on
its mutual interaction with the urethral lumen, since the
urethra is a collapsible vessel.16 All these intrinsic LUT
properties are difficult to model.

Fluid mechanical models of the LUT aim at (i)
improving insight into physiological and pathological
processes and the resulting urodynamic pressure and
flow curves, (ii) assisting surgical planning, and (iii)
optimizing medical device design (e.g., stents and
catheters). Moreover, these models, once validated
experimentally, can be used to predict more complex
physiological and/or pathological scenarios. A classifica-
tion of fluid mechanical modeling methods is provided
below.17 For each approach, examples of relevant LUT
studies are briefly introduced.

3.1 | Reduced order methods

Reduced order methods are designed to retain the key
physics of the systems with minimized computational
cost. They are normally used to complement full order
models in anatomically realistic geometries17 or to
replace full order models in settings with limited
computational resources (or where it is not feasible to
perform full order numerical simulations). The first LUT
mathematical models were based on reduced order
methods and were designed to replicate the behavior of
the bladder and urethra. In this regard, pioneering
modeling work was conducted by Griffiths who

combined clinical and experimental fluid mechanical
measurements of the bladder and urethra to develop a
mathematical micturition model mimicking urine flow
curves observed in healthy humans.18,19 Later studies
expanded this initial modeling to cover more complex
pathological scenarios.13,20

3.2 | Computational methods

Computational fluid mechanical methods can be classi-
fied into three categories17:

3.2.1 | Computational fluid dynamics (CFD)

The main focus of CFD models is on fluid dynamics as
they often rely on rigid wall simplification to significantly
reduce the computational cost. For this reason, the
bladder and urethra are often modeled as rigid bounda-
ries and the flow regime is solved at the defined
computational domain. CFD models are often used to
investigate the effects of bladder and urethral geometries
on urine flow as well as to optimize design of medical
devices (e.g., stents and catheters). Several CFD studies,
have focused, for example, on modeling the effects of
urethral strictures (e.g., BPO)15,21,22 and/or surgical
procedures on urine flow.23

3.2.2 | Computational solid
mechanics (CSM)

In biomedical applications, CSM focuses on modeling the
structural behavior of soft biological tissue using their
constitutive equations. Applied to LUT, CSM provides
tools for the investigation of stress and strain fields
within the bladder and urethral wall, during bladder
filling and emptying cycles.24,25 Recent CSM work has
focused on investigating the effects of artificial urinary
sphincters (AUS) used to treat urinary incontinence, for
example by assessing the shape evolution of the urethral
lumen following AUS cuff compression by inflation, and
urethral reopening by cuff emptying.26,27

3.2.3 | Fluid‐structure interaction (FSI)

FSI models are implemented to investigate solid mechan-
ics of soft biological tissues, fluid dynamics, and their
mutual interactions. Because of their complexity, they
demand high computational capabilities. In LUT model-
ing, FSI models have focused on bladder and urethral
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tissue mechanics and their interaction with urine flow.
Recently, they were used to investigate stress urinary
incontinence.28 and to account for the external occluding
action of AUS on urethral lumen and urine flow.27

The urinary bladder and the heart are very similar
from a modeling point of view: they are both hollow
muscular organs which periodically relax and contract to
generate a fluid motion. In both cases, the organ
contraction is triggered by an electrical signal. These
similarities promote the interchange of engineering
approaches and technologies between these two
fields. Historically, cardiovascular fluid mechanical
modeling29,30 has received more attention than urologi-
cal modeling. However, this trend has been evolving in
recent years due to increased interest in ageing related
diseases affecting the LUT. Considering all these reasons,
scientific discussions on advances and future trends in
fluid mechanical modeling for Urology often look to
cardiovascular modeling as a reference. In the last
decade, the focus of cardiovascular computational
modeling has shifted toward patient‐specific analyses,
the so‐called “inverse modeling” approach that combines
computational fluid mechanical modeling with medical
imaging technology.31

Rapid technological advances in echocardiography,
magnetic resonance imaging (MRI), and machine learn-
ing have led to high resolution measurements of tissue
motion and blood flow (e.g., 4D MRI).31 The pairing of
this kinematic information with tissue mechanics, fluid
dynamics, and fluid structure methods is shedding light
on realistic material properties and dynamic data (e.g.,
shear stresses and forces), which are not directly
measurable in living individuals.31 These approaches
are unveiling several strong correlations between
retrieved data and corresponding clinical risk factors.
We envision that similar methods will soon become more
widespread in Urology. MRI imaging, in particular, is
suitable for LUT anatomical investigations as it consists
of a noninvasive technique which offers extraordinary
soft tissue contrast and full field‐of‐view options.32

Pewowaruk et al. have recently proven the feasibility of
performing MRI studies in LUT.33 They measured
bladder wall displacement during voiding and, by
combining MRI results with CFD modeling, they found
more pronounced fluid recirculation in the bladders of
BPO patients.33 Preliminary MRI results on urethral
dynamic changes, during maximum voiding flow, were
recently coupled with CFD simulations to determine wall
shear stress, pressures, and fluid velocities along the
entire urethral length.34

The coupling of medical imaging with fluid mechani-
cal modeling is driven by the need for optimized and
personalized treatments. For Urology, it requires

interdisciplinary teams (physicians, engineers, and biol-
ogists) to delve into urinary flow studies and develop
custom solutions for urological issues. Collaboration
among experts, combined with enhanced computational
capabilities for personalized approaches, is crucial in
achieving scientifically and clinically meaningful out-
comes using these models.

4 | USING MODELS TO SIMPLIFY
URODYNAMICS

Multichannel urodynamics is central to the diagnosis of
LUT dysfunction as it provides an objective measure of
the type and subtype of LUT dysfunction.35 A recent
systematic review and meta‐analysis demonstrated that
urodynamic studies “are not replaceable in diagnostics,
since there is no other equivalent method to find out
exactly what the LUT problem is.”36 However, multi-
channel urodynamic studies are complicated by insertion
of both a transurethral catheter in the bladder and a
rectal or vaginal catheter. These catheters are
uncomfortable for the patient and can lead to artifactual
results.37 Urodynamic events such as coughs and
Valsalva maneuvers, that are generated by contraction
of abdominal muscles, occur with faster onset than
detrusor contractions, and therefore contain significant
representation of higher frequencies than detrusor con-
tractions.38 Thus, it should be possible to use sophisticated
signal processing methods and/or machine learning to
identify and separate the detrusor pressure component
from measured vesical pressure, negating the need for an
abdominal pressure catheter. This would have the
potential of reducing both patient distress and complexity
of the procedure, but may be applicable only for a subset
of patients. For example, Cheriyan et al. suggested that the
incremental benefit of measuring abdominal pressure may
be of questionable value in certain groups of pediatric
patients, which could require further investigations by a
pediatric urodynamicist.39

In a retrospective study of 14 patients with neuro-
genic bladder, Karam et al. developed a wavelet‐based
algorithm to identify bladder events from vesical pressure
data alone using a context‐aware thresholding algorithm
consisting of a novel, tunable, wavelet‐based adaptive
algorithmic framework.40 They expanded this method
using retrospective urodynamic data from a cat ambula-
tion experiment to predict detrusor pressure using
thresholding with a discrete wavelet transformation
and filtering using an exponential moving average filter
(to remove artifacts and abdominal generated pressure
events from vesical pressure) while maintaining repre-
sentation of detrusor pressure.41 They achieved an 80%
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correlation between estimated detrusor pressure and
detrusor pressure obtained by subtracting abdominal
pressure from vesical pressure.41

Majerus et al. recently expanded the algorithm for
estimating detrusor pressure by developing a real‐time,
wavelet‐based signal reconstruction algorithm for ex-
tracting the low‐frequency detrusor pressure signal from
vesical pressure data using a nonlinear event‐driven
reconstruction weighting approach based on statistical
features.42 Overall, detrusor pressure was estimated with
root mean square error of 10 cm H2O and an R value of
88%,42 which is not ideal but is a start that can be
improved upon. The same group also proposed use of a
machine learning classifier using discrete wavelet trans-
form coefficients and independent time‐domain statisti-
cal features. Of the three classifier architectures used to
identify feature selection, the best performing was a
k‐nearest classifer.42 However, an artificial neural
network (ANN) classifier presented the best balance
between accuracy and computational efficiency for
real‐time use.42

This approach to single catheter urodynamics, while
promising, has only been tested retrospectively on a
limited patient population. Computation in real‐time will
require significant computing power. Recent advances in
computing power and reductions in cost make real‐time
single channel urodynamics a future possibility. Future
directions of using mathematical models to estimate
detrusor pressure for single catheter urodynamics
include a machine learning classifier to identify events
and testing in a larger and more diverse sample, as well
as implementation and testing in a real‐time situation.

5 | STATISTICAL MODELS

Statistical prediction models for detrusor overactivity43

and detrusor underactivity44 have been developed to
reduce the need for invasive urodynamic studies.
Examples of objectives of other statistical prediction
models are prediction of outcomes of interventions such
as supervised pelvic floor muscle training45 and mid-
urethral sling surgery46 for women with stress urinary
incontinence. However, the current literature lacks
evidence for the potential use of advanced statistical
modeling or supervised machine learning in develop-
ment of management plans for patients with LUT
dysfunction.

As multifactorial variables are involved in the
development of LUT dysfunction, sophisticated statistical
methods are necessary for multivariate analysis. The
most commonly used technique is logistic regression. An
alternative tool is ANN, a subset of machine learning

models. ANN are similar to regression models in their
nature and use. They are comprised of input (indepen-
dent or predictor variable) and output (dependent or
outcome variable) nodes, use connection weights (regres-
sion coefficients), bias weight (intercept parameters), and
cross‐entropy (maximum likelihood estimation) to learn
or train (parameter estimation) a model.47 For the
development of statistical models, the available data are
divided into two sets; a training set used to develop the
model and a test set, used to evaluate the model's
performance. ANNs have been shown to be more
accurate than multivariate regression in identifying
predictors of urodynamic diagnosis in women with
pelvic organ prolapse.48

The selection of relevant clinical variables, with
clinicians rather than statisticians or engineers leading
the process, is of paramount importance in the develop-
ment of statistical models. The presence or severity of
LUT symptoms has been successfully incorporated in
several prediction models.43–46 The use of validated
patient reported outcome measures, such as question-
naires and bladder diaries, allow more accurate quantifi-
cation of each patient's symptoms. Age, body mass index,
parity, and surgical history have been identified as
predictors in models of LUT dysfunction. Addition of
appropriate ultrasound findings (e.g., bladder neck
position, prostate volume, bladder wall thickness) might
improve the accuracy of the statistical models. Although
there is lack of individual biomarkers validated as
diagnostic tools for LUT dysfunction,49 their value could
be optimized with mathematic modeling that could
identify complex interactions between the biomarkers
and the investigated clinical conditions.

Despite the potential advantages of statistical models,
there are several limitations that could prevent their use
in clinical practice. Large datasets are essential for
construction and validation of mathematical models.
However, large datasets are not easily available to
researchers. Missing data in large datasets are very
common and advanced statistical techniques such as
multiple imputation should be applied to improve
accuracy. An investigator‐led best model selection
approach is superior to the most commonly used
machine‐led step‐wise regression. Existing models have
shown an acceptable but not an outstanding overall
predictive ability. The concordance index or area under
curve of the published models ranges between 0.645 and
0.8.43–46 To avoid the risk of overfitting, all prediction
models should be externally validated in a different data
set before being introduced in clinical practice. Studies
that evaluate statistical models without developing a
scoring system or reporting a logistic regression equation
have limited clinical value.
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6 | CONCLUSIONS

With recent advances in computing power and diverse
computing methods (e.g., quantum computing), model-
ing methods (e.g., artificial intelligence/machine learn-
ing), and medical imaging (e.g., MRI), unprecedented
powerful tools have become accessible to the field of LUT
mathematical modeling. Based on this, new avenues are
opening and leading toward patient‐specific modeling
approaches which could improve insight into patho-
physiology of the LUT and provide inputs into clinical
decision‐making. Moreover, due to the multiphysics/
multiscale nature of the LUT, collaboration among
multidisciplinary teams of experts is necessary. This
inspires the translation of tools and methodologies from
several other research fields into LUT modeling. So, is
the time right for a new initiative in mathematical
modeling of the LUT? Our answer is an emphatic “Yes,
the time has come.”

7 | REMAINING RESEARCH
QUESTIONS

• Where does the utility of nomograms end and mathe-
matical models begin?

With increasing computational power, our ability to
add complexity to nomograms increases, thereby
improving accuracy of predictions. For example, we
could add a 3rd and even a 4th dimension to the
standard two‐dimensional nomogram to account for
additional variables and risk factors.

• Could the computational requirements for fluid
mechanical models be reduced sufficiently for broad
clinical and research use?

To date, fluid mechanical models are too complex
to be utilized at the bedside; however, they could be
simplified for restricted use cases, such as a single
pathology, and the outcome could be focused on
clinically actionable parameters. With increasing
computing power, clinical use of fluid mechanical
models could become a reality in the near future.

• What testing would be required to sufficiently validate a
single catheter urodynamics system that uses an
algorithm to estimate detrusor pressure and abdominal
pressure?

Prospective studies in which diagnoses are made
from both standard urodynamics and single channel
urodynamics on the same patients would need to be
conducted to determine if single catheter urodynamics
results in the same diagnosis and treatment plan as
two catheter urodynamics in different patient
populations.

• What would sufficiently validate statistical models for
clinicians to use them in daily clinical practice?

A large prospective study would be needed for each
predicted outcome to determine how well the statisti-
cal models predict the outcome based on patient‐
specific data.
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