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Abstract

Severe equine asthma (SEA) is a complex respiratory condition characterized by

chronic airway inflammation. It shares many clinical and pathological features

with human neutrophilic asthma, making it a valuable model for studying this

condition. However, the immune mechanisms driving SEA have remained elu-

sive. Although SEA has been primarily associated with a Th2 response, there have

also been reports of Th1, Th17, or mixed-mediated responses. To uncover the elu-

sive immune mechanisms driving SEA, we performed single-cell mRNA sequenc-

ing (scRNA-seq) on cryopreserved bronchoalveolar cells from 11 Warmblood

horses, 5 controls and 6 with SEA. We identified six major cell types, including B

cells, T cells, monocytes–macrophages, dendritic cells, neutrophils, and mast cells.

All cell types exhibited significant heterogeneity, with previously identified and

novel cell subtypes. Notably, we observed monocyte–lymphocyte complexes and

detected a robust Th17 signature in SEA, with CXCL13 upregulation in intermedi-

ate monocytes. Asthmatic horses exhibited expansion of the B-cell population,

Th17 polarization of the T-cell populations, and dysregulation of genes associated

with T-cell function. Neutrophils demonstrated enhanced migratory capacity and

heightened aptitude for neutrophil extracellular trap formation. These findings

provide compelling evidence for a predominant Th17 immune response in neutro-

philic SEA, driven by dysregulation of monocyte and T-cell genes. The dysregu-

lated genes identified through scRNA-seq have potential as biomarkers and

therapeutic targets for SEA and provide insights into human neutrophilic asthma.
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INTRODUCTION

Equine asthma is a common respiratory disease of the
horse characterized by bronchoconstriction, mucus pro-
duction and bronchospasm [1]. Its severe form, severe
equine asthma (SEA), presents with frequent coughing,
increased breathing effort at rest, airway remodelling and

Abbreviations: MO, monocyte; Mϴ, alveolar macrophage; NETs,
neutrophil extracellular traps; NEU, neutrophil; SEA, severe equine
asthma.
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in most cases, airway neutrophilia [1]. In clinical prac-
tice, the diagnosis of SEA is typically based on the his-
tory, the clinical examination, and the response to
therapy. The Horse Owner Assessed Respiratory Signs
Index (HOARSI) questionnaire can be used to identify
cases based on their respiratory sign history [2, 3]. Diagno-
sis confirmation is typically achieved through cytological
examination of the bronchoalveolar lavage fluid (BALF).
Equine asthma is triggered by an exaggerated immune
response to respirable particulates found in the environ-
ment and particularly in hay dust. These entails organic
and inorganic elements such as endotoxins, fungal ele-
ments, mites, or ammonia [1]. The reason for the develop-
ment of SEA in some horses and not others, despite being
exposed to the same environment, remains incompletely
understood. Individual susceptibility appears to be influ-
enced, at least in part, by genetic factors [4, 5].

In humans, asthma is considered an umbrella diagno-
sis encompassing a plethora of diseases with distinct
pathophysiologic cellular and molecular mechanisms (so-
called endotypes). More than half of asthmatic patients
suffer from the Th2-type (allergic) form of the disease.
SEA shares clinical and pathological features with several
human asthma endotypes, including allergic, non-
allergic, and late-onset asthma [6]. Specifically, horses
with SEA exhibit striking similarity to humans with
severe neutrophilic asthma [7]. As horses are exposed to
high levels of dust in stables, they also represent an ideal
model for organic dust-induced asthma of agricultural
workers [8]. In contrast to murine models with experi-
mentally induced airway inflammation, horses develop
asthma under natural conditions. Although promising
asthma drugs have been identified based on murine stud-
ies, their limited clinical efficacy when applied to
humans [9] may be attributed to disparities in the under-
lying pathophysiological mechanisms between experi-
mentally induced and naturally occurring diseases. The
longer lifespan of horses (more than 20 years) enables
the study of disease progression, particularly airway
remodelling. Furthermore, their size facilitates the collec-
tion of lower airway samples. For instance, collection of
BALF is a routine procedure in horses, in contrast to
humans and conventional laboratory animal models.
Investigating the immunological mechanism behind SEA
may contribute to a better understanding of the patho-
physiology of severe neutrophilic asthma and organic
dust-induced asthma in humans.

Research into the primary immune pathway in SEA
has generated conflicting findings. The disease has been
linked alternatively to a Th2-type, Th1-type, Th17-type,
or mixed immune response through mRNA or cytokine
analysis of peripheral blood or BALF in affected
horses [10]. The prevailing perception of SEA is that of a

Th2-type disease, supported by the observation that
affected horses may also experience hypersensitivities
like insect bite hypersensitivity or urticaria [11, 12]. How-
ever, recent studies have increasingly pointed to the
involvement of the Th17 pathway.

The complexity of the disease and limitations of experi-
mental techniques may have contributed to these inconsis-
tent findings. To address this knowledge gap, we leveraged
the emerging single-cell mRNA sequencing (scRNA-seq)
technology to dissect the immune mechanisms of SEA at
the single-cell level. In a previous experiment, we demon-
strated that scRNA-seq can be successfully applied to fresh
frozen equine BALF cells [19]. Here, we employed the
scRNA-seq technology to characterize BALF cells from six
horses with SEA and five control horses.

MATERIALS AND METHODS

In this observational case–control study, we recruited
SEA-affected horses and controls based on their medical
history. We selected six asthmatic and six control horses,
using BALF quality, history of respiratory signs, and
BALF neutrophilia as inclusion criteria. We performed
10� Genomics 30-end scRNA-seq on �6000 cryopre-
served bronchoalveolar cells per horse (Table S1). One
control horse was excluded due to low cell number and
quality, leaving 11 horses for the data analysis. Our objec-
tives were to assess the effect of SEA on (i) the distribu-
tion of cell types and cell subtypes in the BALF and
(ii) the differential gene expression (DGE) within each of
the cell types/subtypes identified (refer to Data S1 and S2
for details).

RESULTS

Single-cell landscape of BALF from
asthmatic and control horses

We analysed the scRNA-seq data obtained from the
BALF cells collected from six asthmatic and five control
horses. Characteristics of the study population are listed
in Table 1.

Unsupervised clustering identified 19 distinct cell
clusters (Figure 1a). Through automated annotation
using the top 10 differentially expressed genes (DEGs)
derived from major cell types identified in our pilot
study [19], we successfully predicted the identity of 99.6%
of the cells. Cell cluster identities were validated using
the expression of known canonical markers and the top
DEGs specific to each cell group (Data S3). Subsequently,
the cell clusters were consolidated into six major cells
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groups: B cells, dendritic cells (DCs), mast cells,
monocytes–macrophages (Mo/Ma), neutrophils, and T
cells. To explore the diversity of each major cell type, we
re-analysed them independently. We identified three dis-
tinct B-cell clusters (Figure 2a), three neutrophil clusters
(Figure 3a), seven T-cell clusters (Figure 4a), six Mo/Ma
clusters (Figure 5a), and four DC clusters (Figure 6a).
The mast cell population remained homogenous, without
convincing sub-clustering. Cell clusters were annotated
based on the calculated marker genes (S5-S11/Tables S2–
S8) and the expression of cell-type marker genes. Data S3
provide supporting evidence for the annotation.

The BALF of asthmatic horses is enriched
in B cells but specifically depleted in
activated plasma cells

As expected, asthmatic horses showed a significantly
higher proportion of neutrophils compared with the con-
trol horses (Table 2 and Figure 1b,c). A novel finding was

the B-cell enrichment in the BALF of asthmatic horses
(Table 2 and Figure 1b,c). Concurrently, asthmatic
horses exhibited approximately three times fewer acti-
vated plasma cells (B2 cluster) than control horses
(Table 3 and Figure 2b,c). This suggests that expansion of
the naïve B cells and non-switched plasma cells primarily
contributed to the increased B-cell proportion in asth-
matic horses. No significant differences were observed
between asthmatic and control groups for other major
cell types or subtypes (Table 2 and Figures 1b, 2b, 3b, 4b,
5b, and 6b). The distribution of major cell types and sub-
types for each horse is depicted in Figures 1c, 2c, 3c, 4c,
5c, and 6c.

Gene expression profile of neutrophils
indicates altered NETosis and migratory
function in SEA

Using a mixed model approach, we compared gene expres-
sion between asthmatic and control horses within each
cell type and subtype. S12 (Table S9) and S13/Table S10
provide the results of the DGE analysis for the major cell
types and the neutrophil subtypes, respectively. A positive
log fold change indicates upregulation in the SEA group.

Neutrophils exhibited an ‘asthma signature’ charac-
terized by upregulation of CHI3L1 and MAPK13, known
markers of neutrophilic asthma in humans [20–22], and
downregulation of SLC7A11, an indicator of ferroptosis
reduced in neutrophilic mice asthma [23]. Apoptotic neu-
trophils (Neu0) had upregulated S100A9 and RETN, both
involved in NETosis function [24, 25]. Pro-inflammatory
neutrophils (Neu1) had downregulated KLF2. Reduced
KLF2 levels can promote neutrophil migration [26] and
exacerbate NET-induced transfusion-related acute lung
injury [27]. In the ISGhigh neutrophils (Neu2), we
observed upregulation of ADGRE5, also known as CD97,
which may promote migration of ISGhigh neutrophils to
the lungs [28].

Gene expression features with a potential protective
effect on the lower airways were also identified. The
antileukoproteinase gene SLPI was upregulated in asth-
matic horses, which has an anti-inflammatory role by
inhibiting the NFκB pathway and preventing excess NET
formation [29]. NFKB1 was indeed downregulated in
neutrophils from asthmatic horses. Downregulation of
IL17RC suggested a reduced capacity to respond to the
Th17 cytokine IL17. The predominant contributor of pro-
tective features was the apoptotic neutrophil subtype,
with upregulation of SLPI and downregulation of CCL20
and NR4A3. The Th17-associated cytokine CCL20 is a
potent chemotactic factor for lymphocytes and DCs. The
downregulation of CCL20 could thus have an overall

TAB L E 1 Study population characteristics.

Variable
Control
(N = 5)a

Asthmatic
(N = 6)a

p-
Valueb

Sex 0.6

Mare 3 (60%) 2 (33%)

Gelding 2 (40%) 4 (67%)

Age (years) 12 (11, 12) 12 (7, 19) >0.9

HOARSI score 1 (1, 1) 4 (3, 4) <0.01

Weight (kg) 594 (582, 613) 578 (548, 609) >0.9

Clinical score (/23) 1 (0, 1) 6 (5, 7) <0.01

Tracheal mucous
score (/5)

1 (1, 2) 3 (3, 4) <0.05

BALF yield (%) 48 (48, 48) 52 (45, 56) 0.7

BALF
macrophages
(%)

51 (48, 56) 51 (38, 55) 0.5

BALF lymphocytes
(%)

40 (36, 47) 36 (22, 40) 0.4

BALF neutrophils
(%)

4 (2, 7) 18 (12, 25) <0.01

BALF mast cells
(%)

1 (0, 1) 1 (1, 2) 0.5

BALF eosinophils
(%)

0 (0, 0) 0 (0, 0) >0.9

Abbreviations: BALF, bronchoalveolar lavage fluid; HOARSI: Horse Owner
Assessed Respiratory Signs.
aMedian (first quartile, third quartile).
bFisher’s exact test; Wilcoxon rank sum test. P-values < 0.05 are indicated
in bold.
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anti-inflammatory effect, with reduced chemotaxis of
immune cells and reduced Th17-signalling. NR4A3 posi-
tively regulates neutrophil survival [30]. Hence, its down-
regulation may mitigate neutrophil persistence in the
lungs in SEA.

In summary, neutrophils from asthmatic horses exhib-
ited DGE patterns indicative of asthma, including known
markers of human asthma. Moreover, these neutrophils
displayed an expression profile consistent with increased
migratory capacity and the potential for NET formation.
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F I GURE 1 Major cell types identified in the bronchoalveolar lavage fluid of asthmatic and control horses using single-cell mRNA

sequencing. (a) UMAP representation of the 19 clusters identified as six major cell types. Mo/Ma, monocyte–macrophage. (b) Distribution of

the six major cell types in the asthmatic and control groups. SEA, severe equine asthma. ***p-value <0.001. (c) Distribution of the six major

cell types for each horse. A, asthmatic; C, control; DCs, dendritic cells.
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The simultaneous expression of genes with a protective
action suggests a dual pro- and anti-inflammatory role of
neutrophils in SEA.

Gene expression patterns of T cells support
a Th17-oriented immune response in SEA

S12 (Table S9) and S14/Table S11 provide the results of
the DGE analysis for the major cell types and the T-cell
subtypes, respectively. In the T cells of asthmatic horses,
two known markers of human asthma, IL26 [31] and

OLFM4 [32], were upregulated. As in neutrophils, the
acute asthma marker RETN [33] was upregulated in cyto-
toxic T cells (T0). Moreover, T cells of asthmatic horses
exhibited a robust Th17 signature, characterized by the
upregulation of IL17A, IL17F, IL21, and CCL20
(Figure 4d).

Naïve CD4+ T cells (T4) showed a simultaneous upre-
gulation of Th17-associated genes (IL17A, IL1B, CCL20,
and NFKBID) and FOXP3. This supported the hypothesis
that naïve CD4+ T cells adopt a Th17 pathway during dif-
ferentiation in SEA, as FOXP3 expression is transiently
present during Th17 cell development [34].
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F I GURE 2 B-cell subtypes identified in the bronchoalveolar lavage fluid of asthmatic and control horses using single-cell mRNA

sequencing. (a) UMAP representation of the three clusters identified. (b) Distribution of the B cell subtypes types in the asthmatic and

control groups. SEA, severe equine asthma. *p-value <0.05. (c) Distribution of the B-cell subtypes for each horse. A, asthmatic; C, control.
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Furthermore, Treg cells (T1) displayed a Th17-oriented
profile, with upregulation of IL21 and IL17A and downre-
gulation of EOMES, a known suppressor of Th17 differen-
tiation in human Treg cells [35].

The γδ T (T3) cells conjointly upregulated IL17A and
IL1R, consistent with a γδ17 phenotype [36]. In mice, γδ T
cells possess an intrinsic capacity for IL17 production,
which is directly induced by IL23 and IL1 [37]. Notably,
γδ17 T cells are implicated in various human inflamma-
tory diseases [37], and increased IL1R expression has been

associated with neutrophilic asthma and reduced pulmo-
nary function in humans [36].

Genes associated with T-cell function are
dysregulated in SEA

Several genes involved in T-cell function were differen-
tially expressed in asthmatic horses. Specifically, the
marker of T-cell exhaustion, TOX2 [38], was upregulated,
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F I GURE 3 Neutrophils subtypes identified in the bronchoalveolar lavage fluid of asthmatic and control horses using single-cell mRNA

sequencing. (a) UMAP representation of the three clusters identified. ISG, interferon-stimulated genes. (b) Distribution of the neutrophil subtypes in

the asthmatic and control groups. SEA, severe equine asthma. (c) Distribution of the neutrophil subtypes for each horse. A, asthmatic; C, Control.
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along with S1PR5, whose expression is induced by anti-
gen exposure [39]. Cytotoxic T cells (T0) downregulated
GZMB, a gene associated with lymphocytic inflammation
in the lungs [40]. The downregulation of IL18R1 and
XCL1 supported Treg cell dysfunction. Indeed, downre-
gulation of the IL18 receptor is associated with unrespon-
siveness of exhausted CD8+ T cells [41]. Furthermore,
dysfunctional Treg cells in individuals with allergic
asthma have been shown to downregulate XCL1 [42].
Among the T-cell subtypes, NKT cells (T2) upregulated
NPY, a gene associated with reduced NK function [43].

Monocytes and alveolar macrophages
display a Th17 signature in SEA

S12 (Table S9) S15/Table S12 provide the results of the
DGE analysis for the major cell types and the Mo/Ma
subtypes, respectively. Among the upregulated genes in
Mo/Ma were CXCL13, a B-cell chemoattractant, OLFM4,
associated with severe lung disease in humans [44, 45],
and CHI3L1, a marker of neutrophilic asthma
(Figure 5d) [21]. S100A8, known for its increased expres-
sion in individuals with steroid-resistant neutrophilic
asthma [46], was upregulated, and so was TLR1, recently
identified as a potential therapeutic target for asthma in
humans (Figure 5d) [47].

In the FCN1high AMs (Mo/Ma0), upregulated genes
included PGLYRP1, PTX3, and CCL20. In mice, Pglyrp1
promotes pro-asthmatic Th2 and Th17 responses [48], while
PTX3 is a marker of non-eosinophilic asthma in
humans [49]. In horses, BALF PTX3 expression increases in
acute asthmatic crisis, particularly in dust-activated foamy
macrophages [50]. The simultaneous upregulation of the
Th17-associated cytokine CCL20 and downregulation of the
Th1-cytokine CCL11 supported a Th17 polarization of
FCN1high AMs. Moreover, in the ISGhigh AMs (Mo/Ma2),
genes encoding CCL20 and its receptor CCR6 were upregu-
lated, further advocating for a Th17 phenotype.

The B-cell chemoattractant CXCL13 was upregulated
in intermediate monocytes (Mo/Ma3), and putative
monocyte–lymphocyte complexes (Mo/Ma5). Further-
more, intermediate monocytes demonstrated upregula-
tion of S100A9, S100A12, CCL17, and S1PR5. S100A9 and
S100A12 serve as biomarkers for neutrophilic asthma
[51, 52]. CCL17 is associated with asthma and may

contribute to airway remodelling through fibroblast acti-
vation via the CCR4–CCL17 axis [53, 54]. S1PR5 regu-
lates monocyte trafficking [55], suggesting intermediate
monocytes from asthmatic horses may possess a higher
migratory capacity.

Th17 activation may result from a crosstalk
between monocytes and lymphocytes

The presence of multiple cell types within the Mo/Ma5
cluster was supported by the high number of DEGs iden-
tified. This cluster exhibited simultaneous upregulation
of CXCL13 and IL17A, both associated with the Th17
pathway. Interestingly, while several T-cell clusters in the
dataset upregulated IL17A, none of the Mo/Ma clusters,
except Mo/Ma5, showed this upregulation. Conversely,
CXCL13 upregulation was exclusive to Mo/Ma5 and not
observed in any T-cell clusters. This led us to conclude
that the co-upregulation of IL17A and CXCL13 originated
from the dual nature of Mo/Ma5 as monocyte–
lymphocyte complexes. Downregulation of the
Th1-associated gene CD27 and granzyme B-like genes
further suggested a Th17 polarization within the cells
composing the complexes [56]. Additionally,
inflammasome-related genes (SIGLEC14, KCNK13, and
PELI2) [57] were upregulated.

Gene expression patterns of DCs suggest
enhanced migratory capacity and non-Th2
response in SEA

Table S9 (S12) and Table S13 (S16) provide the results of
the DGE analysis for the major cell types and the DC sub-
types, respectively. The gene MARCO was downregulated
in asthmatic DCs. In a murine OVA-asthma model,
Marco-deficient mice showed increased eosinophilic air-
way inflammation and airway hyper-responsiveness,
accompanied by enhanced migration of lung DCs to
draining lymph nodes [58]. Consequently, reduced
MARCO expression in equine lung DCs may enhance
their migration to lymph nodes, leading to an amplified
immune response against aeroallergens.

Further analysis of DC subtypes yielded significant
results for DC0 (annotated as cDC2s), with the notable

F I GURE 4 T-cell subtypes identified in the bronchoalveolar lavage fluid of asthmatic and control horses using single-cell mRNA

sequencing. (a) UMAP representation of the seven clusters identified. NKT, natural killer T cell; Treg, regulatory T cell. (b) Distribution of

the T-cell subtypes in the asthmatic and control groups. SEA, severe equine asthma. (c) Distribution of the T-cell subtypes for each horse. A,

asthmatic; C, control. (d) Volcano plot illustrating the differential expression of genes between groups. Red dots represent DEGs with a p-

value <0.05 and a log2 fold change >1. Dots positioned to the right of the plot represent genes that are upregulated in asthmatic horses.
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upregulation of GLRX2 and downregulation of CCL8.
Administration of GLRX2 has been shown to reduce air-
way inflammation in an OVA-asthma model [59],

indicating its potential protective function. CCL8 is
responsible for the recruitment of basophils, eosinophils,
and mast cells in allergic processes and contributes to

F I GURE 5 Monocytes–macrophages (Mo/Ma) subtypes identified in the bronchoalveolar lavage fluid of asthmatic and control horses

using single-cell mRNA sequencing. (a) UMAP representation of the six clusters identified. ISG, interfero-n-stimulated genes.

(b) Distribution of the Mo/Ma subtypes in the asthmatic and control groups. SEA, severe equine asthma. (c) Distribution of the Mo/Ma

subtypes for each horse. A, asthmatic; C, control. (d) Volcano plot illustrating the differential expression of genes between groups. Red dots

represent DEGs with a p-value <0.05 and a log2 fold change >1. Dots positioned to the right of the plot represent genes that are upregulated

in asthmatic horses. NCBI 103 annotation for LOC100061699: S100A8.
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sequencing. (a) UMAP representation of the four clusters identified. cDC, conventional dendritic cell. (b) Distribution of the DC subtypes in the

asthmatic and control groups. SEA, severe equine asthma. (c) Distribution of the DC subtypes for each horse. A, asthmatic; C, control.
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airway allergic inflammation by promoting a Th2
immune response [60]. Hence, CCL8 downregulation in
cDC2s argues against a Th2 response in SEA.

Gene expression patterns of B cells and
mast cells of asthmatic horses points to
airway remodelling

S12/Table S9 provides the results of the DGE analysis for
the major cell types, including B cells. The B cells of asth-
matic horses upregulated POU2AF1, whose elevated
expression has been associated with interstitial pulmo-
nary fibrosis [61] and chronic obstructive pulmonary dis-
ease [62] in humans. Its expression negatively correlates
with lung function [62]. Additionally, YBX3 was downre-
gulated in the mast cells of asthmatic horses. Reduced
circulating YBX3 mRNA is a sensitive predictor of idio-
pathic pulmonary fibrosis in humans [63].

DISCUSSION

SEA is characterized by neutrophilic inflammation in the
lower airways, resembling a subset of non-Th2 human
asthma. We utilized scRNA-seq to investigate the
immune mechanisms underlying SEA. Among the six

major cell types identified, B cells and neutrophils were
more abundant in asthmatic horses. Notably, the fraction
of activated (switched) plasma cells was decreased, indi-
cating a non-Th2 response. Both T cells and Mo/Ma dis-
played a strong Th17 signature, including upregulation of
CXCL13 by intermediate monocytes. Furthermore, a sub-
set of cells exhibited an expression profile indicative of
monocyte–lymphocyte complexes potentially contribut-
ing to Th17 activation. Neutrophils showed an increase
in NETosis function and reduced capacity to respond to
Th17 signals. These findings support a primary
Th17-mediated immune response in neutrophilic SEA,
probably initiated through monocyte-T-cell crosstalk
(Figure 7).

Similar Th17-associated responses have been
observed in non-Th2 asthma in humans, including
organic dust-induced asthma and a subset of non-Th2
asthma patients [8, 64]. Although SEA is traditionally
considered a Th2-mediated disease, an increasing body of
evidence suggests the involvement of Th17 inflammation
in the pathological process. Increased levels of IL17
mRNA have been observed in the BALF of horses with
SEA following antigen challenge [13]. Dysregulation of
miRNA in the serum of asthmatic horses supports the
existence of a mixed Th2/Th17 response [15]. Further-
more, a comprehensive miRNA-mRNA study in equine
lung tissues suggests a predominant Th17 pathway, along

TAB L E 2 Proportions of the major cell types determined with scRNA-seq and compared between asthmatic (SEA) and control (CTL)

groups.

Cell type
Numbera

(N = 11)
Mean
% (N = 11)

Mean %
(CTL, N = 5)

Mean %
(SEA, N = 6)

Ratio
SEA/CTL

p-
Value FDR

B cells 756 1.3 0.3 1.9 5.9 <0.001 <0.001

Neutrophils 5145 8.5 2.4 13 5.3 <0.001 <0.001

Mast cells 1232 2.0 1.7 2.3 1.4 0.13 0.25

Mo/Ma 22 370 37.1 44.6 32.0 0.7 0.18 0.27

Dendritic
cells

754 1.3 1.2 1.4 1.2 0.80 0.93

T cells 30 005 50.0 50.0 49.4 1.0 0.93 0.93

Abbreviation: scRNA-seq, single-cell mRNA sequencing. P-values < 0.05 are indicated in bold.
aPost-quality filtering.

TAB L E 3 Proportions of the B-cell subtypes identified with scRNA-seq and compared between asthmatic (SEA) and control (CTL)

groups.

B-cell cluster Mean % (N = 11) Mean % (CTL, N = 5) Mean % (SEA, N = 6) Ratio SEA/CTL p-value FDR

B0 72.2 68.6 71.9 1.0 0.62 0.62

B1 20.5 11.5 21.3 1.8 0.18 0.26

B2 7.3 19.9 6.8 0.3 0.02 <0.05

Abbreviation: scRNA-seq, single-cell mRNA sequencing. P-values < 0.05 are indicated in bold.

SINGLE-CELL PROFILING OF BRONCHOALVEOLAR CELLS 11

 13652567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

m
.13745 by U

niversitat B
ern, W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with some indications of a parallel Th2-type
response [16]. Transcriptomics, proteomics, and tissue
staining analyses of mediastinal lymph nodes in horses
further support a predominant Th17 response in
SEA [14]. Recently, T cells isolated from the BALF of
horses with SEA demonstrated a Th17 polarization, as
evidenced by an elevated frequency of IL17A-secreting
lymphocytes following in vitro stimulation [18].

While studies on asthma have mainly focused on T
cells [64], our study demonstrated the involvement of
both T cells and Mo/Ma populations in driving Th17
inflammation in SEA. Importantly, this resulted from
alterations in gene expression patterns rather than expan-
sion of these cell populations. The upregulation of key
Th17 cytokines such as IL17A, IL21, and CCL20 was
observed in T-cell clusters, suggesting their engagement
in a Th17 differentiation pathway. Alveolar macrophages
and intermediate monocytes also exhibited a strong Th17
signature, including CXCL13 upregulation. CXCL13 cyto-
kine levels are elevated in the serum and the BALF of
asthmatic humans [65, 66]. An anti-CXCL13 antibody

reduced inflammation in an asthma mouse model,
highlighting CXCL13 as a promising therapeutic tar-
get [65]. This B-cell chemoattractant predominantly pro-
duced by Mo/Ma and Th17-derived cells [67] is also
upregulated in hay dust extract-stimulated PBMCs of
asthmatic horses [17]. Because the latter study was per-
formed on a cell mixture, the cellular origin of the
increased CXCL13 expression could not be ascertained.
Our single-cell data indicated activated monocytes as the
main source of CXCL13, most likely induced by IL17
released from T cells [68]. Activated monocytes could in
turn induce Th17 differentiation of T cells [69–71]. Col-
lectively, our results support a crosstalk between IL17A-
producing T cells and CXCL13-producing monocytes in
the context of a Th17-mediated immune response in SEA
(Figure 7).

Of particular interest was the cluster Mo/Ma5 expres-
sing both lymphocytes and monocytes markers, a tran-
scriptomic profile previously observed in other equine
BALF scRNA-seq studies [19, 72]. The presence of
monocyte–T cell interactions has been reported in
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F I GURE 7 Th17-polarization of pulmonary immune response in severe equine asthma (SEA)-suggested pathways based on single-cell

mRNA sequencing analysis of bronchoalveolar cells. Th17-polarized T cells and monocyte–macrophages fuel an inflammation loop where

activated monocytes release CXCL13, promoting Th17 polarization of T cells. IL17A, released by activated T cells, further induces CXCL13

release. Reciprocal activation of T cells and monocytes may also occur via direct cell–cell contact (monocyte–T cell complexes). IL17A and

CXCL13 recruit B cells and neutrophils, respectively, from peripheral blood. IL17A influences neutrophils by decreasing apoptosis and

enhancing their capacity for NETosis. In SEA, there is a reduced activation of non-switched plasma cells producing IgM antibodies, resulting

in a decreased pool of activated plasma cells necessary for a Th2 response. AM, alveolar macrophages; ISG, interferon interferon-stimulated

genes; NET, neutrophil extracellular trap.
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human blood, with the frequency and phenotype of these
cell–cell complexes varying depending on the immune
response polarization [73]. Considering that the crosstalk
between monocytes and T cells plays a key role in the
development of various human inflammatory diseases
[69–71], the potential presence of bona fide monocyte–
lymphocyte complexes in the lower airway compartment
is particularly intriguing. The reciprocal activation of
monocytes and lymphocytes may occur through direct
cellular contact rather than solely through endocrine or
paracrine mechanisms.

In contrast to previous reports (reviewed in Refs. [6,
10, 74]), we did not detect a Th2 or Th1 signature in the
cells from asthmatic horses. Notably, we did not observe
upregulation of characteristic Th2 and Th1 cytokines
such as IL4, IL13, or IFNγ, which aligns with the results
of an equine BALF flow cytometric study [18]. Consistent
with our findings, Th2 and Th17-associated gene expres-
sion seems to be regulated in opposite direction in the
human airways [75]. In SEA-affected horses,
downregulation of IL4 correlates with increased IL17
staining intensity in the mediastinal lymph nodes [14].
Moreover, Th1- and Th2-associated genes are downregu-
lated in antigen-challenged PBMCs from asthmatic
horses [17]. The reduced fraction of activated plasma
cells in our study population further argued against a
Th2 response. Upon antigen stimulation, non-switched
IgM-producing plasma cells become activated and pro-
duce immunoglobulins of other classes, a prerequisite for
Th2 responses. While switched plasma cells were less fre-
quent in asthmatic horses, the proportion of total B and
plasma cells was significantly higher, likely due to
CXCL13 signalling [68]. Consequently, asthmatic horses
have a larger pool of B cells, which can potentially differ-
entiate into plasma cells and be activated. This could
explain the increased susceptibility of asthmatic horses to
certain Th2-associated diseases, such as insect bite hyper-
sensitivity and urticaria [11]. Overall, our findings indi-
cate that SEA is driven primarily by a Th17-mediated
immune response characterized by an IL17-induced
CXCL13-mediated recruitment of B cells into the lower
airways (Figure 7), potentially predisposing asthmatic
horses to secondary Th2-type responses.

The transcriptomic profile of T cells suggested alter-
ations in T-cell function, including T-cell exhaustion,
unresponsiveness of Treg cells, and reduced cytotoxicity
in NKT cells. It remains unclear whether these dysregula-
tions are associated with the Th17 polarization of the
T-cell population, or if they represent independent mech-
anisms. Nevertheless, these alterations in T-cell function
may potentiate the abnormal immune response observed
in SEA.

Neutrophils are short-lived cells that persist in the
lower airways of asthmatic horses due to IL17-induced
influx and reduced apoptosis [76]. Neutrophil apoptosis is
sometimes accompanied by the formation of NETs, which
can trigger tissue damage and sustain chronic inflamma-
tion [76]. The observed dysregulation of NETosis-
associated genes conforms to the previous observations of
excessive NETosis in the lungs of severely asthmatic
horses [77]. Conversely, several DEGs indicated an anti-
inflammatory phenotype, particularly in the apoptotic
neutrophil subtype, potentially representing a protective
mechanism against excessive inflammation. In summary,
our findings confirm that BALF neutrophils from SEA-
affected horses have a significant pro-inflammatory effect
through increased neutrophil persistence and facilitated
NET formation in the lungs. The concomitant anti-Th17
transcriptomic profile observed in apoptotic neutrophils
suggests a parallel attempt to mitigate lung inflammation.
Hence, neutrophils seem to act as effectors rather than pri-
mary instigators of asthmatic lung inflammation. Target-
ing treatment specifically towards the pro-inflammatory
neutrophil subtype could disrupt the self-perpetuating
inflammatory circle while preserving the antimicrobial
functions of other neutrophil subtypes.

Employing scRNA-seq on equine BALF cells eluci-
dated important underlying immune mechanisms of
SEA, yet this study had limitations. One significant chal-
lenge when studying horses is the inadequate quality of
the current reference annotation, necessitating manual
annotation of the cell clusters, particularly for poorly
defined cell subtypes. Nonetheless, the detection of previ-
ously identified cell types and subtypes in equine BALF
[19, 72] supports the reproducibility of our annotation.
Some clusters, such as the ‘undetermined AMs’ cluster,
could not be confidently annotated. Further scRNA-seq
studies and complementary techniques are required for
conclusive insights.

ScRNA-seq is a relatively new technology that comes
with computational challenges. One such challenge is the
ability to detect and filter technical multiplets without
removing biologically significant signals representing cell–
cell complexes or new cell types with a dual lineage signa-
ture. In this study, we hypothesized that cluster Mo/Ma5
represented bona fide monocyte–lymphocyte complexes,
supported by the presence of a similar transcriptomic sig-
nature in equine BALF cells [19, 72] and human PBMCs
[73, 78]. Although the existence of cellular complexes was
confirmed in human PBMCs using imaging flow cytome-
try [73, 78], validation in horses has yet to be performed.
Another potential limitation associated with the 10�
Genomics droplet-based technique is its low sensitivity for
genes with a low average expression, which could explain
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the discrepancies with previous bulk RNA or proteomics
studies, such as the absence of upregulated Th1 and
Th2-associated cytokines.

As this study focused on neutrophilic SEA, results
may not apply to other asthma subtypes. This is exempli-
fied by a previous scRNA-seq study on BALF cells from
horses with mastocytic asthma [72], which exhibited a
different transcriptomic signature. For example, FKBP5
was significantly upregulated in mast cells, a gene that
we did not detect in our dataset. Moreover, a recent flow
cytometric analysis of BALF with functional assays on T
cells provided further evidence that distinct mechanisms
exist among the various forms of equine asthma [18].
Therefore, studying different endotypes separately is cru-
cial to obtain meaningful results.

CONCLUSION

The presented scRNA-seq analysis of equine bronchoal-
veolar cells provides insights into the major immune
mechanisms underlying SEA. The use of scRNA-seq
allowed us to overcome the influence of varying cell type
distribution associated with the disease and to gain
unprecedented resolution into the pathophysiology of
SEA. This represents a significant breakthrough, chal-
lenging the prevailing perception of SEA as a
Th2-associated disease. We identified the crucial role of
monocytes in initiating the Th17 response in the lungs.
The upregulation of CXCL13 in lung and blood mono-
cytes suggests its potential as a SEA biomarker and thera-
peutic target. Our findings indicate that monocyte
activation may occur through direct cell–cell contact, a
hypothesis that should be tested using imaging flow cyto-
metry. This could reshape our understanding of immuno-
therapy approaches. Therapies targeting Th17-associated
cytokines have proven ineffective in reducing symptoms
in human asthma [64]. One possible approach could be
to prevent monocyte activation by targeting monocyte-
T-cell synapses. Our results demonstrate several parallels
with previous studies on non-Th2 neutrophilic asthma in
humans, further validating the horse as a valuable model
for studying human asthma.
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