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Abstract
Background Deep learning image reconstructions (DLIR) have been recently introduced as an alternative to filtered back projection
(FBP) and iterative reconstruction (IR) algorithms for computed tomography (CT) image reconstruction. The aim of this study was to
evaluate the effect of DLIR on image quality and quantification of coronary artery calcium (CAC) in comparison to FBP.
Methods One hundred patients were consecutively enrolled. Image quality–associated variables (noise, signal-to-noise ratio
(SNR), and contrast-to-noise ratio (CNR)) as well as CAC-derived parameters (Agatston score, mass, and volume) were
calculated from images reconstructed by using FBP and three different strengths of DLIR (low (DLIR_L), medium
(DLIR_M), and high (DLIR_H)). Patients were stratified into 4 risk categories according to the Coronary Artery Calcium -
Data and Reporting System (CAC-DRS) classification: 0 Agatston score (very low risk), 1–99 Agatston score (mildly increased
risk), Agatston 100–299 (moderately increased risk), and ≥ 300 Agatston score (moderately-to-severely increased risk).
Results In comparison to standard FBP, increasing strength of DLIR was associated with a significant and progressive decrease
of image noise (p < 0.001) alongside a significant and progressive increase of both SNR and CNR (p < 0.001). The use of
incremental levels of DLIR was associated with a significant decrease of Agatston CAC score and CAC volume (p < 0.001),
while mass score remained unchanged when compared to FBP (p = 0.232). The underestimation of Agatston CAC led to a CAC-
DRS misclassification rate of 8%.
Conclusion DLIR systematically underestimates Agatston CAC score. Therefore, DLIR should be used cautiously for cardio-
vascular risk assessment.
Key Points
• In coronary artery calcium imaging, the implementation of deep learning image reconstructions improves image quality, by
decreasing the level of image noise.

• Deep learning image reconstructions systematically underestimate Agatston coronary artery calcium score.
• Deep learning image reconstructions should be used cautiously in clinical routine to measure Agatston coronary artery
calcium score for cardiovascular risk assessment.
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FBP Filtered back projection
HU Hounsfield unit
IR Iterative reconstruction
ROI Region of interest
SD Standard deviation
SNR Signal-to-noise ratio

Introduction

Coronary artery calcium (CAC) is a well-established surrogate
marker of atherosclerotic plaque burden [1]. Accordingly, an
increasing body of evidence has demonstrated the incremental
prognostic value of CAC for hard clinical endpoints in asymp-
tomatic patients [2, 3]. Furthermore, recent reports indicate that
quantification of CAC may help identify asymptomatic patients
who benefit from statin therapy [4]. As such, current guidelines
on primary prevention of cardiovascular disease have endorsed
CAC as a risk modifier in patients with intermediate cardiovas-
cular diseases risk [5–7], hence highlighting the requirement for
an accurate and precise measurement of CAC.

Several technical parameters, such as image reconstruction
algorithms, type of computed tomography (CT) scanner, and
analysis software, have been shown to affect CAC measure-
ments [8, 9]. Deep learning image reconstructions (DLIR)
based on a convolutional neural network have been recently
introduced as an alternative to filtered back projection (FBP)
and iterative reconstruction (IR) algorithms for coronary CT
angiography (CCTA) [10, 11]. Although deviations from
standard FBP reconstruction settings are discouraged for
CAC imaging [12], preliminary results have shown that the
implementation of DLIR is associated with superior image
quality [10] while maintaining a similar texture than FBP im-
ages [13]. Since data on the impact of DLIR on CAC quanti-
fication are still scarce [14], the aim of this study was to eval-
uate the effect of DLIR on image quality and CAC quantifi-
cation in comparison to standard FBP by using non-enhanced
electrocardiogram (ECG)–triggered cardiac CT.

Materials and methods

Population

FromMay 2019 to November 2019, 100 patients with suspected
coronary artery disease clinically referred for CCTA were con-
secutively enrolled in this study. Exclusion criteria comprised
previous coronary revascularization by either percutaneous cor-
onary intervention or coronary artery by-pass graft, mechanical
prosthetic valves, pacemaker, or implantable cardioverter defi-
brillators. The study was approved by the local ethics committee
(BASECNr. 2020-00675), and all patients included gave written
informed consent for the scientific use of their data.

CT acquisition and reconstruction

Scans were performed on a 256-slice CT scanner (Revolution
CT, GE Healthcare). Since a non-contrast enhanced CT scan
for CAC scoring was obtained as part of the CCTA examina-
tion, patients with heart rate ≥ 65 beats/min received up to
30 mg of metoprolol intravenously prior to the scan. The
CAC scan was acquired within one heartbeat using prospec-
tive ECG triggering set at 75% of the R-R interval. The scan
parameters were as follows: 120 kVp, 200 mA, 256 ×
0.625 mm collimation with a z-coverage of 12–16 cm [15].

Image reconstruction and analysis for CAC imaging

CAC images were reconstructed with slice thickness and in-
crement of 2.5 mm using standard FBP and three strength
levels of DLIR (low (DLIR_L), medium (DLIR_M), and high
(DLIR_H)). The display field of view was set to 25 cm. For
each dataset, noise, signal-to-noise ratio (SNR), and contrast-
to-noise ratio (CNR) were measured. Noise was defined as the
standard deviation (SD) of the mean attenuation measured in
the aortic root at the level of the left main ostium by placing a
circular region of interest (ROI) with a diameter of 20mm
(corresponding to an area of 314 mm2). The SNR was calcu-
lated by dividing the mean attenuation of the aortic root at the
level of the left main ostium, obtained from a circular 20-mm-
diameter ROI, by its SD. Finally, CNR was derived as the
difference in the mean attenuation between a calcification of
the proximal left anterior descending coronary artery and the
adjacent perivascular adipose tissue, both obtained from a
circular ROI with a diameter of 2 mm (corresponding to an
area of 3.14 mm2), divided by the SD of the mean attenuation
of the aortic root. The CNR was evaluated only in patients
with at least one calcification in the left descending coronary
artery, with a size exceeding the area of the ROI.

CAC-derived parameters (Agatston score, mass, and vol-
ume) were calculated by using a commercially available semi-
automatic software (SmartScore 4.0, GE Healthcare) as previ-
ously described [9]. Patients were classified into 4 risk cate-
gories according to the Coronary Artery Calcium - Data and
Reporting System (CAC-DRS) classification: 0 Agatston
score (CAC-DRS 1, very low risk), 1–99 Agatston score
(CAC-DRS 2, mildly increased risk), Agatston 100–299
(CAC-DRS 3, moderately increased risk), and ≥ 300
Agatston score (CAC-DRS 4, moderately-to-severely in-
creased risk) [16].

Statistical analysis

Statistical analysis was performed using STATA (17.0,
StataCorp LLC) and R (Version 4.1.1, https://www.r-project.
org). Continuous variables are presented as mean ± SD or as
median (interquartile range), as appropriate, whereas
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categorical variables are reported as frequencies and
corresponding percentages. The Friedman test was applied
to determine the effect of DLIR on image quality and CAC-
derived parameters. If a significant difference was present, the
Wilcoxon signed-rank post hoc test between groups was per-
formed. Bonferroni correction for multiple comparisons was
applied. In patients with any degree of CAC detected on the
FBP dataset, the difference ratios between each strength of
DLIR and the FBP dataset were calculated for each CAC-

derived parameter by using the following formula: (CAC-de-
rived parameter from DLIR dataset − CAC-derived parameter
from FBP dataset) * 100 / CAC-derived parameter from FBP
dataset. The differences between FBP and incremental
strengths of DLIR for CAC-derived parameters were also
assessed graphically by using Bland-Altman analysis. All sta-
tistical analyses were two-sided, and a p < 0.05 was consid-
ered statistically significant.

Results

Population

The final population consisted of 73 men (73%) and 27 wom-
en (27%), with a mean ± SD age of 59 ± 11years and a body
mass index of 26 ± 4.8 kg/m2. The patient characteristics are
listed in Table 1.

Image quality

The mean heart rate during CAC scan was 60 ± 7.5 beats/min.
Increasing strength of DLIR was associated with a significant
and progressive decrease of image noise (p < 0.001) alongside
a significant and progressive increase of both SNR and CNR
(p < 0.001) as shown in Fig. 1. In comparison to FBP,
DLIR_L, DLIR_M, and DLIR_H were associated with a me-
dian decrease of noise of −26% (−29 to −23%), −39% (−41 to
−34%), and −59% (−60 to −57%), respectively. Accordingly,
the median increase of SNRwas 36% (29 to 42%), 63% (54 to
71%), and 148% (133 to 157%) for DLIR_L, DLIR_M, and
DLIR_H, respectively. A similar trend was observed for
CNR, which increased by 37% (31 to 42%) for DLIR_L,

Table 1 Demographic characteristics

Population N = 100

Sex, males/females 73 (73%)/27 (27%)

Age, years 59 ± 11

BMI, kg/m2 26 ± 4.8

Hypertension 35 (35%)

Diabetes 10 (10%)

Dyslipidemia 36 (36%)

Smoking 22 (22%)

Positive family history for cardiovascular diseases 27 (27%)

Chest pain typicality

Typical chest pain 11 (11%)

Atypical chest pain 26 (26%)

Medical therapy

Statin 19 (19%)

Beta-blockers 10 (10%)

ACEI/ARB 28 (28%)

Antiplatelet medications 19 (19%)

Continuous variables are presented as mean ± standard deviation whereas
categorical variables as frequency and corresponding percentage

Abbreviations: ACEI, angiotensin-converting-enzyme inhibitors; ARB,
angiotensin-receptor blockers; BMI, body mass index

Fig. 1 Impact of different strengths of DLIR on image quality. Box and
whisker plots representing median and interquartile range values of noise,
SNR, and CNR for FBP and increasing strengths of DLIR. Increasing
strength of DLIR was associated with a significant and progressive
decrease of image noise as well as with a significant and progressive

increase of both SNR and CNR. **** indicate a p < 0.001.
Abbreviations: CNR, contrast-to-noise ratio; DLIR, deep learning image
reconstruction; FBP, filtered back projection; H, high; L, low; M, medi-
um; SNR, signal-to-noise ratio
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63% (52 to 72%) for DLIR_M, and 141% (124 to 149%) for
DLIR_H. The median CT dose index-volume (CTDIvol) and
dose length product (DLP) values for CAC score scans were
2.41 (2.38–2.43) mGy and 38 (38–39) mGy*cm, respectively.

CAC-derived parameters

The use of incremental levels of DLIR was associated with a
significant decrease of Agatston CAC score, with the

DLIR_H being associated with the greatest reduction (p <
0.001). In comparison to FBP, the median decrease of
Agatston score was −0.77% (−2.9 to 0.00%), −2.0% (−4.7
to 0.00%), and −3.7% (−12 to −1.9%) for DLIR_L,
DLIR_M, and DLIR_H, respectively. Similarly, the volume
score progressively decreased with increasing levels of DLIR
(p < 0.001). In detail, the volume score decreased by −3.7%
(−10 to 0.00%) with DLIR_L, −4.3% (−19 to 0.00%) with
DLIR_M, and −9.1% (−20 to −2.3%) with DLIR_H. The

Table 2 Impact of incremental
strengths of DLIR on CAC-
derived variables

Variable FBP DLIR_L DLIR_M DLIR_H p

Agatston CAC 48 (4.0 to 202) 47 (2.5 to 203) 47 (2.5 to 201) 44 (2.0 to 196) < 0.001

CAC mass, mg/cm3 7.0 (0.0 to 33) 7.0 (0.0 to 34) 7.0 (0.0 to 33) 6.5 (0.0 to 33) 0.232

CAC volume, mm3 25 (4.0 to 80) 23 (3.0 to 76) 22 (2.5 to 79) 21 (2.0 to 75) < 0.001

Values are reported as median (interquartile range). p values are derived from Friedman test

Agatston CAC score and CAC volume derived from FBP reconstructions were significantly higher than the
corresponding values obtained from datasets reconstructed by using any strengths of DLIR (all p values
< 0.05, derived from the Wilcoxon signed-rank post hoc test with Bonferroni correction for multiple compari-
sons). On the contrary, mass did not differ significantly between FBP and any strengths of DLIR (p = 0.232)

Abbreviations: CAC, coronary artery calcium; DLIR, deep learning image reconstruction; FBP, filtered back
projection; H, high strength; L, low strength; M, medium strength

Fig. 2 Results from Bland-Altman analysis. A Box and whisker plots
representing median and interquartile ranges of Agatston CAC, CAC
mass, and CAC volume. B Bias (mean difference: FBP - DLIR) and C
limits of agreement derived from Bland-Altman analysis for CAC-
derived parameters calculated at different strengths of DLIR in

comparison to FBP. Increasing strength of DLIR led to an increasing
underestimation of AgatstonCAC andCAC volume, as well as to broader
limits of agreement. Abbreviations: CAC, coronary artery calcium;DLIR,
deep learning image reconstruction; FBP, filtered back projection; H,
high; L, low; M, medium

3835European Radiology  (2023) 33:3832–3838



mass score did not differ significantly between FBP and any
strengths of DLIR (p = 0.232). CAC-derived parameters cal-
culated from FBP and incremental strengths of DLIR are re-
ported in Table 2. Bland-Altman results are shown in Fig. 2,
demonstrating an increasing underestimation of Agatston
CAC score and CAC volume as well as broader limits of
agreement with increasing strength of DLIR in comparison
to FBP.

In comparison to FBP, the number of misclassified patients
was 4 (4%) for DLIR_L (n = 4 from CAC-DRS 1 to CAC-
DRS 0), 5 (5%) for DLIR_M (n = 4 from CAC-DRS 1 to
CAC-DRS 0; n = 1 from CAC-DRS 2 to CAC-DRS 1), and
8 (8%) for DLIR_H (n = 6 from CAC-DRS 1 to CAC-DRS 0;
n = 1 from CAC-DRS 2 to CAC-DRS 1; n = 1 from CAC-
DRS 3 to CAC-DRS 2). The reclassification of CAC-DRS

Table 3 Impact of incremental levels of DLIR on risk classification according to CAC-DRS

DLIR-L DLIR-M DLIR-H

CAC-
DRS 0

CAC-
DRS 1

CAC-
DRS 2

CAC-
DRS 3

CAC-
DRS 0

CAC-
DRS 1

CAC-
DRS 2

CAC-
DRS 3

CAC-
DRS 0

CAC-
DRS 1

CAC-
DRS 2

CAC-
DRS 3

FBP CAC-DRS
0

18 0 0 0 18 0 0 0 18 0 0 0

CAC-DRS
1

4 38 0 0 4 38 0 0 6 36 0 0

CAC-DRS
2

0 0 20 0 0 1 19 0 0 1 19 0

CAC-DRS
3

0 0 0 20 0 0 0 20 0 0 1 19

Values are reported as frequencies. Please refer to the text for details on CAC-DRS classification

Abbreviations: CAC-DRS, Coronary Artery Calcium Reporting and Data System; DLIR, deep learning image reconstruction; FBP, filtered back
projection; H, high strength; L, low strength; M, medium strength

Fig. 3 Differences in CAC-DRS reclassification between FBP and three
different strengths of DLIR. A Bars show the frequency of patients clas-
sified to each risk category. With increasing strength of DLIR, the rate of
reclassification to a lower risk category (from CAC-DRS 1 to CAC-DRS
0) slightly increases. B Representative CT images reconstructed by using
FBP and incremental levels of DLIR, with the corresponding magnifica-
tions of the left main coronary artery–left anterior descending coronary
artery. All pixels with a density > 130 7 HU were automatically detected

by the semi-automated image-processing software and color-coded in
green. A spotty calcification (Agatston CAC = 1) in the proximal left
anterior descending coronary artery (light green circle) was automatically
detected only on the FBP dataset. Abbreviations: CAC-DRS, Coronary
Artery Calcium Data and Reporting System; DLIR, deep learning image
reconstruction; FBP, filtered back projection; H, high; HU, Hounsfield
unit; L, low; M, medium

3836 European Radiology  (2023) 33:3832–3838



categories by the three strengths of DLIR in comparison to
FBP is presented in Table 3 and in Fig. 3.

Discussion

The main findings of our study are as follows: (1) Compared
to standard FBP, the implementation of DLIR significantly
decreased image noise, thus improving overall image quality;
(2) Agatston CAC score decreased progressively with increas-
ing strength of DLIR resulting erroneously in a negative CAC
score in up to 6% of the patients.

Over the last few years, thanks to technological develop-
ments, IR algorithms have been introduced for cardiac CT image
reconstruction as an alternative to FBP, aiming to improve image
quality, and therefore, diagnostic accuracy. Several studies have
reported on the impact of IR from different vendors on CAC
score quantification. A reduction of Agatston CAC score up to
48% and 39% was shown when the sinogram-affirmed IR and
the highest level of advancedmodeled IR (ADMIRE)were used,
respectively [17, 18]. In line with these findings, Gebhard et al
demonstrated that the reduction of Agatston CAC score progres-
sively increased up to 22% with increasing strengths of adaptive
statistical IR (ASIR) [9]. Overall, this inaccurate estimation of
CAC Agatston score has discouraged the use of IR for CAC
imaging.

Recently, a DLIR algorithm has been proposed to over-
come the limitations related to IR. As such, similar to the
results by Wang et al [14], the implementation of DLIR in
our population led to a smaller reduction of Agatston CAC
score as compared to IR algorithms. This may be explained by
the fact that deep learning networks employed by DLIR are
trained by using FBP datasets to generate images with a sim-
ilar texture, hence suppressing noise without impacting ana-
tomical and pathological structures [13]. Nevertheless, in-
creasing DLIR strength was associated with an increasing rate
of patients being erroneously classified as having zero CAC
score. This may have clinical consequences since individuals
with minimal CAC score (CAC 1–10) have been reported to
be at 3-fold increased risk for incident cardiovascular events in
comparison to those with 0 CAC score [19]. Therefore, the
detection of any CAC could be used to trigger aggressive
preventive therapy, especially in young adults < 40 years [20].

Several limitations are to be acknowledged. First, this is a
single-center study using a single platform for CT image recon-
structions. Therefore, our results are not generalizable to artificial
intelligence technologies developed by other vendors. Second, the
population used for our analysis does not reflect the population
usually referred for cardiovascular risk stratification. Nevertheless,
the aim of our study was to evaluate the impact of DLIR on CAC
scoring quantification and not on patient’s prognosis.

Conclusions

Although the implementation of DLIR improves image qual-
ity mainly by reducing noise, it systematically underestimates
Agatston CAC score. Therefore, DLIR should be used cau-
tiously to assess cardiovascular risk in asymptomatic patients
since it could negatively impact patient management strate-
gies. Follow-up data are warranted to assess the impact of
DLIR in clinical routine.
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