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Abstract

The size of sedimentary particles in rivers bears information on the sediment entrain-

ment or deposition mechanisms and the hydraulic conditions controlling them. How-

ever, collecting such data from coarse-grained sediments is work intensive, both in

the field and remotely. Therefore, attention has turned to machine learning models

to improve the data acquisition. Despite their success, current methods need large

quantities of data and yield results limited to a few percentile values of grain size

datasets, often additionally affected by a systematic bias. In most cases, the root of

these limitations is the challenge of accurately segmenting grains. Here, we present a

new approach to improve the segmentation of individual grains based on the capac-

ity of transfer learning in convolutional neural networks. Specifically, we re-train a

state-of-the-art model for cell segmentation in biomedical images to find and seg-

ment coarse-grained particles in images of fluvial sediments. Our results show that

the performance in the segmentation tasks can be directly transferred to images of

fluvial sediments and that our re-trained models outperform existing methods. We

document that our results are achievable with only 10%–20% of the data needed for

training other deep learning models designed to measure the size of fluvial sedi-

ments. Moreover, we find that traits in our data control the segmentation perfor-

mance. This enables data-driven approaches to create specialist segmentation

models. Additionally, comparing our automatically obtained datasets with the results

retrieved from image and field-based surveys confirms that improvements in seg-

mentation are directly leading to more precise and more accurate grain size data

even if data collection occurs in images taken at different conditions. Finally, we

release a software package, the trained models and our data. The goal is to offer a

tool to efficiently segment and measure grains in sediment images in an automated

way, which can be adapted to different settings.
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1 | INTRODUCTION

Data on the size of the sediment transported by rivers, both in mod-

ern and ancient systems, are of crucial importance to understand the

mechanisms, hydraulic conditions and grain-to-grain interactions dur-

ing sediment transport in fluvial systems (e.g., Attal et al., 2015;

Dunne & Jerolmack, 2018; Piégay et al., 2020; Whittaker, Attal, &

Allen, 2010). In addition, grain size is critical to deciphering climate,
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tectonic and supply signals preserved in the stratigraphic record of

fluvial sediment routing systems (e.g., Allen et al., 2017; Castelltort &

Van Den Driessche, 2003; Schlunegger & Norton, 2015; Tofelde

et al., 2021). Standard field methods have been developed in the past

years to measure the grain size of sediment transported in active rivers

(e.g., Bunte & Abt, 2001). However, these methods are costly and yield

limited or potentially biased data, which led to the development of

approaches for measuring grain sizes in images (e.g., Butler, Lane, &

Chandler, 2001; Carbonneau, Lane, & Bergeron, 2004). These image-

based methods have been constantly improved over the last years,

yielding a variety of approaches, ranging from manual annotation

(e.g., Sulaiman et al., 2014), semi-automated segmentation

(e.g., Detert & Weitbrecht, 2012; Purinton & Bookhagen, 2019) to

texture-based percentile predictions (e.g., Buscombe, 2013). Although

these methods allowed for a faster and remote measurement of a larger

number of grains, they still need a calibration in the field for texture-

based approaches, or they require a manual correction of individual

grains for segmentation-based methods. In addition, both tend to sys-

tematically over-/underestimate the sizes of grains (e.g., Chardon

et al., 2020; Chardon, Piasny, & Schmitt, 2022; Mair et al., 2022a).

Therefore, and most recently, attention turned to deep neural net-

works, with the aim either to improve the segmentation in images

(e.g., Chen et al., 2023; Chen, Hassan, & Fu, 2022; Mörtl et al., 2022;

Soloy et al., 2020) or to directly predict percentile values of a grain size

distribution (e.g., Buscombe, 2020; Lang et al., 2021). The main aims of

all these works were to automate the measurements, improve the

reproducibility and scalability, and to increase the number of observa-

tions. Although deep learning did improve the segmentation for some

data and settings, challenges have remained (e.g., Chen et al., 2023;

Chen, Hassan, & Fu, 2022). In addition, current methods have limited

ability to adapt to new, previously unseen data. This, in turn, limits the

uncertainty estimation and thus reduces the interpretability of the

results (e.g., Reichstein et al., 2019). In particular, the large variety of

information in images, different camera properties and the visual com-

plexity of natural photographs (e.g., Figure 1) pose challenges to current

deep learning-based models. Such challenges might even prevent these

neural network-based models from producing meaningful information

for some data not seen during training (e.g., Szegedy et al., 2014; Zech

et al., 2018). Thus, additional annotated data may be required to apply

these methods in new settings (e.g., Sun et al., 2017). However, for cur-

rent models used for grain size measurements, the large amount of data

required for training (e.g., >125 000 or >180 000 individually annotated

grains for Chen, Hassan, & Fu, 2022, and Lang et al., 2021, respectively)

imposes an often prohibitive cost on re-training.

In recent years, tools to estimate the grain size of fluvial pebbles

from 3D point clouds have been developed in parallel with ongoing

improvements in image-based methods. For example, some authors

tried to segment individual grains by ellipsoidal fitting (e.g., Steer

et al., 2022), whereas others attempted to infer a size distribution

from the roughness of a point cloud (e.g., Woodget &

Austrums, 2017). Although segmentation-based methods applied to

point clouds can yield valuable additional information, such as the 3D

orientation or the 3D shape, the current generation of such methods

cannot be readily applied to every setting for several reasons. First,

the related acquisition of data can be more complex, and the subse-

quent data processing is time-consuming and thus expensive. This is

mainly due to the technical requirements to conduct a LIDAR (Light

Detection and Ranging) or RTK (real-time kinematic positioning) sur-

vey and to post-process the data. Second, such methods are not well

suited to fit the geometry of angular sedimentary particles, because of

inherent geometric restrictions that are related to the corresponding

methods. Accordingly, despite many recent advances in measuring

individual grain properties of fluvial pebbles, related surveys based on

3D point clouds and 2D images have remained a challenge. As such,

there is an increasing need for a more accurate segmentation across

different data.

Here, we present a new approach for improving instance segmen-

tation of individual grains in images, employing the capability of trans-

fer learning in deep neural networks (e.g., Lu et al., 2015; Yosinski

et al., 2014). This allows us to adapt existing models for tasks similar

to their original purpose. Specifically, we use the Python-based open-

source tool Cellpose (Stringer et al., 2021), a state-of-the-art deep

learning model for detecting and segmenting cells and nuclei in bio-

medical images. We adapt this model to find and delineate coarse-

grained pebbles in images of fluvial gravel. Our underlying rationale is

that sedimentary particles such as fluvial pebbles are geometrically

similar to cell nuclei. Our results indicate that these models can indeed

be retrained for segmenting sedimentary particles in images.

The resulting models, either re-trained from models that them-

selves are trained for nuclei segmentation or trained from scratch,

vastly outperform existing models that have been proposed for the

segmentation of fluvial pebbles in all datasets we tested in this study.

Notably, we will document that although our approach requires an

order of magnitude smaller dataset size for training than other

methods (e.g., Chen, Hassan, & Fu, 2022; Lang et al., 2021), it yields

better results. Furthermore, the models’ flexibility and accessibility, as

well as the ability to re-train them rapidly, allow us to generate task-

or image-type-specific models, as we did here with different datasets.

Such dedicated specialist models can yield substantially better results

for these specialized datasets than more generalist models trained on

larger datasets, which generally aim to segment many different types

of objects (e.g., He et al., 2020; Kirillov et al., 2023). In line with the

approach of Pachitariu and Stringer (2022), we additionally propose

an interactive workflow to create specialized and high-performing

models in a short time and from relatively small datasets. To facilitate

access to these powerful instance segmentation models, we built an

open-source software library, ImageGrains, which allows for (i) an easy

use of the Cellpose models we trained, (ii) a straightforward training

of custom models and (iii) streamlined grain size measurements.

2 | METHODS

We employed an existing deep neural network architecture, Cellpose

(Stringer et al., 2021; Pachitariu & Stringer, 2022; v.2.1.1), as a back-

bone segmentation model within our ImageGrains software (see Data

S1). This is realized with the goal to segment and measure sedimen-

tary particles in curated image datasets (Figure 2). In the following

sections, we provide background information on the datasets

(Section 2.1) and briefly describe the deep learning architecture

used for segmentation and its training (Section 2.2). Next, we

explain how we evaluate the model’s segmentation performance

(Section 2.3) before describing how the particle sizes were measured

(Section 2.4).
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2.1 | Image data

We compiled a diverse dataset of fluvial sediment images displaying

coarse-grained (>2 mm) fluvial sediment, so-called pebbles, into three

basic datasets (Table S1), which are described below (see Figure 1 for

an overview). For each image, the same operator manually annotated

square subset tiles with the size of 512 pixels to generate the ground

truth for training the model. This was done using the LABKIT plugin

(Arzt et al., 2022) for FIJI (Schindelin et al., 2012). Image sub-setting

was accomplished semi-randomly to avoid overlaps between the tiles

while still capturing the visual complexity of the image. This led to a

varying number of tiles for each image (Table S1).

First, for the APF data (‘all pebbles fluvial’), we selected 20 images

taken from fluvial gravel with handheld cameras and with uncrewed

aerial vehicles (UAVs; Figure 1a). The images were taken from several

sites along Canadian (nimages = 4; Chen, Hassan, & Fu, 2021;

Brayshaw, 2012) and Swiss (nimages = 9; Mair et al., 2022b) rivers.

Here, the goal was to generate a dataset of fluvial pebbles that is as

general as possible. Note that we created new labels for images used

by Chen, Hassan and Fu (2022) to annotate grain boundaries more pre-

cisely. We complemented the APF dataset with seven additional photos

from six sites along Swiss rivers (Figure 1a), exhibiting challenging con-

ditions (e.g., raindrops or wet gravel). These additional images were

taken with a handheld camera (Litty & Schlunegger, 2017) and UAVs.

We included these seven images to broaden the model’s applicability to

more general cases and increase the robustness of the model predic-

tion. We annotated 56 tiles for the APF dataset, of which 47 were used

for training, and nine tiles were kept as a test set. The second set, S1

F I GU R E 1 Examples of images taken from fluvial gravel bars used for this study. (a) Images from Canadian and Swiss rivers (Chen, Hassan, &
Fu, 2021; Mair et al., 2022b; respectively) are used for the generalized APF (‘all pebbles fluvial’) dataset. (b) Uncrewed aerial vehicle (UAV) images
from one site at the Swiss Sense River with homogenous image content and conditions are used in the specialized S1 dataset. (c) Images of a
vertically oriented outcrop in the Finsterhennen gravel pit (Garefalakis et al., 2023) show gravel with fines and sand matrix between coarser grains. In
all panels, the upper half shows the RGB image, whereas the lower half depicts the single-channel greyscale image used for training and inference.

MAIR ET AL. 3
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(Figure 1b), comprises five nadir images, all acquired with a UAV at one

site in the Sense River (Switzerland) under homogenous light condi-

tions. Set S1 contains 18 annotated tiles (14 for training and four as a

test). The third dataset, referred to as FH (‘Finsterhennen’), consists of
seven vertically orientated images taken with a handheld camera from

fluvial sediment in the Finsterhennen gravel pit in Switzerland

(Figure 1c; Garefalakis et al., 2023). These images differ from the APF

and S1 sets in their orientation and depositional nature showing gravels

embedded in a fine-grained (<2 mm grain size) matrix. This material fills

the interstices and sometimes covers parts of the clasts. We annotated

seven tiles, one tile per image, for set FH, which we split by six to one

for training and testing. From these annotated image tiles (see

Figure S2), we trained a collection of segmentation models on different

data splits (Figure 3). We did so to (i) assess the segmentation perfor-

mance of the models as we varied the grade of specialization on spe-

cific data (Stringer et al., 2021) and to (ii) test how the training strategy

influences the segmentation performance.

All UAV-derived images were aligned, undistorted and scaled using

the structure from motion approach with Agisoft Metashape (v1.6 Pro),

a standard software for SfM/MVS (Structure from Motion/Multi-View

Stereo) photogrammetry. Most of such processed photos are

undistorted nadir images, except one image from the Guerbe River, for

which we used an orthophoto mosaic. For some photos, the UAV image

acquisition was accomplished in the raw (DNG) format, whereas others,

for example, all S1 images, were acquired in a pre-processed JPEG for-

mat (for details, see Mair et al., 2022a). However, after the photogram-

metric alignment, all images were converted to the JPEG format.

Referencing was accomplished through ground control points for all

UAV-derived imagery, measured with a Leica Zeno GG04 plus GNSS

antenna and the real-time online Swipos-GIS/GEO RTK correction. This

was accomplished at a precision of 2 cm (horizontally) and 4 cm (verti-

cally; Swisstopo, 2022). We report key uncertainties of the photogram-

metric models, which we used for the modelling of the grain size

uncertainties (see Section 2.4 below and Table S2), therein following

Mair et al. (2022a). Ultimately, we used two orthoimage mosaics gener-

ated from UAV imagery of bars along the Kander and Sense River (sites

for which images are included in the APF and S1 datasets, respectively)

for fully automated grain segmentation and size measurement.

2.2 | Segmentation model and training

Cellpose is a deep learning model designed for efficient and accurate

segmentation of cells or cell nuclei in biomedical images, which at the

F I GU R E 2 Overview of our workflow. We used the deep neural network model Cellpose (Stringer et al., 2021) as backbone model to
segment sedimentary particles in images of fluvial sediments. On the resulting masks, we measured the sizes of individual grains, from which we
compiled grain size distributions (GSD) with percentile-based uncertainty estimations (see Section 2.4 and Data S1 for details). The model
architecture of Cellpose is reproduced from Stringer et al. (2021). Please note that the numbers in the architecture representation indicate the
number of residual blocks in the layer, where each block is composed of two convolutions of the size 3 � 3. Thus, they do not state the
convolution size.

F I GU R E 3 Overview of dataset splits and starting model weights used for training the segmentation models in this study. We refer to the
main text for data description (Section 2.1) and model training (Section 2.2). The nuclei model refers to the pre-trained Cellpose model on images
of cell nuclei of Stringer et al. (2021).
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time of this study in early 2023 was one of the best-performing models

for that specific task (for all details, we refer to Stringer et al., 2021;

Pachitariu & Stringer, 2022). For our study, it was trained with single-

channel, greyscale images and annotated ground truth of the objects to

segment, that is, cells or cell nuclei, and rock pebbles (Figure S2). The

model itself (Figure 2) is a deep neural network in the style of U-net

(Ronneberger, Fischer, & Brox, 2015), which uses residual blocks (He

et al., 2016). Similar to the original U-net, the model consists of a four-

level downsampling and upsampling pass (Figure 2; Stringer

et al., 2021), where the convolutions at each level can be related to dif-

ferent spatial scales. Between the two passes, the model computes a

256-dimensional vector that represents the style of each input image,

for which a global average pooling of the convolutional maps at the

smallest scale is applied (Gatys, Ecker, & Bethge, 2016; Karras et al.,

2021). This style vector is used as input in the upsampling pass,

influencing the segmentation results. Therefore, it can be understood

as a numerical summary of an image (see Gatys, Ecker, &

Bethge, 2016). This image style representation allows the clustering of

data according to their respective segmentation style (Pachitariu &

Stringer, 2022). The neural network itself is employed to predict the

gradients of a flow-vector field, which is simulated with a heat diffusion

equation. These flow vectors are tailored to find the centre of each

object. In detail, the output consists of predictions of horizontal and

vertical flow gradients and the probability of a pixel being inside or

outside of a region of interest (ROI). Through gradient tracking

(Li et al., 2008), any routing of a pixel to such a centre can be identified,

thereby allowing for the segmentation of the object in the ROI and for

mapping its precise outline. For our study, we used the standard archi-

tecture and default settings of Cellpose. These include a flow threshold

of 0.4, a mask threshold of 0, a mean object diameter of 17 pixels dur-

ing training for re-trained models and a scale-dependent resampling.

The original Cellpose models were created to segment cellular

images. They were trained mainly on various microscopy images of

cells and a few images of repeated objects, for example, fish scales,

vegetables, or rocks. However, the model, which we use as a base for

our re-training (see Figure 3 for an overview), was exclusively trained

on annotated data of cell nuclei in 1139 images of various sources

(Caicedo et al., 2019; Coelho, Shariff, & Murphy, 2009; Kumar et al.,

2020; Stringer et al., 2021). All models presented in the following sec-

tions were re-trained from the weights of this nuclei model unless oth-

erwise indicated with a suffix _fs, which means they were trained

from scratch. Without exceptions, all our models were trained on the

respective training splits (Table S1). For this, we employed stochastic

gradient descent, a learning rate of 0.2 and a weight decay of 10�5,

and we validated every 10th epoch with test splits. Following the

default schedule, the learning rate was annealed from zero to 0.2 over

the first 10 epochs. Similarly, for the last 100 epochs, the learning rate

was reduced by a factor of 2 every 10 epochs. The training occurred

on batches of eight single-channel greyscale images with default

image augmentation, which included random rotations, scaling and

translations. The default configuration for training uses the L2 loss

function. This training schedule was applied to all models, irrespective

of the data subset or whether the models were re-trained or trained

from scratch. When re-training from scratch, we set the mean diame-

ter of the object to 17 pixels (i.e., the same as for the nuclei model

used for re-training), which is used by the algorithm to re-scale every

image during training. We assessed the effects of applying changes in

the training configuration where, for example, the number of epochs,

the learning rate and the scale range are modified and where images

were re-scaled during training. We also explored the effect of where

the images are re-scaled and no minimum object sizes are applied (see

Data S5). We found that the default setting produced the overall best

segmentation results for our datasets and models. An exception is the

number of epochs, which we increased accordingly to 1000 (from

500). All our training was accomplished on a stand-alone desktop PC

with an Nvidia RTX 3070 GPU with 8 GB RAM.

2.3 | Quantification and optimization of
segmentation performance

For assessing the segmentation performance, we employ the built-in

method of Stringer et al. (2021), which is partly based on the

approach of Schmidt et al. (2018), which matches the model predic-

tions to the most similar ground-truth annotation. This is done by

calculating the intersection over union (IoU) metric, which is the

intersection of the ground truth and predicted mask, or bounding

box, indicated as the area over the union of the same areas. We cal-

culated an IoU for each predicted grain. Next, all predictions are eval-

uated for different IoU thresholds to calculate the number of valid

matches (true positives; TP), the number of predictions without gro-

und truth masks (false positives; FP) and the number of ground truth

objects with no valid matches (false negatives; FN). Here, at higher

IoU threshold values, predictions must resemble the corresponding

ground truth object more closely than at lower IoUs. Thus, for all pre-

dictions and for each IoU threshold, the average precision (AP) can

be calculated through

AP¼ TP
TPþFPþFN

: ð1Þ

Similarly, by taking the average of image AP values, we calcu-

lated the average precision at a specific IoU threshold for an entire

dataset. The mean average precision (mAP) is then the corresponding

average over several IoU values, either for an image or across a set

of images. Here, all reported mAP values were calculated for IoUs

from 0.5 to 0.9, evaluated at steps of 0.05. These metrics are standard

for evaluating results where objects are detected in images in general

(for more details see, e.g., Lin et al., 2014; Rezatofighi et al., 2019;

Padilla, Netto, & da Silva, 2020; and references therein), or in biomedi-

cal images in particular (e.g., Caicedo et al., 2019; Schmidt

et al., 2018). We calculated all AP values at all IoUs on masks that

were already filtered to be larger than a cut-off value of 12 pixels (see

Section 2.4 below).

We then compared the segmentation performance to existing

methods. To do so, we compared our grain masks with the predictions

from two other methods for all our datasets. The methods used are

the neural network- and watershed-based model GrainID from Chen,

Hassan and Fu (2022) and the PebbleCounts tool (Purinton &

Bookhagen, 2019), which performs a classical edge detection in

images. GrainID is a supervised machine learning model trained on

over 125 000 annotated gravel instances in pictures taken from river

sediments in Canada and China, as well as in images obtained from

flume experiments (Chen, Hassan, & Fu, 2021). We used the model as

MAIR ET AL. 5
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trained and published by the authors. For the second benchmark, we

used PebbleCountsAuto, which is the automated version of

PebbleCounts. We used the tool’s default settings except for disabling

the masking of fine-grained sediments. In addition, we employed this

software without any manual adjustments (Purinton &

Bookhagen, 2021). We pre-calculated the Otsu threshold for every

image with an OpenCV routine, which we then used as input for

PebbleCounts to improve the detection of grains. We acknowledge

that PebbleCounts was designed to find grains in larger images and

that the tool is intended to interactively find grains (which can be

clearly segmented by edge detection) and not necessarily to automati-

cally segment all grains in an image.

Finally, we inferred the representation of the image style for each

of our 81 image tiles from the neural network (see Section 2.2 above).

We did so using our most generalist model (full_set). We used these

256-dimensional vectors for image style clustering in a data-driven

effort to find classes of similar image types. Here, the goal was to train

style-specific models with potentially improved segmentation capabil-

ity. For this, we followed the general method of Pachitariu and

Stringer (2022) by using the Leiden algorithm with 66 neighbours. We

employed a resolution of 0.8 for higher-dimension clustering (Traag,

Waltman, & van Eck, 2019) and a t-distributed stochastic neighbour

embedding (t-SNE) with dimensionality reduction for visualization

(Poličar, Stražar, & Zupan, 2019; Van der Maaten & Hinton, 2008).

We then trained models for each cluster, for which we used the same

train and test tiles that were reorganized according to their respective

style classes.

2.4 | Grain size and uncertainty

The segmentation model, which was trained on the indicated data

split (see Figure 3) for inference, returned delineated grains for each

dataset. All predicted masks presented in the following sections are

generated with default settings, including a minimum object diameter

of 15 pixels (‘min_size’). For inference, we rescaled each image with

the mean diameter of grains of the respective dataset, calculated

with a circular approximation. We first performed a simple ellipsoidal

approximation for each grain candidate to convert segmented ROI

masks into grain size estimations. We then excluded grains, for which

the minor axis was <12 pixels. The same filters were applied to both

the predictions from the segmentation models and the ground truth

masks. For each grain, we thus used (i) the minor and major axes of

the approximated ellipses and (ii) the longest distance between points

on the convex hull along with the largest distance perpendicular to it,

as proxies for the a-axis (or longest visible axis) and the b-axis,

respectively (or shortest visible axis). The results of all length mea-

surements are converted from pixels to length units through the

image-specific pixel resolution (Table S1). By default, the results are

returned as one output file for every input image. This allows

extracting the grain size distributions (GSDs) for sub-regions or a

combination of multiple images.

We modelled the grain size uncertainties for individual percentile

values of GSDs (Eaton, Moore, & MacKenzie, 2019; Mair

et al., 2022a) with several approaches to account for the uncertainties

of the varying input data types. Here, we followed the strategy of

Mair et al. (2022a) and employed bootstrapping with replacement for

any axis value (axi) of a GSD. We did so to quantify the percentile

uncertainty for grain sizes measured in the field and for grain sizes

reported in image pixels before conversion to length units. However,

any such percentile uncertainty only accounts for the variation intro-

duced by the number of grains, that is, the counting statistics. To

account for further uncertainty introduced by measurements in

images, we combined this bootstrapping with a one-dimensional error

modelling. We accomplished this by randomizing each resampled axis

(axi) with two components, which consider the errors on the length

(εlength) and the scale (εscale):

axsim ¼ axiþεlength
� ��εscale: ð2Þ

The length error represents the measurement error along the axis

length. By default, it is implemented in the randomization as a normal

distribution centred on zero, with a standard deviation set to 2 times

the average length of a pixel’s diameter. The scale error is a dimen-

sionless factor that represents the uncertainty introduced by imper-

fect scaling, that is, through estimating the image resolution of an

image. It is implemented, also by default, in the randomization as a

normal distribution centred on 1. As standard deviation, it has the

fractional uncertainty on the principal distance of the image; if no

information is available on the uncertainty of the principal distance,

an uncertainty of 10% (with a corresponding value of 0.1) is consid-

ered. We used this percentile uncertainty for all our data acquired

with handheld cameras. For UAV images, we used the more complex

parametrization of the error components described in Mair

et al. (2022a; cf. section 2.4 therein), with the uncertainty quantities

of the photogrammetric models provided in Table S2.

3 | RESULTS

3.1 | Grain segmentation

Here, we first report the performance of the models we trained, for

which we compare their segmentation results with the results of other

benchmark methods in Section 3.1.1. After that, in Section 3.1.2, we

describe specific systematics that control our models’ segmentation

performance, which ultimately lead to image type-specific segmenta-

tion models (Section 3.1.3).

3.1.1 | Overall performance

Our trained segmentation models are generally able to segment

coarse sedimentary particles at a high precision for all our datasets

(see Figure 4, for example; for all segmentation of the best performing

models, see Figure S3). Although the segmentation performance var-

ied depending on the splits of the training data and the training or

retraining strategy (see Sections 3.1.2), the Cellpose segmentation

models generally vastly outperformed the other methods (Table 1; see

Figures S4–S6 for segmentation results of GrainID, PebbleCounts and

the nuclei model, respectively). This is evident when comparing aver-

age APs (at 0.5 IoU) for the test set, where ΔAP values range from

0.419 for our best model to 0.142 for our overall worst model when

compared with the respective best benchmark model (Table 1). This

6 MAIR ET AL.
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means that our best model correctly segmented 42% more grains with

an IoU of 0.5 or higher, whereas the worst still segmented 14% more

grains correctly than the best benchmark model. Moreover, any of our

trained models segmented grains with a higher average precision at

any IoU threshold across all datasets (Figure 5) and in each image tile

(Figure S3) than the other models. On a dataset level, our models per-

formed better on specialized datasets, with average AP values of

0.753 (S1; full_set) and 0.75 (FH; fh+) in contrast to 0.633 (APF;

full_set) on the respective test set, all calculated at 0.5 IoU for the

best-performing models. Furthermore, the best models also per-

formed better on the specialized test data (S1, FH) at higher IoU

thresholds, thus achieving higher mAP scores (Table 1) than all models

evaluated on the APF set. Finally, most models performed similarly for

the training and test sets (Figure S7). Only for s1, s1+ and fh, the

models performed better for the training set, potentially exhibiting

some overfitting to the training data.

3.1.2 | Systematic trends

Upon closer inspection, the segmentation results reveal systematic

effects on the model performance for our data. First, using transfer

learning, that is, re-training the models from the nuclei model, yields

models that have a better segmentation performance than those

F I GU R E 4 Examples of segmentations
that resulted from our best performing models
(S1: full_set, FH: fh+, and APF: full_set,
respectively) compared with ground truth
annotations, results of a generalist model (apf),
and segmentations of the benchmarks
methods (GrainID; Chen, Hassan, & Fu, 2022;
and PCauto; Purinton & Bookhagen, 2019) for
selected test image tiles. AP = average
precision at intersection over union threshold
of 0.5 for the corresponding tile.

T AB L E 1 Overall segmentation performance of our models and benchmarks for our test image tiles for all datasets.

Dataset S1 (n = 347) Dataset FH (n = 153) Dataset APF (n = 768)

Model AP mAP npred Model AP mAP npred Model AP mAP npred

full_set 0.753 0.575 325 fh+ 0.750 0.547 104 full_set 0.633 0.474 427

apf_s1 0.737 0.564 334 fh 0.705 0.498 113 apf_fh 0.628 0.470 438

s1+ 0.730 0.546 334 apf_fh 0.676 0.494 91 apf_s1 0.620 0.475 448

s1 0.725 0.560 344 full_set 0.667 0.492 90 apf 0.607 0.458 437

apf 0.687 0.514 322 fhfs 0.621 0.449 75 fullfs 0.526 0.399 321

s1fs 0.624 0.457 255 apf 0.504 0.318 97 apffs 0.525 0.397 320

GrainID 0.334 0.103 262 GrainID 0.362 0.126 79 GrainID 0.326 0.140 410

nuclei 0.145 0.075 118 PCauto 0.109 0.033 19 nuclei 0.079 0.031 131

PCauto 0.112 0.043 64 nuclei 0.036 0.025 22 PCauto 0.071 0.029 70

Note: AP, average precision at the intersection over union (IoU) threshold of 0.5, averaged over the dataset; mAP, mean average precision over IoU

thresholds 0.5 to 0.9, again averaged over the dataset; n, number of grains in the ground truth; npred, number of predicted grains; see Section 2.3 of the

main text for more details on the metrics.

MAIR ET AL. 7
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models we trained from scratch with the same data (denoted with the

suffix ‘fs’). Notably, we made this observation for all datasets. The dif-

ferences in average AP values (at an IoU of 0.5) amount to 11% for

set APF (for both full_setfs and apffs) and 13% for sets FH (for fhfs) and

S1 (S1fs). This indicates that the models still benefit from the learning

that occurred on the much larger image dataset of cell nuclei (>1000

images), despite a very low predictive power of the nuclei model if

evaluated on our images without the re-training (Figure 5 and Table 1;

see also Figure S6).

Second, the composition and the content of the training data in

combination with the re-training strategy (see Figure 3 for an over-

view) had significant effects on the segmentation performance.

Starting with the heterogeneous APF set, it is noteworthy that a train-

ing on 53 (apf_fh) and 61 (apf_s1) tiles yields a similar segmentation

performance (within �1% difference on the average AP at 0.5 IoU

score in the test set) as a training on the full dataset of 67 tiles

(full_set; Figure 5c). This is different for the homogeneous and

specialized set S1, where the use of all tiles improves the performance

drastically by �7% (full_set vs apf; Figure 5a), thereby even slightly

outperforming more specialized models trained only on the S1 set

(e.g., s1 and s1+). This shows that adding the data from the gravel pit

(FH) only marginally increases the predictive power for purely fluvial

settings (i.e., APF and S1). In line with this, for the contrastingly differ-

ent FH set, models that were trained only on the six tiles from the

gravel pit outcrops (fh, fh+) performed better than the models trained

on larger sets (e.g., apf_fh). As a result, while showing the highest

score in both S1 and APF test sets, the full_set model falls behind the

best segmenting model (fh+) in the FH test data by 8% (Figure 5b).

This systematic influence of how the training data is composed

further plays a role in which a re-training strategy leads to the best

segmentation performance. For FH, a model (fh+) that was trained

twice, i.e., that was trained from apf that itself had been re-trained

from the nuclei model, performed best, whereas for S1, such a two-

fold training strategy yielded results that were worse than those

where training occurred on all training tiles. Hence, for the FH data, it

is beneficial to start from the generalist weights and to train the model

only on the dataset that differs from the generalized and more

homogenous data, thereby allowing the model to learn a specific rep-

resentation. For the S1 data, such an approach (i.e., s1+), along with

training only on the S1 tiles (s1, s1fs), is potentially hampered by over-

fitting the S1 training tiles (Figure S7).

3.1.3 | Image style classes

Our results so far have shown that the composition of the training

dataset systematically influences the segmentation performance.

Through the higher-dimensional clustering of the image style repre-

sentation by the neural network, we obtained three distinct classes of

image style classes (Figure 6a). We found that these classes consisted

of (i) images with pebbles under sunny conditions with distinct

shadows along granular interstices (‘sunny pebbles’; SP), (ii) images

F I GU R E 5 Segmentation performance for selected models applied on the image tiles that we used as test sets for the datasets S1 (a), FH
(b) and APF (c). Best-performing models are indicated. The lines represent the average precision that is averaged over the test tiles, and the
shaded area represents the standard deviation (1 sigma). Higher AP values indicate a higher percentage of detected grains at a corresponding IoU
threshold, whereas higher values on the IoU axis indicate stricter acceptance criteria for grains considered as detected. CP ‘nuclei’ refers to the
performance of the original Cellpose model for cell nuclei segmentation without any re-training with our data. For the performance on individual
train and test tiles and the average of the entire dataset, we refer to Figure S7. The segmentation performance of the benchmark methods
(GrainID; Chen, Hassan, & Fu, 2022; and PCauto; Purinton & Bookhagen, 2019) are compared.

8 MAIR ET AL.
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that featured coarse particles within a sandy matrix (‘matrix-rich’
gravels; MRG) and (iii) images with higher visual complexity by vegeta-

tion, its shadow and/or water (‘complex vegetation’; CV). We trained

segmentation models (igmrg, igcv and igsp) for which image tiles and gro-

und truth masks were re-combined into datasets according to their

image class. We evaluated these models along with our generalist

model on the respective datasets (Figure 6b). We found that the

style-specific models show either a higher segmentation performance

for two datasets (MRG and SP) or the same for one dataset (CV) when

compared with our generalist full_set model. Moreover, this finding

discloses that the segmentation performance of our models is lower

for images with a higher visual complexity (i.e., AP scores are higher in

datasets MRG and SP). We note that the class boundaries do not

overlap with dataset boundaries and hence that none of our datasets

consists exclusively of one image type (Figure 6a). Therefore, we used

the best-performing model on a dataset level for segmenting, when

we measured the grains on images in the following sections.

3.2 | Grain sizes

Here, we report the results of our grain size measurements. We do so

first on an image tile basis and for unscaled data (Section 3.2.1) to

compare the grain size data resulting from the different methods

to those where grains were manually annotated in the ground truth

images before measurements. Second, we report the results after scal-

ing, and we compare the data with grain sizes measured with different

methods, including field measurements, in Section 3.2.2. Finally, we

present maps displaying the distribution of grain sizes on entire gravel

bars in Section 3.2.3.

F I GU R E 6 Classes of image types for
segmentation inferred from the style vectors
used by the neural network. (a) The clustering of
the style vectors is visualized through a
dimensionality reduction by a t-distributed
stochastic neighbor embedding (t-SNE) with
image examples for each class (MRG, CV and SP).
Inner colors indicate the original allocation in our
dataset (S1, FH or APF). For more details,
including the results of a principal components
analysis of the style vectors, we refer to
Figure S8. (b) Segmentation performance for
models trained on the respective data split
compared with the performance of the generalist
model full_set on the same set.

MAIR ET AL. 9
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3.2.1 | Measurement quality

We measured the size of grains whose shapes were approximated by

either an ellipse or a convex hull. Interestingly, the approximation

method has no significant influence on the grain sizes for our models,

that is, both ellipses and convex hulls yield similar size distributions

(Figures 7 and S9). In addition, when comparing to the ground truth

data (Figure 7), our best segmenting models (full_set for S1 and APF,

and fh+ for FH) are returning values that are overall accurate for all tiles

and for each dataset, independent of the approximation method. The

observation that at least 88.9% (S1), 85.7% (FH) and 60.7% (APF) of the

grain size results cannot statistically be distinguished from the size dis-

tribution of the ground truth data within 95% confidence (p > 0.05,

two-sample Kolmogorov–Smirnov test; Table 2) confirms this. In addi-

tion, the results of the segmentation models are very precise for S1 and

FH. This is inferred from the relative differences of <10% on average

for any percentile values in almost all tiles (Figure 7), and the absolute

average difference that is <10 pixels (Table 2). For the APF, the preci-

sion is slightly lower. Furthermore, despite the overall good perfor-

mance, the results do not match the ground truth data for a few tiles

(see Figures S10–S13). However, the overall high accuracy and preci-

sion in S1 and FH and across all percentile values are also evident when

comparing individual key percentile values (Figure S9). Finally, compar-

ing our models’ results with the benchmark methods’ results reveals

that our models deliver precise and accurate results for any tested grain

approximation across all datasets (Figure 7 and Table 2).

F I GU R E 7 Overall quality of grain size data collected with different methods in image tiles. The quality is quantified by the closeness of
predictions to ground truth for different grain size proxies for all tiles and the respective dataset splits (S1: 18, FH: 7, and APF: 56). We report the
average difference of all percentiles as the relative difference between each percentile of the prediction set and the respective ground truth data.
For information on the average percentile difference of key percentiles (i.e., D16, D50, D84 and D96), we refer to Figure S9. The best Cellpose
models (CP) refer to the models with the highest average AP score (0.5 IoU; Section 3.1.1) and are full_set for S1 and APF and fh+ for FH,

respectively.
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3.2.2 | Size accuracy

Here, we present the results where grains were measured on images

after scaling (Figure 8a,b), which we compare to the data collected

independently, in the field (K1, S1) and manually in images (FH;

Figure 8c,d). We used only the ellipse approximation because this

method yielded similar results as the convex hull (see above). All our

independent measurements were conducted with grid sampling,

either in the field or digitally. Therefore, we resampled all our grains

with a similar digital grid to allow a direct comparison of the results.

All grain size distributions statistically represent the respective refer-

ence measurement (p > 0.05; two-sample Kolmogorov–Smirnov test;

see Table 3). However, a more detailed inspection reveals that some

axes values in the images are much closer to the reference data than

others. Specifically, for the Kander site (K1), the lengths of the b-axis

represent the field data perfectly where the sizes differ by <10% for

all percentiles (Figure 8d) and where the average of the difference

between the percentile values of the reference data and the data

collected with our approach is �0.4 ± 3.3 mm (Table 3). Similarly, for

the Finsterhennen (FH) example, the average difference between

the percentile values is generally small both for the b-axis (0.1

± 0.9 mm) and the a-axis (�0.9 ± 1.2 mm). Yet, a look at the whole

grain size distribution discloses much larger differences that are

evened out (Figure 8d). Nevertheless, the differences between the

percentile values of data collected from the prediction masks and

the percentiles from the reference dataset never exceed ±20%. Fur-

thermore, they agree within uncertainties with each other. As

another example, the b-axis values from the Sense (S1) images are

also in overall good agreement with the reference data and con-

stantly within the uncertainty of the data collected from the field

(Figure 8d). However, the lengths of the a-axis are overestimated for

the percentile values D5 to D50. Unfortunately, we cannot resolve

whether this is an effect of the field sampling, the grain occlusion in

the images, or whether this can be explained by a potential offset

between the location of the field survey and the area on the image

where data were collected.

3.2.3 | Size maps on the bar-scale

We tested our workflow where grains in the surface layer of gravel

bars along Swiss rivers are investigated in two orthoimage mosaics

(Figure 9), which were generated from close-range UAV surveys. This

approach automatically delineated and measured >268 000 individual

grains for site S1 and >143 000 for site K1. The results show a high

variability of grain sizes across the bars, as exemplified by the local

variation in the D50 (Figure 9a). This large variability in particle size in

the surface layer (the D50 ranges from 20.6 to 46.5 mm for S1 and

from 23.2 to 46.5 mm for K1) allows disclosing areas of coarse- and

fine-grained gravel (e.g., S1 in Figure 9a). These variations in the grain

sizes are generally more significant than the uncertainty within the

local images (see, e.g., Figure 9b).

4 | DISCUSSION

Our results show that using specialist deep learning models and trans-

fer learning allows the training of state-of-the-art segmentation

models for images taken from coarse fluvial sediments. Moreover, our

re-trained models delineate pebbles with high accuracy and precision

in a fully automated way. These improvements in segmentation

directly translate into results where grain sizes are determined more

precisely, more accurately and with a larger number of observations

than what can be achieved with the other benchmark methods.

T AB L E 2 Statistical summary of the closeness between predictions and ground truth (GT) for different grain size proxies across the image
tiles datasets.

Grain size metric Data

Percentage of tiles (%) identical with GT Average percentile difference (px) to GT

Best CP model GrainID PCauto Best CP model GrainID PCauto

a-axis (ellipse) S1 94.4 38.9 33.3 1.3 ± 9.7 �0.4 ± 15.5 6.8 ± 32.5

FH 100.0 71.4 0.0 �2.4 ± 4.0 �17.5 ± 29.5 5.4 ± 21.1

APF 78.6 55.4 16.1 �0.8 ± 14.5 �11.7 ± 18.6 14.6 ± 37.6

b-axis (ellipse) S1 88.9 44.4 27.8 �0.5 ± 6.7 �1.1 ± 10.7 8.0 ± 22.5

FH 85.7 71.4 14.3 �2.1 ± 2.3 �10.7 ± 18.9 5.7 ± 13.8

APF 67.9 46.4 21.4 �2.0 ± 9.7 �6.8 ± 12.5 10.5 ± 26.1

a-axis (convex hull) S1 100.0 38.9 22.2 1.0 ± 9.7 �0.3 ± 15.9 5.8 ± 33.9

FH 100.0 71.4 0.0 �2.5 ± 4.0 �19.0 ± 32.5 3.9 ± 21.8

APF 78.6 53.6 12.5 �1.1 ± 15.5 �11.8 ± 19.3 13.6 ± 39.1

b-axis (convex hull) S1 88.9 38.9 16.7 �0.7 ± 7.4 �0.7 ± 11.9 7.4 ± 23.9

FH 85.7 71.4 14.3 �1.8 ± 2.9 �12.1 ± 22.8 5.3 ± 14.5

APF 60.7 37.5 23.2 �2.1 ± 10.4 �7.1 ± 14.0 10.2 ± 27.9

Note: The table shows the percentage of tiles for which the size distribution of grains is not statistically distinguishable from those in the ground truth

dataset within 95% confidence (i.e., p ≥ 0.05 for a two-sample Kolmogorov–Smirnov test). All grain sizes are measured on filtered masks, that is, only

grains with b-axes ≥ 12 px and with a centre point situated within the central 64% of the image tile are taken into account (for visual reference, see

Figure 7). We calculated the average percentile difference as the mean of the difference between the percentiles of the respective prediction set and the

ground truth, and reported it along with the associated 1σ standard deviation. We refer to Figures S10–S13 for all tile-by-tile results. The best Cellpose

models (CP) refer to the models with the highest average AP score (0.5 IoU; Section 3.1.1) and are full_set for S1 and APF and fh+ for FH, respectively.
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Furthermore, we can achieve such good results with relatively small

datasets compared with other approaches (e.g., Chen, Hassan, &

Fu, 2022). For example, we used less than 1000 objects from only

seven tiles for the training (Table S1) of model fh+, which achieves a

high segmentation performance (Table 1). Our trained models can

directly be employed for segmenting grains, and our approach and

data can be used to train custom segmentation models. In addition,

our software can readily be used for measuring the size of segmented

grains (Section 4.1). Our results, particularly the custom models,

underscore the importance of the composition of the datasets,

thereby documenting the potential of a data-driven approach for this

type of analysis (Section 4.2). Furthermore, precise and automated

F I G UR E 8 Comparison
between grain sizes for three
regions where data were
collected on images and in the
field. The predicted grain masks
(a) of the best-performing models
(full_set for K1 and S1, fh+ for
FH) are filtered to represent the
same area measured
independently. Additionally,
results were re-sampled along a
digital image grid to compare the
different datasets (b). The
resulting grain size distributions
(c) are compared with the
independently measured data on
a percentile basis (d).
Uncertainties are displayed as
shaded areas and correspond to
each percentile’s 95% confidence
interval (see Section 2.4 for
details on the estimation). LVA,
longest visible axis; SVA, shortest

visible axis. We note here that for
FH, we compared the predictions
where grains are measured on
undistorted images with a grid
sampling approach. We do so
because we expect a significant
underestimation of the axes’
lengths due to the occlusion of
grains by the sandy matrix (for
further details, see Garefalakis
et al., 2023).

T AB L E 3 Difference between values for key percentiles of grain size distributions collected from images and percentile values in the
reference results.

Site Ellipse axis ΔD16 (mm) ΔD50 (mm) ΔD84 (mm) ΔD96 (mm) Avg. ΔD (mm) p

K1 b 0.3 0.7 �1.1 2.8 �0.4 ± 3.3 > 0.99

FH b 0.3 0.3 �1.4 0.5 0.1 ± 0.9 0.91

FH a 0.1 0 �1.1 4.8 �0.9 ± 1.2 0.91

S1 b 1.4 9.4 0 8.6 �3.7 ± 4.3 0.82

S1 a 12.1 20.7 23.2 11.2 �14.2 ± 6.3 0.11

Note: The uncertainty refers to the 1σ standard deviation of the average percentile difference. All grain size distributions are statistically not different from

the results of the reference measurements (p > 0.05; two-sample Kolmogorov–Smirnov test).
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segmentations yield more extensive and spatially resolved grain size

information for fluvial settings (Section 4.3).

4.1 | Applicability and limitations

We see several applications of our work, outlined in this

section together with their limits. First, with our ImageGrains software

library, our workflow can be directly applied to segment and measure

coarse sedimentary particles in a large range of images. Second, the

segmentation models we trained can now be used for any

segmentation-based workflow that intends to measure the sizes of

grains on images similar to ours (e.g., Carbonneau, Bizzi, &

Marchetti, 2018). Third, our annotated dataset can be used to train

custom segmentation models for other image data types. Finally, by

obtaining precisely segmented grain masks, crucial data on particle

sphericity, roundness and orientation (e.g., Steer et al., 2022) can be

obtained. They can inform novel data-driven study designs (e.g., Chen

et al., 2023). Furthermore, grains from the prediction masks of our

models might also form the basis for other machine learning applica-

tions, for example, the training of a classifier to identify the particles’

petrography. All these applications can be realized with a regular

stand-alone computer without specialized knowledge of coding with

machine learning libraries. In particular, the segmentation model archi-

tecture allows a fast training and inference on a desktop PC with a

consumer-grade GPU. For example, we could train our full_set model

F I GU R E 9 Gain sizes of the surface layer of entire gravel bars measured with ImageGrains for two sites at rivers in Switzerland. (a) Maps of
the local D50 for the b-axis were obtained for subsets of the orthoimage mosaic with a size of 1000 � 1000 pixels each. The frequency
histograms (insert) show high variability in the local D50. (b) Example of segmentation masks and resulting grain size distributions for local image
subsets, which are used to generate the maps in (a). All measurements of axes lengths were obtained through an ellipse approximation. Local

Swiss coordinates (CH1903+) are provided for reference.
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for 1000 epochs in less than 30 minutes using an NVIDIA GeForce

RTX 3070 GPU with 8GB RAM. On the same GPU, inference for

1000 � 1000 pixel images, for example, as used in Figure 9, took less

than two minutes per image. Our grain size analysis with ImageGrains

allows for measurements with a similar rate, where thousands of

grains can be analysed within minutes. The Cellpose model architec-

ture itself was rigorously tested (Pachitariu & Stringer, 2022; Stringer

et al., 2021), and for our case, we found no evidence for a need to

change the default configuration as this would not improve the seg-

mentation performance (see Data S3). Thus, on a technical level, our

approach is limited by considering the general characteristics of such

machine learning-based methods.

Deep learning models, such as convolutional neural networks,

tend to overfit the training data, and their trained state is difficult to

interpret (e.g., Alzubaidi et al., 2021; Sun et al., 2017). For our case,

overfitting can be detected by using appropriate ground truth data for

testing and choosing a suitable training strategy (see Data S3 and S7

and Section 4.2 below). To ensure that the model has learned to seg-

ment grains on images correctly, the results should be compared with

ground truth data by evaluating the segmentation performance

with suitable benchmarks, which are the AP or mAP scores with

defined IoU thresholds for object detection tasks. Thus, when apply-

ing pre-trained models to images with no ground truth, a simple

visual inspection of the segmentation results is recommended to

ensure that the model is properly segmenting grains. We emphasize

this because, despite the overall good results of our models, they

failed to predict grains for some challenging image tiles (Table 2; see

Figure S3 for details). In summary, we find that primarily the data

used for training control the capability of the model to segment

grains. Therefore, mostly inherent image characteristics influence the

applicability of our approach.

The nature of images itself imposes some limits on our workflow.

First, all data on objects extracted from images have a minimum size

controlled by the image resolution. In our case, we used a rigorous

cut-off of 12 pixels length upon inference and measuring the size of

grains, which leads to image-specific minimum grain sizes, for exam-

ple, of 4.7 to 18.1 mm for the images in Figure 8a. Although lower

cut-off values are possible, we opted for the more conservative value.

The reasons for our 12 pixel cut-off are that (i) we found it hard to

delineate grains smaller than this for the ground truth visually, and

(ii) the model rescales images during inference and training in the con-

figuration we use (see Data S2 and Table S3 for more details on the

effect of this). Thus, predictions of smaller grains might yield unstable

results. We note that such challenges are typical for this type of imag-

ery, which could explain why other approaches were based on similar

cut-off values of 20 pixels (Chen, Hassan, & Fu, 2022; Purinton &

Bookhagen, 2019). Accordingly, measuring small grains has remained

a challenge for fluvial settings (e.g., Carbonneau, Bizzi, &

Marchetti, 2018; Marchetti et al., 2022; Steer et al., 2022). Second,

image data need to be scaled and pre-processed accordingly, which

might include a rectification and a photogrammetric alignment

through SfM/MVS methods (e.g., James et al., 2019, 2020). Especially

for data acquired with UAVs, image distortion and systematic errors

stemming from the photogrammetric alignment can have a significant

impact on the results’ quality (e.g., Carbonneau & Dietrich, 2017;

Woodget et al., 2018; Mair et al., 2022a). Third, our approach and

other models (e.g., Weigert et al., 2020), which are based on

microscopy images, are not well suited for a 3D segmentation of

sedimentary particles, despite a dedicated 3D segmentation func-

tionality. Such models infer 3D shapes from a stack of images of

the same objects. This is achieved either through slicing the objects

of interest or through applications of non-destructive imaging

methods, which is impossible for topographic point clouds. Thus,

segmentation methods that use ellipsoidal fitting in a semi-

automated fashion (Steer et al., 2022) might be more suitable for

such data. Nevertheless, deep learning might advance the segmen-

tation of topographic point clouds in the future, possibly by improv-

ing and/or modifying existing methods with neural networks

(e.g., Qi et al., 2018). Once such models and datasets for

segmenting sedimentary clasts would be available, we would expect

similar systematics to govern the segmentation performance, as is

currently the case for our image-based method.

4.2 | Custom segmentation models

Our results show that aside from the training strategy, the main con-

trol on segmentation performance is distinct differences in image

content (see Sections 3.1.2 and 3.1.3 and Figure 6). Consequently,

dataset balance and composition are more critical than dataset size

for our models, despite the almost universal agreement in computer

vision literature that more data improve the model performance. In

line with the finding of Pachitariu and Stringer (2022), we hypothesize

that the reason for this is that specialist models like ours are trained

to find only objects of a few classes or a single class in a much

narrower range of images, whereas more generalist models, for exam-

ple, the Segment Anything Model (SAM; Kirillov et al., 2023), are

required to detect objects from many classes in a much larger variety

of images. For example, we notice that while using more data for

training a specialized model for the S1 tiles, it did not improve the seg-

mentation performance when compared with segmentation perfor-

mance of the best model for the FH tiles (Figure 5). A direct

consequence is the selection of datasets. It is, therefore, essential to

pay attention to dataset balance and composition, concerning image

content and visual complexity, for example, shadows, vegetation,

water, particle size, pebble shape and so on. Our classes of image

styles (Section 3.1.3) can help when facing the question of which

model to select and which data to use for a custom model. Specifi-

cally, before annotating any images, one can infer style vectors for

new images and embed them together with the style vectors of our

data. In case where the inferred image style differs from the data used

for training, a custom model will likely exhibit a better segmentation

performance than existing models. This can also point to the kind of

data split that might be most promising for training, that is, our full set

or a specific class of image style. Related to the data composition, we

find that the most effective re-training strategy is influenced by the

dataset composition (see Section 3.1.2). Hence, the best strategy for

custom models might depend on the kind of data. Again, a style vector

clustering might inform the decision on the optimal strategy. In partic-

ular, the style vectors for the FH images are located closely together

(Figure 6a). Thus, datasets with similar embedded distributions might

benefit from the same training strategy that we used for fh+. Further-

more, our models can predict an initial approximation of masks at the

annotating step, facilitating ground truth generation. The masks can
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then be manually corrected before being used as ground truth for

model training. This can be further sped up using the human-in-the-

loop approach (Pachitariu & Stringer, 2022), for which a custom model

is trained after a newly annotated image is added to the dataset. In

such an iterative process, the updated model would be used to create

increasingly precise masks, thereby reducing the effort of manual

corrections.

4.3 | Implications for measurements of the sizes of
fluvial grains

Our segmentation and workflow for measuring grain size with

ImageGrains allow for a near-complete delineation and measurement

of grains in images of coarse fluvial particles. Because of the high seg-

mentation accuracy, the resulting grain size dataset could be consid-

ered as if it had been collected by an area-by-number sampling

approach (Bunte & Abt, 2001; and references therein). However, our

workflow also allows for a grid (or random) resampling of grains, thus

requiring an explicit choice of data type. For example, a grid

resampling is needed to compare the results of our image analysis to

the reference data collected in the field (Figure 8), which was accom-

plished by a grid-by-number approach. Such method-specific traits

become even more critical when analysing partially occluded or par-

tially buried particles. This is the case for FH, where grain size mea-

surements on images yielded different results than field-based

surveys where grains are manually measured (Garefalakis et al., 2023).

Furthermore, our approach allows us to measure grains almost contin-

uously and identify spatial variations within grain size data. For our K1

and S2 examples, the grain size patterns change significantly with

respect to the sampling location within the same gravel bar (Figure 9).

Similar trends of locally high variability in grain size distributions have

also been observed in other field surveys (e.g., Chardon et al., 2020;

Díaz G�omez et al., 2022; Rice & Church, 1998). In addition, spatial dif-

ferences in sedimentary patterns, for example, vertical and lateral

sorting and/or armouring (see also Bunte & Abt, 2001), can cause a

change in the obtained results of grain size patterns. Such local varia-

tions in grain sizes might be distinctly different for different types of

rivers (e.g., Guerit et al., 2018). Our examples K1 and S1 from

Figures 8 and 9 are from small and alpine streams with high sediment

throughput, where such a spatial variability in grain sizes is typical.

Consequently, with a strategy where grain sizes would be measured

only in isolated patches or with a different binning or resampling

approach, much of the data variability might not be captured, poten-

tially introducing a bias, particularly upon interpreting the data. There-

fore, an eye has to be kept on such scale-related effects.

5 | CONCLUSIONS

Our workflow efficiently finds, segments and measures the size of indi-

vidual coarse sedimentary particles in a broad range of images. We

achieved this through transfer learning, which enabled us to train seg-

mentation models for such sedimentary particles with a neural

network-based model designed to segment cells in biomedical images.

With this approach, we can improve the segmentation of sedimentary

particles significantly compared to existing methods. This improvement

in segmentation allows us to overcome one of the major roadblocks for

automated grain size measurements in images in the past. To make our

workflow available for the larger community, we released the open-

source ImageGrains software along with our annotated data and seg-

mentation models.

Our contribution allows anyone to use our segmentation models

for images of fluvial gravel directly. Additionally, our models and data

can form the basis of custom segmentation models for other types of

images, for which we provide training guidance. In our release, we

included software tools to apply commonly used methods, such as

ellipse fits and convex hull outline approximations, for obtaining the

sizes of delineated grains. Furthermore, our approach includes quanti-

tative methods to estimate the uncertainties for various image types,

including UAV-derived imagery, nadir images, orthophoto mosaics

and photographs from handheld cameras.

More generally, a precise segmentation of grains enables spatially

resolved and accurate grain size measurements with high precision.

The results of our analyses allow us to disclose distinct grain size pat-

terns on a river bar scale. Furthermore, precisely segmented particles

can be further investigated, for example, for shape and orientation or

petrography.
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