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Abstract 97 
 98 
Scope: Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen 99 

considered one of the paradigms of antimicrobial resistance, is among the main 100 

causes of hospital-acquired and chronic infections associated with significant 101 

morbidity and mortality. This growing threat results from the extraordinary 102 

capacity of P. aeruginosa to develop antimicrobial resistance through 103 

chromosomal mutations, the increasing prevalence of transferable resistance 104 

determinants (such as the carbapenemases and the extended spectrum β-105 

lactamases), and the global expansion of epidemic lineages. The general 106 

objective of this initiative is to provide a comprehensive update of P. aeruginosa 107 

resistance mechanisms, especially for the extensively drug-resistant (XDR)/ 108 

difficult to treat resistance (DTR) international high-risk epidemic lineages, and 109 

how the recently approved β-lactams and β-lactam/ β-lactamase inhibitor 110 

combinations may affect resistance mechanisms and the definition of 111 

susceptibility profiles. Methods: To address this challenge, the European Study 112 

Group for Antimicrobial Resistance Surveillance (ESGARS) from the European 113 

Society of Clinical Microbiology and Infectious Diseases (ESCMID) launched 114 

the “Improving Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in 115 

Europe” (ISARPAE) initiative in 2022, supported by the Joint programming 116 

initiative on antimicrobial resistance (JPIAMR) network call and included a panel 117 

of over 40 researchers from 18 European Countries. Thus, an ESGARS-118 

ISARPAE position paper was designed and the final version agreed after four 119 

rounds of revision and discussion by all panel members. Questions addressed 120 

in the position paper: To provide an update on (i) the emerging resistance 121 

mechanisms to classical and novel antipseudomonal agents, with a particular 122 

focus on -lactams, (ii) the susceptibility profiles associated with the most 123 

relevant -lactam resistance mechanisms, (iii) the impact of the novel agents 124 

and resistance mechanisms on the definitions of resistance profiles and   (iv) 125 

the globally expanding XDR/DTR high-risk lineages and their association with 126 

transferable resistance mechanisms. Implication: The evidence presented 127 

herein can be used for coordinated epidemiological surveillance and decision-128 

making at the European and global level. 129 

  130 
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Scope and context 131 

Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen 132 

considered one of the paradigms of antimicrobial resistance, is among the main 133 

causes of hospital-acquired and chronic infections associated with significant 134 

morbidity and mortality (1). Accordingly, P. aeruginosa infections are estimated 135 

to be associated with over 300 ,000 annual deaths and are at the top of the 136 

WHO priority list for the need for research and development of new antibiotics 137 

(2,3). This growing threat results from the extraordinary capacity of this 138 

pathogen to develop antimicrobial resistance through chromosomal mutations 139 

and from the increasing prevalence of transferable resistance determinants, 140 

particularly those encoding carbapenemases or extended-spectrum β-141 

lactamases (ESBLs) (4,5). Combinations of such mechanisms lead to 142 

concerning and complex resistance profiles, defined by the European Centre for 143 

Disease Prevention and Control (ECDC) and the Centers for Disease Control 144 

and Prevention (CDC) as multidrug-resistant (MDR), extensively drug-resistant 145 

(XDR), and pandrug-resistant (PDR), while the Infectious Diseases Society of 146 

America/National Institutes of Health (IDSA/NIH) defines them as difficult-to-147 

treat resistance (DTR) (6,7). P. aeruginosa possesses a non-clonal epidemic 148 

population structure, comprising a limited number of widespread lineages, 149 

selected from a background of numerous rare and unrelated genotypes 150 

recombined at high frequency (8). In fact, several surveys have provided 151 

evidence for the existence of XDR/DTR international high-risk clonal lineages, 152 

which have disseminated in hospitals worldwide (9–11). Beyond classical 153 

molecular epidemiology analysis and phenotypic assessment of resistance 154 

mechanisms, whole genome sequencing (WGS) studies are providing pertinent 155 

information to elucidate the complex and evolving resistome of MDR/XDR/DTR 156 

P. aeruginosa high-risk lineages (12–15). 157 

The recent introduction of novel β-lactam/β-lactamase inhibitor 158 

combinations (BLBLIs) such as ceftolozane/tazobactam, ceftazidime/avibactam, 159 

meropenem/vaborbactam or imipenem/relebactam and the siderophore-160 

cephalosporin cefiderocol, has contributed to mitigate, to some extent, the 161 

problem of XDR/DTR P. aeruginosa (16–19). These agents exhibit enhanced 162 

stability against intrinsically- and chromosomally-encoded β-lactam resistance 163 
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mechanisms in P. aeruginosa, such as overexpression of the AmpC β-164 

lactamase encoding gene, overproduction of efflux pumps, or inactivation of the 165 

OprD porin. However, they are not exempt from resistance development 166 

through emerging mutational mechanisms (20–24). These include modification 167 

(quantitative or qualitative)  of AmpC hydrolytic activity or efflux pumps 168 

substrate specificity, which were observed shortly after their introduction into 169 

clinical practice. Moreover, BLBLIs are not currently effective against the most 170 

potent transferable carbapenemases, particularly class B or metallo-β-171 

lactamases [MBLs] such as VIM, IMP or NDM enzymes (25). Consequently, 172 

use of BLBLIs could lead to the selection of these concerning resistance 173 

mechanisms (26). Besides the approved options, several novel BLBLIs are 174 

undergoing clinical trials (25). These agents, such as aztreonam/avibactam, 175 

cefepime/zidebactam or cefepime/taniborbactam, promise additional 176 

therapeutic choices and the ability to counteract already established resistance 177 

mechanisms (17). 178 

The introduction of novel BLBLIs is therefore significantly broadening the 179 

range of treatment options for XDR/DTR P. aeruginosa infections(17,25). 180 

However, this expansion will also have a major impact on antimicrobial 181 

resistance epidemiology, including both novel and existing mutation-driven 182 

resistance mechanisms, transferable resistance determinants and epidemic 183 

high-risk clonal lineages. A comprehensive understanding of P. aeruginosa 184 

resistance mechanisms and susceptibility profiles, especially of the XDR/DTR 185 

high-risk lineages, and how these promising novel agents may affect resistance 186 

mechanisms and, in turn, the definition of resistance profiles, is needed to have 187 

a common ground and may help to anticipate and coordinate epidemiological 188 

information in the future. 189 

Questions addressed in the position paper 190 

 To address this challenge, the European Study Group for Antimicrobial 191 

Resistance Surveillance (ESGARS) from the European Society of Clinical 192 

Microbiology and Infectious Diseases (ESCMID) launched the “Improving 193 

Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in Europe” 194 

(ISARPAE) initiative in 2022, supported by the Joint programming initiative on 195 

Jo
urn

al 
Pre-

pro
of



 

7 
 

antimicrobial resistance (JPIAMR) network. Thus, this position document from 196 

the ESGARS-ISARPAE Group aimed to provide an update on (i) the emerging 197 

resistance mechanisms to classical and novel anti-pseudomonal agents, with a 198 

particular focus on -lactams, (ii) the susceptibility profiles associated with the 199 

most relevant -lactam resistance mechanisms, (iii) the impact of the novel 200 

agents and resistance mechanisms on the definitions of resistance profiles, and 201 

(iv)  the globally expanding XDR/DTR high-risk lineages and their association 202 

with transferable β-lactamases. 203 

Methods 204 

All ESGARS-ESCMID members were contacted and invited to participate in the 205 

ISARPAE initiative, according to their interest and experience in the topic. This 206 

resulted in the generation of a panel of over 40 researchers from 18 European 207 

countries in June 2022. The panel agreed the above objectives to be addressed 208 

in the position paper and AO and ERM prepared a first draft of the documented 209 

after extensive literature review helped by other panel members. In July 2023 210 

the first draft of the document was sent to all ISARPAE members for revision 211 

and specific contributions, leading to a second draft version that was 212 

extensively revised and discussed during an ISARPAE hybrid (onsite/online) 213 

meeting that took place at Hospital Son Espases-IdISBa (Mallorca, Spain) on 214 

September 8th 2023. The third resulting draft was then sent for review by panel 215 

members and final version of the document was approved in October 6th2023. 216 

Emerging resistance mechanisms to classical and novel anti-217 

pseudomonal agents and associated susceptibility profiles  218 

Table 1 shows the main categories and agents showing 219 

antipseudomonal activity, including those recently introduced and those that will 220 

be clinically available in the next few years, and presents the respective 221 

mutation-driven and horizontally-acquired resistance mechanisms. On the other 222 

hand, Figure 1 shows the susceptibility profiles associated with the most 223 

relevant -lactam resistance mechanisms in P. aeruginosa. 224 

 225 

Pseudomonas aeruginosa -lactam resistome 226 
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 227 

Pseudomonas aeruginosa is intrinsically resistant to aminopenicillins, 228 

alone and combined with clavulanic acid, as well as to most of the older 229 

cephalosporins, notably including the third generation cephalosporin 230 

cefotaxime, due to the production of an inducible AmpC β-lactamase (27). 231 

Moreover, AmpC plays a major role in the basal resistance level (MIC) of P. 232 

aeruginosa to the potent AmpC inducer imipenem. On the other hand, the 233 

constitutive of expression of the efflux pump MexAB-OprM plays a major role in 234 

the basal resistance level to most other β-lactams except imipenem.  235 

 236 

 The most frequent mutation-driven resistance mechanism to classical 237 

antipseudomonal penicillins (such as piperacillin) and cephalosporins (such as 238 

ceftazidime or cefepime) is the overproduction of the chromosomal 239 

cephalosporinase AmpC, involving a large number of genes belonging to cell-240 

wall recycling regulatory pathways (28). Notably, among these genes, the 241 

mutational inactivation of dacB, encoding the nonessential penicillin-binding 242 

protein (PBP] PBP4 and ampD, encoding a N-acetyl-muramyl-L-alanine 243 

amidase, have been found to be the most frequent cause of derepressed ampC 244 

gene expression, and subsequent broad-spectrum β-lactam resistance (29,30). 245 

Additionally, specific point mutations causing a conformational change in the 246 

transcriptional regulator AmpR, leading to ampC upregulation and resistance to 247 

broad-spectrum β-lactams, have been noted among clinical strains. These 248 

mutations include the D135N amino acid replacement, described in several 249 

species (28) and the G154H mutation linked to the disseminated MDR/XDR 250 

ST175 high-risk lineage (14). Mutation of several other genes, including those 251 

encoding amidases (AmpDh2 and AmpDh3), PBPs, such as PBP5 or PBP7, 252 

lytic transglycosylases, MPL, or NuoN have also been shown to enhance ampC 253 

expression, either alone or in combination with other mutations. Nevertheless, 254 

their impact on β-lactam resistance among clinical strains still needs to be 255 

further analysed (28). 256 

In addition to ampC overexpression, recent studies have revealed that 257 

increased levels of β-lactam resistance, involving the novel BLBLIs 258 

ceftolozane/tazobactam and ceftazidime/avibactam, may result from mutations 259 

leading to the modification of the catalytic center of AmpC, currently mainly 260 
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occurring in (up to 10-15%) patients treated with these agents  (20,31–33). 261 

Additional studies identified diverse AmpC variants associated with high-level 262 

resistance to BLBLIs, including the above mentioned ceftolozane/tazobactam 263 

and ceftazidime/avibactam, in a small proportion (around 1%) of clinical P. 264 

aeruginosa isolates (34). Over 500 variants of those AmpC enzymes, also 265 

called Pseudomonas Derived Cephalosporinases (PDC), have been described 266 

so far, including those associated with increased ceftolozane/tazobactam and 267 

ceftazidime/avibactam resistance. Moreover, some of these variants, such as 268 

those showing the L320P substitution, have a significant impact on cefiderocol 269 

MICs, but only a marginal effect on susceptibility to ceftolozane/tazobactam and 270 

ceftazidime/avibactam (35). An updated database of PDC variants is 271 

maintained at IdISBa and is freely available at 272 

(https://arpbigidisba.com/pseudomonas-aeruginosa-derived-cephalosporinase-273 

pdc-database/) and at the Beta-Lactamase Data Base 274 

(http://www.bldb.eu/BLDB.php?prot=C#PDC) (36) Typically, the strains 275 

producing these AmpC variants show collateral susceptibility to imipenem 276 

(decreased MICs) and also to antipseudomonal penicillins such as piperacillin. 277 

Additionally, resistance development to ceftolozane/tazobactam and/or 278 

ceftazidime/avibactam may involve mutations leading to the structural 279 

modification of narrow spectrum OXA-2 and OXA-10 acquired oxacillinases 280 

(20,37,38). Interestingly, these mutations may lead to collateral susceptibility to 281 

meropenem. Thus, imipenem/relebactam, and to a lesser extent, cefiderocol, 282 

meropenem/vaborbactam and the novel combinations under development 283 

cefepime/zidebactam and cefepime/taniborbactam might be interesting options 284 

to treat infections by strains that have developed ceftolozane/tazobactam and/or 285 

ceftazidime/avibactam resistance through mutations in AmpC or OXA-2/10 (39). 286 

Horizontally-acquired -lactamase genes are obviously a major source of 287 

resistance, including to the novel -lactams and BLBLI (Figure 1). An extensive 288 

revision of the nature and prevalence of the different horizontally-acquired -289 

lactamases detected in P. aeruginosa is beyond the scope of this document. 290 

However, globally, MBLs are arguably the most frequent carbapenemases in P. 291 

aeruginosa, but very large geographical differences in prevalence and nature 292 

have been documented (40,41). At European level, VIM, and particularly VIM-2, 293 
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are likely the most frequently reported enzymes, but with major differences 294 

across different countries, and with an increasing prevalence of NDM enzymes 295 

(42,43). Moreover, GES class A carbapenemases variants such as GES-5 are 296 

also increasingly reported in European countries (43,44). Classical 297 

antipseudomonal penicillins, cephalosporins and carbapenems lack significant 298 

activity and should be avoided against strains producing class A or MBL 299 

carbapenemases, even if MICs close to the clinical breakpoints are obtained for 300 

piperacillin/tazobactam, cefepime or even carbapenems for some VIM-2-301 

producing isolates (12). Moreover, the production of MBLs is a frequent 302 

mechanism of resistance to ceftolozane/tazobactam, ceftazidime/avibactam, 303 

meropenem/vaborbactam and imipenem/relebactam (26). However, with a few 304 

exceptions such as some NDM variants, cefiderocol retains activity due to its 305 

higher stability against hydrolysis and efficient uptake through the iron transport 306 

systems (45). The combination of aztreonam with avibactam may also be a 307 

useful future alternative for MBL producing strains, particularly when additionally 308 

hyperproducing AmpC and/or coproducing acquired class A enzymes (46,47). 309 

Likewise, the novel combinations under development cefepime/zidebactam and 310 

cefepime/taniborbactam also remain active. The underlying mechanism for 311 

cefepime/zidebactam activity against MBL producing strains is based on the 312 

fact that zidebactam has direct antipseudomonal activity by targeting PBP2, and 313 

therefore provides synergy with β-lactams targeting PBP3 such as the 314 

cephalosporins (48). On the other hand, the activity of cefepime/taniborbactam 315 

relies on the fact that taniborbactam inhibits MBL hydrolytic activity, except for 316 

IMPs (49). In addition to these three antimicrobials (cefiderocol, 317 

cefepime/zidebactam and cefepime/taniborbactam), ceftazidime/avibactam, and 318 

to a lower extent imipenem/relebactam and meropenem/vaborbactam show 319 

activity against producers of Ambler class A carbapenemases (such as GES-5 320 

and KPCs) (50–52). However, the frequent concomitant OprD deficiency and/or 321 

MexAB-OprM overexpression limits the activity of imipenem/relebactam and 322 

meropenem/vaborbactam against clinical P. aeruginosa strains producing class 323 

A carbapenemases (52,53). On the other hand, resistance development to 324 

ceftazidime/avibactam caused by the selection of mutations within the catalytic 325 

site of KPC and GES enzymes has been described (54–56). Interestingly, these 326 

mutations restore carbapenem susceptibility (if the strain is not oprD deficient) 327 
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leading to an ESBL phenotype (54). In addition to those of classes A and B, a 328 

few cases of class D carbapenemase production have been reported in P. 329 

aeruginosa, including the epidemic dissemination OXA-198 in a hospital from 330 

Belgium (57).  331 

In addition to β-lactamases, there is growing evidence on the role of 332 

target modification in P. aeruginosa β-lactam resistance. Of particular relevance 333 

are the mutations in ftsI, encoding PBP3, an essential class B PBP with 334 

transpeptidase activity (58). Indeed, data from cystic fibrosis (CF) patients 335 

(59,60), epidemic high-risk clonal lineages (12,14) as well as from in vitro 336 

studies (61)have shown that PBP3 is under strong mutational pressure, with 337 

specific mutations in this PBP contributing to β-lactam resistance development. 338 

R504C/H and F533L mutations are those being most commonly reported and 339 

located within the protein domains implicated in the formation and stabilization 340 

of the inactivating complex β-lactam-PBP3 (62). Moreover, these specific 341 

mutations have been documented to emerge in vivo during chronic respiratory 342 

infection in CF patients (59,60) and upon exposure to meropenem (61), 343 

aztreonam (63) and ceftazidime (64) in vitro. However, the detailed effect of 344 

PBP3 mutations on β-lactam resistance phenotypes needs to be further 345 

investigated using isogenic strains. Likewise, despite unique polymorphisms 346 

having been detected in some clinical strains for other PBPs, their potential role 347 

in β-lactam resistance still needs to be experimentally determined. Also 348 

noteworthy are the specific PBP2 mutations involved in resistance to 349 

zidebactam (65), that obviate the β-lactam enhancer activity of this BLI. 350 

Other relevant components of the ß-lactam mutational resistome are the 351 

genes encoding OprD and efflux pumps. The inactivation of OprD is known to 352 

be the most frequent imipenem resistance mechanisms in P. aeruginosa 353 

(66,67). OprD inactivation typically results from indels or nonsense mutations, 354 

including the Q142X mutation, characteristic of the widespread ST175 high-risk 355 

clonal lineage (14). Additionally, some amino-acid replacements have been 356 

associated with OprD-driven resistance, particularly in the CF setting (68). 357 

However, it should be noted that the presence of OprD inactivating mutations 358 

has also been identified in some carbapenem-susceptible isolates (69). On the 359 

other hand, imipenem resistance may also result from repression of oprD 360 

Jo
urn

al 
Pre-

pro
of



 

12 
 

caused by mutations in the MexEF-OprN efflux pump regulators (mexS/T) or 361 

the ParRS two-component system (70). Overexpression of MexAB-OprM, 362 

caused by mutation of several genes involved in its regulation (mexR, nalC or 363 

nalD) increases MICs of most β-lactams including meropenem but not 364 

imipenem, whereas overexpression of genes encoding MexXY (mexZ, parRS, 365 

amgS mutations) is involved in cefepime resistance (70) 366 

Efflux pumps may also play a major role in resistance to the novel 367 

BLBLIs, not only because of their capacity to extrude the -lactam components 368 

but, particularly, for their capacity to accommodate their partner -lactamase 369 

inhibitor. Indeed MexAB-OprM overexpression plays a role in resistance to 370 

ceftazidime/avibactam, aztreonam/avibactam, cefepime/zidebactam, 371 

imipenem/relebactam, and meropenem/vaborbactam (65,71–73). Likewise, 372 

MexXY overexpression should also impact cefepime combinations with 373 

zidebactam or taniborbactam (65). Moreover, mutations leading to the 374 

modification of the substrate recognition domain of the efflux pump MexCD-375 

OprJ have been shown to drive ceftolozane/tazobactam resistance 376 

development in vivo (23) 377 

Additionally, another potentially relevant mutational β-lactam resistance 378 

mechanism is the selection of large [up to 600 kb] deletions affecting specific 379 

parts of the chromosome (61,64). Although the basis of the conferred resistance 380 

phenotype still needs to be further clarified, these mutants can be recognized by 381 

the characteristic brown pigment (pyomelanine) caused by the deletion of one 382 

of the includedgenes, hmgA, coding for a homogentisate-1,2-dioxygenase. 383 

These deletions has been documented in both in vitro evolved β-lactam-384 

resistant mutants and CF isolates (61,74). However, the deletion of hmgA is not 385 

responsible for the resistance phenotype, which could be linked to the deletion 386 

of another of the affected genes, galU. This gene codes for a UDP-glucose 387 

pyrophosphorylase involved in the synthesis of the lipopolysaccharide (LPS) 388 

core. Indeed, analysis of transposon mutant libraries has revealed that 389 

inactivation of galU increases the MICs of ceftazidime and meropenem (75,76).  390 

Lastly, specific cefiderocol resistance development mechanisms involve 391 

the selection of mutations in iron uptake systems, particularly in TonB-392 
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dependent receptors such as piuA/piuC, pirA/pirR or fptA [pyochelin receptor] 393 

(35). Among these, mutations seem to be particularly frequent in piuC, an iron-394 

dependent oxygenase involved in the expression of the adjacent piuA [or its 395 

homolog piuD depending on the strain] iron receptor. On the other hand, 396 

mutations in the ftpA gene, despite being frequent, do not seem to have a direct 397 

significant impact on cefiderocol MICs, and thus selection might reflect adaptive 398 

mutations for growing in the presence of cefiderocol.  399 

 400 

Pseudomonas aeruginosa aminoglycoside resistome 401 

Primary aminoglycoside resistance is typically linked to the production of 402 

horizontally-acquired aminoglycoside modifying enzymes, including 403 

acetyltranferases, adenyltransferases and phosphoryltransferases, frequently 404 

co-transferred with ESBLs or carbapenemases (77). The specific pattern of 405 

aminoglycoside resistance depends on the specific enzymes involved, with 406 

amikacin showing an overall higher activity than tobramycin (78). However, the 407 

more recently described transferable 16S rRNA methylases, which modify the 408 

cellular target of aminoglycosides, are further concerning since they confer 409 

resistance to all clinically available members of this antibiotic family and are 410 

also cotransferred with ESBLs or carbapenemases  (79–81).  411 

On the other hand, the development of resistance to aminoglycosides 412 

has been particularly linked to the overexpression of genes encoding the 413 

MexXY-OprM system upon some mutations in the regulatory machinery. 414 

Indeed, mutational overexpression of this pump, mainly caused by mexZ, 415 

amgS, or parRS mutations, is very frequent among clinical isolates, from both 416 

CF patients and nosocomial infections (82,83). Moreover, recent studies show 417 

that the epidemic high-risk clone ST175 hyperproduces MexXY due to a 418 

specific mutation in mexZ (G195E) (14). However, recent data suggests that the 419 

aminoglycoside mutational resistome extends far beyond MexXY 420 

hyperproduction, and high-level resistance may result from the accumulation of 421 

multiple mutations. The involvement of several novel resistance determinants 422 

has been documented (84–86). Among them, is noteworthy fusA1, coding for 423 

the elongation factor G. Indeed, specific fusA1 mutations have been linked to 424 
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aminoglycoside resistance in vitro (4,86) and among clinical, strains, particularly 425 

from CF patients (4,60,87–89). Moreover, the implication of fusA1 mutations in 426 

aminoglycoside resistance has been demonstrated through site-directed 427 

mutagenesis (90).  428 

 429 

Pseudomonas P. aeruginosa fluoroquinolone resistome  430 

 431 

Fluoroquinolone resistance in P. aeruginosa is primarily driven by 432 

mutational mechanisms. The fluoroquinolone mutational resistome generally 433 

includes specific missense mutations in DNA gyrase (gyrA and/or gyrB) and 434 

topoisomerase IV (parC and/or parE) Quinolone Resistance-Determining 435 

Regions (QRDRs) (13,91). High-level fluoroquinolone resistance in P. 436 

aeruginosa high-risk lineages is nearly universal, and typically involves 437 

combinations of mutations in GyrA T83 and ParC S87 (12)QRDR mutations 438 

involved in fluoroquinolone resistance in CF might be more variable (60). It is 439 

also well-known that the mutational overexpression of efflux pumps modulates 440 

fluoroquinolone resistance [Table 1]. While the overexpression of MexAB-OprM 441 

and MexXY-OprM is globally frequent among clinical strains, its contribution to 442 

clinical fluoroquinolone resistance is likely to be modest (91)On the other hand, 443 

the mutational overproduction of MexEF-OprN or MexCD-OprJ is associated 444 

with clinical fluoroquinolone resistance. Although their prevalence has been 445 

considered low, except in the settings of CF chronic infections, recent data 446 

show that it might be higher than expected (68). Lastly, the transferable 447 

quinolone resistance determinant QnrVC has also been reported, linked to 448 

some epidemic strains producing acquired carbapenemases such as ST175 449 

and ST244 (92,93). 450 

 451 

Pseudomonas aeruginosa polymyxin resistome 452 

 453 

Due to its limited efficacy, toxicity and high ECOFF values (4 mg/L), 454 

colistin is not considered an optimal treatment for wild-type P. aeruginosa, at 455 

least in monotherapy [www.eucast.org]. Moreover, whereas the prevalence of 456 

polymyxin [colistin and polymyxin B] resistance is still globally low (<5%), it has 457 
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increased in the last years because of the frequent use of these last-resource 458 

antibiotics for the treatment of MDR/XDR/DTR nosocomial and CF isolates, 459 

particularly in countries with no access to novel BLBLIs (94). Polymyxin 460 

resistance results most frequently from the modification of the LPS caused by 461 

the addition of a 4-amino-4-deoxy-L-arabinose moiety in the lipid A structure 462 

(95,96). The involved mutations are frequently located in the PmrAB or PhoPQ 463 

two-component regulators, which lead to the activation of the arnBCADTEF 464 

operon (97). More recent studies have revealed that mutations in the ParRS 465 

two-component regulator, not only produce polymyxin resistance due to the 466 

activation of the arnBCADTEF operon, but also lead to a MDR phenotype 467 

determined by the hyperproduction of MexXY and the repression of oprD (98). 468 

Moreover, two additional two-component regulators, ColRS and CprRS, have 469 

also been determined to be involved in colistin resistance (99). The analysis of 470 

colistin resistance mechanisms among clinical strains is not always 471 

straightforward, since the presence of mutations in these two-component 472 

regulators is not always associated with clinical colistin resistance, probably 473 

denoting partial complementation between the different regulators (60,99,100). 474 

Moreover, recent in vitro evolution assays have revealed the implication of 475 

additional mutations in high level colistin resistance, facilitated by the 476 

emergence of mutS deficient mutator (phenotypes such as those occurring in 477 

LptD, LpxC or MigA (101). On the other hand, the role of phosphoethanolamine 478 

modification of LPS in P. aeruginosa seems marginal, including both, that are 479 

driven by intrinsic eptA gene expression (102) as well as that are driven by 480 

transferable determinants (103). 481 

 482 

Pseudomonas aeruginosa fosfomycin resistome 483 

 484 

Although not classified as an antipseudomonal agent (ECOFF of 256 485 

mg/L), fosfomycin has been considered in the last decade as a potentially 486 

useful antibiotic in urinary tract infections and as combined therapy for 487 

MDR/XDR/DTR P. aeruginosa in other infection sites (104). However, 488 

spontaneous mutation rates for fosfomycin resistance are high and the 489 

mechanism involved is typically the mutational inactivation of glpT, coding for a 490 

glycerol-3-phosphate permease required for fosfomycin uptake (105,106). 491 
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Mutations in glpT are also frequently found among MDR/XDR/DTR strains 492 

(107). Certain specific mutations, like T211P, have become fixed in some 493 

widespread lineages as described for ST175 (14) 494 

 495 

Definitions of resistance profiles in Pseudomonas aeruginosa 496 

According to established recommendations by ECDC (6) the MDR profile 497 

is defined as resistance to at least one agent in at least three of eight antibiotic 498 

categories. These categories include antipseudomonal penicillins + -lactamase 499 

inhibitor combinations (ticarcillin/clavulanate, piperacillin/tazobactam), 500 

antipseudomonal cephalosporins (ceftazidime and cefepime), monobactams 501 

(aztreonam), antipseudomonal carbapenems (imipenem, meropenem, 502 

doripenem), fluoroquinolones (ciprofloxacin, levofloxacin), aminoglycosides 503 

(gentamicin, tobramycin, amikacin, netilmicin), polymyxins (colistin, polymyxin 504 

B) and fosfonic acids (fosfomycin). The XDR profile is defined as resistance to 505 

at least one agent in all antibiotic classes except one or two. Likewise, PDR 506 

profile is defined as resistance to all agents in the eight antibiotic categories. 507 

The eighth category (fosfonic acids, fosfomycin) included in the ECDC 508 

recommendations should be likely not considered, given the lack of current 509 

EUCAST clinical breakpoints. Likewise, the inclusion of gentamicin as 510 

antipseudomonal agents is questionable according to current EUCAST 511 

breakpoints, and the activity of ticarcillin/clavulanate likely not comparable to 512 

that of piperacillin/tazobactam in P. aeruginosa. On the other hand, the DTR 513 

(difficult to treat resistance) profile is defined according to IDSA/NIH 514 

recommendations as resistance to all first line (classical) agents: 515 

antipseudomonal penicillins + -lactamase inhibitor combinations, 516 

cephalosporins, monobactams, carbapenems and fluoroquinolones (7). Thus, if 517 

fosfomycin is not considered, all DTR isolates would meet the XDR criteria, 518 

since they are resistant to at least five of seven categories, but not the other 519 

way around.  520 

However, neither the ECDC or IDSA/NIH definitions take into 521 

consideration the novel -lactams and BLBLIs. The inclusion of these novel 522 

agents is challenging, starting by grouping them into meaningful “categories” 523 
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since their properties, spectrum and mechanisms of resistance show similarities 524 

but also marked differences. As shown in Table 1, at least 5 novel categories 525 

could be considered to include the novel -lactams already approved: fifth 526 

generation antipseudomonal cephalosporins + classical -lactamase inhibitors 527 

(ceftolozane/tazobactam), antipseudomonal cephalosporins + 528 

diazabicycloctanes -lactamase inhibitors (ceftazidime/avibactam), 529 

antipseudomonal carbapenems + diazabicycloctanes -lactamase inhibitors 530 

(imipenem/relebactam), antipseudomonal carbapenems + boronic acid -531 

lactamase inhibitors (meropenem/vaborbactam) and siderophore 532 

antipseudomonal cephalosporins (cefiderocol). Additionally, there are at least 533 

three further classes to be considered in the future if the corresponding 534 

antibiotics are approved: monobactams + diazabicycloctanes -lactamase 535 

inhibitors (aztreonam/avibactam), antipseudomonal cephalosporins+ 536 

diazabicycloctanes -lactamase and PBP2 inhibitors (cefepime/zidebactam) 537 

and antipseudomonal cephalosporins + boronic acid -lactamase inhibitors 538 

including MBLs (cefepime/taniborbactam).  539 

Within the framework of the ECDC definitions, these novel categories 540 

could potentially align with MDR implying resistance to at least three classes (of 541 

up to 13), XDR indicating resistance to all but one or two and PDR indicating 542 

resistance to all. Regarding DTR definition, it would imply resistance to all the 543 

novel -lactams approved. However, the practical application of this definition is 544 

likely to encounter challenges due to limited access to these antibiotics for 545 

treatment and to the capacity to perform antimicrobial susceptibility testing in 546 

several countries. Moreover, the classification of the resistance profiles for the 547 

novel agents under development into clinical SIR categories will need to 548 

consider PK/PD data, not yet available in some cases, in addition to existing 549 

phenotypic and genomic information.   550 

 551 

Update on Pseudomonas aeruginosa high-risk lineages and their 552 

association with transferable -lactamases 553 
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In a recent review (10), according to their prevalence, global spread and 554 

association with MDR/XDR/DTR profiles, and specially with concerning 555 

horizontally-acquired β-lactamases such as ESBLs and carbapenemases, the 556 

worldwide top ten P. aeruginosa high-risk lineages were established to be, by 557 

order of relevance, ST235, ST111, ST233, ST244, ST357, ST308, ST175, 558 

ST277, ST654 and ST298. Figure 2 shows updated information for these top 559 

ten high-risk lineages, including their virulence profile (presence of the genes 560 

coding the type III secretion system exotoxins ExoS and/or ExoU), worldwide 561 

distribution and association with acquired carbapenemases from key 562 

publications in the last three years (40–42,93,108–112). Particularly noteworthy 563 

is the expansion of KPC enzymes in several of these lineages (ST233, ST277 564 

and ST654 in addition to the previous detection in ST235, ST111 and ST244), 565 

followed by NDM (ST244 and ST357 in addition to ST235, ST233, ST308 and 566 

ST654). Moreover, coproduction of various carbapenemases is not infrequent 567 

among those lineages (43). Besides these top ten lineages, a few others have 568 

gained relevance in the last few years, including globally expanding ST309, 569 

associated with the production of VIM-2, ST773 linked to NDM-1, or ST463 570 

associated with the production of KPC-2, particularly in China (113–118). 571 

 572 

Concluding remarks and future challenges 573 

P. aeruginosa infections rank among the foremost global resistance 574 

threats, associated with significant morbidity and mortality. P. aeruginosa 575 

resistance mechanisms and epidemiology are complex and ever-evolving, with 576 

a significant impact on novel and forthcoming -lactams. The interplay between 577 

novel antibiotics and resistance is notably challenging, as certain mechanisms 578 

can lead to cross-resistance to multiple agents, while others may confer 579 

collateral susceptibility to relevant antipseudomonals such as carbapenems. 580 

The global dissemination of XDR/DTR high-risk lineages are also a major 581 

challenge, particularly when coupled with increased virulence and capacity to 582 

acquire exogenous resistance elements as documented for ST235 (11). In this 583 

sense, a recent nation-wide survey of P. aeruginosa susceptibility profiles and 584 

resistance genomics has revealed in one hand a significant generalized 585 
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decrease of resistance rates and XDR/DTR profiles in Spain in the last five 586 

years, but in the other, a significant increase in the proportion of the concerning 587 

carbapenemase-producing ST235 high-risk lineage (44).  588 

Therefore, there is a major need for establishing comprehensive 589 

resistance surveillance initiatives, integrating both phenotypic and genomic 590 

data, as well as metadata. However, our current capacity to predict the 591 

susceptibility profiles and emerging high-risk clonal lineages from genomic 592 

sequences still needs to be improved, potentially through the incorporation of 593 

machine learning, knowledge-based approaches, or so-called artificial 594 

intelligence tools (43,119,120). Nevertheless, current achievable surveillance 595 

strategies at European level should at least integrate: (1) monitoring of 596 

concerning high-risk lineages (particularly ST235); (2) analyses of resistance 597 

prevalence trends to recently introduced agents (like the novel BLBLIs) in 598 

addition to classical antipseudomonals; (3) monitoring of strains producing 599 

horizontally-acquired resistance mechanisms (particularly carbapenemases and 600 

ESBLs); and (4) monitoring of noteworthy chromosomal resistance mechanisms 601 

such as the AmpC (PDC) derivates involved in resistance to the novel BLBLIs. 602 

Likewise, in this scenario, antimicrobial stewardship and infection control are of 603 

paramount importance. Nevertheless, these aspects are equally challenging 604 

and should be guided by rapid diagnostics and antimicrobial susceptibility 605 

testing, including the detection of resistance mechanisms and specific high-risk 606 

clonal lineages (121). Thus, efforts should also be directed to the 607 

implementation and scaling of personalized precision medicine that allows us to 608 

establish early targeted treatments and specific epidemiological control 609 

measures adapted to the strain/mechanism involved. 610 

  611 
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Table 1. Main resistance mechanisms to classical and novel antibiotics in Pseudomonas aeruginosa 

Antipseudomonal 
categories 

Antipseudomonal agents Main mutational 
resistance mechanisms 

Alternative 
mutational 
resistance 
mechanisms 

Mutational 
resistance on 
horizontally 
acquired 
determinants 

Horizontally-acquired resistance 
mechanisms 

Penicillins + -lactamase 
inhibitors 

Piperacillin/tazobactam AmpC PBP3, GalU   ESBLs, class A and B 
carbapenemases 

Cephalosporins Ceftazidime AmpC PBP3, GalU OXA-2/10 ESBLs, class A and B 
carbapenemases 

 Cefepime MexXY, AmpC  PBP3, GalU OXA-2/10 ESBLs, class A and B 
carbapenemases 

Monobactams Aztreonam MexAB, AmpC  PBP3, GalU OXA-2/10 ESBLs and class A 
carbapenemases 

Carbapenems Imipenem OprD- MexST, PBP2, 
PBP1a 

 Class A and B carbapenemases 

 Meropenem OprD-, MexAB PBP3, GalU  Class A and B carbapenemases 

Fifth generation 
cephalosporins+ classical 

-lactamase inhibitors 

Ceftolozane/tazobactam AmpC Ω-loop PBP3, GalU 
Efflux pumps 

OXA-2/10 ESBLs, class A and B 
carbapenemases 

Cephalosporins + 

diazabicycloctanes -
lactamase inhibitors 

Ceftazidime/avibactam AmpC Ω-loop, MexAB PBP3, GalU OXA-2/10, GES, 
KPC 

Class B carbapenemases 

carbapenems + 

diazabicycloctanes -
lactamase inhibitors 

Imipenem/relebactam OprD-, MexAB** MexST, ParRS 
PBP2, PBP1a 

 Class A and B carbapenemases 

carbapenems + boronic 

acid -lactamase inhibitors 

Meropenem/vaborbactam OprD-, MexAB PBP3, GalU  Class A and B carbapenemases 

Siderophore 
cephalosporins 

Cefiderocol Iron transporters, 
AmpC Ω-loop 

PBP3, GalU OXA-2/10** ESBLs, class A and B 
carbapenemases** 

Monobactams + 

diazabicycloctanes -
lactamase inhibitors 

Aztreonam/avibactam* MexAB PBP3, GalU  ESBLs and class A 
carbapenemases** 

Cephalosporins+ Cefepime/zidebactam* MexXY, MexAB PBP3, GalU  ESBLs, class A and B 
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diazabicycloctanes -
lactamase and PBP2 
inhibitors 

PBP2 carbapenemases** 

cephalosporins+ boronic 

acid -lactamase inhibitors 
including MBLs 

Cefepime/taniborbactam* MexXY, MexAB PBP3, GalU  IMPs 

Fluoroquinolones Ciprofloxacin, levofloxacin QRDR MexAB/XY/CD/

EF  

 Qnr 

Aminoglycosides Tobramycin, amikacin MexXY** FusA1  Aminoglycoside modifying enzymes, 
16S rRNA methylases 

Polymyxins Colistin, polymyxin B PmrAB/PhoPQ/ParRS   MCR (Very uncommon) 

Fosfonic acids Fosfomycin GlpT   FosA 

 

* Not yet approved  

**Low level resistance. Clinical resistance requires additional mechanisms 

↑ Hyperproduction 
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Antibiotic AmpC  MexAB OprD- AmpC Ω-

loop*

OXA

ESBL

ESBL CarbA CarbA

Mut**

CarbB Iron

transp.

Piperacillin/tazobactam R r S S/r R R R R R S

Ceftazidime R r S R R R R R R S

Cefepime r/R r/R S R R R R R R S

Aztreonam r/R R S R r/R R R R S S

Imipenem S S r/R S S S R S R S

Meropenem S r r S S S R S R S

Ceftolozane/tazobactam S S S R R r/R R R R S

Ceftazidime/avibactam S/r r S r/R r/R S/r S R R S

Meropenem/vaborbactam S r r S S S r/R S R S

Imipenem/relebactam S r r S S S r/R S R S

Cefiderocol S S S S/r S/r S/r S/r S/r S/r r

Aztreonam/avibactam S R S r/R r/R S/r S/r r/R S S

Cefepime/zidebactam S r/R S S/r S/r S/r S/r S/r r/R S

Cefepime/taniborbactam S r/R S S/r S/r S/r S/r S/r r/R S

Figure 1. Antimicrobial spectrum expected for classical and novel -lactams and -lactam--lactamase inhibitor combinations against most relevant

P. aeruginosa resistance mechanisms when present alone in clinical strains. To reduce complexity, combinations of resistance mechanisms are not considered, 

but acknowledged to be frequent among clinical strains. S (green), fully susceptible; r (orange), reduced susceptibility; R (red) clinical resistance.

For some antibiotics-mechanisms combinations a range of effect S/r or r/R is considered depending on the specific mechanism or mutation; in such cases, the 

specific color chosen was that of the most likely phenotype. It is noted however, that variation in the quantitative effect on resistance does occur according to the 

specific nature of the mechanisms or their expression. * AmpC (PDC) variants associated with ceftolozane/tazobactam and/or ceftazidime/avibactam 

resistance.**KPC or GES mutations associated with ceftazidime/avibactam resistance and collateral carbapenem susceptibility.
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Figure 2. Summary of the main characteristics of the top 10 P. aeruginosa high-risk clones. Updated in July 2023 from 
Del Barrio-Tofiño 2020 (10). Novel descriptions since 2020 are shown in red. 
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