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Abstract

Consider bivariate observations (X1, Y1), . . . , (Xn, Yn) ∈ R×R with unknown con-
ditional distributions Qx of Y , given that X = x. The goal is to estimate these
distributions under the sole assumption that Qx is isotonic in x with respect to like-
lihood ratio order. If the observations are identically distributed, a related goal is to
estimate the joint distribution L(X,Y ) under the sole assumption that it is totally
positive of order two. An algorithm is developed which estimates the unknown family
of distributions (Qx)x via empirical likelihood. The benefit of the stronger regulariza-
tion imposed by likelihood ratio order over the usual stochastic order is evaluated in
terms of estimation and predictive performances on simulated as well as real data.
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1 Introduction

Consider a univariate regression setting with observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
in X× R, where X is an arbitrary real set. We assume that conditional on X := (Xi)

n
i=1,

the observations Y1, Y2, . . . , Yn are independent with distributions L(Yi |X) = QXi , where
the distributions Qx, x ∈ X, are unknown. The goal is to estimate the latter under the sole
assumption that Qx is isotonic in x in a certain sense. That means, if (X,Y ) denotes a
generic observation, the larger (or smaller) the value of X, the larger (or smaller) Y tends
to be. An obvious notion of order would be the usual stochastic order, which states that
Qx1 ≤st Qx2 whenever x1 ≤ x2, that is, Qx1((−∞, y]) ≥ Qx2((−∞, y]) for all y ∈ R. This
concept has been investigated and generalized by numerous authors, see Mösching and
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Dümbgen (2020), Henzi et al. (2021b) and the references cited therein. The latter paper
illustrates the application of isotonic distributional regression in weather forecasting, and
Henzi et al. (2021a) use it to analyze the length of stay of patients in Swiss hospitals.

The present paper investigates a stronger notion of order, the so-called likelihood ratio
order. The usual definition is that for arbitrary points x1 < x2 in X, the distributions Qx1
and Qx2 have densities gx1 and gx2 with respect to some dominating measure such that
gx2/gx1 is isotonic on the set {gx1 +gx2 > 0}, and this condition will be denoted by Qx1 ≤lr

Qx2 . At first glance, this looks like a rather strong assumption coming out of thin air,
but it is familiar from mathematical statistics or discriminant analyses and has interesting
properties. For instance, Qx1 ≤lr Qx2 if and only if Qx1(· |B) ≤st Qx2(· |B) for any
real interval B such that Qx1(B), Qx2(B) > 0, where Qxj (A |B) := Qxj (A ∩ B)/Qxj (B).
Furthermore, likelihood ratio ordering is a frequent assumption or implication of models in
mathematical finance, see Beare and Moon (2015), Jewitt (1991). The notion of likelihood
ratio order is reviewed thoroughly in Dümbgen and Mösching (2023), showing that it
defines a partial order on the set of all probability measures on the real line which is
preserved under weak convergence. That material generalizes definitions and results in
Shaked and Shanthikumar (2007).

Thus far, estimation of distributions under a likelihood ratio order constraint was
mainly limited to settings with two or finitely many samples and populations. First, Dyk-
stra et al. (1995) estimated the parameters of two multinomial distributions that are like-
lihood ratio ordered via a restricted maximum likelihood approach. After reparametriza-
tion, they found that the maximization problem at hand had reduced to a specific bioassay
problem treated by Robertson et al. (1988) and which makes use of the theory of isotonic
regression. It is then suggested that their approach generalizes well to any two distribu-
tions that are absolutely continuous with respect to some dominating measure. Later,
Carolan and Tebbs (2005) focused on testing procedures for the equality of two distribu-
tions Q1 and Q2 versus the alternative hypothesis that Q1 ≤lr Q2, in the specific case
where the cumulative distribution functions Gi of Qi, i = 1, 2, are continuous. To this
end, they made use of the equivalence between likelihood ratio order and the convexity
of the ordinal dominance curve α 7→ G2

(
G−1

1 (α)
)
, α ∈ [0, 1], which holds in case of G2

being absolutely continuous with respect to G1. The convexity of the ordinal dominance
curve was also exploited by Westling et al. (2023) to provide nonparametric maximum
likelihood estimators of G1 and G2 under likelihood ratio order for discrete, continuous, as
well as mixed continuous-discrete distributions using the greatest convex minorant of the
empirical ordinal dominance curve. However, this method still necessitates the restrictive
assumption that G2 is absolutely continuous with respect to G1. Other attempts at esti-
mating two likelihood ratio ordered distributions include Yu et al. (2017) who treat the
estimation problem with a maximum smoothed likelihood approach, requiring the choice of
a kernel and bandwidth parameters, and Hu et al. (2023) who suppose absolutely continu-
ous distributions and model the logarithm of the ratio of densities as a linear combination
of Bernstein polynomials.

To the best of our knowledge, only Dardanoni and Forcina (1998) considered the
problem of estimating an arbitrary fixed number ` ≥ 2 of likelihood ratio ordered distri-
butions Q1, Q2, . . . , Q`, all of them sharing the same finite support. They showed that the
constrained maximum likelihood problem may be reparametrized to obtain a convex opti-
mization problem with linear inequality constraints, and they propose to solve the latter
via a constrained version of the Fisher scoring algorithm. At each step of their procedure,
it is necessary to solve a quadratic programming problem.

Within the setting of distributional regression, we follow an empirical likelihood ap-
proach (Owen, 1988, 2001) to estimate the family (Qx)x∈X for arbitrary real sets X. After a
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reparametrization similar to that of Dardanoni and Forcina (1998), we show that the prob-
lem of maximizing the (empirical) likelihood under the likelihood ratio order constraint
yields again a finite-dimensional convex optimization problem with linear inequality con-
straints. We did experiments with active set algorithms in the spirit of Dümbgen et al.
(2021) which are similar to the algorithms of Dardanoni and Forcina (1998). But, as ex-
plained later, the computational burden may become too heavy for large sample sizes n.
Alternatively, we devise an algorithm which adapts and extends ideas from Jongbloed
(1998) and Dümbgen et al. (2006) for the present setting. It makes use of a quasi-Newton
approach, and new search directions are obtained via multiple isotonic weighted least
squares regression.

There is an interesting aspect of the present estimation problem. If we assume that
the observations (Xi, Yi) are independent copies of a generic random pair (X,Y ), the new
estimation method may also be interpreted as an empirical likelihood estimator of the
joint distribution of (X,Y ), hypothesizing that the latter is bivariate totally positive of
order two (TP2). That is, for arbitrary intervals A1, A2 and B1, B2 such that A1 < A2

and B1 < B2 element-wise,

P(X ∈ A2, Y ∈ B1)P(X ∈ A1, Y ∈ B2) ≤ P(X ∈ A1, Y ∈ B1)P(X ∈ A2, Y ∈ B2).

If the joint distribution of (X,Y ) has a density h with respect to Lebesgue measure on
R × R, or if it is discrete with probability mass function h, then TP2 is equivalent to
requiring that

h(x1, y2)h(y1, x2) ≤ h(x1, y1)h(x2, y2) whenever x1 < x2, y1 < y2,

and this is just a special case of multivariate total positivity of order two (Karlin, 1968).
For further equivalences and results in dimension two, see Dümbgen and Mösching (2023).
Interestingly, this TP2 constraint is symmetric in X and Y , and our algorithm exploits this
symmetry. A different, more restrictive approach to the estimation of a TP2 distribution
is proposed by Hütter et al. (2020). They assume that the distribution of (X,Y ) has a
smooth density with respect to Lebesgue measure on a given rectangle and devise a sieve
maximum likelihood estimator.

The rest of the article is structured as follows. Section 2 explains why empirical like-
lihood estimation of a family of likelihood ratio ordered distributions is essentially equiv-
alent to the estimation of a discrete bivariate TP2 distribution. In Section 3 we present
an algorithm to estimate a bivariate TP2 distribution. In Section 4, a simulation study
illustrates the benefits of the new estimation paradigm compared to the usual stochastic
order constraint. Proofs and technical details are deferred to the appendix.

2 Two versions of empirical likelihood modelling

With our observations (Xi, Yi) ∈ X× R, 1 ≤ i ≤ n, let

{X1, X2, . . . , Xn} = {x1, . . . , x`} and {Y1, Y2, . . . , Yn} = {y1, . . . , ym},

with x1 < · · · < x` and y1 < · · · < ym. For an index pair (j, k) with 1 ≤ j ≤ ` and
1 ≤ k ≤ m, let

wjk := #
{
i : (Xi, Yi) = (xj , yk)

}
.

That means, the empirical distribution R̂emp of the observations (Xi, Yi) can be written

as R̂emp = n−1
∑`

j=1

∑m
k=1wjkδ(xj ,yk).
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2.1 Estimating the conditional distributions Qx

To estimate (Qx)x∈X under likelihood ratio ordering, we first estimate (Qxj )1≤j≤`. If that

results in (Q̂xj )1≤j≤`, we may define

Q̂x :=


Q̂x1 if x < x1,

(1− λ)Q̂xj + λQ̂xj+1 if x = (1− λ)xj + λxj+1, 1 ≤ j < `, 0 < λ < 1,

Q̂x` if x > x`.

This piecewise linear extension preserves isotonicity with respect to ≤lr, see Lemma A.1.
To estimate Qx1 , . . . , Qx` , we restrict our attention to distributions with support

{y1, . . . , ym}. That means, we assume temporarily that for 1 ≤ j ≤ `,

Qxj =
m∑
k=1

qjkδyk

with weights qj1, . . . , qjm ≥ 0 summing to one. The empirical log-likelihood for the corre-
sponding matrix q = (qjk)j,k ∈ [0, 1]`×m equals

Lraw(q) :=
∑̀
j=1

m∑
k=1

wjk log qjk. (2.1)

Then the goal is to maximize this log-likelihood over all matrices q ∈ [0, 1]`×m such that

m∑
k=1

qjk = 1 for 1 ≤ j ≤ `, (2.2)

qj1k2qj2k1 ≤ qj1k1qj2k2 for 1 ≤ j1 < j2 ≤ ` and 1 ≤ k1 < k2 ≤ m. (2.3)

The latter constraint is equivalent to saying that Qxj is isotonic in j ∈ {1, . . . , `} with
respect to ≤lr.

2.2 Estimating the distribution of (X, Y )

Suppose that the observations (Xi, Yi) are independent copies of a random pair (X,Y ) with
unknown TP2 distribution R on R × R. An empirical likelihood approach to estimating
R is to restrict one’s attention to distributions

R =
∑̀
j=1

m∑
k=1

hjkδ(xj ,yk)

with `m weights hjk ≥ 0 summing to one. The empirical log-likelihood of the correspond-
ing matrix h = (hjk)j,k equals Lraw(h) with the function Lraw defined in (2.1). But now
the goal is to maximize Lraw(h) over all matrices h ∈ [0, 1]`×m satisfying the constraints

∑̀
j=1

m∑
k=1

hjk = 1 (2.4)

and (2.3). As mentioned in the introduction, requirement (2.3) for h is equivalent to R
being TP2. One can get rid of the constraint (2.4) via a Lagrange trick and maximize

L(h) := Lraw(h)− nh++ + n
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over all h satisfying (2.3), where h++ :=
∑

j

∑
k hjk. Indeed, if h is a matrix in [0,∞)`×m

such that L(raw)(h) > −∞, then h̃ := (hjk/h++)j,k satisfies (2.3) if and only if h does,
and

L(h) = Lraw(h̃) + n(log h++ − h++ + 1) ≤ Lraw(h̃) = L(h̃)

with equality if and only if h++ = 1, that is, h = h̃.

2.3 Equivalence of the two estimation problems

For any matrix a ∈ R`×m define the row sums aj+ :=
∑

k ajk and column sums a+k :=∑
j ajk. If h is an arbitrary matrix in [0,∞)`×m such that Lraw(h) > −∞, and if we write

hjk = pjqjk with pj := hj+ and qjk := hjk/hj+,

then h satisfies (2.3) if and only if q does. Furthermore, q satisfies (2.2), and elementary
algebra shows that

L(h) = Lraw(q) +
∑̀
j=1

(
wj+ log pj − npj + wj+

)
.

The unique maximizer p = (pj)j of
∑

j(wj+ log pj − npj + wj+) is the vector (wj+/n)j ,
and this implies the following facts:

• If ĥ is a maximizer of L(h) under the constraints (2.3), then ĥj+ = wj+/n for all

j, and q̂jk := ĥjk/ĥj+ defines a maximizer q̂ of Lraw(q) under the constraints (2.2)
and (2.3).

• If q̂ is a maximizer of Lraw(q) under the constraints (2.2) and (2.3), then ĥjk :=

(wj+/n)q̂jk defines a maximizer ĥ of L(h) under the constraints (2.3).

As a final remark, note that the two estimation problems are monotone equivariant in
the following sense: If (X,Y ) is replaced with (X̃, Ỹ ) = (σ(X), τ(Y )) with strictly isotonic
functions σ : X → R and τ : R → R, then L(Ỹ |X̃ = σ(x)) = L(τ(Y )|X = x) for x ∈ X.
Furthermore, the constraints of likelihood ratio ordered conditional distributions or of a
TP2 joint distribution remain valid under such transformations.

2.4 Calibration of rows and columns

The previous considerations motivate to find a maximizer ĥ ∈ [0,∞)`×m of L(h) under
the constraint (2.3), even if the ultimate goal is to estimate the conditional distributions
Qx, x ∈ X. They also indicate two simple ways to improve a current candidate h for ĥ.
Let h̃ be defined via

h̃jk := (wj+/n)hjk/hj+,

i.e. we rescale the rows of h such that the new row sums h̃j+ coincide with the empirical
weights wj+/n. Then

L(h̃)− L(h) =
∑̀
j=1

(
wj+ log

( wj+
nhj+

)
+ nhj+ − wj+

)
≥ 0

with equality if and only if h̃ = h. Similarly, one can improve h by rescaling its columns,
i.e. replacing h with h̃, where

h̃jk := (w+k/n)hjk/h+k.
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3 Estimation

3.1 Dimension reduction

The minimization problem mentioned before involves a parameter h ∈ [0,∞)`×m under(
`
2

)(
m
2

)
nonlinear inequality constraints. The parameter space and the number of con-

straints may be reduced as follows.

Lemma 3.1. Let P be the set of all index pairs (j, k) such that there exist indices
1 ≤ j1 ≤ j ≤ j2 ≤ ` and 1 ≤ k1 ≤ k ≤ k2 ≤ m with wj1k2 , wj2k1 > 0.

(a) If h ∈ [0,∞)`×m satisfies (2.3) and L(h) > −∞, then hjk > 0 for all (j, k) ∈ P.

(b) If such a matrix h is replaced with h̃ :=
(
1[(j,k)∈P]hjk

)
j,k

, then h̃ satisfies (2.3), too,

and L(h̃) ≥ L(h) with equality if and only if h̃ = h.

(c) If h ∈ [0,∞)`×m such that {(j, k) : hjk > 0} = P, then constraint (2.3) is equivalent
to

hj−1,khj,k−1 ≤ hj−1,k−1hj,k for 1 < j ≤ ` and 1 < k ≤ m. (3.1)

All in all, we may restrict our attention to parameters h ∈ (0,∞)P satisfying (3.1),
where hjk := 0 for (j, k) 6∈ P. Note that (3.1) involves only (` − 1)(m − 1) inequalities,
and the inequality for one particular index pair (j, k) is nontrivial only if the two pairs
(j − 1, k), (j, k − 1) belong to P.

The set P consists of all pairs (j, k) such that the support of the empirical distribution
R̂emp contains a point (xj1 , yk2) “northwest” and a point (xj2 , yk1) “southeast” of (xj , yk).
If P contains two pairs (j2, k1), (j1, k2) with j1 < j2 and k1 < k2, then it contains the whole
set {j1, . . . , j2} × {k1, . . . , k2}. Figure 1 illustrates the definition of P. It also illustrates
two alternative codings of P: An index pair (j, k) belongs to P if and only if mj ≤ k ≤Mj ,
where

mj := min
{
k : wj′k > 0 for some j′ ≥ j

}
,

Mj := max
{
k : wj′k > 0 for some j′ ≤ j

}
.

Note that mj ≤Mj for all j, 1 = m1 ≤ · · · ≤ m`, and M1 ≤ · · · ≤M` = m. Analogously,
a pair (j, k) belongs to P if and only if `k ≤ j ≤ Lk, where

`k := min
{
j : wjk′ > 0 for some k′ ≥ k

}
,

Lk := max
{
j : wjk′ > 0 for some k′ ≤ k

}
.

Here `k ≤ Lk for all k, 1 = `1 ≤ · · · ≤ `M , and L1 ≤ · · · ≤ Lm = `.
Note that by definition, for any index pair (j, k),

k ≤Mj if and only if j ≥ lk, (3.2)

k ≥ mj if and only if j ≤ Lk. (3.3)

3.2 Reparametrization and reformulation

If we replace a parameter h ∈ (0,∞)P with its component-wise logarithm θ ∈ RP , then
property (3.1) is equivalent to

θj−1,k−1 + θj,k − θj−1,k − θj,k−1 ≥ 0 whenever (j − 1, k), (j, k − 1) ∈ P. (3.4)

The set of all θ ∈ RP satisfying (3.4) is a closed convex cone and is denoted by Θ.
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m1 = 1

M1 = 3

m2 = 1

M2 = 4

m3 = 1

M3 = 4

m4 = 3

M4 = 4

m5 = 5

M5 = 6

m6 = 5

M6 = 7

ℓ1 = 1 L1 = 3

ℓ2 = 1 L2 = 3

ℓ3 = 1 L3 = 4

ℓ4 = 2 L4 = 4

ℓ5 = 5 L5 = 6

ℓ6 = 5 L6 = 6

ℓ7 = 6 L7 = 6

Figure 1: In this specific example, n ≥ 8 raw observations yielded ` = 6 different values
xj and m = 7 different values yk. The green dots represent those (j, k) with wjk > 0. The
green dots and black circles represent the set P.

Now our goal is to minimize

f(θ) :=
∑

(j,k)∈P

(
−wjkθjk + n exp(θjk)

)
(3.5)

over all θ ∈ Θ.

Theorem 3.2. There exists a unique minimizer θ̂ of f(θ) over all θ ∈ Θ.

Uniqueness follows directly from f being strictly convex, but existence is less obvious,
unless wjk > 0 for all (j, k). With θ̂ at hand, the corresponding solution ĥ ∈ [0,∞)`×m of
the original problem is given by

ĥjk =

{
exp(θ̂jk) if (j, k) ∈ P,
0 else.

In the proof of Theorem 3.2 and from now on, we view RP as a Euclidean space with inner
product 〈x,y〉 :=

∑
(j,k)∈P xjkyjk and the corresponding norm ‖x‖ := 〈x,x〉1/2. For a dif-

ferentiable function f : RP → R, its gradient is defined as ∇f(x) :=
(
∂f(x)/∂xjk

)
(j,k)∈P .

Let us explain briefly why traditional optimization algorithms may become infeasible
for large sample sizes n. Depending on the input data, the set P may contain more than
cn2 parameters, and the constraint (3.4) may involve at least cn2 linear inequalities, where
c > 0 is some generic constant. Even if we restrict our attention to parameters θ ∈ Θ
such that a given subset of the inequalities in (3.4) are equalities, they span a linear space
of dimension at least max(`,m), because all parameters θjmj and θ`kk are unconstrained,
and max(`,m) may be at least cn. Just determining a gradient and Hessian matrix of
the target function f within this linear subspace would then require at least cn4 steps.
Consequently, traditional minimization algorithms involving exact Newton steps may be
computationally infeasible. Alternatively, we propose an iterative algorithm with quasi
Newton steps each of which has running time O(n2), and the required memory is of this
order, too.
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3.3 Finding a new proposal

Version 1. To determine whether a given parameter θ ∈ RP is already optimal and, if
not, to obtain a better one, we reparametrize the problem a second time. Let θ̃ = T (θ) ∈
RP be given by

θ̃jk =

{
θjmj if k = mj ,

θjk − θj,k−1 if mj < k ≤Mj .

Then θ = T−1(θ̃) =
(∑k

k′=mj
θ̃jk′
)
j,k

, and f(θ) is equal to

f̃(θ̃) :=
∑̀
j=1

Mj∑
k=mj

(
−wjk

k∑
k′=mj

θ̃jk′ + n exp
( k∑
k′=mj

θ̃jk′
))

=
∑̀
j=1

Mj∑
k=mj

(
−wjkθ̃jk + n exp

( k∑
k′=mj

θ̃jk′
))

with wjk :=

Mj∑
k′=k

wjk′ .

More importantly, we may represent P as

P =
{

(j,mj) : 1 ≤ j ≤ `
}
∪
{

(j, k) : 1 ≤ j ≤ `,mj < k ≤Mj

}
=
{

(j,mj) : 1 ≤ j ≤ `
}
∪

m⋃
k=2

{
(j, k) : `k ≤ j ≤ Lk−1

}
,

where the latter equation follows from (3.2) and (3.3). Now the constraints (3.4) read(
θ̃jk
)Lk−1

j=`k
∈ RLk−1−`k+1

↑ whenever 2 ≤ k ≤ m and Lk−1 − `k + 1 ≥ 2. (3.6)

Here Rd↑ := {x ∈ Rd : x1 ≤ · · · ≤ xd}. The set of θ̃ ∈ RP satisfying (3.6) is denoted by Θ̃.

For given θ and θ̃ = T (θ), we approximate f̃(x̃) by the quadratic function

x̃ 7→ f̃(θ̃) +
〈
∇f̃(θ̃), x̃− θ̃

〉
+ 2−1

∑
(j,k)∈P

∂2f̃

∂θ̃2
jk

(θ̃)(x̃jk − θ̃jk)2

= const(θ) + 2−1
∑

(j,k)∈P

ṽjk(θ)(x̃jk − γ̃jk(θ))2

= const(θ) + 2−1
∑̀
j=1

ṽjmj (θ)(x̃jmj − γ̃jmj (θ))2

+ 2−1
m∑
k=2

∑
`k≤j≤Lk−1

ṽjk(θ)(x̃jk − γ̃jk(θ))2

with

ṽjk(θ) :=
∂2f̃

∂θ̃2
jk

(θ̃) = n

Mj∑
k′=k

exp(θjk′),

γ̃jk(θ) := θ̃jk − ṽjk(θ)−1 ∂f̃

∂θ̃jk
(θ̃) = Tjk(θ) + ṽjk(θ)−1wjk − 1.

This quadratic function of x̃ is easily minimized over Θ̃ via the pool-adjacent-violators

algorithm, applied to the subtuple (x̃jk)
Lk−1

j=`k
for each k = 2, . . . ,m separately. Then we

obtain the proposal

Ψrow(θ) := T−1(θ̃∗(θ)) with θ̃∗(θ) := arg min
x̃∈Θ̃

∑
(j,k)∈P

ṽjk(θ)(x̃jk − γ̃jk(θ))2.
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Interestingly, if θ is row-wise calibrated in the sense that n
∑Mj

k=mj
exp(θjk) = wj+ for

1 ≤ j ≤ `, then γ̃jmj (θ) = θ̃jmj and thus Ψrow
jmj

(θ) = θjmj for 1 ≤ j ≤ `.

Version 2. Instead of reparametrizing θ ∈ Θ in terms of its values θjmj , 1 ≤ j ≤ `,
and its increments within rows, one could reparametrize it in terms of its values θ`kk,
1 ≤ k ≤ m, and its increments within columns, leading to a proposal Ψcol(θ). Here,
Ψcol
`kk

(θ) = θ`kk for 1 ≤ k ≤ m, provided that θ is column-wise calibrated.

3.4 Calibration

In terms of the log-parametrization with θ ∈ Θ, the row-wise calibration mentioned earlier
for h means to replace θjk with

θjk − log
( Mj∑
k′=mj

exp(θjk′)
)

+ log(wj+/n).

Analogously, replacing θjk with

θjk − log
( Lk∑
j′=`k

exp(θj′k)
)

+ log(w+k/n)

leads to a column-wise calibrated parameter θ. Iterating these calibrations alternatingly,
leads to a parameter which is (approximately) calibrated, row-wise as well as column-wise.

3.5 From new proposal to new parameter

Both functions Ψ = Ψrow,Ψcol have some useful properties summarized in the next lemma.

Lemma 3.3. The function Ψ is continuous on Θ with Ψ(θ̂) = θ̂. For θ ∈ Θ \ {θ̂},

δ(θ) :=
〈
∇f(θ),θ −Ψ(θ)

〉
> 0,

f(θ)− f(θ̂) ≤ max
(
2δ(θ), β1(θ)

√
δ(θ)‖θ − θ̂‖

)
,

and

max
t∈[0,1]

(
f(θ)− f

(
(1− t)θ + tΨ(θ)

))
≥ min

(
2−1δ(θ),

δ(θ)2

β2(θ)‖θ −Ψ(θ)‖2
)

with continuous functions β1, β2 : Θ→ (0,∞).

In view of this lemma, we want to replace θ 6= θ̂ with (1 − t∗)θ + t∗Ψ(θ) for some
suitable t∗ = t∗(θ) ∈ [0, 1] such that f(θ) really decreases. More specifically, with

ρθ(t) := f(θ)− f
(
(1− t)θ + tΨ(θ)

)
,

our goals are that for some constant κ ∈ (0, 1],

ρθ(t∗) ≥ κ max
t∈[0,1]

ρθ(t),

and in case of ρθ being (approximately) a quadratic function, t∗ should be (approximately)
equal to arg maxt∈[0,1] ρθ(t). For that, we proceed similarly as in Dümbgen et al. (2006).
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θ ← θ(0)

δ ←∞
s← 0
while δ ≥ δo do
θ ← calibration of θ
if s is even, do

(ψ, δ)←
(
Ψrow(θ),

〈
∇f(θ),θ −Ψrow(θ)

〉)
else

(ψ, δ)←
(
Ψcol(θ),

〈
∇f(θ),θ −Ψcol(θ)

〉)
end if
ρ′ ← δ
while f(ψ) > f(θ) do

(ψ, ρ′)←
(
2−1(θ +ψ), 2−1ρ′

)
end while
t∗ ← min

(
1, 2−1ρ′/

(
ρ′ − f(θ) + f(ψ)

))
θ ← (1− t∗)θ + t∗ψ
s← s+ 1

end while

Table 1: Pseudo code of our algorithm, returning an approximation θ of θ̂.

We determine to := 2−no with no the smallest integer such that ρθ(2−no) ≥ 0. Then we
define a Hermite interpolation of ρθ:

ρ̃θ(t) := ρ′θ(0)t− cot2 with co := t−1
o

(
ρ′θ(0)− t−1

o ρθ(to)
)
> 0.

This new function is such that ρ̃θ(t) = ρθ(t) for t = 0, to, and ρ̃′θ(0) = ρ′θ(0) > 0. Since
ρ̃′θ(t) = ρ′θ(0)− 2tco, the maximizer of ρ̃θ over [0, to] is given by

t∗ := min
(
to, 2

−1ρ′θ(0)/co
)
.

As shown in Lemma 1 of Dümbgen et al. (2006), this choice of t∗ fulfils the requirements
just stated, where κ = 1/4.

3.6 Complete algorithms

A possible starting point for the algorithm is given by θ(0) := (− log(#P))(j,k)∈P , but

any other parameter θ(0) ∈ Θ would work, too. Suppose we have determined already
θ(0), . . . ,θ(s) such that f(θ(0)) ≥ · · · ≥ f(θ(s)). Let Ψ(θ(s)) be a new proposal with

Ψ = Ψrow or Ψ = Ψcol, and let θ(s+1) = (1−t(s)∗ )θ(s)+t
(s)
∗ Ψ(θ(s)) with t

(s)
∗ = t∗(θ

(s)) ∈ [0, 1]
as described before. No matter which proposal function Ψ we are using in each step, the
resulting sequence (θ(s))s≥0 will always converge to θ̂.

Theorem 3.4. Let (θ(s))s≥0 be the sequence just described. Then lims→∞ θ
(s) = θ̂.

Our numerical experiments showed that a particularly efficient refinement is as follows:
Before computing a new proposal Ψ(θ(s)), one should calibrate θ(s) in the sense that it is
row-wise and column-wise calibrated. If s is even, we compute Ψrow(θ(s)) to determine the
next candidate θ(s+1). If s is odd, we compute Ψcol(θ(s)) to obtain θ(s+1). The algorithm
stops as soon as δ(θ(s)) =

〈
∇f(θ(s)),θ(s) − Ψ(θ(s))

〉
is smaller than a prescribed small

threshold. Table 1 provides corresponding pseudo code.
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Figure 2: The true conditional Gamma distribution function Gx, the estimate under
likelihood ratio (LR) order constraint Ĝx and the estimated under usual stochastic (ST)
order constraint qGx are displayed from left to right for x ∈ {1.5, 2, 2.5, 3, 3.5}.

4 Simulation study

In this section, we compare estimation and prediction performances of the likelihood ra-
tio order constrained estimator presented in this article with the estimator under usual
stochastic order obtained via isotonic distributional regression. The latter estimator was
mentioned briefly in the introduction. It is extensively discussed in Henzi et al. (2021b)
and Mösching and Dümbgen (2020).

4.1 A Gamma model

We choose a parametric family of distributions from which we draw observations. We will
then use these data to provide distribution estimates which we then compare with the
truth. The specific model we have in mind is a family (Qx)x∈X of Gamma distributions
with densities

gx(y) :=
b(x)−a(x)

Γ
(
a(x)

) ya(x)−1 exp
(
−y/b(x)

)
,

with respect to Lebesgue measure on (0,∞), with some shape function a : X → (0,∞)
and scale function b : X→ (0,∞). Then Qx is isotonic in x ∈ X with respect to likelihood
ratio ordering if and only if both functions a and b are isotonic. Recall that since the
family is increasing in likelihood ratio order, it is also increasing with respect to the usual
stochastic order.

The specific shape and scale functions used for this study are

a(x) := 2 + (x+ 1)2 and b(x) := 1− exp(−10x),

defined for x ∈ X := [1, 4]. Figure 2 displays corresponding true conditional distribution
functions for a selection of x’s.
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Figure 3: Selection of β-quantile curves. Specifically, a taut-string (Dümbgen and Kovac,
2009) is computed between the lower X 3 x 7→ min{y ∈ R : G̃x(y) ≥ β} and upper
X 3 x 7→ inf{y ∈ R : G̃x(y) > β} quantile curves for each G̃ ∈ {G, Ĝ, qG} (corresponding
respectively to ‘Truth’, ‘LR’ and ‘ST’) and β ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

4.2 Sampling method

Let `o ∈ {50, 1000} be a predefined number and let

Xo := 1 +
3

`o
· {1, 2, . . . , `o} ⊂ X.

For a given sample size n ∈ N, the sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is obtained
as follows: Draw X1, X2, . . . , Xn uniformly from Xo and sample independently each Yk
from QXk . This yields unique covariates x1 < · · · < x` as well as unique responses
y1 < · · · < ym, for some 1 ≤ `,m ≤ n.

For each such sample, we compute estimates of (Qxj )
`
j=1 under likelihood ratio or-

der and usual stochastic order constraints. Using linear interpolation, we complete both
families of estimates with covariates originally in {xj}`j=1 to families of estimates with

covariates in the full set Xo, see Lemma A.1. We therefore obtain estimates (Q̂x)x∈Xo and
( qQx)x∈Xo under likelihood ratio order and usual stochastic order constraint, respectively.
The corresponding families of cumulative distribution functions are written (Ĝx)x∈Xo and
( qGx)x∈Xo , whereas the truth is denoted by (Gx)x∈Xo . Although the performance of the
empirical distribution is worse than those of the two order constrained estimators, it is
still useful to study its behaviour, for instance to better understand boundary effects. The
family of empirical cumulative distribution functions will be written (Ĝx)x∈Xo .

4.3 Single sample

Figure 2 provides a visual comparison of a selection of true conditional distribution func-
tions with their corresponding estimates under order constraint for a single sample gener-
ated in the setting `o = 1000 and n = 1000. It shows that the estimates under likelihood
ratio order constraint are much smoother than those under usual stochastic order con-
straint. The former are in general also closer to the truth than the latter. This fact
is in reality true on average, as demonstrated in the next paragraph. Smoothness and
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Figure 4: Monte Carlo simulations to evaluate estimation performances with a simple
score. First row: Simple scores with G̃ being either Ĝ (solid line), qG (dashed line) or
Ĝ (dotted line). Second row: Relative change of score when enforcing a likelihood ratio
order constraint over the usual stochastic order constraint. The thicker line is the median
variation, whereas the thin lines are the first and third quartiles. Negative values represent
an improvement in score.

greater precision in estimation resulting from the likelihood ratio order is also apparent in
Figure 3, which displays a selection of quantile curves for each G̃ ∈ {G, Ĝ, qG}.

4.4 A simple score

To assess the ability of each estimator to retrieve the truth, we produce Monte-Carlo
estimates of the median of the score

Rx(G̃,G) :=

∫
|G̃x(y)−Gx(y)|dQx(y),

for each estimator G̃ ∈ {Ĝ, qG, Ĝ} and for each x ∈ Xo. The above score may be decom-
posed as a sum of simple expressions involving the evaluation of G̃x and Gx on the finite
set of unique responses, see Section A.3. We also compute Monte-Carlo quartiles of the
relative change in score

100 · Rx(Ĝ,G)−Rx( qG,G)

Rx( qG,G)
.
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The results of the simulations are displayed in Figure 4. A first observation is that
the performance of all three estimators decreases towards the boundary points of X, and
this effect is more pronounced for the two order constrained estimators. This is a known
phenomenon from shape constrained inference. However, in the interior of X, taking the
stochastic ordering into account pays off. The second row of plots in Figure 4 shows the
relative change in score when estimating the family of distributions with a likelihood ratio
order constraint instead of the usual stochastic order constraint. It is observed that the
improvement in score becomes larger and occurs on a wider sub-interval of X as `o and
n increase. Only towards the boundary, the usual stochastic order seems to have better
performance.

4.5 Theoretical predictive performances

Using the same Gamma model, we evaluate predictive performances of both estimators
using the continuous ranked probability score

CRPS(G̃x, y) :=

∫ (
G̃x(z)− 1[y≤z]

)2
dz.

The CRPS is a sctrictly proper scoring rule which allows for comparisons of probabilistic
forecasts, see Gneiting and Raftery (2007) and Jordan et al. (2019). It can be seen as an
extension of the mean absolute error for probabilistic forecasts. The CRPS is therefore
interpreted in the same unit of measurement as the true distribution or data.

Because the true underlying distribution is known in the present simulation setting,
the expected CRPS score is given by

Sx(G̃,G) :=

∫
CRPS(G̃x, y) dQx(y)

=

m∑
k=0

∫
[yk,yk+1)

(
G̃x(yk)−Gx(y)

)2
dy +

b(x)

B(1/2, a(x))
,

where y0 := 0, ym+1 := +∞ and B(·, ·) is the beta function. As shown in Section A.3, the
above sum of integrals may be rewritten as a sum of elementary expressions involving the
evaluation of G̃x and Gx on the finite set of unique responses, as well as two simple integrals
which are computed via numerical integration. Consequently, we compute Monte-Carlo
estimates of the median of each score Sx(G̃,G), G̃ ∈ {Ĝ, qG, Ĝ}, as well as estimates of
quartiles of the relative change in score when choosing Ĝ over qG.

Figure 5 outlines the results of the simulations. Similar boundary effects as for the
simple score are observed. On the interior of X, the usual stochastic order improves the
naive empirical estimator, and the likelihood ratio order yields the best results. In terms
of relative change in score, it appears that imposing a likelihood ratio order constraint
to estimate the family of distributions yields an average score reduction of about 0.5%
in comparison with the usual stochastic order estimator for a sample of n = 50. For
n = 1000, this improvement occurs on a wider subinterval of X and more frequently, as
shown by the third quartile curve. Note further that the expected CRPS increases on the
interior of X. This is due to the fact that the CRPS has the same unit of measurement as
the response variable. Since the scale of the response characterized by b increases with x,
then so does the corresponding score.

4.6 Empirical predictive performances

We use the weight for age dataset already studied in Mösching and Dümbgen (2020). It
comprises the age and weight of n = 16 432 girls whose age in years lies within X :=
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Figure 5: Monte Carlo simulations to evaluate prediction performances using a CRPS-type
score. First row: CRPS scores with G̃ being either Ĝ (solid line), qG (dashed line) or Ĝ
(doted line). Second row: Relative change of score when enforcing a likelihood ratio order
constraint over the usual stochastic order constraint.
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Figure 6: Subsample of the weight for age data and β-quantile curves computed from that
sample under likelihood ratio order constraint, β ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. A logarithmic
scale was used for the weight variable.
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[2, 16]. A subsample of these data of size 2 000 is presented in Figure 6, along with
estimated quantile curves under likelihood ratio order using that subsample. The dataset
was publicly released as part of the National Health and Nutrition Examination Survey
conducted in the US between 1963 and 1991 (data available from www.cdc.gov) and was
analyzed by Kuczmarski et al. (2002) with parametric models to produce smooth quantile
curves.

Although the likelihood ratio order constraint is harder to justify than the very natural
stochastic order constraint, we are interested in the effect of a stronger regularization
imposed by the former constraint.

The forecast evaluation is performed using a leave-ntrain-out cross-validation scheme.
More precisely, we choose random subsets Dtrain of ntrain observations which we use to
train our estimators. Using the rest of the ntest := n − ntrain data pairs in Dtest, we
evaluate predictive performance by computing the sample median of Ŝx(G̃,Dtest) for each
estimator G̃ ∈ {Ĝ, qG, Ĝ} and each x ∈ Xo, where

Ŝx(G̃,Dtest) :=

∑
(X,Y )∈Dtest:X=x CRPS(G̃x, Y )

#{(X,Y ) ∈ Dtest : X = x}
.

Quartile estimates of the relative change in score are also computed.
Figure 7 shows the forecast evaluation results. As expected, the empirical CRPS

increases with age, since the spread of the weight increases with age. As to the relative
change in score, improvements of about 0.5% can be seen for both training sample sizes.
The region of X where the estimator under likelihood ratio order constraint shows better
predictive performances is the widest for the largest training sample size. These results
show the benefit of a stronger regularization.

Code availability

Our procedure is implemented in the R-package LRDistReg and is available from the GitHub
of the first author: https://github.com/AlexandreMoesching/LRDistReg. Its imple-
mentation includes C++ code which is then integrated in R using Rcpp.
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A Proofs and technical details

A.1 Proofs for Sections 2 and 3

Lemma A.1. Let Q0 and Q1 be probability distributions on R such that Q0 ≤lr Q1. If
we define Qt := (1− t)Q0 + tQ1 for 0 < t < 1, then Qs ≤lr Qt for 0 ≤ s < t ≤ 1.

Proof. By assumption, there exist densitites g0 of Q0 and g1 of Q1 with respect to some
dominating measure µ such that g1/g0 is isotonic on {g0 + g1 > 0}, and this is equivalent
to the property that

g0(y)g1(x) ≤ g0(x)g1(y) whenever x < y.

Now, Qt has density gt := (1− t)g0 + tg1 with respect to µ, and elementary algebra reveals
that for 0 ≤ s < t ≤ 1 and arbitrary x < y,

gs(x)gt(y)− gs(y)gt(x) = (t− s)
(
g0(x)g1(y)− g0(y)g1(x)

)
≥ 0,

whence Qs ≤lr Qt.

Proof of Lemma 3.1. Let h ∈ [0,∞) satisfy (2.3) and L(h) > −∞.
As for part (a), it follows from L(h) > −∞ that hjk > 0 whenever wjk > 0. We

have to show that for arbitrary index pairs (j1, k2), (j2, k1) with j1 ≤ j2, k1 ≤ k2 and
wj1k2 , wj2k1 > 0, also hjk > 0 for all j ∈ {j1, . . . , j2} and k ∈ {k1, . . . , k2}.

Since hj1k2 , hj2k1 > 0, it follows from (2.3) that hj1k1 , hj2k2 > 0, too. (If j1 = j2 or
k1 = k2, this conclusion is trivial.) This type of argument will reappear several times, so
we denote it by A(j1, j2, k1, k2).

Next we show that hjk1 , hjk2 > 0 for j1 < j < j2. Indeed, there exists an index k∗
such that wjk∗ > 0, whence hjk∗ > 0. If k∗ ≤ k2, we may conclude from A(j1, j, k∗, k2)
that hj,k2 > 0, and then it follows from A(j, j2, k1, k2) that hjk1 > 0. Similarly, if k∗ ≥ k1,
we may conclude from A(j, j2, k1, k∗) that hjk1 > 0, and then A(j1, j, k1, k2) shows that
hjk2 > 0.

Analogously, one can show that hj1k, hj2k > 0 for k1 < k < k2.
Finally, if j1 < j < j2 and k1 < k < k2, then we may apply A(j1, j, k1, k) or

A(j, j2, k, k2) to deduce that hjk > 0.
As to part (b), since P contains all pairs (j, k) with wjk > 0, we know that Lraw(h̃) =

Lraw(h), and n − nh̃++ ≥ n − nh++ with equality if and only if h̃ = h. This proves the
assertions about L(h̃) and L(h). That h̃ inherits property (2.3) from h can be deduced
from the fact that for indices j1 < j2 and k1 < k2, it follows from h̃j1k2 h̃j2k1 > 0, that
(j1, k2), (j2, k1) ∈ P, so (j1, k1), (j2, k2) ∈ P as well, and h̃j1k1 h̃j2k2 − h̃j1k2 h̃j2k1 is identical
to hj1k1hj2k2 − hj1k2hj2k1 ≥ 0.
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Concerning part (c), we have to show that (3.1) implies (2.3). To this end, let
(j1, k2), (j2, k1) ∈ P with j1 < j2 and k1 < k2. Since {j1, . . . , j2} × {k1, . . . , k2} ⊂ P,
one can write

hj−1,k1 hj,k2
hj−1,k2 hj,k1

=

k2∏
k=k1+1

hj−1,k−1 hj,k
hj−1,k hj,k−1

≥ 1

for j1 < j ≤ j2, and

hj1,k1 hj2,k2
hj1,k2 hj2,k1

=

j2∏
j=j1+1

hj−1,k1 hj,k2
hj−1,k2 hj,k1

≥ 1,

so (2.3) is satisfied as well.

Proof of Theorem 3.2. Since f is strictly convex and Θ is convex, f has at most one
minimizer in Θ. To prove existence of a minimizer, it suffices to show that

f(θ) → ∞ as θ ∈ Θ, ‖θ‖ → ∞. (A.1)

Suppose that (A.1) is false. Then there exists a sequence (θ(s))s in Θ such that ‖θ‖ → ∞
but

(
f(θ(s))

)
s

is bounded. With rs := ‖θ(s)‖ and u(s) := r−1
s θ

(s), we may assume without

loss of generality that u(s) → u as s → ∞ for some u ∈ Θ with ‖u‖ = 1. For any fixed
t > 0 and sufficiently large s, convexity and differentiablity of f imply that

f(θ(s)) = f(tu(s)) +
(
f(rsu

(s))− f(tu(s))
)

≥ f(tu(s)) + (rs − t)∂f(tu(s))/∂t.

Since lims→∞ f(tu(s)) = f(tu) and lims→∞ ∂f(tu(s))/∂t = ∂f(tu)/∂t, we conclude that

∂f(tu)/∂t ≤ 0 for all t > 0.

But as t→∞, the directional derivative ∂f(tu)/∂t =
∑

(j,k)∈P
(
−wjkujk + ujk exp(tujk)

)
converges to 

∞ if ujk > 0 for some (j, k) ∈ P,
−
∑

(j,k)∈P

wjkujk if u ∈ (−∞, 0]P .

Consequently, the limiting direction u lies in Θ∩ (−∞, 0]P and satisfies ujk = 0 whenever
wjk > 0. But as shown below, this implies that u = 0, a contradiction to ‖u‖ = 1.

The proof of u = 0 is very similar to the proof of Lemma 3.1. If j1 ≤ j2 and k1 ≤ k2

are indices such that uj1k2 = uj2k1 = 0, then it follows from u ∈ (−∞, 0]P and (3.4) that
uj1k1 + uj2k2 ≥ 0, whence uj1k1 = uj2k2 = 0. Repeating this argument as in the proof of
Lemma 3.1, one can show that for arbitrary (j1, k2), (j2, k1) ∈ P with j1 ≤ j2, k1 ≤ k2,
and wj1k2 , wj2,k1 > 0, we have ujk = 0 for j1 ≤ j ≤ j2 and k1 ≤ k ≤ k2. By definition of
P, this means that u = 0.

Proof of Lemma 3.3. With the linear bijection T : RP → RP and Θ̃ = T (Θ), θ̃ = T (θ),
f̃ = f ◦ T−1, one can show that for arbitrary x ∈ RP and x̃ = T (x),〈

∇f̃(θ̃), x̃− θ̃
〉

=
〈
∇f(θ),x− θ

〉
,

so
Ψ(θ) = arg min

x∈Θ

(
f(θ) +

〈
∇f(θ),x− θ

〉
+ 2−1

∥∥Aθ(x)−Aθ(θ)
∥∥2)
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with
Aθ(x) :=

(
ṽjk(θ)1/2Tjk(x)

)
(j,k)∈P

and ṽjk(θ) := ∂2f̃(θ̃)/∂θ̃2
jk. It follows from parts (i) and (ii) of Lemma A.2 in Section A.2

that Ψ is continuous on RP , and that δ(θ) =
〈
∇f(θ),θ − Ψ(θ)

〉
> 0 for θ ∈ Θ \ {θ̂}.

Moreover,

f(θ)− f(θ̂) ≤ max
(

2δ(θ),
√

2δ(θ) ‖Aθ(θ − θ̂)‖
)
.

But
‖Aθ(x)‖2 ≤ max

(j,k)∈P
ṽjk(θ)‖T (x)‖2 ≤ 3 max

(j,k)∈P
ṽjk(θ)‖x‖2,

so
f(θ)− f(θ̂) ≤ max

(
2δ(θ), β1(θ)

√
δ(θ) ‖θ − θ̂‖

)
with β1(θ) being the square root of 6 max(j,k)∈P ṽjk(θ). In case of Ψ = Ψrow and θ being

row-wise calibrated, β1(θ)2 is no larger than 6 max1≤j≤`wj+, and in case of Ψ = Ψcol and
θ being column-wise calibrated, β1(θ)2 ≤ 6 max1≤k≤mw+k.

Concerning the lower bound for the maximum of f(θ) − f
(
(1 − t)θ + tΨ(θ)

)
over all

t ∈ [0, 1], note that for arbitrary θ′,θ′′ ∈ RP ,

d2

dt2
f((1− t)θ′ + tθ′′) = n

∑
(j,k)∈P

exp((1− t)θ′jk + tθ′′jk)(θ
′
jk − θ′′jk)2

≤ n max
(j,k)∈P

exp
(
max(θ′jk, θ

′′
jk)
)
‖θ′ − θ′′‖2.

Thus part (iii) of Lemma A.2 yieds the asserted lower bound with

β2(θ) := 2n max
(j,k)∈P

exp
(
max(θjk,Ψjk(θ))

)
.

Proof of Theorem 3.4. It follows from Lemma 3.3 and the construction of the sequence
(θ(s))s≥0 that

f(θ(s))− f(θ(s+1)) ≥ β(θ(s))

for all s ≥ 0 with some continuous function β : Θ → [0,∞) such that β > 0 on Θ \ {θ̂}.
Note that f(θ(s)) is antitonic in s ≥ 0, so the sequence (θ(s))s≥0 stays in the compact set

R0 :=
{
θ ∈ Θ : f(θ) ≤ f(θ(0))

}
. For each θ ∈ R0 \ {θ̂}, there exists a δθ > 0 such that

the open ball U(θ, δθ) with center θ and radius δθ satisfies

|f − f(θ)| < β(θ)/3 and β > 2β(θ)/3 on U(θ, δθ).

In particular, if θ(s) ∈ U(θ, δθ) for some s ≥ 0, then f(θ(s+1)) < f(θ) − β(θ)/3. Conse-
quently, θ(s) ∈ U(θ, δθ) for at most one index s ≥ 0. But for each ε > 0, the compact set{
θ ∈ R0 : ‖θ − θ̂‖ ≥ ε

}
can be covered by finitely many of these balls U(θ, δθ). Hence,

‖θ(s) − θ̂‖ ≥ ε for at most finitely many indices s ≥ 0.

A.2 Minimizing convex functions via quadratic approximations

Let f : Rd → R be a strictly convex and differentiable function, and let Θ ⊂ Rd be a
closed, convex set such that a minimizer

θ̂ := arg min
θ∈Θ

f(θ)
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exists. For θo ∈ Θ and some nonsingular matrix A ∈ Rd×d consider the quadratic approx-
imation

fo(x) := f(θo) +∇f(θo)
>(x− θo) + 2−1‖Ax−Aθo‖2

of f(x). By construction, fo(θo) = f(θo) and ∇fo(θo) = ∇f(θo), and there exists a
unique minimizer

θ∗ := arg min
θ∈Θ

fo(θ).

The next lemma clarifies some connections between θ∗ and θ̂ in terms of the directional
derivative

δo := ∇f(θo)
>(θo − θ∗) = − d

dt

∣∣∣
t=0

f(θo + t(θ∗ − θo)).

Lemma A.2. (i) The point θ∗ equals θo if and only if θo = θ̂. Furthermore,

2−1δo ≤ fo(θo)− fo(θ∗) ≤ δo

and
f(θo)− f(θ̂) ≤ ∇f(θo)

>(θo − θ̂) ≤ max
(

2δo,
√

2δo ‖Aθ̂ −Aθo‖
)
.

(ii) If f is continuously differentiable, the minimizer θ∗ is a continuous function of θo ∈ Θ
and A.

(iii) If f is even twice differentiable such that for some constant co > 0 and any t ∈ [0, 1],

d2

dt2
f((1− t)θo + tθ∗) ≤ co‖θo − θ∗‖2,

then in case of θo 6= θ̂,

max
t∈[0,1]

(
f(θo)− f((1− t)θo + tθ∗)

)
≥ 2−1 min

(
δo,

δ2
o

co‖θo − θ∗‖2
)
.

Proof. By strict convexity of f , θo = θ̂ if and only if

d

dt

∣∣∣
t=0

f(θo + t(θ − θo)) = ∇f(θo)
>(θ − θo) ≥ 0 for all θ ∈ Θ.

But since fo is strictly convex, too, with ∇fo(θo) = ∇f(θo), the latter displayed condition
is also equivalent to θo = θ∗.

Since the asserted inequalities are trivial in case of θo = θ̂ = θ∗, let us assume in the
sequel that θ∗ 6= θo 6= θ̂. By convexity of f and fo,

fo(θo)− fo(θ∗) ≤
d

dt

∣∣∣
t=1

fo(θ∗ + t(θo − θ∗)) = δo

and

f(θo)− f(θ̂) ≤ d

dt

∣∣∣
t=1

f(θ̂ + t(θo − θ̂)) = ∇f(θo)
>(θo − θ̂).

On the other hand, since θ∗ minimizes fo over Θ,

0 ≤ d

dt

∣∣∣
t=0

fo(θ∗ + t(θo − θ∗)) = ∇fo(θ∗)>(θo − θ∗) = δo − ‖Aθo −Aθ∗‖2,

so
fo(θo)− fo(θ∗) = δo − 2−1‖Aθo −Aθ∗‖2 ≥ 2−1δo.
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Moreover, with δ̂ := ∇f(θo)
>(θo − θ̂) and γ̂ := ‖Aθo −Aθ̂‖2,

2δo ≥ 2
(
fo(θo)− fo(θ∗)

)
= 2 max

θ∈Θ

(
fo(θo)− fo(θ)

)
≥ 2 max

t∈[0,1]

(
fo(θo)− fo((1− t)θo + tθ̂)

)
= max

t∈[0,1]

(
2tδ̂ − t2γ̂

)
= 2toδ̂ − t2oγ̂,

where to := min
(
1, δ̂/γ̂

)
. In case of δ̂ ≥ γ̂, we may conclude that 2δo ≥ 2δ̂ − γ̂ ≥ δ̂, so

δ̂ ≤ 2δo, and otherwise, 2δo ≥ δ̂2/γ̂, whence δ̂ ≤
√

2δoγ̂. This proves part (i).

As to part (ii), let (θ
(s)
o )s≥1 be a sequence in Θ with limit θo, and let (A(s))s≥1

be a sequence of nonsingular matrices in Rd×d converging to a nonsingular matrix A.

Definining f
(s)
o as fo with (θ

(s)
o ,A(s)) in place of (θ,A), we know that f

(s)
o → fo as

s → ∞ uniformly on any bounded subset of Rd. Consequently, for any fixed ε > 0 and
Rε :=

{
θ ∈ Θ : ‖θ − θ∗‖ = ε

}
,

γ(s)
ε := min

θ∈Rε
f (s)
o (θ)− f (s)

o (θ∗) → γε := min
θ∈Rε

fo(θ)− fo(θ∗) > 0

as s → ∞. But as soon as γ
(s)
ε > 0, it follows from convexity of Θ and f (s) that the

minimizer θ
(s)
∗ of f

(s)
o satisfies ‖θ(s)

∗ − θ∗‖ < ε.
Part (iii) follows from

max
t∈[0,1]

(
f(θo)− f((1− t)θo + tθ∗)

)
= max

t∈[0,1]

(
f(θo)− f(θo + t(θ∗ − θo))

)
≥ max

t∈[0,1]

(
tδo − 2−1t2co‖θo − θ∗‖2

)
= toδo − 2−1t2oco‖θo − θ∗‖2

≥ 2−1 min
(
δo,

δ2
o

co‖θo − θ∗‖2
)
,

where to := min
(
1, δo/(co‖θo − θ∗‖2)

)
.

A.3 Technical details for Sections 4

For fixed `o, n ∈ N, let (Ĝx)x∈Xo , ( qGx)x∈Xo and (Ĝx)x∈Xo be estimates of (Gx)x∈Xo from
a sample {(Xi, Yi)}ni=1 as described in Section 4.2. Then, for all G̃ ∈ {Ĝ, qG, Ĝ} and
x ∈ Xo, the estimate G̃x is a step function with jumps in the set {y1, . . . , ym} of unique
observations. For convenience, we further denote y0 := 0, ym+1 :=∞, and define

G̃jk := G̃xj (yk), 0 ≤ k ≤ m, and G̃jm+1 := 1,

for all 1 ≤ j ≤ `o and G̃ ∈ {G, Ĝ, qG, Ĝ}.
For the remainder of this section, we fix 1 ≤ j ≤ `o and G̃ ∈ {Ĝ, qG, Ĝ}. Observe that

Rxj (G̃,G) is the sum of the terms

R(k)
xj (G̃,G) =

∫ yk+1

yk

|G̃jk −Gxj (y)| gxj (y) dy,

defined for 0 ≤ k ≤ m, where gxj is the density of Qxj with respect to Lebesgue measure.
But since ∫ β

α
Gxj (y)gxj (y) dy =

Gxj (β)2 −Gxj (α)2

2
,
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we find that

R(0)
xj (G̃,G) = G2

j1/2,

R(k)
xj (G̃,G) =


ρ(G̃jk, Gjk+1)− ρ(G̃jk, Gjk) if G̃jk ≥ Gjk+1,

ρ(G̃jk, Gjk)− ρ(G̃jk, Gjk+1) if G̃jk ≤ Gjk,
G̃2
jk − ρ(G̃jk, Gjk)− ρ(G̃jk, Gjk+1) otherwise,

R(m)
xj (G̃,G) = 1/2− ρ(1, Gjm),

for 1 ≤ k < m, where ρ(z1, z2) := z1z2 − z2
2/2.

Similarly, the computation of the CRPS involves the sum of the following integrals

S(k)
xj (G̃,G) :=

∫ yk+1

yk

(
G̃jk −Gxj (y)

)2
dy,

defined for 0 ≤ k ≤ m. But integration by parts yields∫ β

α
Gxj (y) dy = βGxj (β)− αGxj (α)− cj

(
Ḡxj (β)− Ḡxj (α)

)
where cj := b(xj)Γ(a(xj) + 1)/Γ(a(xj)) and Ḡxj denotes the cumulative distribution func-
tion of a Gamma distribution with shape a(xj) + 1 and scale b(xj). In consequence, if we
define Ḡjk := Ḡxj (yk) and

I(k)
xj := G̃2

jk(yk+1 − yk)− 2G̃jk

(
yk+1Gjk+1 − ykGjk − cj(Ḡjk+1 − Ḡjk)

)
for 1 ≤ k < m, we obtain

m∑
k=0

S(k)
xj (G̃,G) =

∫ ym

0
Gxj (y)2 dy +

∫ ∞
ym

(
1−Gxj (y)

)2
dy +

m−1∑
k=1

I(k)
xj ,

where the above two integrals are computed numerically.
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