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ABSTRACT

Individual cells are basic units of life. Despite ex-
tensive efforts to characterize the cellular hetero-
geneity of different organisms, cross-species com-
parisons of landscape dynamics have not been

achieved. Here, we applied single-cell RNA sequenc-
ing (scRNA-seq) to map organism-level cell land-
scapes at multiple life stages for mice, zebrafish
and Drosophila. By integrating the comprehensive
dataset of > 2.6 million single cells, we constructed
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a cross-species cell landscape and identified signa-
tures and common pathways that changed through-
out the life span. We identified structural inflam-
mation and mitochondrial dysfunction as the most
common hallmarks of organism aging, and found
that pharmacological activation of mitochondrial
metabolism alleviated aging phenotypes in mice.
The cross-species cell landscape with other pub-
lished datasets were stored in an integrated online
portal––Cell Landscape. Our work provides a valu-
able resource for studying lineage development, mat-
uration and aging.

GRAPHICAL ABSTRACT

INTRODUCTION

How many cell types are there in nature? How do they
change during the life cycle? These are two fundamental
questions that researchers have been trying to understand.
The rapid development of high-throughput single-cell RNA
sequencing (scRNA-seq) offers unprecedented opportuni-
ties to reshape our knowledge about cell types with a uni-
versal measurement system (1–5). As the throughput of
scRNA-seq increases dramatically (6–11), it is now possi-
ble to construct single-cell transcriptomic atlases at the or-
ganism level. For example, cell atlases for vertebrate sys-
tems covering fetal and adult periods have been generated,
such as Xenopus (12), zebrafish embryos (13–15), Human
Cell Landscape (HCL) (16), Tabula Sapiens (17), Mouse
Cell Atlas (MCA) (8), Mouse Cell Differentiation Atlas
(MCDA) (18), Tabula Muris (19), Tabula Muris Senis (20)
and Zebrafish Cell Landscape (ZCL) (21). Several inverte-
brate cell atlases are also available, including for Caenorha-
ditis elegans (22), Drosophila embryo (11), Nematostella
(23), sea squirt (24), fruitfly (25) and earthworm (26). These
studies have significantly enriched our knowledge about cel-
lular hierarchy in different species.

In addition to static cell atlases, the dynamics of cellular
states from development to aging will add another dimen-
sion to our understanding of life. Extensive efforts have been
made to study the molecular events during embryogenesis
at the single-cell level, exploring regulatory programs that

govern the trajectories of cell fate decisions (9,11–14,22,27–
31). In addition, researchers have used rodents to under-
stand cellular and molecular mechanisms of aging (20,32–
34). These studies revealed common patterns in aging tis-
sues, including significant immune cell infiltration and acti-
vation (20), increased transcriptional heterogeneity and un-
restricted identity of aging cells (34–36). However, most of
these analyses are limited to specialized systems and thus
lack a thorough comparison of different species and tissues.
The universality of scRNA-seq enables this kind of compre-
hensive analysis to uncover the general rules behind pro-
gression of life at both the cellular and organismal levels.

In this study, we used Microwell-seq technology (8) to
profile over 2.6 million single cells from mice, zebrafish and
Drosophila at different life stages (Figure 1A and B; Supple-
mentary Table S1). Using these comprehensive datasets, we
constructed a cross-species cell landscape and investigated
common pathways that change throughout the life span. We
found the tendency of cell types and genes to change with
development and age, especially immune cells, and identi-
fied dynamics of gene expression and time-dependent trends
in transcription factor (TF) regulation. Moreover, we re-
vealed structural inflammation and mitochondrial dysfunc-
tion as the most common hallmarks of organism aging, and
discovered that structural cells exhibit obvious inflamma-
tory responses during aging. We also found that pharma-
cological activation of mitochondrial metabolism alleviated
aging phenotypes in mice. Combined with other published
datasets, we collected over 2.6 million single cells from 15
species and constructed an integrated online portal, Cell
Landscape (http://bis.zju.edu.cn/cellatlas/), providing visu-
alization, browsing, searching, annotation and cross-species
analysis functions.

MATERIALS AND METHODS

Ethics statement

All experiments performed in this study were approved by
the Animal Ethics Committee of Zhejiang University (ap-
proval number: ZJU20210067). All experiments conformed
to the relevant regulatory standards at Zhejiang University
Laboratory Animal Center.

Biological samples

Wild-type C57BL/6J mice were ordered from Shanghai
SLAC Laboratory Animal and GemPharmatech Co., Ltd.
All mice were housed at Zhejiang University Laboratory
Animal Center in a specific pathogen-free (SPF) facility
with individually ventilated cages. The room has controlled
temperature (20–22◦C), humidity (30–70%) and light (12 h
light–dark cycle). Mice were provided ad libitum access to a
regular rodent chow diet. All the tissues of newly collected
mice samples were collected from female mice, while testis
and prostate tissues were collected from male mice.

Wild-type Danio rerio (zebrafish) strain AB were raised
and maintained in standard zebrafish units at Core Facili-
ties, Zhejiang University School of Medicine.

Wild-type Drosophila melanogaster (Drosophila) were
cultured under laboratory conditions at 25 ± 1◦C with
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Figure 1. The cross-species cell landscape was constructed using Microwell-seq. (A) Overview of the experimental and bioinformatics workflow. (B) Bar
plot showing the number of analyzed cells per stage by Microwell-seq from each species. (C) t-SNE visualization of 1 130 794 single cells from all tissues
across all stages of mice, colored by cluster identity. (D) t-SNE visualization of the MCDAA, colored by stage. (E) t-SNE visualization of 1 082 680 single
cells from all tissues across all stages of zebrafish, colored by cluster identity. (F) t-SNE visualization of 439 201 single cells from all tissues across all
stages of Drosophila, colored by cluster identity. (G) Heatmap showing the correspondence between cell types in DCL gut (this study, row) and FCA gut
(tissue-wide study from Li et al., 2022, column). Blue refers to a mean area under the receiver operating characterstic curve > 0.9.
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70 ± 5% relative humidity under a 14:10 h light/dark pho-
toperiod.

scRNA-seq cell preparation and sequencing

We used the Microwell-seq process to obtain single-cell
RNA data for each species, while two sizes of beads (20 and
28 �m) and microwells (25 and 32 �m) were used to adapt
to the cell sizes of different species. Two bead sequences
were used, beads 2.0 for mice experiments and beads 3.0
for zebrafish and Drosophila experiments. The Microwell-
seq process included cell and bead collection, reverse tran-
scription, exonuclease I treatment, second-strand synthe-
sis and cDNA amplification to generate barcoded single-
cell libraries. Second-strand syntheses were introduced to
zebrafish and Drosophila cells. Indexed libraries were con-
structed according to the modified manufacturer’s proto-
col (Vazyme). Concentrations were measured by a Qubit
3.0 fluorometer with an Equalbit dsDNA HS Assay Kit
(Vazyme). Libraries were sequenced on an Illumina HiSeq
or MGI DNBSEQ-T7 sequencer with the following se-
quencing strategy: 150 bp read length for read 1 and 150
bp read length for read 2. Detailed methods are described
in Supplementary Methods.

Immunofluorescence staining

Mouse lung and kidney tissues were fixed in 4%
paraformaldehyde at 4◦C overnight. Then, the tissues
were cut into 15 �m thick frozen sections and mounted on
pre-cleaned slides. The sections were washed three times
with phosphate-buffered saline (PBS) and blocked with 5%
fetal bovine serum (FBS) in PBS for 1 h at room tempera-
ture. Primary antibodies diluted in blocking solution (5%
FBS in PBS) were added to cover the sections. The slides
were placed in a wet box and incubated at 4◦C overnight.
Relevant AlexaFluor488/594-conjugated secondary anti-
bodies (1:1,000, Invitrogen) were used for labelling. The
slides were then washed three times with blocking solution
and stained with 4′,6-diamidino-2-phenylindole. Glass
coverslips were then attached to the slides using mounting
medium. Immunofluorescence images were obtained using
confocal microscopy.

Pioglitazone treatment

Seven 24-month-old female mice received pioglitazone
(PGZ) intraperitoneal (i.p.) injection, and five 24-month-
old female mice received vehicle control i.p. injection. For
treatment, mice were injected i.p. with PGZ at a dose of
15 mg/kg of mouse weight/day for 3 weeks. Control and
treated mice (n = 5) were tested for grip strength and blood
lipids. Insulin sensitivity was measured by glucose toler-
ance test (GTT) and insulin tolerance test (ITT). For the
GTT, overnight-fasted mice were given i.p. glucose (2 mg/g
body weight). For the ITT, 5 h fasted mice were given
0.75 U insulin/kg body weight by i.p. injection (Humulin).
Blood glucose was determined with a OneTouch glucome-
ter (Lifescan). Forelimb grip strength was determined using
a Bioseb grip strength meter (Harvard Apparatus). Lean
mass composition was measured using dual-energy X-ray

absorptiometry (DEXA) on a Lunar PIXImus (GE Lunar
Corp). Plasma triglycerides and cholesterol were measured
using a Cobas Clinical Chemistry Analyzer (Roche).

Data processing

Microwell-seq datasets were processed using the pro-
tocols described in our previously published works
(8,16). Reads from three species were aligned to the Mus
musculus GRCm38 genome, D.rerio GRCz11 genome
and D.melanogaster BDGP6.28 genome using STAR
(37). The digital gene expression (DGE) data matri-
ces were obtained using the modified Dropseq tools
(https://github.com/ggjlab/mca data analysis/tree/master/
preprocessing/Drop-seq tools-1.12/), and the correspond-
ing protocol is available at http://mccarrolllab.org/dropseq/.
The DGE data containing the top 10 000 cells sorted by
the total number of transcriptions were obtained after
this pre-process. For quality control, we filtered out cells
with the detection of < 500 transcripts and 200 genes.
Cells with a high proportion of transcript counts derived
from mitochondria-encoded genes were also excluded. We
corrected the RNA contamination using the same methods
described previously (16). Then we used the R package
DoubletFinder (38) to detect the potential doublets from
each individual library. Approximately 5% of cells were
labeled doublets and were removed. After obtaining the
processed DGE matrix, we used Seurat (39) and Scanpy
(40) for dimension reduction, clustering and differential
gene expression analysis. Detailed methods are described
in the Supplementary Methods.

Inferring the gene expression trajectory and gene regulatory
network in the life cycle

We used the LOESS regression model to fit the gene ex-
pression trajectory for the three species. Hierarchical clus-
tering was used to identify different gene expression tra-
jectory clusters in the life cycle. For each cluster, we iden-
tified the most significant gene function by g:profiler (41)
(https://biit.cs.ut.ee/gprofiler/gost). To infer the gene regu-
latory network in the three species, pySCENIC (42) was ap-
plied to infer the gene regulatory network. Fuzzy c-means
clustering was performed on the TF-by-lineage matrix to
identify lineage-specific and common TFs. Then we ran
‘map genes.sh’ in SAMap (43) to find the homologous TFs
of the same lineage across species. Detailed methods are de-
scribed in the Supplementary Methods.

Identifying aging-associated genes, pathways and TFs

For mice, we collected single cells from stages of adult (6–
8 weeks), 12, 18 and 24 month stages in most tissues, so
this provides a good opportunity to study the dynamics of
gene expression during aging. We used the MAST pack-
age (44) to identify aging-associated genes in each tissue.
For each gene, the ‘zlm’ framework was applied to fit a
Hurdle model for stages. Only genes with a false discov-
ery rate (FDR) < 1e-10 were identified as aging-associated
genes. We used similar methods to identify aging-associated
genes in Drosophila, only genes with an FDR < 1e-3 were
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selected as aging-associated genes. Since the datasets for
rats and zebrafish have fewer stage points, the ‘FindMark-
ers’ function in Seurat was applied (young versus old in
rat; 3 months versus 22 months in zebrafish), only genes
with a adjusted P-value < 0.05 and absolute (LogFC) > 0.1
were identified as aging-associated genes. For C.elegans, we
used DNA microarray data (45) to identify genes showing
significant change during aging with analysis of variance
(ANOVA; P-value < 0.001). To identify aging-associated
pathways, up-regulated and down-regulated genes for five
species (changed in at least around half of the tissues or
cell lineages), gene functional enrichment analysis was per-
formed by the online web service g:Profiler. Then we calcu-
lated the Spearman correlation coefficient between the TF
activity scores from SCENIC and the aging-associated gene
set activity scores from AUCell (42) in each tissue or cell
lineage, TFs with coefficient > 0.3 were identified as aging-
associated TFs. Detailed methods are described in the Sup-
plementary Methods.

Cell Landscape construction

Cell Landscape (http://bis.zju.edu.cn/cellatlas/) uses the
bootstrap framework to improve overall adaptability and
interactivity, with PHP, R language and MySQL for back-
end development. The index of Cell Landscape is the col-
lection of subsites for each species, each providing a global
view and retrieval of the species cell landscape. Interactive
t-SNE maps are provided for distribution of different clus-
ters, specific markers for each cluster are listed in a data ta-
ble, and search describes the expression of a given gene in
different clusters from any selected tissue. The main func-
tions of Cell Landscape are divided into three parts: browse,
search and annotation. The Browse part presents the statis-
tics and lists of single-cell studies used on the website. The
Search part contains a direct search and ortholog search;
direct search describes the expression profiles of a given
gene in different clusters, and ortholog search describes the
expression profiles of the given gene and its orthologs in
human, mice and zebrafish. The Annotation part, includ-
ing scMCA, scZCL, scDCL and their cross-species analy-
sis function, provides the single-cell correlation analysis be-
tween the given DGE data and the reference file from the
species database. The result is returned in JSON format and
displayed as an interactive heatmap.

RESULTS

Constructing single-cell transcriptomic atlases of three
species

Previous studies have shown that Microwell-seq is a cost-
effective scRNA-seq method that is compatible with a wide
range of tissue types (8,16,21,46,47). Using Microwell-seq,
we aimed to construct a multispecies scRNA-seq cell land-
scape across multiple life stages in mice, zebrafish and
Drosophila (Figure 1A). For mice, the data were obtained
from > 10 major tissues with 2–3 biological replicates at 10
stages throughout the life span, including three newly col-
lected stages (12, 18 and 24 months) (Figure 1B; Supple-
mentary Table S1). The newly collected datasets were in-
tegrated with our previous works, MCA (8) and MCDA

(18), to generate a time-series Mouse Cell Development
and Ageing Atlas (MCDAA), also known as MCA v3.0,
available at http://bis.zju.edu.cn/MCA/. In total, MCDAA
collected more than 1.1 million single cells from embry-
onic day 10.5 (E10.5, 26 551 cells), embryonic day 12.5
(E12.5, 73 685 cells), embryonic day 14.5 (E14.5, 88 357
cells), neonatal (97 153 cells), 10 days (10d, 116 349 cells),
3 weeks (3w, 68 785 cells), 6–8 weeks (6–8w, 201 507 cells),
12 months (12m, 93 593 cells), 18 months (18m, 121 257
cells) and 24 months (24m, 206 758 cells), constituting
the largest multi-period mouse single-cell landscape cov-
ering a wide range of life stages. The cells of the three
newly collected stages accounted for 37.3% of the total cells
in MCDAA. For zebrafish and Drosophila, we attempted
to perform whole-body single-cell sequencing of the or-
ganism without tissue dissection. The unbiased cell land-
scape data with minimal batch effects from different tis-
sues have been successfully generated by such experiments
(16,26). Our analyses contained nearly 1.08 million single
cells from five life stages of isolated zebrafish, i.e. pharyn-
gula stage [24 h post-fertilization (24hpf), 44 932 cells], lar-
val stage (72hpf, 159 128 cells; and 21 days, 121 954 cells)
and adult (3m, 431 168 cells; and 22m, 330 924 cells) (Fig-
ure 1B; Supplementary Table S1), as well as from seven life
stages of Drosophila (439 201 cells), from young [11 days
(D11)] to senescence (D41) (Figure 1B; Supplementary Ta-
ble S1). Among them, the two newly collected stages (21 d
and 22 m) accounted for 41.6% of the cell numbers in ze-
brafish, while the five newly collected stages of Drosophila
(D21 to D41) accounted for 37.0% of the Drosophila cell
numbers. The newly collected datasets of zebrafish and
Drosophila were integrated with our previous works (21,26)
to construct the Zebrafish Cell Development Landscape
(ZCDL) and Drosophila Cell Landscape (DCL), available at
http://bis.zju.edu.cn/ZCL/ and http://bis.zju.edu.cn/DCL/,
respectively. The scRNA-seq experiments and data analy-
ses were performed following our previously published pro-
cedures (8,16). All information about data quality, average
UMI and gene number is summarized in Supplementary
Table S1.

Globally, the mouse cell landscape was categorized into
177 cell types (Figure 1C and D; Supplementary Figure
S1A–C; Table S1). Each cell type was annotated accord-
ing to the expression level of canonical cell type-specific
markers (marked in Supplementary Table S1). In total, the
177 cell types were divided into 11 major cell lineages,
namely endothelial, epithelial, erythroid, germ, immune,
muscle, neuron, proliferating, secretory, stromal and other
cells (Supplementary Figure S1C). Specifically, with high
expression of P2ry12 and P2ry13, cluster 30 (C30) was iden-
tified as microglia. C49 was defined as astrocyte according
to the remarkable marker slc1a2, whereas C70 and C150
were identified as oligodendrocyte using Plp1. Epithelial
cells were composed of multiple clusters, including Alve-
olar Epithelial Type 1 (AT1) cell (Ager), Alveolar Epithe-
lial Type 2 (AT2) (Sftpc), club cell (Scgb3a2), chief cell
(Pga5 and Pgc), pit cell (Tff1 and Gkn2), enterocyte (Reg3b
and Reg3g), proximal tubule (Aldob and Ass1), ascending
loop of Henle (Umod and Slc12a1) and distal convoluted
tubule (Calb1 and Pgam2). Immune cells were composed
of B cell (Cd79a and Cd19), T cell (Cd3d), macrophage
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(Csf1r and Cd68), mast cell (Cpa3), neutrophil (Cd177) and
plasma cell (Jchain and Ig genes). We also annotated fibrob-
last, smooth muscle cell, endothelial cell (C3 and C26), ery-
throid cell (C38 and C56) and secretory cell (C118) accord-
ing to Col3a1, Acta2, Pecam1, HBB family and Chga ex-
pression, respectively. To validate the data, we compared
our single-cell landscape with tissue-wide mouse projects
(19,20,48,49) using MetaNeighbor, including Tabula Muris
and Tabula Muris Senis. Among the 177 mouse cell types,
> 90% cell types were consistent with tissue-specific an-
notations, with a mean area under the receiver operating
characteristic curve (AUROC) > 0.95 (Supplementary Ta-
ble S1). Moreover, we performed subclustering analysis for
single tissues collected from each stage and predicted a total
of 2314 cell type subclusters (Supplementary Figure S1D;
Table S2). For example, kidneys collected from 24m mice
could be further annotated into proximal tubule cell, as-
cending loop of Henle, descending loop of Henle, collecting
duct intercalated cell, collecting duct principal cell and dis-
tal convoluted tubule according to the gene expression of
Miox, Cldn10, Cxcl10, Atp6v1g3, Fxyd4 and Pgam2 (Sup-
plementary Figure S1E and F). These subclusters of single
tissues from each stage would help to perform cross-tissue
analyses in mice. Unsurprisingly, besides the consistency be-
tween cell types in MCDAA and other tissue-wide mouse
projects, we found that gene expression patterns were con-
sistent over the same time period (Supplementary Figure
S2A–D).

For zebrafish, 143 cell types were annotated with cell
type-specific markers (Figure 1E; Supplementary Figure
S3A and B); markers were highlighted in Supplementary
Table S1. A total of 143 zebrafish cell types were divided
into 10 major cell lineages, i.e. endothelial, epithelial, ery-
throid, germ, immune, muscle, neuron, secretory, stromal
and other cells (Supplementary Figure S3B). C10, C27, C42
and C59 were defined as neurons according to elavl3 and
neurod1. C61 and C92 were further identified as radial glia
with high expression of fabp7a, and C91, C92 and C142
were identified as oligodendrocyte with mbpa and mpz. Ep-
ithelial cells were composed of multiple clusters, such as
enterocyte (fabp6), goblet cell (arg2 and krt18), hepatocyte
(apoa1b and apoa2), ionocyte (atp1a1a.4) and keratinocyte
(krtt1c19e). For muscle cells, we annotated cardiomyocyte
(myl7 and actc1b), mucosal muscle cell (myh11b) and
smooth muscle cell (acta2 and myl9a). We also identified
endothelial cell (C18), erythrocyte (C79), fibroblast (C129),
pancreatic cell (C64, C78 and C82) and neurosecretory cell
(C54) according to kdrl, hbba1, col1a2, prss59.1 and scg3
expression, respectively. Comparing the landscapes profiled
by whole-body sampling and tissue-specific sampling (21),
we found a high degree of consistency in annotations, with
an average AUROC > 0.96 (Supplementary Table S1). For
example, the epithelial cell types were consistent with cor-
responding cell types in single tissues (Supplementary Fig-
ure S3C). Then, we performed subclustering analysis for
each major cell type and predicted a total of 1762 cell type
subclusters in the hierarchy (Supplementary Figure S3D).
For example, ionocytes (C74) could be further annotated
into distinct subclusters according to atp1a1a.4, atp1b1a,
slc12a10.3, ndrg1a and ca4c gene expression in a higher res-
olution subclustering (Supplementary Figure S3E and F).

In the Drosophila cell landscape, we annotated 85 cell
types with cell type-specific markers, which grouped into
12 major cell lineages (Figure 1F; Supplementary Figure
S4A and B; Table S1), comprising epithelial, gut, hemo-
cyte, muscle, neuron, follicle, germ, male accessory gland
(MAG), Malpighian tubule (MT), proliferating, fat body
and other cells. C62 and C70 were defined as hemocyte
according to the remarkable markers Hml, Pxn, Nplp2,
PPO1 and PPO2. C37 and C43 were identified as MT
with Irk2 and Irk3. C8, C10, C14, C25, C50 and C69 were
defined as follicles according to known markers such as
psd, Vml, peb, Fcp3C, yellow-g and Femcoat. We anno-
tated multiple neuron-related cell types such as T1 neu-
rons (marked by Eaat1), GABAergic neurons (marked by
Gad1), glutamatergic neurons (marked by VGlut), photore-
ceptor cell (marked by trpl) and glial cell (marked by nrv2
and Gat). As for gut-related cell types, we identified an-
terior enterocytes (marked by alphaTry and Amy-p), mid-
dle enterocytes (marked by Vha100-4), posterior entero-
cytes (marked by lambdaTry), enteroendocrine cells (EEs,
marked by AstC and Tk), cardias (marked by pgant4), and
enteroblasts (marked by Sox100B). Meanwhile, we com-
pared our single-cell landscape with a parallel fly cell atlas
project (25). Of 85 Drosophila cell types, 94% were consis-
tent with fly tissue-wide annotations (fly cell atlas, FCA),
with a mean AUROC > 0.93 (Supplementary Table S1).
For instance, cardia, anterior enterocyte, middle enterocyte,
posterior enterocyte and EE were consistent with the corre-
sponding cell types in FCA gut (Figure 1G). This suggest
that each cell type in DCL was well annotated even when
sequenced by whole-body single-cell sequencing. Further-
more, the subclustering analysis was performed for each of
the 85 major cell types and predicted a total of 967 subclus-
ters in the hierarchy, and these subclusters made sense func-
tionally (Supplementary Figure S4C). As an example, in
C58, we identify a rare class of EEs with sNPF and CCHa2
expression, but no Tk and AstC expression (Cluster 4, Sup-
plementary Figure S4D and E). The class III EE was dif-
ferent from the two major classes of EEs, class I expressing
AstC and class II expressing Tk, and has been experimen-
tally validated in a previous study (50).

In our previous work (16,26), significant immune gene ac-
tivity was observed in structural cells (non-immune cells),
such as epithelial cells in zebrafish and Malpighian tubules
in Drosophila. In the cell landscape, similar patterns were
observed in all three species (Supplementary Figure S5A–
E), particularly in mice. We found that mouse alveolar type
II cells (AT2 cells, C42, C76, C125 and C171) expressed the
AT2 cell-restricted marker gene Sftpc, as well as immune-
related genes, such as Cxcl15, Lyz2, Cbr2, Cd74, Lamp3 and
Chil1 (Supplementary Figure S5A and B). Some of these
immune-related genes were expressed in other mouse ep-
ithelial or basal cells (C9, C11, C81, C83 and C149) (Sup-
plementary Figure S5C). These findings gave more evidence
for the term ‘structural immunity’ (51), and further demon-
strated that the activity of immune genes in structural cells
was evolutionarily conserved across species. Furthermore,
in addition to the uncommon cell populations with interest-
ing gene expression patterns found in our previous studies,
we also found several cell types with co-expressed markers
of two cell types associated with mouse development. We
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identified cells that co-expressed markers of EEs (Chgb, Cck
and Cpe) and neurons (Nnat) in neonatal intestine (Supple-
mentary Figure S5F). These cells might be neuroendocrine
cells (52), which exhibit a number of distinct neural pheno-
typic features, but function like endocrine cells. In neonatal
and 6–8w heart, we verified a special endothelial cell (Esam)
expression muscle cell marker (Myl9) (Supplementary Fig-
ure S5G and H), which might be a progenitor or interme-
diate cell type that differentiates into distinct cell types of
arterial vessel wall (53).

Time-related signatures throughout life cycle in mice, ze-
brafish and Drosophila

Our cell landscape contained multiple life stages, provid-
ing a rich resource for investigating the changes in dynam-
ics throughout the life cycle across species. We found that
the proportion of cell types changed with development and
age in three species (Figure 2A–C; Supplementary Figure
S6A). For example, the percentage of immune cells gradu-
ally increased with age in mice, zebrafish and Drosophila.
Detailed classification of mice immune cells at different
stages showed that, with age, the proportion of T cells grad-
ually decreased, while the proportion of B cells gradually
increased (Figure 2B), which was in accord with previous
findings in Tabula Muris Senis (20).

To gain a more detailed understanding of life cycle dy-
namics, we analyzed how cell types change with age in repre-
sentative mouse tissues (Figure 2D; Supplementary Figure
S6B, D and F). In kidney, our datasets captured erythro-
cytes, fibroblasts, endothelial cells, immune cells and types
of kidney epithelial cells, such as proximal tubule cell, dis-
tal collecting duct principal cell, collecting duct intercalated
cell, distal convoluted tubule cell and loop of Henle (Figure
2D). It was observed that the progenitor cells gradually dif-
ferentiated with age, developed into tissue-specific cell types
and performed corresponding functions (Figure 2E). This
whole developmental process continued into adulthood. In
brain, heart and testis, a similar phenomenon was also ob-
served in main cell types (Supplementary Figure S6C, E and
G). Notably, we found that the number of immune cells in
most tissues gradually increased with age (Figure 2D; Sup-
plementary Figure S6B and D), while the main cell types
in most tissue non-immune cells also exhibited increased
immune pathway activity, such as antigen processing and
presentation, cell killing and lymphocyte-mediated immu-
nity, indicating that the inflammatory response of tissues
increases with aging.

To evaluate the dynamics of gene expression through-
out the life cycle, we observed gene expression trajecto-
ries in three species and found some common tendencies
(Supplementary Figure S7A–C). Average trajectories for
each gene were calculated across 10 major tissues in mice,
9 major cell lineages in zebrafish and 11 major lineages in
Drosophila. Each trajectory represented a category of gene
sets and showed distinct expression dynamics during life cy-
cle progression. It was obvious that clusters associated with
mitochondrial-related function, including ATP and oxida-
tive phosphorylation, continued to decline over time, and
immune responses were consistently activated throughout
the life span, which was observed in all three species. The

cluster related to cell proliferation declined rapidly dur-
ing development and leveled off after reaching adulthood,
the developmental process cluster increased markedly at a
young age and declined immediately in adults; for other
metabolic levels, the clusters had few obvious tendencies.
These findings suggest that the up-regulation of the immune
response and the down-regulation of mitochondrial-related
metabolism might be the common signatures throughout
life cycle in mice, zebrafish and Drosophila, and shared sim-
ilar patterns with age across species.

Furthermore, we observed the changes of TFs through-
out the life cycle in the three species. TF regulation analysis
showed a time-dependent trend in TF regulation across ma-
jor cell types in representative mouse tissues (Figure 2F),
such as epithelial cells in kidney, neuronal cells in brain,
muscle and stromal cells in heart and germ cells in testis.
The same trend was also found in cell type regulatory net-
works in zebrafish and Drosophila (Supplementary Figure
S8A and B), suggesting that the gene regulatory networks
have obvious changes during the life cycle across species.
By analyzing specific TFs at each stage of every lineage in
mice, zebrafish and Drosophila, we found that some cell lin-
eages were regulated by similar gene families in all three
species (Figure 2G; Supplementary Figure S8C and D; Ta-
ble S3). For example, the neuronal cell lineage in the three
species was regulated by Sox and NeuroD gene families and
corresponding orthologous genes. The muscle cell lineage
in the three species was regulated by Msx1, Pitx1, Prrx1,
Tbx and corresponding orthologous genes. Interestingly,
we identified lineage-shared modules among mice and ze-
brafish, which could regulate early development (module
10–13 in mice; module 13–14 in zebrafish) and maturation
and senescence (module 14–15 in mice; module 15 in ze-
brafish). Meanwhile, we observed a series of homologous
TFs in lineage-shared modules (Figure 2H; Supplementary
Figure S8E). In the early developmental modules, the Hox
gene family, which play key roles in regulating morphogen-
esis, were mainly present (54). In the mature and senescence
modules, Fos/Jun gene families playing important roles in
cell type differentiation (55,56) were present.

Characterization of molecular events associated with aging in
multiple species

Considering the characterization associated with aging, we
found that the proportion of cells expressing the senescence
marker Cdkn2a increased with age at the overall or tis-
sue level in mice (57) (Figure 3A; Supplementary Figure
S9A). Two key immunoglobulin genes, Jchain and Xbp1,
were highly expressed in senescent pancreas B cells (Supple-
mentary Figure S9B and C), consistent with previous find-
ings (20). Moreover, we observed that intrinsic gene expres-
sion also changed during aging. For example, in both mice
and zebrafish, the expression level of senescence-associated
secretory phenotype (SASP) genes increased with age (Sup-
plementary Figure S9D).

To further investigate the cross-species mechanisms of
cellular and molecular senescence, we focus only on those
genes which changed with aging in five species, i.e. mice, ze-
brafish, rats, Drosophila and C.elegans (45) (Supplementary
Table S4). In mice, those up-regulated genes were associated
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Figure 2. Time-related signatures across mice, zebrafish and Drosophila. (A) Bar plot showing the fraction of cell lineages for five life stages of mouse.
(B) Bar plot showing the fraction of immune cell types for five life stages of mouse. (C) Bar plot showing the fraction of cell lineages for five life stages
of zebrafish. (D) UMAP visualization of the Mouse Kidney Cell Atlas across all stages of mouse kidney, colored by stage and cell type (PT, proximal
tubule cell; NPC, nephronic progenitor cell; DLOH, descending loop of Henle; ALOH, ascending loop of Henle; PC, distal collecting duct principal cell;
IC, collecting duct intercalated cell; DCT, distal convoluted tubule cell; EC, endothelial cell.) (E) Heatmap showing normalized GO AUCell Scores of the
Mouse Kidney Cell Atlas across all stages of mouse kidney. (F) Relatedness network for the main cell types of mouse kidney, brain, heart and testis based
on similarity of regulon activities. Each dot represents the aggregated cell type within each stage (see Supplementary Methods) and colored by stage. Only
nodes with > 50 cells are selected. The edges between nodes represent the Spearman correlation coefficient calculated based on the aggregated regulon
activity scores and filtered with Spearman correlation coefficient > 0.9. (G) Heatmap showing the aggregated module activities of TFs clustered by fuzzy
c-means from mice. (H) Sankey plot showing the homologous relationships among vertebrate developmental-related TFs.
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Figure 3. Aging-related signatures across multiple species. (A) Bar plot showing the fractions of cells expressing Cdkn2a at different mouse life stages. (B)
Heatmap showing consensus up-regulated genes in 14 tissues of mice. The red cell represents up-regulated genes in the aging process. (C) Heatmap showing
consensus down-regulated genes in 14 tissues of mice. The blue cell represents down-regulated genes in the aging process. (D) UpSet plot showing GO terms
for up-regulated genes in multiple species. Representative GO terms for up-regulated genes in mice, rats and zebrafish are shown in the red box. (E) UpSet
plot showing GO terms for down-regulated genes in multiple species. Representative GO terms for down-regulated genes in five species are shown in the
blue box. (F) Heatmap showing normalized AUCell score of Immune response in eight mice tissues during four aging stages. (G) A circle plot showing the
up-regulated homologous TFs between mice and zebrafish, colored by TF family. (H) Ligand and receptor analysis of 3w, 6–8w, 12m and 18m kidneys
using CellPhoneDB. Line thickness indicates the degree of association between cell types. (I) Heatmap showing normalized AUCell score of the Fatty acid
metabolic pathway in eight mice tissues during four aging stages. (J) Circular plot showing the down-regulated homologous TFs among the three species,
colored by TF family. (K) Bar plot showing that PGZ reverses aging-induced frailty and sarcopenia in mice by increasing grip strength and lean mass in
aging mice (n = 5). (L) Bar plot showing that PGZ reverses aging-induced hyperlipidemia in mice by decreasing triglycerides and total cholesterol in aging
mice (n = 5). (M) Line chart showing that PGZ reverses aging-induced insulin resistance (n = 5).
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with immune responses (Figure 3B), and down-regulated
genes were related to mitochondrial dysfunction (Figure
3C). For systematically evaluating the general trends across
species, we used Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis to
profile genes that changed with aging in these five species,
and integrated the functional enrichment results (Supple-
mentary Table S5; Figure 3D and E). The GO and KEGG
enrichment results indicated that those genes were involved
in the same pathways and might have similar functions
across species. For example, most commonly up-regulated
genes in all three vertebrates were associated with immune
responses, regulation of response to stress and antigen pro-
cessing and presentation (Figure 3D). On the other hand,
genes down-regulated with age in the five species were re-
lated to ATP metabolic process, cellular respiration, oxida-
tive phosphorylation and fatty acid metabolic process (Fig-
ure 3E). These results indicated two important signaling
pathways during aging, immune responses and mitochon-
drial function. Furthermore, the variation of pathway activ-
ity in different cell types in mice showed that the most obvi-
ous decrease in lipid metabolism was found in hepatocytes
(Supplementary Figure S9E), and energy metabolism was
down-regulated significantly in epithelial cells and muscle
cells of multiple tissues (Supplementary Figure S9F and G).
Notably, almost all structural cells showed up-regulation of
immune activity.

For up-regulated genes, the immune response pathway
(GO:0006955) was observed to be up-regulated with ag-
ing in all three vertebrates (Figure 3F; Supplementary Fig-
ure S10A and B). Calculating the correlation between TF
activity and up-regulated genes, we found some TF genes
that might be involved in the immune process, such as Irf3,
Irf8 and Cebpb (Supplementary Table S6; Figure S10C).
The ortholog TF was also found in zebrafish (Figure 3G),
suggesting that these TFs may play important regulatory
roles in the aging process. Then, we constructed ligand–
receptor maps using CellPhoneDB to reveal cell–cell inter-
actions at different stages (30,58). As revealed, the interac-
tion between T cells and renal cells was enhanced with ag-
ing (Figure 3H). In the 18-month kidney, T cells showed
strong interactions with cell types, such as the loop of Henle
and collection duct principal cells. In addition, immunoflu-
orescence staining experiments showed that T cells infil-
trated renal cells around endothelial cells in renal tissues
at 12 months instead of 6 weeks (Supplementary Figure
S10D). The enhancement of the immune response was also
demonstrated at the epigenetic level. Using two histone
modification markers from previously published epigenetic
data (59), we found that the peak intensities of H3K4me3
and H3K27ac in immune-related genes showed an increas-
ing trend with aging in mouse liver (Supplementary Figure
S10E).

Further observations revealed that vertebrate structural
cells increasingly exhibited characteristics of immune acti-
vation during aging. In mice, up-regulated genes in epithe-
lial, endothelial and stromal cells showed immune-related
features (Supplementary Table S7; Figure S11A and B),
such as antigen processing and presentation, regulation
of T-cell-mediated immunity, regulation of leukocyte ac-
tivation and inflammatory response. In particular, anti-

gen presentation-related genes in structural cells were up-
regulated with age in multiple tissues (Supplementary Fig-
ure S11C). For example, the major histocompatibility com-
plex (MHC) genes were up-regulated in AT2 cells during
mouse aging (Supplementary Figure S11D). A similar phe-
nomenon was also found in epithelial cells of zebrafish
(Supplementary Figure S11E) and a series of published
scRNA-seq cell atlases, such as for mouse and human lung
epithelial cells (16,35) (Supplementary Figure S11F and G).

For down-regulated genes, we have identified that mi-
tochondrial metabolism was the most significantly down-
regulated signature with aging across different cell types
and species, including ATP metabolic process, oxidative
phosphorylation and fatty acid metabolic process (Figure
3I; Supplementary Figure S12A–H). These pathways were
down-regulated in most mouse tissues, such as liver, heart,
brain, lung and uterus, and similar appearances were ob-
served in rats, zebrafish, Drosophila and C.elegans. These
observations strongly support the mitochondrial theory of
aging, which explains aging in a variety of biological sys-
tems (60–63). Calculating the correlation between TF activ-
ity and down-regulated genes, we identified a series of nu-
clear receptor TF genes involved in lipid metabolism and
energy metabolism (64), including Pparg, Nr1h4 and Rarg
belonging to the THR-like family, Hnf4a, Nr2f2 and Nr2fe3
belonging to the RXR-like family and Esrrg belonging to
the ESR-like family (Supplementary Table S6; Figure S12I).
The corresponding TF homologs were found in zebrafish
and Drosophila (Figure 3J), indicating that these TFs might
play crucial regulatory roles in the aging process across mul-
tiple species.

Peroxisome proliferator activated receptor-� (PPAR� )
is a member of the nuclear hormone receptor superfamily
of ligand-activated TFs, whose associated signaling might
possibly be involved in the prevention of aging and age-
related diseases. The FDA-approved drug PGZ, as a high-
affinity PPAR� agonist, had been found to improve glu-
cose metabolism and mitochondrial dysfunction (65–67),
and to ameliorate aging-related injury, and the blunting of
aging markers in aging animals reversed age-related dis-
turbances (68). Therefore, to better understand the impor-
tant hallmark of organism aging and investigate promis-
ing anti-aging agents, we tried to relieve the aging pheno-
type by treating 2-year-old mice with PGZ for 3 weeks. In
aging organisms, some known physiological aging pheno-
types corresponding to cell type-specific functions, such as
muscle contraction, cholesterol metabolism and insulin re-
sistance, decline with aging (Supplementary Figure S13A–
C). Compared with the control group, the lean mass of the
PGZ-treated mice increased, and the grip strength was en-
hanced (Figure 3K). In addition, PGZ-treated mice had
lower triglycerides and total cholesterol (Figure 3L), indi-
cating that their lipid metabolism capacity was improved.
The GTT and ITT both showed that PGZ treatment re-
versed aging-induced insulin resistance (Figure 3M). Then
we performed single-cell sequencing of multiple tissues from
PGZ-treated mice to better understand the role of PGZ
at single-cell resolution (Supplementary Table S8; Figure
S13D). We found that immune response and inflamma-
tory response pathways were significantly decreased, espe-
cially in PGZ-treated brain, heart, lung and uterus (Sup-
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plementary Figure S13E). In contrast, the mitochondrial
metabolism-related pathways were significantly activated in
a variety of structural cells in PGZ-treated mice (Supple-
mentary Figure S13F and G). These results suggested that
the inverse correlation of mitochondrial metabolism and in-
flammation during aging might be interconnected through
intrinsic regulatory networks, and PGZ treatment is effec-
tive to modulate the oxidative and inflammatory status, cell
senescence and lipid metabolism, and thereby may be a
promising protective therapy of aging and age-related dis-
eases.

Constructing the cross-species cell landscape

Besides MCDAA, ZCDL and DCL, there were several cell
landscapes also performed by Microwell-seq, such as hu-
man (16), axolotl (69), Xenopus (70) and earthworm (26).
Combining these cell landscapes with other single cell at-
lases from published works, including monkey (71), rat (32),
sea squirt (24), C.elegans (22), planarian (72), Nematostella
(23), hydra (73) and sponge (74), we constructed an inte-
grated online portal, Cell Landscape (Figure 4A), which
provided a foundation for a large-scale single-cell atlas and
served as a powerful tool to investigate their biological im-
portance. This cross-species cell landscape containing more
than 6 million single cells from 15 species, covering mul-
tiple representative branches in the evolution of multicel-
lular animals, is publicly available at http://bis.zju.edu.cn/
cellatlas/. Users can visualize and browse the landscape
for each species, and search and retrieve cell clusters or
genes of interest. For customized use, users can also an-
notate unknown clusters and search for orthologs. Search-
ing the stromal-associated gene Col1a2 as an example, it
was easily found that Col1a2 was highly expressed in mice
fibroblasts (Supplementary Figure S14A). As for its or-
thologs, COL1A2 in human and col1a2 in zebrafish, we
could observe that these genes were highly expressed in
fibroblasts and mesenchymal cells (Supplementary Figure
S14B). Searching for the well-known neuronal marker (Sup-
plementary Figure S14C and D), Elavl3, we found that this
gene and its orthologs were highly expressed in mice, human
and zebrafish neurons, respectively. These search functions
help to observe the expression of genes and their orthologs,
and find potential marker genes.

Using the Cell Landscape database, we updated and re-
built the single-cell mapping pipelines (scMCA, scZCL and
scDCL) for the classification of cell types (Figure 4B). In
mice, the newly collected single-cell datasets in MCDAA
were integrated into our older version scMCA (8). In ze-
brafish and Drosophila, we combined the cell landscapes
ZCL and DCL with published single-cell datasets focus-
ing on single tissues and constructed the mapping pipelines
(scZCL and scDCL, see Supplementary Methods). There-
fore, all available cell type clusters in mapping pipelines
were generated from single-cell studies, and the cell land-
scapes with a wide range of life stages as well as single tis-
sue datasets would allow for more precise annotation of cell
types with temporal correlation, providing tissue and age
information. By using our updated scMCA, we could easy
classify conventional dendritic cells (cDCs), plasmacytoid
dendritic cells (pDCs), natural killer (NK) cells, neutrophils,

T cells, macrophages and monocytes in isolated tumors of
young (6–8 weeks) and old (20–22 months) mice (75) (Fig-
ure 4C). These cells from tumors were highly correlated
with adult (6–8 weeks) and aging (18 and 24 months) mice,
rather than newborn and juvenile mice. Mapping the input
DGE data to our scZCL reference, we could define the main
cell types in zebrafish exocrine tissues (76) (Supplementary
Figure S14E), such as sst1.1 cells, pancreatic exocrine cells
and endothelial cells. Then we processed the single-cell data
from adult Drosophila midgut (50), and confirmed two ma-
jor classes of EEs (Supplementary Figure S14F). In DCL
C58, AstC was specifically co-expressed with CCHa1 and
AstA, and in C81, Tk was co-localized specifically with NPF
and DH31. These suggest that C0, C2, C5, C6 and C8 were
class I EEs expressing AstC, while C1, C3, C4 and C7 were
class II EEs expressing Tk, findings which were completely
consistent with the annotations in the raw study (50).

For cross-species comparison and annotation, our
database provided cross-species analysis capabilities
through orthologs in single-cell mapping pipelines (Figure
4B). Through one to one orthologous gene transformation,
we mapped the HCL to our scMCA and found that the
cell types in human and mice showed the highest simi-
larity (Figure 4D). For example, C33, C42 and C79 were
annotated as smooth muscle cells in HCL, and they were
highly associated with smooth muscle cell types in MC-
DAA (Figure 4E). Notably, C74 was similar to ventricular
cardiomyocyte from fetal and neonatal heart in MCDAA
(Figure 4E). This cell type was annotated as ventricular
cardiomyocyte in HCL, 99.6% cells of which were gener-
ated from fetal heart. Then we performed cross-species
comparison in single tissues (Figure 4F), and found that the
cell types in Adult-Kidney-3 of HCL were well annotated
(Figure 4G). Intercalated cells and proximal tubule cells
were highly correlated with collecting duct intercalated
cells and proximal tubule cells in MCDAA (Supplementary
Figure S14G). Different loop of Henle cell types in HCL
were similar with ascending loop of Henle, descending
loop of Henle and distal convoluted tubules in MCDAA,
respectively, suggesting that these cell types in HCL could
be further annotated (Supplementary Figure S14G). We
also tested the cross-species mapping pipelines in zebrafish
and Drosophila. In zebrafish intestinal epithelial cells (77)
and Drosophila gut EEs (25), most cell types showed the
highest correlations with similar cell types in MCDAA
(Figure 4H; Supplementary Figure S14H). Besides EEs
from the intestine and endocrine cells from the stomach,
the EEs in Drosophila gut were similar to alpha, beta, delta
and gamma cells from MCDAA pancreatic islet, suggesting
that regulation of gut motility and metabolism required
the cross-talk among mammalian intestine, stomach and
pancreas.

DISCUSSION

In this study, we generated over 2.6 million scRNA-seq cells
for mice, zebrafish and Drosophila at different life stages,
and constructed the Cell Landscape resource for dissecting
the cellular heterogeneity of different species. Our datasets
covered a wide range of stages of development and ag-
ing, providing insights into cellular development, matura-
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Figure 4. The main function of Cell Landscape. (A) Overview of the Cell Landscape website construction. (B) Diagram showing the pipeline for scMCA,
scZCL, scDCL and their cross-species analysis. (C) scMCA results for isolated tumors in young (6–8w) and old (20–22m) mice (n = 9966 cells). Each row
represents one cell type in our reference. Each column represents data from a single cell. Pearson correlation coefficient was used to evaluate cell type gene
expression similarity. Red indicates a high correlation; gray indicates a low correlation. (D) The Sankey plot showing the highest correlation coefficient
pairs in each cell type between HCL and scMCA, merged by cell lineage. (E) The Sankey plot showing the highest correlation coefficient pairs in each cell
type between muscle cells in HCL and corresponding cell types in scMCA. (F) t-SNE visualization of Adult-Kidney-3 in HCL, colored by cell lineage. (G)
The Sankey plot showing the highest correlation coefficient pairs in each cell type between Adult-Kidney-3 in HCL and scMCA, merged by cell lineage.
(H) The Sankey plot showing the highest correlation coefficient pairs in each cell type between EEs in FCA gut and corresponding cell types in scMCA.
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tion and aging. All data points were generated from fresh
and unsorted single cells using the same scRNA-seq tech-
nology, and thus there was high consistency and less batch
effect, enabling robust cross-species, cross-tissue and cross-
stage comparison. Moreover, scRNA-seq provides a univer-
sal measurement system for the characterization of nearly
all cell types, including cells from non-model species. Cur-
rently, it is not easy to correlate all single-cell signatures with
the classical functional cell typing system. The highly devel-
oped spatial transcriptomic and reporter functional exper-
iments in mice will eventually unify these two systems, and
provide enormous insights into known and unknown cellu-
lar hierarchy.

Development and aging in multicellular organisms are
highly intertwined processes, and developmental expression
changes tend to be evolutionarily conserved. We identified
the tendency of cell types and genes that changed with de-
velopment and age in mice, zebrafish and Drosophila, and
found that the changes in dynamics of immune cells in
most tissues and cell lineages gradually increased with age
in the three species. Gene expression also showed similar
trends throughout life cycle across the three species: ATP
metabolic process and oxidative phosphorylation contin-
ued to decline, and immune responses were consistently ac-
tivated throughout the life span. Moreover, TF regulation
analysis revealed that some cell lineages were regulated by
similar gene families across species.

Altered intercellular communication and mitochondrial
dysfunction are hallmarks of aging in different organisms,
especially mammalian aging. Inflammation is the promi-
nent aging-associated alteration in intercellular communi-
cation. In this study, cross-species trajectories and enrich-
ment analyses revealed that genes up-regulated with age
were associated with immune responses, especially in ver-
tebrates, whereas down-regulated genes were high corre-
lated with mitochondrial metabolic and oxidative phospho-
rylation processes. Our work provided more evidence for
the relevance of inflammatory pathways to aging in single-
cell transcriptional landscape studies. Previously, studies,
including our work, have shown that immune gene regula-
tion was widespread in mammalian structural cells, such as
epithelial, endothelial and stromal cells (16,51). By analyz-
ing different types of structural cells in aging vertebrates, we
observed that structural cells exhibit increasing characteris-
tics of immune activation during aging, as the interaction
between structural cells and immune cells is gradually en-
hanced. In aged structural cells, immune-related features,
especially antigen presentation-related genes, were signifi-
cantly up-regulated. Our findings were further validated at
both gene expression and epigenetic levels through the anal-
yses of various published datasets.

According to the mitochondrial theory of aging, oxida-
tive damage reduces mitochondrial function with age. We
have demonstrated that genes involved in oxidative phos-
phorylation decline rapidly with aging in both invertebrates
and vertebrates. Also mitochondrial damage may be closely
associated with the inflammatory response during aging.
Mitochondrial dysfunction is known to be a cause of cellu-
lar apoptosis, autophagy and inflammation (60,78). In this
study, we used PGZ, a drug that has been shown to improve
mitochondrial function (67), to treat 2-year-old aging mice.

The results showed that PGZ-treated mice had improved ex-
ercise capacity, lipid metabolism and insulin response. The
results of scRNA-seq showed that PGZ treatment could re-
pair mitochondrial function and reduce structural inflam-
mation in parallel in the aged mice. To achieve a pharma-
cological effect in 3 weeks, we used a relatively high dosage
(15 mg/kg/day) for PGZ i.p. injection. Long-term and low-
dose treatment should be considered for future clinical trials
to reduce the potential side effects of PGZ.

Currently, there are several kinds of accessible single-cell
RNA databases, but most of them were developed for a sin-
gle study, single tissue or single organ, and only provided
basic visualization and searching, and some were even diffi-
cult to access. Although some integrated databases already
exist, they are more like data hubs for collection of single-
cell studies, providing cell cluster visualization and down-
loadable function, rather than interactive, precise search
functions and prediction capabilities. Therefore, we devel-
oped the atlas-level database Cell Landscape, which is not
only a single-cell resource for representative animals’ at-
lases, but also provides rich functions and useful tools for
single-cell research. The visualization function provides the
global view for the cell atlas, and quick access for single clus-
ter and marker genes. The search and the search ortholog
function can easily retrieve the expression of genes of inter-
est and their orthologs, helping to annotate unknown clus-
ters and find potential marker genes. The single-cell map-
ping pipelines and cross-species mapping pipelines are easy
to use to classify and annotate cell clusters, even in different
species.

In summary, our study provides new insights and valu-
able resources for studying organism-level development,
maturation and aging. To facilitate usage of our data for the
wider research community, we constructed the Cell Land-
scape website for browsing single-cell landscapes of differ-
ent species.
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