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Abstract
Purpose: Water removal is one of the computational bottlenecks in the pro-
cessing of high-resolution MRSI data. The purpose of this work is to propose an
approach to reduce the computing time required for water removal in large MRS
data.
Methods: In this work, we describe a singular value decomposition–based
approach that uses the partial position-time separability and the time-domain
linear predictability of MRSI data to reduce the computational time required
for water removal. Our approach arranges MRS signals in a Casorati matrix
form, applies low-rank approximations utilizing singular value decomposi-
tion, removes residual water from the most prominent left-singular vectors,
and finally reconstructs the water-free matrix using the processed left-singular
vectors.
Results: We have demonstrated the effectiveness of our proposed algorithm for
water removal using both simulated and in vivo data. The proposed algorithm
encompasses a pip-installable tool (https://pypi.org/project/CSVD/), available
on GitHub (https://github.com/amirshamaei/CSVD), empowering researchers
to use it in future studies. Additionally, to further promote transparency and
reproducibility, we provide comprehensive code for result replication.
Conclusions: The findings of this study suggest that the proposed method
is a promising alternative to existing water removal methods due to its low
processing time and good performance in removing water signals.
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1 INTRODUCTION

In proton magnetic resonance spectroscopy (MRS) and
magnetic resonance spectroscopic imaging (MRSI), water
signals can seriously interfere with the detection and quan-
tification of low molecular weight metabolites. In most
experiments, some physical water-suppression technique,
such as chemical shift selective or the variable power and
optimized relaxations delays methods,1,2 is employed to
selectively suppress the water signal and thus enhance the
detection of other metabolites.1

However, achieving complete suppression is often dif-
ficult due to the combined effect of the overwhelming
concentration of water, the inhomogeneity of the static
(B0) or the excitation (B1) fields, or the distribution of
water T1 values.2,3 Residual water signals are a frequent
problem, especially in regions with poor B0 homogeneity,3
because the variability of their shape may cause errors in
metabolite quantification. Thus, postprocessing methods
of water suppression play an important role in improving
the accuracy and reliability of MRS data analysis.3

According to experts’ consensus recommendations,3
the residual water signal can be handled in two distinct
ways. The first involves eliminating the remaining water
signal before conducting spectral analysis. This can be
achieved by fitting the peak to a lineshape function, typ-
ically Gaussian, Lorentzian, or a combination of both
known as Voigt. Alternatively, the peak can be fitted to a
set of lineshape components using singular value decom-
position (SVD), and the obtained fit can then be sub-
tracted from the spectrum. The second approach involves
retaining the water peak but utilizing a fitting model that
includes either the water peak itself or the sloping baseline
caused by the residual water peak.

SVD–based approaches such as HLSVDPRO4 are
extensively utilized for modeling and removing the water
signal on the premise that MRS signals in the time domain
can be characterized by a model consisting of a small num-
ber of exponentially damped complex exponentials. After
finding the signal model, they subtract the components
found within a particular water frequency range from the
original signal.1,4,5

The calculation of the SVD is computationally
demanding. Moreover, in large MRS datasets, such as
MRSI data, the SVD of the Hankel matrix should be
calculated for each signal. Thus, water removal is one
of the computational bottlenecks in the processing of
high-resolution MRSI data.6 In this work, we propose
an SVD-based approach to reduce the computing time
required for water removal in large MRS data.

Our proposed algorithm exploits the spatiotempo-
ral partial separability and the linear predictability of
MRSI data.7 Our approach arranges MRSI data in a

Casorati matrix form, applies low-rank approximations
utilizing SVD, removes residual water from the most
prominent left-singular vectors, and finally reconstructs
the water-free matrix using the processed left-singular
vectors.

We compared our proposed method, Casorati singular
value decomposition (CSVD), against the Hankel-Lanczos
implementation of the SVD method4 in terms of accuracy
and time efficiency utilizing simulated data with known
ground truth (GT) values and the in vivo data.

We provide a pip-installable Python tool for our pro-
posed algorithm and make codes for generating our results
available online at https://github.com/amirshamaei/
CSVD

2 METHODS

2.1 CSVD algorithm for residual water
signal removal

Given measured MRSI signals, the proposed algorithm
treats the set of spectroscopic signals together before the
individual-voxel water models are subtracted from the
original signals. It is described in the following steps:

Step 1. Arrange signals (s
(

xi, tj
)

from voxel xi at time
tj) in a Casorati matrix C as follows:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s(x1, t1) s(x2, t1)
s(x1, t2) s(x2, t2)

· · · s(xM, t1)
… s(xM , t2)

… …
s(x1, tN) s(x2, tN)

… …
… s(xM , tN)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where N and M are the number of time points and the
number of voxels, respectively. In other words, the matrix
C is constructed by stacking the signal from each voxel in
its respective column.

Step 2. Compute the SVD of C to obtain U, Σ, and V,
that is,

C = U𝛴V∗
, (2)

where U is an n ×m complex unitary matrix; Σ is an n ×m
rectangular diagonal real matrix with nonnegative real
numbers on the diagonal in descending order (the singu-
lar values of C); V is an n ×m complex unitary matrix;
and ∗ is the conjugate transpose. The columns of U and V
are then called the left- and the right-singular vectors of C,
respectively.

Step 3. Determine the rank, r, of C. In this work,
the optimal singular value hard thresholding method8

was utilized for automatically estimating the rank of
matrix C.
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SHAMAEI et al. 3

Step 4. Apply HLSVDPRO4 in each of the first r
columns of U (r-left-singular vectors); that is, arrange the
N data points of column i of U in a Hankel matrix, and
remove residual water signal using HLSVDPRO method
within a particular water frequency range. We will refer
to matrix U as ̂U after removing water from the first r
columns.

Step 5. Reconstruct the water-free matrix ̂C as follows:

̂C = ̂UΣV∗
. (3)

The proposed CSVD-based water removal algorithm is
computationally efficient due to the low rank of C; that
is, we apply the HLSVDPRO algorithm only on the few
columns (r) of U instead of all signals (r ≪) (Figure 1).

2.2 Datasets

2.2.1 Simulated dataset

In this work, a simulated MRSI dataset was generated
by a linear combination of amplitude-scaled metabo-
lite signals, baseline, and noise. The model describing a
time-domain MRS signal S(t) as a combination of several
metabolite profiles defined by

S(t) =

( M∑

m=1
AmXm(t) + AbB(t)

)

e(Δ𝛼+2i𝜋Δf )teiΔ𝜃

+WF ×W(t) + 𝜉(t), (4)

where Am and Xm(t) are a scaling factor and a basis sig-
nal for the m-th metabolite, respectively; Δ𝛼, Δf , and Δ𝜃
are a global damping factor, a global frequency shift, and
a global phase shift, respectively; and M is the number
of metabolites. Ab and B(t) are a scaling factor and a sig-
nal for macromolecules, respectively; WF and W(t) are
a water amplification factor and exponential decay water
components, respectively; and 𝜉(t) is noise.

The Internet Brain Segmentation Repository was uti-
lized to produce simulated MRSI data, which provides
manually guided expert segmentation of white matter,
gray matter, and CSF along with MR brain image data.

Each MRI volume has a size of 256× 256× 128 voxels.
The middle coronal slice of one subject was selected, and
then the corresponding segmentation mask was down-
sampled from the size of 256× 256 voxels to the size of
64× 64 voxels.

An MR spectroscopic FID was generated for each
voxel in gray or white matter using Equation (4) and the
publicly available metabolite basis set from the Interna-
tional Society for Magnetic Resonance in Medicine MRS

F I G U R E 1 A schematic of the CSVD algorithm. The
algorithm takes the measured MRSI signals (red cube) and
processes them in the following steps: First, the signals are arranged
in a Casorati matrix C by stacking the signals from each voxel in the
columns. Then, the SVD of C is computed, and the rank of C is
determined. Next, HLSVDPRO algorithm is applied to each of the
first r columns of U (ui) to remove residual water signals. Finally,
the water-free MRSI signals (green cube) are reconstructed. CSVD,
Casorati singular value decomposition; SVD, singular value
decomposition.

study group’s fitting challenge9 (19 metabolites signals
and one macromolecule signal). Regional concentrations
of metabolites and regional damping factors were deter-
mined randomly according to literature.10–12

According to Lin et al.,13 a set of residual water peaks
(parameters are listed in Table 1) were added to signals,
randomly and independently. Voxel-dependent frequency
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4 SHAMAEI et al.

T A B L E 1 Parameters used to generate the residual water components.

Signal components Center chemical shift (ppm) Damping (s−1) Phase (◦) Amplitude distribution

W1(t) 4.90 30 −45  (30, 1)

W2(t) 4.82 25 30  (80, 1)

W3(t) 4.70 40 20  (180,1)

W4(t) 4.62 20 −60  (70, 1)

W5(t) 4.50 35 120  (70, 1)

Abbreviation: W(t), exponential decay water components.

shifts induced by residual field inhomogeneity (ranges
from −10 to 10 Hz) and Gaussian-distributed zeroth-order
phase shifts ( (0,5.7◦)) were added to the simulated data.

The signals were generated for a bandwidth of 4000 Hz
and had 2048 points. Random complex Gaussian white
noise was added to the signals, resulting in SNRs (time
origin magnitude to noise standard deviation (SD)) of
196± 20. Three sets of signals were simulated with WF of
5, 25, and 125.

2.2.2 In vivo MRSI data

LTE-WS-MRSI dataset
Publicly accessible long TE brain MRSI data with water
suppression (abbreviated as LTE-WS-MRSI and)13 from
a healthy volunteer acquired on a Philips Achieva 3 T
scanner (Philips Healthcare, Best, The Netherlands; field
of view= 230× 172.5 mm2; slice matrix= 32× 24; slice
thickness= 15 mm; TE= 140 ms; TR= 3.2 s; sample band-
width= 2000 Hz; sample points= 512; water suppresion
enhanced through T1 effect scheme for water suppression;
32-channel head coil).

2D-MRSI-sLASER dataset
Four healthy volunteers were scanned on a Siemens
3 T MR system (Siemens Healthineer, Erlangen, Ger-
many) equipped with a 64-channel head coil with
supraventricular volume of interest positioning. A
metabolite-cycled 2D-MRSI-semi-localization by adia-
batic selective refocusing (sLASER) scheme (a weighted
Cartesian k-space encoding and a 16× 16 FOV grid with
a resolution of 200× 160 mm2) was utilized for acquisi-
tion of MRSI dataset (abbreviated as 2D-MRSI-sLASER).
The MRSI-volume of interest had a resolution of
80× 60× 15 mm3, and sequence timings were set at
TR/TE 1600/35 ms. Spectra were recorded with a spec-
tral width of 4 kHz and acquired with 4096 datapoints,
totaling four weighted acquisitions in a 7-min scan time.
The dataset will be publicly available in NIfTI-MRS
format.14

2.2.3 Functional MRS dataset

Our method demonstrates versatility because it can be
effectively applied not only to MRSI data but also other
large MRS datasets. To validate its efficacy, we thoroughly
tested and evaluated our method specifically for functional
proton MRS (fMRS) data. The fMRS is publicly accessi-
ble fMRS signals from 18 healthy participants acquired
on a Philips Achieva 3 T scanner15 (single-channel
transmit–receive head coil, PRESS, TE/TR= 22/4000 ms,
number of signal averages= 16, scan time= 22:4 min,
anterior cingulate cortex, voxel size= 30× 25× 15 mm3,
second-order shimming, 16-step phase cycle with water
suppression using the Excitation option—a Philips variant
of chemical shift selective).

All scans were performed in accordance with the eth-
ical review boards, and informed consent was obtained
from all investigated subjects.

2.3 Implementation details

We have developed the CSVD algorithm in Python pro-
gramming language and released it as an open source
pip-installable Python tool.16 We carried out simulations
and data processing utilizing our in-house programs devel-
oped with Python on a PC with a 2.7-GHz Intel-Core-i7
processor (Intel Corp., Santa Clara, CA) and 16 GB of
memory.

We used the HLSVDPRO method (a widely used
HLSVDPRO-based method) for removing residual water
signals in the fourth step of our proposed algorithm. We
compared the proposed CSVD method with the HLSVD-
PRO method for removing residual water signals from the
simulated and in vivo datasets.

We set the water removal range to 4.7± 0.5 ppm in
HLSVDPRO and CSVD algorithms (step 4) to keep the
peak at 3.9 ppm corresponding to the creatine visible.

We employed a peak integration approach3 that esti-
mates metabolite signal intensities by calculating the
area under the signal in the range of 1 to 4 ppm (in the
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SHAMAEI et al. 5

frequency domain) after the water removal. The consis-
tency of metabolite signal intensities between CSVD and
HLSVDPRO algorithms for the in vivo and the fMRS
datasets was evaluated with Bland–Altman analysis. The
residual spectra, GT-CSVD and GT-HLSVDPRO, were
calculated by subtracting the water-free spectra, CSVD
and HLSVDPRO, from the ground truth spectra.

We performed a Student t-test for pairwise group com-
parison. A p-value of <0.005 was considered statistically
significant. To quantify the accuracy between the two
methods, we calculated the coefficient of determination
(R2) and the symmetric mean absolute percentage error
(SMAPE) as additional evaluation metrics.

We analyzed the effects of two key parameters, the rank
and the model order, on the performance of CSVD on sim-
ulated data with WF of 25. This analysis sweeps over a
range of ranks from 5 to 20, and model orders from 10 to
80. For each combination, the resulting accuracy and com-
putation time are measured. Accuracy is quantified by the
mean and SD of squared error between the reconstructed
and original data.

3 RESULTS

3.1 Simulated dataset

Results of the three different water removal methods on
the simulated datasets with WF of 5, 25, and 125 are shown
in Figures 2 and 3.

Ranks r= 9, 12, and 16 were selected for WF of 5, 25,
and 125, respectively, by the optimal singular value hard
thresholding algorithms, which were much lower than the
original dimensionality of data (32× 32= 1024).

For each water level WF and both CSVD and HLSVD-
PRO algorithm, a spectral mean squared error (MSE) was
calculated using the ground truth spectra data.

Figure 2A shows the error map for CSVD and HLSVD-
PRO methods at three WF levels. The spectral MSEs pro-
duced by CSVD and HLSVDPRO across all voxels are
1.3± 0.45 and 2.6± 1.2 at WF= 5, 2.6± 0.97 and 2.3± 0.97
at WF= 25, and 2.1± 1 and 2.2± 1.5 WF= 125, respec-
tively. The results show that at lower WF (=5) CSVD out-
performs HLSVDPRO but becomes slightly less effective at
higher WFs (=25 and 125).

Significant pairwise differences were not seen between
MSE produced by CSVD and HLSVDPRO at all WFs
(p< 0.001).

Figure 2B reveals tradeoffs between accuracy and com-
putational efficiency as rank and order vary. An optimal
balance (MSE= 1.28, SD= 0.62, and duration= 25.9 s) is
achieved for a moderate rank (15) and high-model orders

(80), where accuracy remains high without excessive
runtime.

Figure 3 illustrates original spectra from selected
voxels. They are shown along with the corresponding
water-free and residual spectra. The HLSVDPRO method
is effective in removing the extremely strong water signal
at higher WFs, resulting in minimal residual; however, it
is inadequate in eliminating weak water signals (WF= 5).
By contrast, the CSVD method exhibits superior perfor-
mance by removing the water signal across all water levels,
leading to negligible residual.

The residual spectra, GT- CSVD and GT- HLSVD-
PRO, were calculated by subtracting the water-free spectra,
CSVD or HLSVDPRO, from the ground truth spectra.

Processing times for HLSVDPRO and CSVD methods
for the simulated dataset were 201, 14, and 8 s, respec-
tively. The model order (the number of components) was
set to 60 and 30 for CSVD and HLSVDPRO algorithms,
respectively.

3.2 In vivo MRSI data

3.2.1 LTE-WS-MRSI dataset

Figure 4 illustrates the results of CSVD and HLSVDPRO
methods on the LTE-WS-MRSI dataset. Original spectra
from selected voxels were shown along with the cor-
responding water-free spectra. Both the CSVD and the
HLSVDPRO work well; however, the HLSVDPRO cannot
adequately remove the residual water signal, resulting in
baseline distortion.

Figure 5 shows plots of the Bland–Altman analysis
of the agreement between metabolite signal intensi-
ties obtained from CSVD and HLSVDPRO algorithms.
The mean difference line is at −12, and the ±1.96
SD of the difference lines are at −32 and 8, respec-
tively. This means that on average, CSVD gives lower
metabolite signal intensities than the HLSVDPRO by
10 units (SMAPE= 2.36%). For the LTE-WS-MRSI dataset,
significant pairwise differences were seen between
metabolite signal intensity obtained from CSVD and
HLSVDPRO algorithms (p< 0.001). The coefficients of
determination (R2) between metabolite signal intensities
obtained from CSVD and HLSVDPRO algorithms is 0.5.
It suggests a moderate-to-high agreement between CSVD
and HLSVDPRO methods. Processing times for HLSVD-
PRO and CSVD methods for the LTE-WS-MRSI dataset
were 271 and 13 s, respectively. A rank r = 22 was selected
by the optimal singular value hard thresholding algorithm.
The model order was set to 30 for CSVD and HLSVDPRO
algorithms.
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6 SHAMAEI et al.

F I G U R E 2 (A) The error map (spectral mean squared error) for CSVD and HLSVDPRO methods obtained from the simulated dataset
at three WF levels. (B) Heatmap visualization of the effects of rank and model order on the performance of CSVD. The MSE, SD of error, and
runtime are shown for ranks ranging from 5 to 20 and model orders from 10 to 80. Lower MSE and SD indicate more accurate and precise
results. MSE, mean squared error; WF, water amplification factor.

3.2.2 2D-MRSI-sLASER

Figure 6 displays the spectra from chosen voxels of four
subjects, both in their original form and after the removal
of water; and Figure 7 depicts Bland–Altman analysis plots
comparing the metabolite signal intensities derived from
CSVD and HLSVDPRO algorithms.

For all four subjects, significant pairwise differences
were not seen between metabolite signal intensities
obtained from CSVD and HLSVDPRO algorithms in
(p< 0.001). The R2 between metabolite signal intensities
obtained from CSVD and HLSVDPRO algorithms for sub-
jects 1 to 4 are 0.92, 0.89, 0.97, and 0.94, respectively. The
SMAPE between CSVD and HLSVDPRO algorithms for
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SHAMAEI et al. 7

F I G U R E 3 Comparison of CSVD and HLSVDPRO methods for the simulated dataset. Representative original spectra at three water
levels (WF= 5, 25, and 125) from the selected voxels along with the corresponding water-free, ground truth, and residual spectra. The
residual spectra, GT-CSVD and GT-HLSVDPRO, were calculated by subtracting the water-free spectra, CSVD and HLSVDPRO, from the
ground truth spectra.

F I G U R E 4 Comparison of
HLSVDPRO and CSVD methods for the
LTE-WS-MRSI dataset. Representative
original spectra from the selected voxels
along with the corresponding WF spectra.
The displayed image visualizes the
magnitude of the first FID point from the
original dataset. This magnitude value
corresponds to the integral of the spectral
resonance peaks over the acquisition
bandwidth at each voxel location.

subjects 1 to 4 are 2.06%, 1.66%, 2.36%, and 2.05%, respec-
tively. These suggest a high agreement between CSVD and
HLSVDPRO methods for all subjects.

The average processing times for CSVD and HLSVD-
PRO methods across all subjects were 141 and 685 s,
respectively. A rank r = 57 was selected by the optimal
singular value hard thresholding algorithm. The model
order was set to 60 and 30 for CSVD and HLSVDPRO
algorithms, respectively.

3.3 fMRS

Results of the fMRS dataset using the CSVD and HLSVD-
PRO methods are shown in Figures 8 and 9. Figure 8

displays original spectra from specific voxels alongside
their corresponding water-free spectra. Plots depicting
the results of the Bland–Altman analysis comparing the
metabolite signal intensities obtained from the CSVD and
HLSVDPRO algorithms are displayed in Figure 9. The
mean difference line is at around zero (SMAPE= 1.82%),
which means that there is no systematic bias between the
two methods, and 95% confidence interval lines are very
close to zero as well (−0.0011 and 0.0013), which means
that there is very little random variation between the two
methods. This suggests that the two methods are very
consistent and agree well with each other.

For fMRS, significant pairwise differences were not
seen between metabolite signal intensities obtained from
CSVD and HLSVDPRO algorithms (p< 0.001). The R2
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8 SHAMAEI et al.

F I G U R E 5 The plots of the Bland–Altman analysis of the
agreement between metabolite signal intensities of the masked
LTE-WS-MRSI dataset obtained from CSVD and HLSVDPRO
algorithms. The y-axis displays the difference, whereas the x-axis
represents the average of the methods. The limits of agreement are
determined as mean± 1.96 SD of the difference and displayed on
the plot as dashed lines. The solid line on the plot represents the
average difference. LTE-WS-MRSI, long TE brain MRSI.

between metabolite signal intensities obtained from CSVD
and HLSVDPRO algorithms is 0.81. It suggests a high
agreement between CSVD and HLSVDPRO methods.

Processing times for HLSVDPRO and CSVD methods
for the fMRS dataset were 68 and 7 s, respectively. A rank
r = 29 was selected by the optimal singular value hard
thresholding algorithm. The model order was set to 15 for
CSVD and HLSVDPRO algorithms.

4 DISCUSSION

The presented results demonstrate a comprehensive eval-
uation of our proposed (CSVD) and HLSVDPRO water
removal methods with simulated and in vivo MRS and
MRSI datasets. In the simulated dataset, CSVD outper-
forms HLSVDPRO at lower water fractions but becomes
slightly less effective at higher water fractions. However,
the pairwise differences between the MSE produced by
CSVD and HLSVDPRO are not significant.

Overall, the processing time for CSVD is much faster
than HLSVDPRO, indicating its practical usability for
real-time analysis. The processing time of HLSVDPRO
depends on the number of exponential components in the
signal, which can vary depending on the experimental
conditions and parameters.4,6 On the other hand, the pro-
cessing time of CSVD depends on the rank of the Casorati
matrix and the number of exponential components in
step 4.

The SVD of an n ×m matrix requires 𝒪
(
nm2 + n3)

floating-point operations (FLOPs). Given a dataset with

2048 time points and 2048 voxels with a rank of 16 and
forming a Hankel matrix with a size of 1024× 1024, our
approach reduces the required FLOPs by ∼ 98%. However,
more efficient algorithms for computing the SVD such as
Lanczos4 may reduce the required FLOPs.

For the in vivo MRSI dataset (the LTE-WS-MRSI
dataset), both CSVD and HLSVDPRO work well, but
the HLSVDPRO did not adequately remove the residual
water signal, resulting in baseline distortion. However,
significant pairwise differences were not seen between
the metabolite signal intensities. A possible explanation
for this discrepancy is that HLSVDPRO overestimates
metabolite signal intensities.

We tested our method against a fMRS dataset to show
the capability of our method in the water removal of
non-MRSI datasets from different subjects. Our method
showed an excellent performance with a high agreement
with the HLSVDPRO method.

For the in vivo MRSI dataset (the 2D-MRSI-sLASER
dataset), CSVD and HLSVDPRO methods show a high
agreement for all subjects. We also tried to accelerate our
method in a way that we combine spectra from all four sub-
jects to form a big matrix and applied our proposed method
for water removal (Figure S1).

Apart from employing the CSVD method to eliminate
water, it is also feasible to remove lipid signals concur-
rently by properly defining frequency ranges. The out-
comes of simultaneous water and lipid removal within a
range of 1.3± 0.6 ppm on long-TE MRSI data are presented
in Figure S2.

Water suppression techniques have several disadvan-
tages, such as increasing scan time and systematic errors
in metabolite quantification.

Numerous prior studies have successfully shown the
feasibility of in vivo non-water–suppressed MRSI, wherein
both metabolite and water signals are concurrently mea-
sured.17,18

This approach offers several advantages, such as hav-
ing access to the complete water signal as a reference to
correct lineshape distortion caused both by eddy currents
induced in the metal surface of the magnet, correcting
voxel-to-voxel frequency drifts, and employing an inter-
nal reference for metabolite quantification. Furthermore,
it circumvents potential issues linked to water suppres-
sion pulses, including partial suppression of nearby reso-
nances and magnetization transfer effects on the Cr signal.
Despite its benefits, water unsuppressed experiments face
sideband artifacts originating from the water signal and
the difficulty of accurately quantifying the much smaller
metabolite peaks against the significantly larger water
signal. A software solution can be the extraction of the
water signal without interfering with the metabolite con-
tent and introducing baseline distortions and artifacts.17
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SHAMAEI et al. 9

F I G U R E 6 Comparison of HLSVDPRO and CSVD methods for the 2D-MRSI-sLASER dataset. Two representative original spectra
from each of the four subjects along with the corresponding WF spectra.
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10 SHAMAEI et al.

F I G U R E 7 The plots of the Bland–Altman analysis of the agreement between metabolite signal intensities of the masked
2D-MRSI-sLASER dataset obtained from CSVD and HLSVDPRO algorithms. In each plot, the y-axis displays the difference, whereas the
x-axis represents the average of methods. The limits of agreement are determined as mean± 1.96 SD of the difference and displayed on the
plot as dashed lines. The solid line on each plot represents the average difference.

SVD-based algorithms were proposed for water signal
extraction.17 Figure S3 shows the result of water removal
for non-water–suppressed MRSI data using CSVD method.
Our proposed method showed acceptable water removal
for the non-suppressed water data in a shorter time.

4.1 Limitations

Our study has some limitations that should be acknowl-
edged. First, we used a limited set of data to evalu-
ate the performance of CSVD and HLSVDPRO methods.
Although we tried to mimic realistic scenarios by varying
WF levels and adding noise, our data may not fully capture
the complexity and variability of different real-life spectra.
Therefore, further studies are needed to validate our find-
ings using experimental data from different sources and
scanners.

Second, we only compared two methods for water
removal in this study. There may be other methods that
can achieve better results or have different advantages and
disadvantages.19,20 Future research should explore other
alternatives or combinations of methods for the water
removal problem, for example, utilizing the incorporation
of physical knowledge in deep neural networks21–23—or
a recent alternative proposed by Lin et al., which imple-
ments an L2-based water removal method that can accel-
erate the water removal procedure by a factor of 50, and
requires prior knowledge such as the range of damping fac-
tors, phases, and frequencies about water components.13

The third point to consider is that the HLSVDPRO-
based methods assume the MRS signals in the time
domain are limited to a few exponential decaying oscil-
lators. If the actual residual water signal deviates signifi-
cantly from a Lorentzian lineshape, the results produced
by HLSVDPRO-based methods may not be satisfactory.
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SHAMAEI et al. 11

F I G U R E 8 Comparison of HLSVDPRO and CSVD methods
for the fMRS dataset. Representative original spectra from four
subjects along with the corresponding WF spectra.

Step 4 of our proposed algorithm is needed to afford more
flexibility in future work.

Finally, the choice of rank is a critical consideration
when using low-rank approximation techniques such as
the proposed CSVD method. Selecting the appropriate

F I G U R E 9 The plots of the Bland–Altman analysis of the
agreement between metabolite signal intensities of the fMRS dataset
obtained from CSVD and HLSVDPRO algorithms. The y-axis
displays the difference, whereas the x-axis represents the average of
methods. The limits of agreement are determined as mean± 1.96
SD of the difference and displayed on the plot as dashed lines. The
solid line on each plot represents the average difference.

rank has a major impact on balancing approximation
accuracy and model complexity. If the rank is too low,
important information may be lost. On the other hand,
excessively high ranks increase computation time and
may cause overfitting to noise. In this work, we utilized
the optimal hard thresholding algorithm8 to automatically
estimate the rank of the Casorati matrix. This approach
essentially thresholds the singular values at an optimal
point to minimize the expected reconstruction error. The
optimal hard thresholding technique is well studied and
provides a near-optimal estimate of the matrix rank in an
efficient and easy-to-implement manner, without requir-
ing manual parameter tuning. However, other automated
parameter selection methods could also be considered
for determining the rank in the proposed low-rank
approximation. For example, approaches based on Stein’s
unbiased risk estimate24 and the Marchenko-Pastur25 dis-
tribution have been extensively utilized in the MR field
for selecting regularization parameters and estimating the
number of components.25,26 Although we include these
approaches in the CSVD python package,16 investigating
these and other data-driven selection procedures repre-
sents an interesting area for further improving the rank
estimation in the current work. The optimal rank depends
on the intrinsic dimensionality and complexity of the
dataset. The addition of noise and modeling errors means
a higher rank is needed to explain the same amount of
variance compared to the noiseless case. Thus, the optimal
rank must balance retaining useful information against
overfitting. As data complexity increases, for example, due
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12 SHAMAEI et al.

to greater variability in water suppression or metabolite
mixing, higher rank representations become necessary
to maintain modeling accuracy. In our simulated exper-
iments, the estimated rank increased at higher water
fractions, although the number of underlying metabolite
signals was unchanged. This implies the data became
more complex with increasing water. The additional water
signal likely introduced extra variance needing additional
components to model.

5 CONCLUSIONS

The presented results suggest that CSVD is a promising
alternative to existing water removal methods due to its
low processing time and good performance in removing
water signals across different water fractions. However,
HLSVDPRO methods may be preferable in specific cases
where extremely strong water signals need to be removed,
although they may result in larger residuals. The evalu-
ation of different water removal methods with different
datasets provides valuable insights into the strengths and
weaknesses of each method, helping researchers and clin-
icians select the most suitable method for their specific
application.

ACKNOWLEDGMENTS
This work is part of the project that has received funding
from the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie
grant agreement (no. 813120; INSPiRE-MED);
institutional support from the Czech Academy of Sci-
ences, Institute of Scientific Instruments (ISI) (grant
RVO:68081731); and was provided with staff and equip-
ment from the ISI Core Facility Magnetic Resonance
(ISI-MR) facility of the Czech-BioImaging infrastructure
(grants CZ.02.1.01/0.0/0.0/18_046/0016045, LM2018129,
and LM2023050 of The Ministry of Education, Youth and
Sports of the Czech Republic [MEYS CR]).

DATA AVAILABILITY STATEMENT
The source code is freely available at (https://github.com/
amirshamaei/CSVD). For questions, please contact the
corresponding author. The proposed algorithm encom-
passes a pip-installable tool available at (https://pypi.org/
project/CSVD/). The script for generating the simulated
data is available at (https://github.com/amirshamaei/
CSVD_paper). LTE-WS-MRSI dataset is openly available
at (https://github.com/mrshub/Wat_Lip_Removal_L2).
2D-MRSI-sLASER dataset will be available on MRSHub
(https://mrshub.org/). Functional-MRS dataset is openly
available at (https://www.nitrc.org/projects/fmrs_2020/).

ORCID
Amirmohammad Shamaei https://orcid.org/0000-
0001-8342-3284
Zenon Starcuk Jr https://orcid.org/0000-0002-1218-
0585

TWITTER
Amirmohammad Shamaei AmirLand6

REFERENCES
1. Kreis R, Boer V, Choi IY, et al. Terminology and concepts for the

characterization of in vivo MR spectroscopy metho-ds and MR
spectra: background and experts’ consensus recommendations.
NMR Biomed. 2020;34:e4347.

2. Tkác I, Dreher W, Kumaragamage C, et al. Water and lipid
suppression techniques for advanced 1H MRS and MRSI of
the human brain: experts’ consensus recommendations. NMR
Biomed. 2021;34:1-25.

3. Near J, Harris AD, Juchem C, et al. Preprocessing, analysis
and quantification in single-voxel magnetic resonance spec-
troscopy: experts’ consensus recommendations. NMR Biomed.
2019;2020:1-23.

4. Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van
Huffel S. Improved Lanczos algorithms for blackbox MRS data
quantitation. J Magn Reson. 2002;157:292-297.

5. Cabanes E, Le FY, Simond G, Cozzone PJ. Optimization of resid-
ual water signal removal by HLSVD on simulated short echo
time proton MR spectra of the human brain. J Magn Reson Imag.
2001;125:116-125.

6. Vanhamme L, Fierro RD, Van Huffel S, De Beer R. Fast
removal of residual water in proton spectra. J Magn Reson.
1998;132:197-203.

7. Nguyen HM, Peng X, Do MN, Liang ZP. Denoising MR spectro-
scopic imaging data with low-rank approximations. IEEE Trans
Biomed Eng. 2013;60:78-89.

8. Gavish M, Donoho DL. The optimal hard threshold for sin-
gular values is 4/sqrt(3). IEEE Trans Inf Theory. 2013;60:
5040-5053.
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FIGURE S1. Comparison of HLSVDPRO and CSVD meth-
ods for the combined spectra from all four subjects of
2D-MRSI-sLASER dataset.
FIGURE S2. Results of simultaneous water and
lipid removal within a range of 1.3± 0.6 ppm for the
LTE-WS-MRSI dataset.
FIGURE S3. Results of water removal for the water
unsuppressed experiment. Representative original spec-
tra from the selected voxels along with the corresponding
water-free spectra.
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