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Abstract. Heavy precipitation can lead to floods and land-
slides, resulting in widespread damage and significant casu-
alties. Some of its impacts can be mitigated if reliable fore-
casts and warnings are available. Of particular interest is the
subseasonal-to-seasonal (S2S) prediction timescale. The S2S
prediction timescale has received increasing attention in the
research community because of its importance for many sec-
tors. However, very few forecast skill assessments of precip-
itation extremes in S2S forecast data have been conducted.
The goal of this article is to assess the forecast skill of rare
events, here extreme precipitation, in S2S forecasts, using a
metric specifically designed for extremes. We verify extreme
precipitation events over Europe in the S2S forecast model
from the European Centre for Medium-Range Weather Fore-
casts. The verification is conducted against ERA5 reanalysis
precipitation. Extreme precipitation is defined as daily pre-
cipitation accumulations exceeding the seasonal 95th per-
centile. In addition to the classical Brier score, we use a
binary loss index to assess skill. The binary loss index is
tailored to assess the skill of rare events. We analyze daily
events that are locally and spatially aggregated, as well as
7 d extreme-event counts. Results consistently show a higher
skill in winter compared to summer. The regions showing the
highest skill are Norway, Portugal and the south of the Alps.
Skill increases when aggregating the extremes spatially or
temporally. The verification methodology can be adapted and
applied to other variables, e.g., temperature extremes or river
discharge.

1 Introduction

Extreme precipitation is one of the most impactful weather-
related hazards in terms of loss of lives, economic impact and
number of disasters (see, e.g., the impact of storms and flood
quantified in WMO, 2021). Additionally, if several extreme
precipitation events occur in close succession (temporal clus-
tering), flooding becomes more likely (Tuel et al., 2022). The
successful mitigation of weather-related hazards depends on
our ability to forecast them reliably. It is therefore crucial to
quantify the skill of precipitation forecasts and improve the
predictability of precipitation extremes for better prepared-
ness (Merz et al., 2020).

Subseasonal-to-seasonal (S2S) prediction refers to fore-
casting on timescales from about 2 weeks to a season. S2S
prediction has a large range of applications (White et al.,
2017, 2021), including in the humanitarian sector, public
health, energy, water management and agriculture. Fore-
cast skill at this timescale is key to better managing natu-
ral hazards (Merz et al., 2020). S2S predictions aim to fill
the gap between weather forecasts and seasonal outlooks
(White et al., 2017). Providing skillful predictions on sub-
seasonal or monthly timescales is challenging (Hudson et al.,
2011). Unlike short-range forecasts and seasonal outlooks
that have been operational for many years, the S2S timescale
was until recently a “predictability desert” (Vitart et al.,
2012). The scientific community working with S2S forecasts
has been growing rapidly (Mariotti et al., 2018; Merryfield
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et al., 2020; Domeisen et al., 2022). Many research organi-
zations actively contribute to improving S2S forecast skill,
for example through the “Challenge to improve Sub-seasonal
to Seasonal Predictions using Artificial Intelligence” (S2S-
challenge, 2021).

Precipitation is a challenging variable to predict, and, as a
result, S2S forecasts of precipitation extremes have limited
skill compared to other types of hazards (see, e.g., case stud-
ies in Domeisen et al., 2022; Tian et al., 2017; Endris et al.,
2021). The analysis of S2S precipitation forecast skill could
allow for us to identify regions and seasons with good or bad
performance of the forecast. With this information, forecast
users can know where and when the forecast information is
useful or if it would require further improvement (with for
example post-processing, as in Specq and Batté, 2020). Skill
information is also useful to identify potential sources of
predictability and windows of opportunity (i.e., intermittent
time periods with higher skill; Mariotti et al., 2020). Most
of the existing research on S2S prediction of precipitation
extremes focuses on North America (Zhang et al., 2021; De-
Florio et al., 2019), Africa (de Andrade et al., 2021; Olaniyan
et al., 2018) and Asia (Yan et al., 2021; Li et al., 2019). How-
ever little is known about the skill of S2S extreme precipita-
tion prediction over Europe (Monhart et al., 2018; Domeisen
et al., 2022). The present article aims to fill this gap.

S2S forecasts are ensemble forecasts that consist of sev-
eral equally probable members, i.e., runs of the same numer-
ical model with slightly different initial conditions (World-
Climate-Service, 2021). Forecast skill is typically assessed
with hindcasts. Hindcasts are forecasts run for past dates
over sufficiently long time periods (about 20 years) to assess
the quality of the forecast and to identify and correct model
biases (e.g., Huijnen et al., 2012; Manrique-Suñen et al.,
2020). The goal here is to quantify S2S forecast skill for
extreme precipitation events over Europe using the forecast
and hindcast data from the European Centre for Medium-
Range Weather Forecasts (ECMWF; Vitart, 2020), one of the
most frequently used and most skillful S2S modeling sys-
tems (de Andrade et al., 2019; Li et al., 2019; Stan et al.,
2022; Domeisen et al., 2022).

Common metrics to evaluate the bias and the accuracy
– and hence the skill – of ensemble forecasts include the
mean absolute error, the probability integral transform, the
interquartile range, the continuous ranked probability score
(CRPS; Hersbach, 2000; Gneiting et al., 2007; Crochemore
et al., 2016; Monhart et al., 2018; Pic et al., 2022), the Brier
score (Brier, 1950) and the mean square skill score (Specq
and Batté, 2020). However, these metrics capture the mean
behavior of a variable: most are not directly suited to ver-
ifying extreme events. The CRPS can be adapted to focus
on extremes, using the threshold-weighted CRPS (Gneiting
and Ranjan, 2011; Allen et al., 2021) or using extreme value
theory (Taillardat et al., 2022). Another option to verify ex-
treme events is the relative operating characteristic (ROC):
it can be used to measure the ability of the ensemble fore-

cast to identify above-normal precipitation events (Domeisen
et al., 2022; Monhart et al., 2018). In this study, we transform
precipitation extremes into binary “threshold exceedance
events”, where the threshold is the daily-precipitation 95th
percentile. The Brier score is usually employed to verify the
binary forecast. However, it has limitations because of the
unbalanced categories in our case. The extreme-event dataset
is composed of 95 % zeros and 5 % ones. Large parts of
the forecast and observation datasets match because of the
large presence of “0” values (daily precipitation lower than
the 95th percentile) in both datasets. To address this issue,
we also use a binary loss index focusing on extremes (“1”
values). We assess the extreme events by proposing and us-
ing a simple extension of the binary loss score as introduced
by Legrand et al. (2022) to ensemble forecasts. This met-
ric considers only the case of the occurrence of an extreme
event in the forecast or in the observation or in both but not
the non-events (see Sect. 2.3.2). This has the advantage that
the score is not dominated by the correct prediction of non-
events. We compare our novel skill score to the classical
Brier score (Brier, 1950). To overcome the double-penalty
issue (i.e., when a location or timing error in the forecast is
penalized by both a false alarm and a missed event), we al-
low for flexibility by aggregating the forecast information in
spatial and temporal windows (Ebert et al., 2013).

This article is structured as follows. Section 2 contains a
description of the forecast and verification data and the meth-
ods, including the Brier score (Brier, 1950) and a binary loss
index (adapted from Legrand et al., 2022). We present the re-
sults of the analysis in Sect. 3. We discuss these results, draw
conclusions and give an outlook in Sect. 4.

2 Data and methods

2.1 Data

We use ECMWF’s S2S precipitation hindcast data (cycle
47r2; ECMWF, 2021; Vitart, 2020; ECMWF, 2022a) from
2001 to 2020. They are composed of 11 ensemble mem-
bers, initialized twice a week and run for 46 d. We fo-
cus on Europe, in the spatial box [30◦ N, 72◦ N]× [−15◦ E,
49.5◦ E]. The hindcast period covers 20 years with 2080
forecast initializations between 4 January 2001 and 30 De-
cember 2020 (twice a week, on Monday and Thursday).
The data were downloaded at the model spectral resolution
O320 (ECMWF, 2022b, c) and regridded for the analysis
to a 0.5◦× 0.5◦ regular grid using a first-order conservative
remapping (Jones, 1999; CDO, 2018).

ERA5 precipitation (Hersbach et al., 2019) is used here as
the verification dataset. The choice of a reanalysis dataset is
motivated by its continuous spatial and temporal availabil-
ity and by it avoiding the uncertainties due to the inherent
spatial sparsity of weather station networks (Hofstra et al.,
2009; Rivoire et al., 2021). Daily precipitation are extracted
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over the same time period, from 4 January 2001 to 30 De-
cember 2020 plus 46 lead time days, i.e., 14 February 2021,
with a spatial resolution of 0.5◦× 0.5◦. For the sake of sim-
plicity, “observation” refers to ERA5 in the remainder.

2.2 Definition of extreme events

We define precipitation extremes as binary exceedances
of daily precipitation accumulation above its 95th sea-
sonal all-day percentile (i.e., over all days in March–April–
May, MAM; June–July–August, JJA; September–October–
November, SON; or December–January–February, DJF).
Figure A1 in the Appendix shows the 95th percentile (Q95)
in ERA5 in Europe, for the period from 4 January 2001 to
14 February 2021. For the hindcast data, we also compute
percentiles separately for each lead time: for a given lead
time day and a given season,Q95 is computed from daily pre-
cipitation of all the ensemble members pooled together. Fig-
ure 1 shows the bias in this percentile between the forecast
and ERA5 data for four different lead times. In this figure and
all the following ones, only values at grid points where Q95
in the observations is greater than 5 mm d−1 are shown. For
a lead time of 1 d, the forecast generally underestimatesQ95.
For lead times between 2 and 46 d, some regions have a pos-
itive bias (central Europe in spring and summer) and some
have a negative bias (the Alps in summer, autumn and winter
and Norway in spring, autumn and winter; see Fig. 1). Gen-
erally over Europe, the bias depends on the lead time and
on the season. However, the bias over oceans often has the
opposite sign of the bias over land.

2.3 Metrics

We use the Brier score and a binary loss index to assess the
forecast skill in extreme events. We compute the Brier score
and the binary loss index for the extended winter season
(NDJFMA, i.e., November to April) and extended summer
season (MJJASO, i.e., March to October). When defining the
extremes (see previous section) we used 3-month-long sea-
sons because of the strong seasonal cycle in extreme precip-
itation (see Fig. A1). The choice of extended seasons for the
skill analysis is a compromise between having enough ex-
treme events for a robust analysis and capturing the season-
ality of the forecast. As a consequence, the probability of the
extreme events is no longer exactly 0.05 if extreme events are
not homogeneously distributed within the MAM and SON
seasons.

2.3.1 Brier score

The Brier score B is defined as the mean square difference
between forecast probability and binary observations (Brier,

1950): B = 1
nD

nD∑
i=1
(fi−Yi)

2, where nD is the total number of

days (i.e., the number of initializations in the given extended
season: about 1040 per lead time, which is half the number

of initializations per year); Yi the binary observation of ex-
tremes for day i (Yi = 1 if the daily precipitation exceeds the
95th percentile, and Yi = 0 otherwise); and fi is the forecast
probability of extreme occurrence for day i, i.e., the mean
of the ensemble members fi = 1

M

∑M
m=1F(i,m), with M the

number of ensemble members (here M = 11) and F(i,m) the
binary forecast for a given ensemble member m for day i.
B is negatively oriented (the lower, the better). The clima-

tological Brier score Bclim is used as a reference value for the
skill calculation:

Bclim =
1
nD

nD∑
i=1
(p−Yi)

2, (1)

where p is the extreme-climatological-event probability.
Note that the value of this probability is not exactly 0.05,
as two of the 3-month seasons are split to form the extended
seasons. p is therefore computed empirically.

The forecast is skillful if its Brier score is lower than the
climatological Brier score. These scores can be compared us-
ing the Brier skill score (BSS):

BSS= 1−
Bhind

Bclim
. (2)

BSS varies between (−∞,1] and is positively oriented (the
closer to 1, the better). For a given lead time day, a forecast
has skill if BSS> 0. From here on, the expression “the last
skillful day” refers to the largest lead time day with skill.

2.3.2 Binary loss index

Legrand et al. (2022) studied in detail a risk function defined
as the ratio between (i) the empirical probability of having
an extreme event in either the observation dataset or the fore-
cast dataset and (ii) the empirical probability of having an
extreme event in the observations or the forecast (including
having an event in both datasets). In our context, the risk
function can be written as follows:

R(u)(X)=
P(X(u) 6= Y (u))

P(Y (u) = 1 or X(u) = 1)
, (3)

where Y (u) is the binary observation with Y (u) = 0 (Y (u) = 1)
if the observed daily precipitation is lower (greater) than
a certain threshold u and X(u) is the binary forecast with
X(u) = 0 (X(u) = 1) if the predicted daily precipitation is
lower (greater) than u.

The risk function R(u) focuses on how well the 1 values
(extreme-event days) match between observation and fore-
cast. It does not take into account steps when neither the
forecast nor the observation experiences an extreme event.
R(u)(X) varies between [0,1] and is negatively oriented (the
closer to zero, the better the forecast is). The strength of
R(u)(X) is its asymptotic behavior: even for very rare events,
both the over-optimistic and over-pessimistic forecasts will
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Figure 1. Forecast bias in the 95th percentile (Q95) compared to ERA5, for spring (MAM, a–d), summer (JJA, e–h), autumn (SON, i–l) and
winter (DJF, m–p) at a 2 d (a, e, i, m), 8 d (b, f, j, n), 15 d (c, g, k, o) and 22 d (d, h, l, p) lead time. Grid points with Q95 ≤ 5 mm d−1 are
displayed in white.

be penalized. In other words, even for a very large thresh-
old u, i.e., Y = 1 for very rare occasions (but at least once),
if the forecast is too optimistic and X = 0 for all time steps,
then R(u)(X)= 1 (“naive” classifier; Legrand et al., 2022).
A very pessimistic forecast will be penalized the same way
(“crying-wolf” classifier; see Legrand et al., 2022). The com-
monly used Brier score rather assesses the average behavior,
with a very weak penalty for underrepresented classes. Be-
cause all days are compared, the assessment of rare extreme
events (missed, false alarm or hit) by the Brier score is lost
among the huge number of correctly predicted 0 values.

The function 1−R(u)(X) can be understood as a critical
success index for rare events (Schaefer, 1990; Legrand et al.,
2022), with asymptotic properties proven by Legrand et al.
(2022), such as the link to the extremal index (we refer the
reader to their article for more details).

The risk function R(u)(X) is initially designed for deter-
ministic forecasts. We extend it here to an index for ensem-
ble forecasts by comparing the observed exceedances with
the median member of the forecast exceedances Fmed. There
are 11 members in the ECMWF precipitation hindcast data:
for a given location, a given initialization date and a given

lead time, Fmed
= 1 if at least six ensemble members pre-

dict extreme precipitation, and Fmed
= 0 otherwise. We take

here the median forecast across members, but in practice
Fmed

= 1 could be set to 1 only if fewer or more than six
members forecast extreme precipitation. The choice depends
on the risk aversion of the users and is discussed in Sect. 4.

This adapted index is later on called the binary loss index
(BLIm, m indicating the median of the ensemble members).
It is defined by

BLIm =
Nmed

1

Nmed
2

, (4)

where Nmed
1 is the number of days when the observation and

the ensemble median disagree, i.e., Nmed
1 = #{j | Fmed

j 6=

Yj }, and Nmed
2 is the number of days when an extreme event

occurs in either the observation or the ensemble median or in
both of them, i.e., Nmed

2 = #{j |
(
Fmed
j = 1 or Yj = 1

)
}. In

other words, Nmed
1 is the number of false positives and false

negatives andNmed
2 is the number of true positives, false pos-

itives and false negatives.
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Figure 2. Definition of the last skillful day for BLI: example for one
grid point and one season.

To measure the lead time dependence of the skill, BLI is
computed for each lead time day. Note that if the forecast F
and the observation Y are independent (i.e., the forecast has
no skill) and if P[F = 1] = P[Y = 1] = α, then BLI= 2−2α

2−α
(here, α = 0.05 for daily exceedances in a given season). In
our case, P[F = 1] is not exactly equal to P[Y = 1] because
the index is computed on extended seasons and not on 3-
month seasons.

The climatological value of BLI, referred to as BLIclim, is
used as reference value. We compute confidence intervals for
BLIclim with a bootstrap procedure to determine if the fore-
cast is skillful, i.e., if BLI is significantly lower than BLIclim.
For a given bootstrap step, a random time series is formed by
drawing values in the observation time series. BLI is com-
puted with this random time series as the forecast. For a given
lead time day, a forecast is deemed to be significantly skill-
ful if the BLI of the median member of the forecast (Fmed)
is lower than the 5th percentile of the confidence interval on
BLIclim. Like for the Brier score, we compute the “last skill-
ful day” for BLI, with the same definition (largest lead time
day with skill; see Fig. 2 for an example).

2.3.3 Spatio-temporal extension of the metrics

Requiring an exact match of events in the forecast and the ob-
servations on the same day and at the same grid point is very
strict. Indeed, precipitation is a complex variable to forecast
precisely in space and time. A forecast may contain useful
information, even if the forecast does not predict the event
exactly on the same day or at the same location as in the ob-
servation but in a close neighborhood. Moreover, a temporal
lag or a spatial shift between the observation and the fore-
cast is penalized twice, by (1) a missed event at the observed
time/location of the event and (2) a false alarm at the erro-
neously predicted time/location of the event (double-penalty
issue; see, e.g., Ebert et al., 2013). We therefore also com-
pute skill scores on data aggregated in space and time, which

allows for some flexibility in the exact location or exact tim-
ing of the events. The spatial and the temporal aggregations
are conducted independently to analyze the individual im-
pact of each aggregation. Both the spatial and the temporal
neighborhoods are non-overlapping to consider each extreme
event only once. The spatio-temporal extensions are applied
before computing the median member.

The temporal aggregation consists in counting the number
of extreme events N t in a 7 d window. We then translate it
into a binary series Etn, given a minimum number of events
n in the window (n= {1, . . .,7}):

Etn =

{
1 if N t

≥ n

0 otherwise.
(5)

Figure 3 provides an example for the definition of Etn. To
the various binary series (one for each n value), we apply
the Brier score and BLI to quantify forecast skill. We esti-
mate climatological skill in a way that conserves the tem-
poral structure of the climatology. We randomly select the
beginning of the 7 d time windows in the observation. The
following 6 d is not randomly selected; it is the 6 d actually
following the beginning of time window in the time series of
observations.

The spatial aggregation is performed by counting extreme
precipitation events in neighborhoods. Like for the temporal
aggregation, we define two categories, depending on whether
or not the count of events N s in the spatial neighborhood
exceeds some threshold n (see Fig. 4 for an example):

Esn =

{
1 if N s

≥ n

0 otherwise.

Precipitation includes some spatial structure, i.e., spatial
dependence between points in a neighborhood. When com-
puting the climatology for both scores, the spatial structure
is conserved: for one step of the bootstrap, only the date is
randomly chosen, and the spatial neighborhood is the ob-
served neighborhood for that day. We define the neighbor-
hoods as square boxes of about 150 km× 150 km, i.e., boxes
with a latitudinal extent of 1.5◦ N (three grid boxes) and with
a longitudinal grid extent that depends on the latitude: from
1.5◦ E at 30◦ N (three grid boxes) to 4.5◦ E at 70◦ N (nine
grid boxes); see Fig. D1 in the Appendix for an illustration.

3 Results

3.1 Daily and local comparison

We begin by discussing the forecast skill at the daily and
grid-point scale. BLI indicates more skill during the extended
winter (skill for up to 11 d and many regions with a last skill-
ful day greater than 7 d) than during the extended summer
(last skillful day below 6 d for most grid points); see Fig. 5.

https://doi.org/10.5194/nhess-23-2857-2023 Nat. Hazards Earth Syst. Sci., 23, 2857–2871, 2023
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Figure 3. Illustration of the weekly aggregation of extremes at one grid point. During week 1, the forecast predicts one extreme and one
extreme is observed. For both the forecast and the observation, the number of extreme events in the 7 d window is greater than or equal to 1:
Et1 = 1 for the two datasets. For both datasets, the number of events in the 7 d window is lower than n for n≥ 2: Etn = 0 for the two datasets.
During week 2, one extreme is observed but the forecast predicts two events. For both datasets, the number of extreme events in the 7 d
window is greater than or equal to 1: Et1 = 1 for the two datasets. For the observation, the number of events in the 7 d window is lower than 2
(Et2 = 0), and this number is greater than or equal to 2 for the forecast (Et2 = 1). For the configuration with n≥ 3, Etn = 0 for both datasets.

Figure 4. Illustration of the spatial aggregation of extremes in one neighborhood. The forecast indicates two extremes in the spatial neigh-
borhood, and three events are observed. For both datasets, the number of extreme events in the neighborhood is greater than or equal to 1
(Es1 = 1) and greater than or equal to 2 (Es2 = 1). For three events or more, Es3 = 0 for the forecast and Es3 = 1 for the observation. For four
events or more, Esn = 0 for both datasets.

Regions with high skill are Norway, the Alps and the west-
ern half of the Iberian Peninsula in the extended winter and
the Bay of Biscay, the south of France, Norway, central Eu-
rope and the south of the Alps in the extended summer. The
BLI skill score is less conservative than the Brier skill score;
however the spatial patterns are similar for the two metrics
(Fig. B1 in the Appendix). That is, the last skillful day for
the Brier skill score is overall smaller than the last skillful
day for BLI, but both the Brier score and BLI show the same
regions with high and low skill of the forecast for precipita-
tion extremes, in summer and winter.

3.2 Temporal aggregation

The 7 d extreme-precipitation-event counts are also better
predicted during the extended winter than during the ex-
tended summer (Fig. 6). For the category “one event or more
occurred during the 7 d”, the forecasts at most grid points still
have skill for lead times into the second week, i.e., days 8–
14, in extended winter. BLI decreases as the number of events
per week increases; however, the spatial patterns remain the
same. The regions where temporal clustering is more skill-
fully forecasted are the Iberian Peninsula, Norway and the
northern Mediterranean coastline (especially in winter). The
Brier score confirms these results, with similar patterns (see
Fig. C1 in the Appendix).

3.3 Spatial aggregation

Extended winter forecasts for spatially aggregated extremes
are also more skillful than summer ones (see Fig. 7). The
last skillful day is greater when spatially aggregating that for
the local analysis, but the two configurations have a simi-
lar spatial pattern. In extended winter, for one event or more
in the neighborhood, the last skillful lead time reaches up
to 11 d in many regions: the western Iberian Peninsula, the
Norway coast and the west-facing coasts in general. In ex-
tended summer, the last skillful lead time is between 8 and
11 d on the Atlantic coast of France, Italy, western Europe
and the coasts of the Iberian Peninsula. The spatial skill pat-
tern remains similar with an increasing number of events per
neighborhood, but the skill decreases.

Nat. Hazards Earth Syst. Sci., 23, 2857–2871, 2023 https://doi.org/10.5194/nhess-23-2857-2023
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Figure 5. Last skillful day for BLI for a local and daily comparison, in extended summer (a) and extended winter (b).

Figure 6. Last week of skill for BLI in extended summer (a–c) and extended winter (d–e) for a minimum of one (a, d), two (b, e) and
three (c, f) events in a 7 d window. A last skillful week equal to 0 means that, for the count of extremes during the first-week lead time, BLI
of the forecast is not significantly lower than BLIclim.

Figure D2 in Appendix shows maps of the last lead time
day with a positive Brier skill score, for different numbers
of events aggregated spatially, in extended summer and ex-
tended winter. The regions with higher skill are the same for
the Brier score and for BLI. The spatial pattern of the skill
also remains similar with an increasing number of events per
neighborhood.

4 Discussion and conclusion

In this paper, we assess forecast skill of extreme precipi-
tation occurrence over Europe in the ECMWF S2S model.
Extremes are defined as exceedances over the seasonal 95th
percentile. We conduct a verification against ERA5 precipi-

tation with the binary loss index (BLI) and the Brier score.
We extend the binary loss score studied by Legrand et al.
(2022), which was designed for deterministic forecasts only,
to ensemble forecasts. We define BLI as the binary loss score
calculated for the ensemble median member of binary ex-
ceedances. The choice of the median member was motivated
by a trade-off between false alarms and missed events. The
skill will be different when one chooses a lower percentile
of the ensemble members to compute BLI (risk-averse set-
ting) or when one chooses a high percentile of the ensemble
members (risk-loving). BLI has the advantage of focusing
exclusively on extreme-event occurrence (hit, false alarm or
miss) and is not biased by the high counts of extreme-event
non-occurrence. BLI is qualitatively compared with the Brier

https://doi.org/10.5194/nhess-23-2857-2023 Nat. Hazards Earth Syst. Sci., 23, 2857–2871, 2023
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Figure 7. Last day of skill for BLI in extended summer (a–c) and extended winter (d–f) for a minimum of one (a, d), two (b, e) and three (c,
f) events in neighborhoods of 150 km× 150 km.

score; the skill scores of the two metrics agree very well over
Europe. Despite the great importance of accurately forecast-
ing rare extremes, the Brier score does not give a special
weight to underrepresented classes. Therefore, by design,
BLI should be preferred to the Brier score when assessing
the forecast skill for very rare events. With further research, a
probability score for ensemble forecasts could be developed
from BLI.

The S2S forecasts have overall higher skill in predict-
ing extreme precipitation events in winter than in summer.
A likely explanation resides in the fact that precipitation
over Europe mainly results from large-scale processes dur-
ing winter but from small-scale convective events in sum-
mer. Predicting small-scale events is indeed more challeng-
ing than predicting large-scale ones (Haylock and Goodess,
2004; Kenyon and Hegerl, 2010). This result is in agreement
with the existing literature on S2S prediction in other regions
(Tian et al., 2017; Kolachian and Saghafian, 2019). Norway,
Portugal and the south of the Alps are regions with the most
skill. The orography seems to be a source of skill (like in
Norway, the Pyrenees and the south of the Alps): the fore-
cast seems to better capture precipitation events where the
complex topography acts as a forcing for precipitation. The
Mediterranean region exhibits relatively good skill in win-
ter. Similarly, coastal regions in general have a higher skill
compared to continental regions. A potential explanation for
this difference is that the water transported from the ocean
first rains next to the coast; it is more challenging to predict
where the remaining water in the atmosphere will rain down
on continental regions because land–atmosphere interactions
introduce uncertainty. A follow-up study could further inves-

tigate these hypotheses on the physical reasons behind the
spatial and seasonal heterogeneity of the skill.

Allowing for temporal or spatial flexibility in the evalu-
ation of the forecast extremes confirms the skill patterns,
bringing robustness to the analysis. The skill for the spa-
tially aggregated precipitation is slightly larger than for the
local analysis, as it is easier for the forecast to have an event
that matches with observation on a larger grid. The spatial
aggregation conducted here could be adapted for an impact-
oriented analysis, by aggregating, e.g., over catchments to
evaluate the predictability of heavy precipitation that can
potentially result in floods or by analyzing multi-day heat
waves.

We additionally investigated the effect of European
weather regimes on the forecast skill (as defined in Grams
et al., 2017), as the forecast skill of the weather regimes
themselves can largely differ (Büeler et al., 2021). We com-
puted the forecast skill independently for positive phases and
negative phases of the North Atlantic Oscillation (NAO). The
forecast skill does not exhibit a strong dependence on the
NAO phase, although the data were also spatially aggregated
to increase robustness (not shown). This absence of signal
should be confirmed with a deeper analysis, by considering
some time lag or seasonality for the influence of the telecon-
nection patterns (Tabari and Willems, 2018) or by aggregat-
ing over larger spatio-temporal neighborhoods, to increase
the robustness. Other teleconnection patterns could be inves-
tigated, such as Scandinavian and eastern Atlantic patterns,
El Niño–Southern Oscillation, the Atlantic Multidecadal Os-
cillation (Casanueva et al., 2014), or the state of the strato-
sphere (Domeisen et al., 2019).
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An assessment focused on the precipitation intensity could
extend the verification; the precipitation forecast data would
then require calibration (Gneiting et al., 2007; Specq and
Batté, 2020; Crochemore et al., 2016; Monhart et al., 2018;
Huang et al., 2022). An extension of the CRPS would be an
option to measure the intensity forecast skill with a focus on
heavy precipitation, like the threshold-weighted CRPS (see,
e.g., Pantillon et al., 2018; Allen et al., 2021) or using ex-
treme value theory (Taillardat et al., 2022). Post-processing
the hindcast data and analyzing the paradigm of “maximizing
the sharpness of the predictive distributions subject to cali-
bration” could also be an extension of this work (Gneiting
et al., 2007); the usual evaluation metrics – the probability
integral transform histogram, marginal calibration plots, the
sharpness diagram – could be applied with a focus on ex-
tremes.

Note that for practical applications, one needs caution to
interpret the skill in an absolute way for two reasons: (i) a
skillful forecast does not mean that the forecast is also a use-
ful forecast for practical applications and (ii) the absolute
last skillful day depends on the choice of the member for
the daily predictor (here, the median member). (i) If BLI is
equal to 0.8 but is outside of the climatological confidence
interval, the forecast is better than the climatology and there-
fore skillful. However, it also means that only 25 % of the ex-
tremes are caught by the forecast (by simple transformation
of BLI= FN+FP

TP+FN+FP = 0.8, where FN denotes the false neg-
atives, FP the false positives and TP the true positives). For
75 % of the time, the forecast either erroneously predicted an
extreme (false alarm, FP) or did not predict an extreme that
occurred (miss, FN). The definition of the last skillful day
can be adapted depending on the usage of the forecast. The
definition can be more conservative, e.g., using the last lead
time day for which at least 75 % of the extreme events are
caught (rather than a comparison to the climatology) or using
a smaller percentile of the members rather than the median
member. (ii) The last skillful day is larger when choosing
the maximum member as the daily predictor (i.e., Fmed

= 1
if at least 1 ensemble member predicts extreme precipita-
tion, and Fmed

= 0 otherwise). This is due to the number of
TPs not collapsing to zero with increasing lead times: the
condition “at least one member predicts daily precipitation
is greater than the 95th percentile” is very easily satisfied.
By “chance”, the maximum member predicts many TPs, still
compensating a bit for the FPs for large lead times. For the
choice of the member, we recommend considering a good
balance between FNs and FPs. However, it is important to
note that the spatial pattern of skill does not depend on the
choice of the member. The regions with a relatively large
skill (e.g., Norway, Portugal, west coasts in winter) remain
the same, independently of the choice of predictor (mini-
mum, median or maximum member). Following these two
remarks, we emphasize that our aim here was to provide a
robust qualitative assessment by identifying regions of skill

and challenging regions for the forecast model to predict pre-
cipitation extremes on the S2S timescale.

Checking if a value of BLI is significant is a kind of hy-
pothesis test that is repeated for a large number of grid points.
One could argue that some regional significance should be in-
vestigated. However, when displaying the local significance
as “largest lead time day with skillful forecast”, the results
are continuous rather than a strict “yes or no” response.
Moreover, the spatial coherence of the results confirms the
robustness of the method.

Our method to assess extremes can also be applied to other
variables, such as consecutive days of high temperature, river
discharge, etc. Considering the other end of extremes, evalu-
ating the skill of forecasts to predict droughts is also of cru-
cial importance. For droughts, the persistence of dry peri-
ods matters, rather than the occurrence of precipitation. The
method could be adapted accordingly, e.g., by adjusting the
definition of temporal aggregation introduced in this study.
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Appendix A: The 95th percentile

Figure A1. The 95th percentile of daily precipitation in ERA5, 2001–2021.

Appendix B: Local and daily comparison of extremes

Figure B1. Last skillful day for the Brier skill score for local and daily comparison, in extended summer (a) and extended winter (b).
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Appendix C: Temporally accumulated extremes

Figure C1. Last week of skill for the Brier skill score in extended summer (a–c) and extended winter (d–f) for a minimum of one (a, d), two
(b, e) and three (c, f) events in a 7 d window.

Appendix D: Spatially accumulated extremes

Figure D1. Illustration of the width of the spatial neighborhood, in terms of grid points, depending on the latitude for a constant width in
kilometers (and for a constant area).
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Brier score with spatial aggregation

Figure D2. Last day of skill for the Brier skill score in extended summer (a–c) and extended winter (d–f) for a minimum of one (a, d), two
(b, e) and three (c, f) events in neighborhoods of 150 km× 150 km.

Code and data availability. The codes used for the data
analysis are available on GitHub (https://github.com/
PauRiv/S2S_verif_precip, last access: 21 August 2023;
https://doi.org/10.5281/zenodo.8260765, Rivoire, 2023).

The ECMWF’s S2S hindcast data are available on the
ECMWF platform (https://apps.ecmwf.int/datasets/data/
s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/,
cycle 47r2; ECMWF, 2023).
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