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Profiling the heterogeneity of colorectal cancer consensus
molecular subtypes using spatial transcriptomics
Alberto Valdeolivas 1✉, Bettina Amberg 1,2, Nicolas Giroud1, Marion Richardson1, Eric J. C. Gálvez1, Solveig Badillo1,
Alice Julien-Laferrière1, Demeter Túrós2, Lena Voith von Voithenberg3, Isabelle Wells1, Benedek Pesti 1, Amy A. Lo4,
Emilio Yángüez 3, Meghna Das Thakur4, Michael Bscheider1, Marc Sultan1, Nadine Kumpesa1, Björn Jacobsen1, Tobias Bergauer1,
Julio Saez-Rodriguez 5, Sven Rottenberg 2,6, Petra C. Schwalie1 and Kerstin Hahn 1✉

The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification
and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral
heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of
CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the
spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and
their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes
tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or
the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and
thereby help advance personalized therapy.
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INTRODUCTION
CRC is a leading cause of cancer-related death worldwide with
over 1.85 million diagnosed cases and 850000 deaths annually1.
Despite a decline in mortality rates due to personalized treatments
in recent years2, the extensive inter-patient and intra-tumor
heterogeneity of CRC still pose substantial treatment challenges3.
This heterogeneity manifests at genomic, epigenomic and
transcriptomic levels, and in the composition of the tumor
microenvironment (TME)4.
In 2015, the CRC subtyping consortium proposed a classification

of CRC into four CMS, derived from large-scale gene expression
datasets5. Despite its widespread use, its clinical impact is still
limited due to its reliance on bulk-sequencing, which cannot
accurately categorize mixed or transitional CMS phenotypes, nor
precisely define the cellular composition and microenvironment of
tumors. Recently, scRNA-seq was applied to CRC samples,
revealing CMS features at the cellular level and the coexistence
of multiple CMS in individual patients6–10. However, the spatial
distribution of the different CMS and their interactions with their
respective TMEs remain poorly understood.
ST technologies can address these limitations by measuring

gene expression levels throughout tissue space, integrating
morphology, spatial localization and transcriptomic profile. In
oncology, ST has been employed to study breast cancer11,
prostate cancer12 and melanoma13, among others. To date, its
application to CRC has been mostly to support results obtained
from other technologies, without specifically addressing the CMS
of CRC14–17.
Here, we applied ST to analyze 14 samples from seven CRC

patients, aiming to deepen our understanding of the spatial
properties and heterogeneity of CMS. By mapping cell type

composition spatially, linking distinct molecular and morphologi-
cal features to different CMS, and investigating predicted
intercellular interactions in CMS2 carcinomas, we highlighted the
capacity of ST to support the future development of personalized
treatment strategies for CRC.

RESULTS
ST and deconvolution reliably reveal the spatial cell type
distribution in CRC
We used 10x Genomics VISIUM to process fresh-frozen resection
samples from CRC tumors of seven individuals, obtained from
different anatomical locations, and exhibiting varying metastatic
status, growth patterns, and immune cell (IC) infiltration levels
(Fig. 1a, Table 1). We considered two serial sections per patient to
generate technical replicates, resulting in a total of 20,733 Visium
spots, each of which contained an average of 3,738 unique genes
(Supplementary Fig. S1a). Technical reproducibility among the
replicates, along with inter-patient heterogeneity, were revealed
via the UMAP projection of the transcriptomic profiles of the
aforementioned spots (Fig. 1b). A pathologist independently
examined the samples and assigned each spot to its correspond-
ing anatomical compartment based on tissue type and cellular
morphology (Fig. 1c, Methods).
To determine the cellular composition per spot, we used

Cell2Location18 and a recently published CRC scRNA-seq dataset6

as reference (Supplementary Table S1, Methods). We found highly
comparable proportions between replicates when considering
major cell types (Fig. 1d). In contrast, proportions varied greatly
across individuals: for instance, unlike all other patients, S7_Rec/
Sig samples mainly contained non-neoplastic tissue (Table 1), and
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tumor cells only comprised around 5%. Upon assessing the
deconvolution results by computing the spatial correlation of cell
subtype abundance among technical replicates, we found high
stability with Pearson’s correlation coefficients over 0.9, except for
a low-quality sample (Supplementary Fig. S1b, Methods).

We next evaluated whether the deconvolution-predicted cell
type abundances were located in their respective anatomical
compartments using the pathologist’s annotations as reference
(Supplementary Fig. S1c). As expected, non-neoplastic intestinal
cells were the most abundant in non-neoplastic epithelium (89%),
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while T and B cells were the prevalent types in the immune cell
aggregates (83% and 68%). In tumor-annotated spots, tumor cells
(36%), T cells (26%), and B cells (25%) were the predominant types.
At the cell subtype level, we observed significant enrichment of
non-neoplastic mucosal cells, such as mature enterocytes type 1
and 2, goblet cells and stem-like transiently amplifying cells in
spots labeled as non-neoplastic epithelium, lamina propria or
mixed (Fig. 1e, Methods). Tumor cells, CD19+CD20+ B cells and
CD8+ T cells were mainly enriched in spots classified as tumor or
tumor-stroma mixed. CD4+ T-cells and other immune cells were
mostly found in IC aggregates and stromal regions with high IC
content. The agreement between the pathologist’s annotations
and deconvolution results was also evident when visualizing the
individual samples in more detail (Fig. 1f–h, Supplementary Figs.
S2 and S3).
In summary, the estimated cell type abundances were

consistent across technical replicates, and their spatial distribution
aligned with the pathologist’s assessment for all samples.

Spatially resolved consensus molecular subtyping of CRC
We further utilized the deconvolution results and pathologist’s
annotations to spatially characterize the TME and CMS (Supple-
mentary Figs. S4 and S5). CMS2 tumor cell proportions were
predominant in patient samples S2_Col_R (94%), S4_Col_Sig
(98%), S5_Rec (81%), and S6_Rec (90%) (Fig. 2a). A mixed
abundance of CMS1 and CMS2 tumor cells was identified in
patients S1_Cec (49% and 41%) and S3_Col_R (65% and 29%).
Additionally, CMS3 tumor cells were detected in the S1_Cec (10%)
and S5_Rec (16%) patients. In the non-neoplastic S7_Rec/Sig

sample, the few spots exhibiting a tumor cell signature were
mainly classified as CMS3 (60%). The prevalence of CMS4 was low
and showed a multifocal distribution that overlapped with
anatomical regions presenting an invasive phenotype. To
characterize the TME composition, we next computed immune
and stromal cell proportions (Fig. 2b–e). Mixed CMS1-CMS2
tumors exhibited higher T and B cell proportions, particularly
CD8+ T and CD19+CD20+ B cells, consistent with the immune-rich
phenotype associated with CMS15. Myofibroblasts were the
dominant stromal cell type in mixed CMS1-CMS2 tumors, while
the stromal cell types in CMS2 neoplasms were more hetero-
geneous. This is consistent with previous scRNA-seq studies
reporting myofibroblast prevalence in CMS1 tumors6,7.
We next associated these results with histological and

morphological features by computing cell subtype enrichment
in the pathologist-defined tissue compartments (Fig. 2f, Methods).
CMS1 and CMS2 signatures were associated with tumor-
annotated spots, while CMS3 signatures were confined to non-
neoplastic mucosa. In CMS2-dominant tumors, immune cells were
mostly found in the stroma, whereas in mixed CMS1-CMS2
tumors, CD19+CD20+ B and CD8+ T cells were also present in the
neoplastic tissue. Irrespective of the CMS phenotype, SPP1+
macrophages and myofibroblasts were enriched in stromal fibrotic
regions, echoing recent findings showing that proportions of
these populations influence prognosis beyond CMS classification7.
We also connected our deconvolution-based CMS classification

with the recently introduced IMF classification, which integrates
intrinsic epithelial subtypes, microsatellite instability status, and
fibrosis8. The predicted CMS2 abundance correlated significantly

Fig. 1 Study outline and deconvolution results matching histopathological annotations with high correlation between replicates. a Study
outline displaying the anatomical localization of our set of CRC samples, their spatial transcriptomics processing and the deconvolution-based
approach to characterize spatial features of CMS. Figures created with BioRender.com. b UMAP embedding of the gene expression
measurements per spot split by technical replicates. Colors represent the different patients. c UMAP embedding of the gene expression
measurements per spot colored by pathologist’s annotations. In addition, a bar plot displays the proportions of these annotations per sample.
IC: immune cells. d Proportions of major cell classes per sample as estimated by the results of the deconvolution approach. The right hand
side of the plot displays the number of analyzed spots per sample. e Enrichment/depletion plot describing the association between cell type
abundance as predicted by the deconvolution (x-axis) and the different anatomical regions as annotated by the pathologist (y-axis). The dot
size represents the enrichment score (Methods), while the color represents enrichment (red) or depletion (blue). IC immune cells. f–h Spatial
mapping of the predicted number of mature enterocytes type I, stem-like transient amplifiers (TA) and CD4+ T cells per spot matching the
pathologists’ tissue annotation and expected cell type localization as illustrated for sample S6_Rec_Rep2.

Table 1. Selected clinical information for the samples included in this study.

Sample number Localization Diagnosis Pre-
treatment

Lymph node/
liver metastasis

Mutation Growth pattern and Immune
cells

S1_Cec A551763 Cecum Adenocarcinoma, mucinous,
moderately differentiated

No Yes/yes BRAF
V600E

Mucinous, IC low

S2_Col_R A595688 Colon
(right)

Adenocarcinoma, moderately
differentiated

No Yes/yes No KRAS
mutations

Tubular to cribriform, IC low

S3_Col_R A416371 Colon
(right)

Adenocarcinoma, areas with
moderate and poor differentiation

No Yes/no – 2 tumor types: I) tubular, IC low;
II) extended solid, IC high

S4_Col_Sig A120838 Colon
(Sigma)

Adenocarcinoma, moderately
differentiated

No Yes/no No KRAS
mutations

Tubular to cribriform, IC low

S5_Rec A121573 Rectum Adenocarcinoma, moderately
differentiateda

No Yes/yes – Tubular to cribriform, IC low

S6_Rec A938797 Rectum Adenocarcinoma, moderately
differentiateda

No No/no – Tubular, IC medium

S7_Rec/Sig A798015a Sigma/
Rectum

non-neoplastic tissue na na – na

na not applicable, – mutation profile was not assessed, IC Immune cell content.
aSample contains non neoplastic tissue.
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with the intrinsic epithelial subtype CMS2 (iCMS2) signature score
(Fig. 2g, h, Supplementary Fig. S6). CMS2 - iCMS2 correspondence
was additionally supported by mutational profiles (Table 1),
anatomical location (Table 1), microsatellite instability status

(Supplementary Fig. S7), and tubular adenoma and crypt bottom
marker associations (Supplementary Fig. S8). Further, CMS3 signals
were associated with key molecular features of iCMS3, including
gastric metaplasia (Fig. 2i, j, Supplementary Fig. S9), upper crypt
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signals, and sessile serrated lesion markers (Supplementary Fig.
S10).
Interestingly, we demonstrated that ST can spatially resolve

known CMS-associated molecular features (Fig. 2k, l, Methods),
such as the correlation between CMS1 tumor cell abundance and
activity of the immune-related pathways JAK-STAT19 (Fig. 2m, n),
TNFα20 and NFkB. Additionally, activation of the MAPK pathway
(Fig. 2o), which is characteristic of the hypermutated CMS121, was
observed. For CMS2 tumor cells, we identified their known
association with the activation of the WNT and VEGF pathways22

(Fig. 2p–r) and higher expression of MYC- and E2F4-regulated
genes5 (Fig. 2s, t).
Hence, our deconvolution-based approach spatially mapped

the different CMS and TME cell types to their expected tissue
compartments and associated them with key molecular and
histological features.

ST reveals inter-patient and intra-patient heterogeneity of
CRC tumors
To assess and further characterize the inter-patient heterogeneity
among CMS2 tumors7,23, we extracted tumor-annotated spots
from the CMS2-dominant carcinomas: S2_Col_R, S4_Col_Sig,
S5_Rec, and S6_Rec (Supplementary Fig. S11). Although CMS2
cells dominated these spots with abundances ranging from 65%
to 84% (Supplementary Fig. S12a, b), differential gene expression,
pathway, and TF activity analyses (Fig. 3a–d, Supplementary Table
S2) unveiled significant inter-patient differences. For instance, we
found overrepresented mTORC1 signaling genes in tumors from
the S4_Col_Sig and S5_Rec patients, but differentially expressed
genes within this pathway suggested alternative signaling
cascades (Supplementary Table S3). Notably, NUPR1, a promoter
of metastasis through activation of the PTEN/AKT/mTOR path-
way24, was highly expressed only in CMS2 tumor cells from the
S4_Col_Sig patient (Fig. 3b). Tumor spots from the S2_Col_R and
S4_Col_Sig patients showed lower EGFR signaling (Fig. 3c,
Supplementary Fig. S12c), while FOXM1 displayed higher tran-
scriptional activity in patient S6_Rec (Fig. 3d, Supplementary Fig.
S12d).
Inter-patient transcriptomic differences in CMS2 tumors can

arise from inherent heterogeneity, anatomical origin and the
composition and architecture of the TME. The latter can be
uniquely assessed using ST. By selecting the spots surrounding
CMS2 tumors, we assessed differential pathway activity among
patients (Fig. 3e, f, Methods). The S5_REC patient exhibited a
depletion of myofibroblasts (Supplementary Fig. S12e), potentially
explaining its lower TGFβ pathway activity25. In S4_Col_Sig, the
higher proportion of SPP1+ macrophages (Supplementary Fig.
S12g), may contribute to an immunosuppressive TME26, in line
with its lower activities in immune response-associated pathways
such as NFκB and TNFα. The proportions and spatial distributions

of these specific cell types are crucial as they drive clinical
outcomes, with higher proportions linked to poorer prognosis7.
The assessment of the CMS1/CMS2 mixed sample S3_Col_R

highlights the power of ST to characterize the CMS heterogeneity
within a patient’s tumor and its associated morphologic features.
CMS1-dominated regions displayed a solid growth pattern and
immune-rich profile, whereas CMS2-dominated regions were
associated with a tubular growth pattern and were immune-
deprived (Fig. 3g–j, Supplementary Fig. S4d), in accordance with
previous studies on these molecular subtypes27.
We subsequently addressed the intra-tumor heterogeneity in

tumors displaying a pronounced CMS2 phenotype. To illustrate
this, we categorized tumor-annotated spots from the S2_Col_R_-
Rep1 sample into peripheral, intermediate, and central tumor
areas (Methods). As expected, genes involved in epithelial-
mesenchymal transition (EMT) and angiogenesis, such as SPARC28,
were significantly upregulated in the tumor boundary (Supple-
mentary Fig. S13a, c, Supplementary Table S3, Methods). In
contrast, the central tumor area showed an increased activity in
hypoxic response and cholesterol homeostasis pathways, puta-
tively driven by the upregulation of genes like SCD (Supplemen-
tary Fig. S13b, d, Supplementary Table S3). SCD upregulation was
previously associated with the metabolic reprogramming neces-
sary to promote metastasis of CRC cancer cells29. We finally sub-
clustered the tumor-annotated spots extracted from S5_Rec_Rep1
(Fig. 3k, Methods) and identified regions with differentially
expressed genes, biological processes, and pathway activities
(Supplementary Figs. S14 and S15, Supplementary Table S4).
Notably, CMS2-associated WNT and VEGF pathways displayed a
more consistent distribution of their activities across tumor
regions as compared to the activity of EGFR and MAPK pathways.
Similarly, subcluster 1 demonstrated increased TGFβ pathway
activity, suggesting tumor regions with higher proliferation and
metastatic potential30 (Fig. 3l).
Together, our results demonstrate how ST unveils inter- and

intra-tumor heterogeneity, TME architecture and spatial patterns
of key molecular processes in CRC.

ST charts cell-to-cell communication processes involved in
CMS2 tumor progression
The power of ST is that it reveals the cellular organization of the
tissue at the molecular level, and thereby allows the study of cell
communication events. We therefore explored these processes at
the tumor-stroma interface and investigated their potential
involvement in the tumor progression of the CMS2 subtype.
To study conserved biological processes across our CMS2 tumor

samples (S2_Col_R; S4_Col_Sig; S5_Rec; S6_Rec), we merged and
clustered their spots based on TF activity profiles (Fig. 4a–c,
Supplementary Fig. S16, Methods). This approach revealed higher
similarity as compared to gene expression-based clustering, and
was hence used for our downstream analysis. Cluster 0, hereafter

Fig. 2 Consensus molecular subtyping of our set of CRC samples, characterization of their TME and spatially resolved mapping of their
histological and molecular features. a–e Cell type proportions per sample as estimated by the results of the deconvolution. The number of
spots containing an abundance of at least 20% of the specified cell types is also displayed. NK natural killers, Mac Macrophages, cDCs
conventional dendritic cells. f Enrichment/depletion assessment of selected cell types (x-axis) in CMS2 and mixed CMS1-CMS2 tumors in the
different tissue compartments defined by the pathologist’s spot classification (y-axis). IC immune cells. g–j Spatial mapping of the predicted
abundance of CMS2 and CMS3 tumor cells and the module scores of the iCMS2-upregulated and the gastric metaplasia signatures overlaid
with the pathologist’s tissue annotation in the S5_Rec_Rep1 sample. k Per spot Pearson’s cross-correlation across all the samples between TF
activities and CMS cell abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value per CMS are shown. l Per
spot Pearson’s cross-correlation across all the samples between pathway activities and CMS cell abundances. m–o Spatial mapping of the
predicted abundance of the CMS1 cells, the JAK-STAT pathway activity and the MAPK pathway activity overlaid with the pathologist’s tissue
annotation in the S3_Col_R sample. p–r Spatial mapping of the predicted abundance of the CMS2 cells, the WNT pathway activity and the
VEGF pathway activity overlaid with the pathologist’s tissue annotation in the S2_Col_R_Rep1 sample. s, t Spatial mapping of the predicted
transcriptional activity of the MYC and E2F4 TFs overlaid with the pathologist’s tissue annotation in the S5_Rec_Rep1 sample. Note the
colocalization with CMS2 tumor cell abundance (Fig. 2g).
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referred to as the tumor cluster, contained mainly spots annotated
as tumor (49%) and tumor&stroma_IC med to high (26%) across
replicates and patients (Fig. 4d, Supplementary FIg. S17a). Cluster
1, hereafter referred to as the TME cluster, predominantly included
stromal annotated spots (63% as stroma_fibroblastic_IC med to
high and 20% as tumor&stroma_IC med to high), neighboring the
tumor in every sample (Fig. 4d, Supplementary Fig. S17a). As
expected, MYC and E2F4 were highly activated TFs in the tumor
cluster, while TFs such as JUN and ETS1, were identified in the TME
cluster (Fig. 4b, c, Supplementary Fig. S17b).
We then estimated the potential influence of ligands highly

expressed in the tumor and TME compartments on the transcrip-
tional activity of stroma-enriched TFs using Misty31 (Fig. 4e,
Methods). We connected the most consistent ligand-TF associations
to putative upstream signaling by predicting inter-cellular ligand-
receptor interactions at the tumor-stroma interface and their known
signaling pathways (Fig. 4f, g). To validate the ST-derived signaling
events and to identify the involved cell types, we additionally
estimated TF activity and ligand-receptor interactions in CMS2
patients from the Lee et al.’s scRNA-seq dataset6 (Fig. 5a–d,
Supplementary Fig. S18a, Methods).
Our results suggested that decorin (DCN), a proteoglycan

secreted by stromal cells, triggers a protective pathway inhibiting
tumor progression in the CMS2 subtype. DCN interacts with
receptors like EGFR, IGF1R and MET, promoting their degradation
and impairing downstream signaling, as described in previous
studies32. The DCN-EGFR-SRC-STK11, DCN-EGFR-PRKDC-HMGB1-
HOXD9 and DCN-MET-STAT3 signaling axis may modulate the
transcriptional activity of ETV4, MEIS1 and SPI1 respectively, as
supported by our findings in the ST and scRNA-seq data (Figs.
4e–g, 5a–f, Supplementary Fig. S18b–d). Increased activity of these
TFs is associated with greater tumor invasiveness33–35. The spatial
mapping of ETV4 transcriptional activity revealed overall low levels
within the tumor, excepting for a region exhibiting invasive
morphological traits and higher macrophage infiltration (Fig. 5e, f,
Supplementary Figs. S2b and S18f). Our findings capture DCN’s
effects on these macrophages through its interaction with the
TLR2 and TLR4 receptors (Figs. 4f, 5b, Supplementary Fig. S18e). In
summary, our results highlight DCN’s pivotal role in tumor
suppression, particularly in CMS2 regions with elevated invasive-
ness potential (Fig. 5g).
Moreover, our data indicated that the CMS2-associated RNF43, a

transmembrane protein, might influence several TFs within the
TME, including JUN and TEAD4 (Figs. 4e, 5h, i, Supplementary Fig.
S19a, b). Notably, these TFs are involved in tumor progression and
associated with WNT signaling36,37. We predicted an RNF43-FZD2
interaction targeting stromal cell populations (Figs. 4f, 5c,
Supplementary S19c, d), and signaling cascades connecting these
elements, such as the FZD2-DVL3 and the YAP-TEAD4 interactions
(Fig. 4g). In summary, elevated RNF43 expression increases WNT
receptor degradation, affecting downstream transcriptional activ-
ity, and potentially indicating anatomical regions with lower
metastatic activity (Fig. 5j).
In addition, we identified other ligand-TF pairs potentially

modulating CMS2 tumor progression. For instance, the THBS2-
CD36 interaction, known to inhibit angiogenic processes38, may
modulate STAT1 activity (Fig. 4e, f, Supplementary Fig. S19e–h).
The expression of MMP1, a matrix metalloproteinase involved in
cancer progression through degradation of the extracellular
matrix39, was predicted to have an effect on the activity of the
FOS TF (Fig. 4e, Supplementary Fig. S18g, h). The PLAU-PLAUR
interaction was identified between myofibroblasts and macro-
phages or conventional dendritic cells (Figs. 4f, 5b, Supplementary
Fig. S18i–k), consistent with prior studies in prostate cancer,
associating this interaction with macrophage infiltration and
tumor progression40. Moreover, we found that chemokine CXCL14
could influence MAF transcriptional activity (Fig. 4e), which was
shown to regulate the immunosuppressive function of tumor-

associated macrophages41. Interestingly, a CXCL14-based peptide
has previously been suggested as a potential cancer treatment42.
In conclusion, our results generate mechanistic hypotheses on

how highly expressed ligands in CMS2 tumors and their TME may
trigger signaling cascades modulating TFs involved in cancer
progression.

Deconvolution-based subtyping, heterogeneity and cell
communication events confirmed in independent CRC cohort
To corroborate our findings, we analyzed an independent ST
dataset14, comprising four primary CRC tumors exhibiting
morphological features indicative of CMS2, along with their
corresponding liver metastases. The samples were obtained from
two untreated (Unt) and two neoadjuvant chemotherapy-treated
patients (Tre).
We first applied our deconvolution-based approach to profile this

dataset (Fig. 6a). Major cell type proportions revealed a reduced
tumor content of approximately 4% in ST-colon2_Unt, ST-colon3_-
Tre, and ST-liver3_Tre samples, in accordance with their histology. All
samples, including the liver metastases, predominantly exhibited a
CMS2 phenotype, with over 80% of tumor cells mapped to this
subtype (Fig. 6b, c, Supplementary Fig. S20). In agreement with our
previous results, CMS3 signatures were restricted to the non-
neoplastic mucosa and CMS4 signals were minor and multifocally
distributed. The CMS1 presence was almost negligible in these
samples. Notably, substantial CMS2 and iCMS2 signals overlapped
with the liver tumor histology, suggesting a conservation of the CMS
phenotype in metastasis (Fig. 6d, Supplementary Figs. S21–S22). We
further characterized these samples by analyzing the relative
abundance of the different types of T cells, B cells, myeloid cells
and the main stromal cells (Supplementary Fig. S23).
Next, we spatially mapped CRC-associated molecular features

and assessed their correlation with the CMS cell abundance jointly
in primary and hepatic metastatic tumors, focusing on the prevalent
CMS2 subtype (Fig. 6e, f, Methods). As a result, we verified the
activation of WNT and VEGF pathways in CMS2-rich regions and
confirmed the activity of MYC and E2F4 transcription factors in
CMS2 tumors (Fig. 6g, h, Supplementary Fig. S24a, b). Moreover, we
noticed a link between the estimated CMS2 cells and the activity of
the MAPK pathway and NR2C2 TF (Fig. 6i, j). This finding is
consistent with our primary sample set (Fig. 2k, l) and of particular
interest as their role in CMS2 tumors is not clearly defined.
We also used the external dataset to validate selected cell-to-

cell communication processes previously identified, specifically
the ligand-TF regulations. Using primary CRC tumors, we
confirmed the modulation of JUN and TEAD family transcriptional
activity by RNF43 expression, and the potential influence of DCN
on ETV4 activity (Fig. 6k–m, Supplementary Fig. S24c, d). We also
confirmed the potential downstream impact of the CXCL14
chemokine on MAF’s transcriptional activity (Fig. 6k, Supplemen-
tary Fig. S24e, f). Notably, we found that ETV4 and JUN’s
transcriptional activity regulation by DCN and RNF43, respectively,
was preserved in the liver metastatic samples (Fig. 6n, o,
Supplementary Fig. S24g–i). These findings align with a recent
study describing the protective role of DCN in hepatic metastasis
of CRC43 and may provide new insights into the underlying
molecular mechanisms.
Overall, the main findings of our study were indeed validated in

an independent ST CRC dataset.

DISCUSSION
The clinical need for accurate CRC patient stratification led to the
development of several gene expression-based classification
systems, such as the CMS5 or the IMF8. The CMS classification
system is broadly used and has helped to understand the different
molecular mechanisms underlying CRC and disease prognosis44.
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Nevertheless, CMS intra-tumor heterogeneity hampers its clinical
application, underlining the necessity of further characterizing the
cellular composition and architecture of CRC and its
microenvironment.

To complement our understanding of CRC CMS, we combined
ST and scRNA-seq via cell type deconvolution, elucidating
subtype-inherent transcriptomic and morphological features.
This allowed us to map CMS1 and CMS2 tumor cells to
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neoplastic areas exhibiting distinct morphological features. In
contrast, CMS3 signatures were confined to the non-neoplastic
mucosa, which might be related to their normal-like expression
patterns5. The EMT-associated CMS4 signals were minimal and
overlapped with invasive tumor regions, in line with previous
studies referring to CMS4 as a transcriptional state of stromal
cells rather than tumor-like epithelial cells10,45. This reduced
signal made it challenging to observe typical CMS4 molecular
features such as TGFb pathway activation in our integrated
analysis (Figs. 2l and 6e), though such features are evident in
individual samples (Supplementary Fig. S25a). Across various
samples, we observed a co-existence of the different subtypes in
line with recent findings suggesting that CRC is more accurately
represented by a transcriptomic continuum than by discrete
subtypes7. Indeed, the bulk RNA-based classification of our
analyzed samples emphasizes the significant influence of the
surrounding tissue on tumor classification (Supplementary Fig.
S25b, c). The S6_Rec patient samples illustrate this, with small
tumor islands enveloped by large stroma bundles, leading to a
CMS2 classification via deconvolution but a CMS4 assignment by
CMScaller46. This morphology hampers the separation of the
tumor components in bulk RNA-seq data, whereas ST can
provide their detailed assessment. The CMS4 classification of
stroma-rich tumors is in accordance with previous studies
linking CMS4 signatures with marker genes of cancer-
associated fibroblast and other stromal cells47. Similarly, the
external ST-colon4_Tre sample, classified as CMS2 by deconvo-
lution but CMS3 by CMScaller, raises concerns about the impact
of non-neoplastic mucosa, which contains CMS3 signals, on
bulk-based CMS classification systems.
Overall, our results underline the potential of ST in CRC

characterization beyond bulk- or scRNA-seq, enabling the spatial
correlation of morphological tumor, stroma and non-neoplastic
tissue patterns with corresponding transcriptomic features. Never-
theless, limitations inherent to our deconvolution-based approach
should be acknowledged. Firstly, the choice of the scRNA-seq
reference can significantly impact the deconvolution results. We
compared the results yielded by two similarly annotated reference
datasets6 in Supplementary Note 1. The overall results were highly
comparable, but some discrepancies were observed for particular
cell types, e.g. CMS1 tumor cells. Factors such as the differences in
the genetic background between both cohorts could contribute
to these discrepancies. Secondly, and regardless of the used
reference, the deconvolution partially failed to map stromal cells
on their expected anatomical location, especially in the S3_Col_R
sample. This can be attributed to the absence of specific stromal
cell types in the reference or due to a decrease in deconvolution
sensitivity in regions with lower transcripts per spot, as a result
from tissue properties or technical variabilities (Supplementary
Fig. S26). Finally, the current size of 10x VISIUM spots makes
region-specific assignment challenging, as seen in samples from
the S6_Rec patient, where its unique morphology complicates
pure tumor spot annotation. This may cause interpatient tumor
expression differences due to residual stromal cells. It possibly
explains the elevated FOXM1 transcriptional activity and the

mixed CMS2 and stromal-related signatures in cluster 6, unique to
S6_Rec in our TF activity-based clustering (Figs. 3d and 4a–d).
We also explored the ability of ST to scrutinize ligand-receptor

interactions at the tumor-stroma interface, which might trigger
signaling pathways critical for tumor progression. Our results
encompass a range of novel and well-known tumor growth-
inhibiting as well as -activating signatures, such as the potential
regulation of the ETV4 transcriptional activity by DCN or the PLAU-
PLAUR ligand-receptor interaction. While these predictions may
guide the identification of potential therapeutic targets, they require
further investigation as our methodology of spatially modeling TF
activity based on ligand gene expression may not necessarily reflect
direct causal regulations. Along the same line, the ligand-receptor
analysis could also capture indirect gene expression associations. For
instance, we consistently predicted the RNF43-FZD2 interaction
targeting stromal cell populations in both ST and scRNA-seq data.
However, this interaction is mostly reported to occur in the
intracellular domain of RNF43 in tumor cells48, with few studies
reporting a potential extracellular interaction49.
To support our key findings, we used an independent ST CRC

dataset. Interestingly, our deconvolution approach delineated the
primary, but also the metastatic carcinomas, as CMS2. In these
liver tumors, we captured the CMS2 main molecular features and
preserved cell communication events as the modulation of the
transcriptional activity of ETV4 by DCN. This suggested that the
CMS2 phenotype was largely retained after migration of the
primary CRC cells to sites of metastasis.
In conclusion, our study illustrates the value of integrating ST

and scRNA-seq in analyzing CRC and its CMS, providing insights
into spatial cellular organization within tumors and their TME.
Although the small patient cohort limits the scope of our study,
we envision that our proof-of-concept work demonstrates ST’s
potential to inform patient-specific treatment strategies. More
refined patient stratification could be achieved by jointly
considering cell composition, spatial distribution and morpholo-
gical features. In addition, understanding intra-tumor spatial
heterogeneity can unveil anatomically restricted or region-
specific progression-related processes, fueling the development
of novel therapies, such as targeted or combination treatments. As
ST technologies evolve in resolution, affordability, and clinical
validation, we anticipate its application to larger CRC cohorts,
paving the way towards personalized oncology.

METHODS
Collection of CRC samples
Human CRC tissues (<8 months storage) and annotated data were
obtained and experimental procedures were performed within the
framework of the non-profit foundation HTCR (Human Tissue and
Cell Research) Foundation50. This includes written informed
consent from all donors and the approval by the ethics
commission of the Faculty of Medicine in the Ludwig Maximilian
University of Munich (Number 025-12) and the Bavarian State
Medical Association (Number 11142). Sampling and handling of
any patient material was performed in accordance with the ethical
principles of the Declaration of Helsinki. Tissues were cut on a

Fig. 5 Transcription factor activity and ligand-receptor interactions in the scRNA-seq from Lee et al. Spatial maps showing gene
expression, TF activity and a score for selected tumor-associated processes. a Average TF activity per cell type. The percentage of cells of a
given type where the TF is active is represented by the size of the circle. NK: natural killers, Mac: macrophages, cDCs: conventional dendritic
cells, ECs: endothelial cells. b–d Ligand-receptor interactions between the different cell types overlapping with the interactions predicted in
our ST data. The left panel shows the source of the interaction (ligands) and the right the target (receptors): b target cell types are myeloid
cells, c target cell types are the major stromal cell populations, and d target cell types are the different CMS tumor cell types. Mac
macrophages, cDCs conventional dendritic cells. e–g Overlay of the DCN gene expression, the predicted ETV4 TF activity and the metastasis
score with the pathologist’s tissue annotations in the S2_Col_R_Rep1 sample. A red square highlights the tumor region exhibiting invasive
morphological traits. h–j Overlay of the RNF43 gene expression, the predicted JUN TF activity and the metastasis score with the pathologist’s
tissue annotations in the S6_Rec_Rep2 sample.
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Cryostat (CryoStar NX70, Thermo Scientific) at 10 um. A
pathologist performed quality and comparability assessment of
fresh-frozen material using a hematoxylin-eosin (H&E)
stained slide.

Sample preparation
RNA from all samples was extracted using the Arcturus® PicoPure®
RNA Isolation Kit (Applied Biosystems™, KIT0204). For cell lysis, a 10
um section of the sample was resuspended in a 200 ul extraction
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buffer. Total RNA was extracted following the instructions of the
manual. RNA integrity number (RIN) was assessed using the 2100
Bioanalyzer system (Agilent Technologies, Inc.) with an Agilent
RNA 6000 Pico Kit (Agilent Technologies, Inc., 5067-1513). Samples
with RIN above 7.0 were used.
Tissue optimization was carried out according to the manu-

facturer’s instructions (VISIUM Spatial Tissue Optimization User
Guide_RevC). Image acquisition was performed on the Hama-
matsu NanoZoomer S 360 C13220 series at 40x magnification and
the coverslip was removed afterwards by immersing the slide in a
3x Saline-Sodium Citrate buffer. The stained tissue sections were
permeabilized using a time course to test for the optimal
permeabilization time. After performing a fluorescent cDNA
synthesis, the tissue was removed. Finally, the fluorescent cDNA
was imaged using a Zeiss Axio Scan.Z1 with a Plan Apochromat
20×/0.8 M objective, an ET-Gold FISH filter (ex 538–551 nm/em
556–560 nm) and 100 ms exposure time.
For the gene expression analysis, 10 um thick sections of the

samples were placed with a random distribution over four chilled
10x Genomics VISIUM Gene Expression slides containing four
capture areas each. The sections were similarly stained with H&E
and subsequently imaged as described above. To release the mRNA,
the sections were permeabilized for 30min as defined by tissue
optimization. For further processing, the cDNA was amplified
according to the manufacturer’s protocol (CG000239_VisiumSpatial-
GeneExpression_UserGuide_RevC). Double indexed libraries were
prepared. The libraries were quality controlled using a 2100
Bioanalyzer system with Agilent High Sensitivity DNA Kit (Agilent
Technologies, Inc., 5067-4626) and quantified with Qubit™ 1X dsDNA
HS Assay Kit (Invitrogen, Q33230) on a Qubit 4 Fluorometer
(Invitrogen, Q33238). The libraries were loaded onto the NovaSeq
6000 (Illumina) at a concentration of 250 pM. A NovaSeq S1 v 1.5 or
SP v 1.5 Reagent Kit (100 cycles) (Illumina, 20028319 and 20028401)
was used. For paired end-dual indexed sequencing, the following
read protocol was used: read 1: 28 cycles; i7 index read: 10 cycles; i5
index read: 10 cycles; and read 2: 90 cycles. All libraries were
sequenced at a minimum of 50000 reads per covered spot.
Raw sequencing data were demultiplexed using the mkfastq

function from Space Ranger (v. 1.2.0). Demultiplexed data were
mapped to the human reference GRCh38 with spaceranger count.
Spots under tissue folds, artifacts and at the tissue boundary were
manually removed using the 10X Loupe browser (v. 5.1.0).

Histopathological annotations and spot categorization
H&E stained tissue sections were annotated by the pathologist
using QuPath software (v. 0.2.3)51. Spot categorization was
performed by the pathologist using the 10X Loupe browser (v.
5.1.0). Categories and corresponding criteria are listed in
Supplementary Table S5.

Grading of CMS signatures
Grading of CMS signatures in the tumor tissue was performed
semi-quantitatively according to the number of spots with
positive signature and the percentage of positive cells per spot.
This grading was done in an individual replicate per patient
(S1_Cec_Rep1, S2_Col_R_Rep1, S3_Col_R_Rep1, S4_Col_Sig_Rep1,
S5_Rec_Rep1, S6_Rec_Rep2 and S7_Rec/Sig_Rep1) according to
the scheme detailed in Supplementary Table S6.

ST data pre-processing
We used the Seurat52, Scanpy53 and SingleCellExperiment54

packages to load the output of the Space Ranger pipeline and
process the ST data. We evaluated the quality of the ST data by
determining the average number of reads, UMIs and genes per spot
covered by tissue and compared it with those from spots non
covered by tissue. We found substandard quality for the
S1_Cec_Rep2 sample as revealed by its low numbers of unique
molecular identifier (UMI) counts and genes in spots covered by
tissue (Supplementary Fig. S1). Consequently, this sample was either
treated carefully or excluded from integrative analysis. For each
individual sample, we filtered out spots for which the number of
UMI counts detected were below 500 or above 45000. In addition,
spots containing a fraction of more than 0.5 mitochondrial genes
were not considered in the analysis. We normalized the UMI counts
from the remaining spots using SCTransform55.

Sample integration, batch correction and dimensionality
reduction
To jointly represent the CRC samples in the same low dimensional
space (UMAP embedding), correct from batch effects and
integrate samples and technical replicates for downstream
analysis, we used Harmony56. We ran Harmony with default
parameters allowing a maximum number of 20 interactions
(max.iter.harmony= 20) and correcting per individual samples. Of
note, Harmony was either applied to batch-correct for all the spots
derived from all the samples or to batch-correct only the tumor
annotated spots from a subset of samples (CMS2 tumor samples).

Deconvolution of the ST datasets
ST datasets derived from 10x Genomics VISIUM technology
currently lack single cell resolution. Therefore, the gene expression
values detected per spot originate from a variable number of
different cells, i.e. every spot can be considered as a mini-bulk
RNAseq dataset. Consequently, a deconvolution approach is
required to estimate the different cell types and their proportions
across spots.
To this end, we used the recently proposed Cell2Location

(v 0.0.5)18 method. Cell2location first creates gene expression

Fig. 6 Characterization and analysis of an external ST CRC dataset to support the results in our internal set of samples. a Proportions of
major cell classes per sample as estimated by the results of the deconvolution. The right hand side of the plot displays the number of analyzed
spots per sample. b CMS tumor cell type proportions per sample as estimated by the results of the deconvolution approach. The number of
spots containing an abundance of at least 20% of tumor cells subtypes is also displayed. c, d Overlay of the spatial mapping of the predicted
CMS2 tumor cell abundance with the pathologist’s tissue annotations in the ST-colon1_Unt and ST-liver1_Unt samples. e Per spot Pearson’s
cross-correlation across all the samples between pathway activities and CMS cell abundances. f Per spot Pearson’s cross-correlation across all
the samples between TF activities and CMS cell abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value
per CMS are shown. g Overlay of the spatial mapping of the predicted WNT pathway activity with the pathologist’s tissue annotations in the
ST-colon1_Unt sample. h Overlay of the spatial mapping of the predicted MYC TF activity with the pathologist’s tissue annotations in the ST-
colon2_Unt sample. i Overlay of the spatial mapping of the predicted MAPK pathway activity with the pathologist’s tissue annotations in the
ST-liver1_Unt sample. j Overlay of the spatial mapping of the predicted NR2C2 TF activity with the pathologist’s tissue annotations in the ST-
liver2_Unt sample. k Misty results showing the potential importance of ligands (rows) expression on TF (columns) activity when considering
the samples from primary CRC tumors. The ligand-TFs relationships with an importance score over 1 are represented as black slots and were
considered as relevant. The ligands and TFs discussed in the results sections are highlighted in red. l, m Overlay of the spatial mapping of the
RNF43 gene expression and the predicted TEAD1 TF activity with the pathologist’s tissue annotations in the ST-colon4_Tre sample.
n, o Overlay of the spatial mapping of the DCN gene expression and the predicted ETV4 TF activity with the pathologist’s tissue annotations in
the ST-liver4_Tre.
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signatures of cell types from a scRNA-seq reference. We adopted
as scRNA-Seq reference a comprehensive dataset from a recent
publication exploring the cellular landscape of the different CRC
subtypes and their microenvironment6. The annotations from the
original publication at the cell subtype level (Supplementary Table
S1) were used to generate the signature using the run_regression
function with the following parameters: n_epochs= 100, mini-
batch_size= 1024, learning_rate= 0.01 and train_proportion= 0.9.
These signatures are subsequently used to assess cell type
abundances in the ST data using the run_cell2location with
selection_specificity= 0.20. This parameter determines the number
of genes used to establish the signature per cell type (Supple-
mentary Table S1). Additional parameters were set as follows:
n_iter= 40000, cells_per_spot= 8, factors_per_spot= 9, comb-
s_per_spot: 5, mean= 1/2 and sd= 1/4.

Consistency of deconvolution results between technical
replicates
To evaluate the consistency of the deconvolution between
technical replicates, we batch-corrected their transcriptomic
profiles using Harmony56 as described above. Then, we clustered
the Harmony embeddings using the Louvain algorithm as
encoded in the FindClusters function from the Seurat package.
We chose a series of large resolution parameters (ranging from 1
to 2 increasing by 0.1 steps) to obtain fine-grain clusters that can
match with anatomical regions displaying similar cell type
distribution patterns across replicates. Finally, we computed the
mean number of UMIs estimated by Cell2Location per cell type
and cluster, and applied Pearson’s correlation to evaluate their
similarity between technical replicates.

Enrichment/depletion of cell types in different anatomical
regions
The enrichment (depletion) in the abundance of the
deconvolution-estimated cell types in different pathologist-
assigned tissue categories was assessed following a similar
procedure to be one described in Andersson et al.11. Briefly, the
estimated cell type proportions per spot were 10 000 times
randomly shuffled with respect to their spatial location. Then, we
computed the average cell type proportions per permutation and
tissue type. The mean value of differences between the real and
the permuted average proportions divided by the standard
deviation of these differences was used as the enrichment score
for the different tissue categories.

Pathway activity
We estimated pathway activity per spot and at subspot resolution
(see section Clustering and enhanced gene expression at the sub
spot level) using PROGENy57. PROGENy computes pathway activity
by accounting for the expression of genes which are more
responsive to perturbations on those pathways. The PROGENy
model comprises 14 pathways, namely: Wnt, VEGF, Trail, TNFα,
TGFβ, PI3K, p53, NFkB, MAPK, JAK/STAT, Hypoxia, Estrogen,
Androgen and EGFR. In our setup, we ran PROGENy using the
top 500 most responsive genes per pathway.
In addition, we also computed pathway activities in pseudo-

bulk generated from our ST samples (see section Pseudo-bulk
generation). We again used the top 500 most responsive genes
per pathway. In this case, we set the scale parameter to TRUE to
allow direct comparison of pathway activities between samples.

Transcription factor activity
We computed TF activity per spot using the Viper58 algorithm
coupled with regulons extracted from DoRothEA59. In DoRothEA,
every TF–target interaction is assigned a confidence score based
on the reliability of its source, which ranges from A (most reliable)

to E (least reliable). In this study, we selected interactions with
confidence scores A, B and C and computed the activity for TFs
with at least four different targets expressed per spot.
The activity profiles of the different TFs were additionally used to

cluster the spots from our four CMS2 tumor samples. To do so, the
TF activity scores from these samples were first merged and
subsequently scaled and centered. Then, the standard procedure to
compute clustering using the Seurat package was followed. Briefly,
we computed a Principal Component Analysis (PCA) dimensionality
reduction on the scaled TF activities per spot followed by the
computation of the 20 nearest neighbors. Finally, we applied the
Louvain algorithm with a resolution parameter of 0.5 to group the
spots into different clusters according to their TF activity profile. We
identified TF with a differential activity profile among the different
clusters using Receiver Operating Characteristic (ROC) analysis as
implemented in the Seurat’s FindAllMarkers function. We only
considered TF whose activity was computed in at least 25% of the
spots per cluster and with a log2 fold-change greater than 1.
Of note, we used the same procedure to compute TF activity

per cell on the scRNA-seq dataset from Lee et al.6.

Canonical correlation analysis
We used the cc function from the CCA package60 to compute
canonical correlation between the cell type proportions per spot
and pathway or TF activity per spot. This canonical correlation
analysis was first performed for every individual CRC sample. To
capture global correlations across samples, we performed an
integrative analysis by merging spots coming from all the different
samples (excluding S1_Cec_Rep2) into matrices and computing
the canonical correlation on them.

Selection of tumor surrounding spots
We applied the GetTissueCoordinates function from the Seurat
package to get the spatial coordinates of the spots in the different
CRC samples. We subsequently computed the Euclidean distance
between every pair of spots. Finally, we selected as tumor-
surrounding-spots those lying within a distance smaller or equal
to 2 from a tumor annotated spot. Spots fulfilling these criteria but
annotated as tumors were discarded.

Pseudo-bulk generation
We generated pseudo-bulk from the ST samples using the
sumCountsAcrossCells function from the Scater package61. Here,
counts were normalized by the total number of reads (counts per
million normalization). We used the filterByExpr function from the
edgeR package62 to filter out genes with less than 50 counts per
sample.

Definition of different anatomical regions in tumor
annotated spots
The distance between every tumor annotated spot and non-tumor
annotated spots was calculated as described in section Selection
of tumor surrounding spots. We then defined the different tumor
anatomical regions for the S2_Col_R_Rep1 sample based on the
following criteria:

● Peripheral Tumor: tumor spots in direct contact with at least a
non-tumor annotated spot. Their Euclidean distance to a non-
tumor annotated spot is smaller than 2.

● Central Tumor: tumor spots in the most solid and internal
region of the tumor. Their Euclidean distance to a non-tumor
annotated spot is greater than 2.5.

● Intermediary Tumor: tumor spots that we consider as a
transition region between the inner and outer tumor. Their
Euclidean distance to a non-tumor annotated spot is greater
or equal to 2 and smaller than 2.5.
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Clustering and enhanced gene expression at the sub
spot level
We applied BayesSpace63 to cluster at the subspot level and
increase the gene expression resolution of our CMS2 tumor
annotated spots in the S5_Rec_Rep1 sample. To do so, Bayes-
Space uses the neighborhood structure in spatial transcriptomic
data. Of note, the preprocessing of the ST raw data was conducted
following the recommendations of BayesSpace authors. This
procedure is slightly different from the one described in previous
sections. Briefly, the ST data was processed using the SingleCel-
lExperiment package and raw counts were log normalized using
the logNormCounts function from the Scuttle package61. Then, the
Scran64 package was used to model the variance of the log-
expression profiles for each gene and select the 2000 most
variable genes. We performed a PCA using the Scater61 package.
Using BayesSpace, we subsequently computed the spatial cluster-

ing and the enhanced clustering with default parameters, excepting
the jitter_scale parameter which was set to 3. Finally, we enhanced the
gene expression of all the genes expressed in the considered spots
using the enhanceFeatures function with default parameters.

Differential gene expression analysis
The CMS2 tumor regions extracted from the different samples
were integrated into the same Seurat52 object. We used the
Wilcoxon Rank Sum test to identify differentially expressed genes
between the groups of spots coming from different patients as
implemented in the Seurat’s FindAllMarkers function. We set a log2
fold-change threshold of 0.25 and only positive markers were
retrieved. Some specific criteria were followed for the analyses
conducted in section 2.3:

● To describe inter-patient heterogeneity, the differential gene
expression analysis was performed between the different
patients (two replicates per patient considered). We filtered
results by only considering genes that are overexpressed in
tumor annotated spots versus non-tumor annotated spots. To
do so, we took advantage of the pathologist’s annotations and
used the Seurat’s FindMarkers with the same parameters
described above for the FindAllMarkers function. Ribosomal
and mitochondrial genes were removed due to the fact that
they can be overrepresented in tumor necrotic regions.

● To describe intra-tumor heterogeneity, the differential expres-
sion analysis was carried out between the different anatomical
regions of the tumor in the S2_Col_R_Rep1 sample (see
section Definition of different anatomical regions in tumor
annotated spots) with no further considerations.

● Another differential gene expression analysis was conducted
on the enhanced gene expression between the different
enhanced clusters generated by BayesSpace (see section
Clustering and enhanced gene expression at the sub spot
level) on the S5_Rec_Rep1 sample. We selected for further
analysis genes with an adjusted p-value smaller than 0.01 in
the Wilcoxon Rank Sum test. Ribosomal and mitochondrial
genes were excluded from the analysis.

Gene set overrepresentation analysis
Differentially expressed genes were subsequently used for gene
set overrepresentation analysis using the Hallmark annotations
from MSigDB65. The Hallmark gene sets contain 50 well-defined
biological states or processes. We used the enricher function from
the clusterProfiler66 package to carry out the analysis. We set a
minimal size of the genes annotated for testing to five, excepting
for the analysis between different patients where it was set to
three. Background genes were adjusted accordingly to the global
set of genes expressed in the different contexts.

Ligand modulation of TF activity
As a first step and taking as reference the TF activity-based
clustering, we selected ligands which are overexpressed in the
tumor and TME with respect to the other anatomical regions
across all our CRC samples. To do so, we applied the Seurat’s
FindMarkers function with a log2 fold-change threshold of 0.5 and
only positive markers were retrieved. We matched our set of
overexpressed genes against the set of proteins annotated as
ligands in the Omnipath67 database. Additionally, we filtered out
ligands that are not detected in at least 10% of the tumor and TME
spots in every individual sample.
In the second place, we chose TFs with a higher differential activity

profile in the TME regions across all the samples according to the
clustering approach described in section Transcription factor activity.
In particular, we selected those TFs that are considered as markers of
the TME cluster when using the Seurat’s FindAllMarkers function
(AUC≥ 0.75).
We then applied Misty31 to investigate the potential effect of the

expression of the selected ligands in modulating the transcriptional
activity of the chosen TFs. Specifically, we created an intrinsic view
(intraview) describing ligand gene expression and a local niche view
(juxtaview) using TF activity with a neighbor.thr= 2 aiming at
capturing effects in the direct neighborhood of each spot. This
criteria is based on the fact that many cancer relevant ligands are
membrane bound and that the majority of secreted ligands cannot
travel long distances. Following this approach, Misty was first
individually applied to every sample. Then, the individual results
were collected and aggregated using Misty’s collect_results function in
order to obtain the most robust common signals across samples.
Ligand-TF associations with an aggregated importance greater than 1
were considered for further analysis. Of note, when running Misty on
the external dataset, the ST-colon3-Tre and ST-liver3-Tre samples were
excluded from the analysis due to their reduced tumor content.

Prediction of ligand-receptor interactions
We used LIANA68 to estimate the most likely ligand-receptor
interactions between the different spatial clusters defined by their
TF activity profiles. It is to note that the interactions were computed
for every pair of clusters, but for subsequent analysis and visualization
we focused on the interactions between the clusters labeled as 0
(Tumor) and 1 (TME). LIANA computes an aggregated score for every
potential ligand-receptor interaction based on the results of different
methods. In our particular case, we ran LIANA with default settings
and used OmniPath67 as a source of prior knowledge in human
ligand-receptor interactions. For further analysis, we considered
interactions involving Misty’s predicted ligands with an aggregated
rank smaller than 0.01, as this value can be seen as analogous to a
p-value69. We also ran LIANA on the scRNA-seq dataset from Lee
et al.6 using the same procedure.

Inference of signaling networks
We used a network-based approach to infer the most likely
signaling cascades linking LIANA’s predicted ligand-receptor
interactions to their targeted TFs according to Misty’s predictions.
To do so, we first built an intra-cellular signaling network by
retrieving protein-protein interactions from Omnipath67. Then, for
every ligand, we selected their predicted receptors and targeted
TFs. We subsequently connected every receptor to every
corresponding TF by selecting the shortest path between them
in the signaling network. All the resultant shortest paths were
merged into a network together with the previously predicted
ligand-receptor interactions. Finally, for every gene in the
predicted network, we computed its average expression in the
TME cluster, as defined by TF activity profiles (see section
Transcription factor activity), across all the CMS2 samples.
Cytoscape70 was utilized for the visualization of the network.
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Metagenes/module scores
We computed module scores for different sets of genes using the
Seurat’s AddModuleScore function. We detail below the particular
gene sets used:

● The list of up-regulated genes in iCMS2 and iCMS3, as well as,
the markers involved in gastric metaplasia were extracted
from the study where the IMF classification system was
introduced8.

● The list of genes associated with tubular adenomas or with
sessile serrated lesions were extracted from Chen et al.71.

● We fetched the crypt bottom and upper markers from Kosinski
et al.72.

● We retrieved a list of genes linked to metastatic processes
from CancerSEA73.

Prediction of microsatellite status
We inferred microsatellite instability status by running Micro-
satellite instability Absolute single sample Predictor (MAP)74 on
pseudo-bulk generated from our ST samples (see section Pseudo-
bulk generation). They were classified as microsatellite instable
(MSI) or microsatellite stable (MSS).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The output of Space Ranger, including processed count data matrices and
histological images, for the ST data generated in this study is available at https://
doi.org/10.5281/zenodo.7551712. In addition, this repository also contains the spot
categorization made by the pathologist. The processed scRNA-seq and metadata
used for the deconvolution and for further characterization of the cell communica-
tion processes are available via the GEO database under the accession codes
GSE132465 and GSE1447356. The processed data from the external ST CRC dataset
used to support our findings was downloaded from http://www.cancerdiversity.asia/
scCRLM14.

CODE AVAILABILITY
The scripts containing all the code used to generate the results presented in this
study are available at https://github.com/alberto-valdeolivas/ST_CRC_CMS. Their
associated notebooks containing additional results and information about the
versions of the different packages used are available at https://doi.org/10.5281/
zenodo.7440182. Finally, Intermediary object files to reproduce the analysis are
available at https://doi.org/10.5281/zenodo.7551712.
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