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Abstract

Background: Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from
complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time
and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles
and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain
optimal performance.

Results: To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the
use of ML in research, specifically focusing on classification problems at present. By integrating 4 essential functionalities—namely,
Data Exploration, AutoML, CustomML, and Visualization—MLme fulfills the diverse requirements of researchers while eliminating the
need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on 6 distinct datasets, each
presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets,
reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme’s feature selection functionality, we success-
fully identified significant markers for CD8" naive (BACH2), CD16" (CD16), and CD14" (VCAN) cell populations.

Conclusion: MLme serves as a valuable resource for leveraging ML to facilitate insightful data analysis and enhance research out-
comes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available
at https://github.com/FunctionalUrology/MLme.
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® Future developments aim to expand MLme’s capabilities

Key points toinclude support for unsupervised learning, regression,

hyperparameter tuning, and integration of user-defined

® MLme is a novel tool that simplifies machine learning algorithms.
(ML) for researchers by integrating Data Exploration, Au-
toML, CustomML, and Visualization functionalities.

* MLme improves efficiency and productivity by stream-
lining the ML workflow and eliminating the need for ex-
tensive coding efforts. Introduction

® Rigorous testing on diverse datasets demonstrates
MLme’s promising performance in classification prob-
lems.

* MLme provides intuitive interfaces for data exploration,
automated ML, customizable ML pipelines, and result vi-
sualization.

In the realm of research, machine learning (ML) has emerged
as a vital resource for analyzing intricate datasets that conven-
tional statistical approaches struggle to interpret [1-5]. However,
the integration of ML into research presents a multitude of chal-
lenges. Foremost, the construction and execution of an effective
ML pipeline can be daunting, requiring deep domain expertise, ex-
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tensive technical knowledge, and proficient programming skills. In
addition, the utilization of ML techniques demands a comprehen-
sive understanding of the underlying principles to ensure that the
trained models are unbiased and transparent.

Multiple tools have been developed to streamline the process
of building and executing ML pipelines (Supplementary Table S1)
[6-16]. These tools often require a significant level of coding pro-
ficiency and extensive configuration to achieve optimal effective-
ness. Additionally, many of these tools serve as algorithm recom-
menders, functioning by running multiple ML algorithms on user-
provided data and providing model performance metrics. How-
ever, this approach can limit user input and guidance, as the tools
tend to prioritize automated decision-making rather than allow-
ing users to actively participate in the process. As a result, tailor-
ing the ML models to specific research needs and ensuring that the
models align with domain knowledge and expertise can be chal-
lenging. This lack of flexibility and limited user control potentially
hinder the accuracy and applicability of the research outcomes.

Machine Learning Made Easy (MLme) is a comprehensive solu-
tion aimed at bridging the gap between researchers and the inher-
ent technical complexities of ML. It facilitates the adoption of ML
techniques by simplifying the ML workflow and minimizing the
typically steep learning curve associated with ML. Through its in-
tuitive interfaces, MLme enhances accessibility and usability for
researchers of varying levels of technical expertise (Fig. 1).

MLme offers 4 important components: Data Exploration, Au-
toML, CustomML, and Visualization, each serving a specific pur-
pose in understanding and extracting meaningful information
from the data within the ML workflow. Through the intuitive Data
Exploration feature, users easily examine their datasets and gain
preliminary understanding using an interactive interface. For ad-
vanced users, the CustomML interface within MLme provides a
flexible platform to design and develop tailor-made ML pipelines
that align with their specific research requirements. Furthermore,
it facilitates effortless interpretation and analysis of results with
rich visualization capabilities.

Key Features of MLme

MLme is a multifaceted toolkit that equips researchers with the
functionalities necessary to effectively utilize ML in their re-
search. It consists of 4 distinct web interfaces, each tailored to
address specific research needs, ensuring a versatile and compre-
hensive experience for users.

Data Exploration

The Data Exploration feature of MLme allows users to upload their
datasets and explore them using a range of statistical visualiza-
tions, such as density plots, scatter matrix plots, area plots, and
class distribution plots (Supplementary Fig. S1A). These visual-
izations and statistical summaries enable users to gain a com-
prehensive understanding of their data, including patterns and
trends within the data, data distribution, and potential outliers.
A density plot, for instance, can reveal how data are distributed,
while a scatter matrix plot can identify potential correlations.
Class distribution plots are particularly useful for comprehend-
ing the balance of target classes within the dataset, which can be
crucial when designing a machine learning model.

Overall, the Data Exploration feature enables users to effi-
ciently explore their datasets and acquire initial insights into their
data. This knowledge can inform subsequent modeling decisions,

ensuring that users are using the most appropriate modeling tech-
niques for their specific dataset.

AutoML

The AutoML feature in MLme enables users to effortlessly extract
meaningful information from their datasets using ML, even with-
out extensive technical expertise (Supplementary Fig. S1B). With
a preconfigured ML pipeline (Fig. 2), the AutoML handles essential
preprocessing steps such as data resampling, scaling, and feature
selection [17]. These steps ensure that the input data are properly
prepared for ML algorithms, enhancing the performance and reli-
ability of subsequent trained models. The AutoML conducts train-
ing and evaluation of multiple classification models, including a
dummy classifier. By employing diverse models, users gain a com-
prehensive understanding of their data and can identify the most
effective algorithms for their specific dataset.

After the pipeline is completed, the AutoML offers users vari-
ous options for examining and interpreting the results. These op-
tions include intuitive and interactive plots, which help users gain
a deeper understanding of the performance characteristics of the
models. Additionally, users have the flexibility to download the re-
sults and explore them further using the Visualization interface
at their convenience.

CustomML

The CustomML feature of MLme empowers users with moderate
to advanced knowledge of the ML domain to design and customize
an ML pipeline that caters to their specific research needs (Supple-
mentary Fig. S2A). With its user-friendly and intuitive interface,
users can easily include or exclude steps and algorithms using
a simple toggle button. This eliminates the worry about writing
complex programming scripts and allows focusing on selecting
the most suitable steps and algorithms for the dataset.

CustomML offers an extensive range of preprocessing options,
including 7 algorithms for data resampling, 19 algorithms for scal-
ing, and a diverse array of feature selection algorithms to select
relevant features from the dataset. Moreover, with 16 classifica-
tion algorithms available, users can refine their pipeline to align
with their research requirements. To provide a comprehensive un-
derstanding of the trained model’s performance, CustomML sup-
ports 10 different evaluation methods and 14 evaluation metrics.

The customization options of CustomML are enhanced by al-
lowing users to select the parameters value for all the provided
algorithms, giving them greater control over the behavior of their
developed pipeline. Once the pipeline is designed, it can be con-
veniently downloaded and executed either locally or on a clus-
ter, offering flexibility in computing resources. The CustomML-
generated ML pipeline produces a pickle file (.pkl) as an output
upon completion, which contains all the results from the pipeline.
This file can be uploaded to the Visualization interface, enabling
users to interpret these results using various plots.

Visualization

The Visualization feature in MLme allows users to effortlessly
interpret their results without the need for advanced program-
ming skills or expertise in data visualization (Supplementary Fig.
S2B). It provides a comprehensive range of plots and tables, cov-
ering fundamental as well as advanced options such as bar plots,
heatmaps, and spider plots. These diverse visualization tools fa-
cilitate effective comparison of trained model performance.
Furthermore, this feature allows users to customize the ap-
pearance of their plots by selecting from over 50 different color

20z Arenuer G| uo Jasn uleg yaylolqigsieensisaiun Aq 09z915/2/1 | Lpelb/eousiosebiB/ca0 L 0L /10p/aonle/aousiosehiB/wod dno-olwapeoe//:sdny WwoJl papeojumoq



Input Data ‘

A file with samples as rows, features as
= || columns, and the first column as sample
=== I names and the last column as target classes.

MLme

Machine Learning Made Easy

Data Exploration

Obtain an initial
comprehension

Auto ML

Execute a default
ML pipeline with

>
Run pipeline locally or on
server.

ZIP

a

of the data. feature selection,
scaling, etc.
* . .DOO. E EE E
Guidance for &
building ML . . .
pipelines. Visualization
SVM-REpaabaﬂS!ral\ﬁEdKFnlf Dummy Classifier-Repeated:
Custom ML - .
o 0 m o 0 w lf
Create a tailored Upload i -
ML pipeline. results.pkl file - .

- README.txt - log.txt
- userinput.pkl - results.pkl
- Script.py >

Figure 1: Graphical abstract. The input data for Machine Learning Made Easy (MLme) is a file with samples as rows and features as columns, with
sample names in the first column and target classes in the last column. MLme provides various features to enhance usability. The data exploration
feature enables users to explore the data and gain initial insights. For advanced users, the custom ML feature allows the creation of custom ML
pipelines. Upon execution, MLme generates a compressed zip file containing inputParameter.pkl, script.py, and README.txt. Alternatively, users can
opt for the AutoML feature, which applies a default ML pipeline to the input file. Both CustomML and AutoML produce a results.pkl file, which can be

further analyzed using the visualization feature.

palettes. Additionally, all generated plots are of high quality and
are downloadable in high resolution, ensuring they are suitable
for publication purposes. Supplementary Fig. S11 showcases the
available list of algorithms and diverse plot types within MLme
for various machine learning stages.

The MLme application is evaluated using 7 distinct datasets (Sup-
plementary Table S2) that are carefully chosen to ensure robust-
ness. Factors such as sample size, diversity, class imbalance, and
dimensionality are considered during the selection process. The
selected datasets vary in sample size and diversity, providing

a comprehensive assessment of the MLme application’s perfor-
mance across different data scales.

This includes datasets of varying sizes, from small (chronic
lymphocytic leukemia [CLL] and cervical cancer study) to large
(invasive breast carcinoma and body signal datasets), which test
the application’s scalability and efficiency. Imbalanced datasets,
like invasive breast carcinoma (BRCA), are included to evaluate
the MLme application’s handling of class imbalance and predic-
tion accuracy, which is particularly relevant in real-world scenar-
ios, such as biological research. The datasets also address the
challenge of high-dimensional features and low sample sizes,
known as the curse of dimensionality. By including such datasets,
MLme’s ability to handle challenges is thoroughly assessed.

Furthermore, the glass identification dataset was selected as
a nonbiological example, offering variation and enabling testing
across diverse domains. This dataset, with multiple target classes,
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Figure 2: Default ML Pipeline for AutoML. The default ML pipeline can be represented as a flowchart that starts by splitting the input dataset into
training and independent test sets, provided the user has activated the test set option. Otherwise, the entire dataset is used for training. In the
subsequent step, the training dataset is divided into n bins of equal size through stratified sampling. From these bins, k - 1 are designated as training
sets while the remainder becomes the test set. In the preprocessing step, low variance features are removed first, followed by data scaling and
resampling. Subsequently, the SelectPercentile univariate feature selection method is applied to select important features, and 5 ML classification
algorithms are trained. Model performance is assessed on the test set using 3 different methods, and multiple performance metrics are computed.
This entire process is repeated for each unique bin in the k-fold corss validation (CV) method. The pipeline outputs a zip file comprising the log .txt
and the results.pkl files. The user can examine the results by visualizing the contents of the pickle file using MLme.

allows evaluation of the MLme application’s performance in mul-
ticlass classification problems.

Dataset descriptions

The first dataset comprised messenger RNA (mRNA) patient data
(n = 136) obtained from a study on CLL, which measured their
transcriptome profiles [18]. Our objective was to build a model
that could classify male and female patients based on their tran-
scriptomic profiles, using the top 5,000 most variable mRNAs (ex-
cluding Y chromosome genes). The second dataset was collected
from a cervical cancer study that analyzed the expression levels
of 714 microRNAs (miRNAs) in human samples (n = 58) [19].

The third and fourth datasets were obtained from The Cancer
Genome Atlas (TCGA), consisting of mRNA (n = 1,219) and miRNA

(n = 1,207) sequencing data from patients with invasive BRCA,
which were retrieved using the TCGAbiolinks package [20] in R.
For the BRCA mRNA dataset, we focused only on differentially ex-
pressed genes from edgeR (False discovery rate (FDR) <0.001 and
log fold change >42) [21]. Our goal was to train a model capa-
ble of distinguishing normal and tumor samples for both cervical
cancer and TCGA-BRCA datasets.

The fifth dataset consists of single-cell RNA (scRNA) sequenc-
ing data obtained from peripheral blood mononuclear cells
(PBMCs) that were sequenced using 10x chromium technology
[22]. Among all the cell populations described in this study, we
specifically utilized the scRNA datasets of CD8* naive, CD14*, and
CD16" monocytes (n = 1,500) with the goal of identifying distinct
markers for each of these cell populations.
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The sixth dataset utilized in this study was the widely recog-
nized glass identification dataset (n = 214) obtained from the Uni-
versity of California, Irvine ML repository [23]. This dataset com-
prises 10 distinct features that represent oxide content of glass
samples. The primary objective of this dataset is to classify differ-
ent types of glass based on their oxide content.

The seventh dataset in our study comprises body signal data
collected from 100,000 individuals through the National Health
Insurance Service in Korea [24]. This dataset includes 21 essen-
tial biological signals related to health, such as measurements of
systolic blood pressure and total cholesterol levels. Our main goal
with this dataset was to determine whether individuals consume
alcohol based on the available biological signal information.

Results

To perform a thorough assessment of the MLme functionality, we
utilized its CustomML feature to construct distinct ML pipelines
for CLL, cervical cancer, body signal, and TCGA datasets. These
pipelines entailed various processing steps, including data scal-
ing and resampling using different algorithms, multiple ML clas-
sifiers, diverse evaluation methods, and metrics. Additionally, we
employed the AutoML feature of MLme to train multiple models
for both the PBMC and glass datasets. The top-performing models
consistently achieved scores exceeding 90% for all computed met-
rics across all evaluated datasets except glass identification and
body signal datasets. As anticipated, the dummy classifiers per-
formed the worst among all the datasets (Supplementary Figs. S3—
59). Additionally, we conducted a comparative analysis to assess
the performance of MLme in comparison to Tree-based Pipeline
Optimization Tool (TPOT) and hyperopt-sklearn on these datasets.
The fact that all 3 tools demonstrated similar performance (Sup-
plementary Fig. S10) for all datasets, except the glass dataset, un-
derscores the reliability and consistency of the results produced
by MLme. For hyperopt-sklearn, we configured it to comprehen-
sively explore all classification algorithms and data transforma-
tions within the library while utilizing the tree-structured Parzen
estimator algorithm for hyperparameter search. For TPOT, we em-
ployed a 5-minute runtime limit, a population size of 50, 5 gener-
ations, and default values for all other parameters.

To further demonstrate the applicability of MLme, we utilized
its feature selection functionality from AutoML to identify the
most important genes for classifying CD8% naive, CD14", and
CD16" monocyte cell populations from the PBMC dataset. By se-
lecting the top 10% of the original input of 500 highly variable
genes, MLme provided a list of 50 genes that are sufficient for clas-
sifying these cell types (Fig. 3A). These 50 genes exhibited a strong
correspondence with their respective cell populations, except for
13 ribosomal genes (RPS and RPL) that showed similar expression
levels across all 3 cell types.

Among the remaining 37 genes, we discovered classic mark-
ers for CD8" naive cells (TCF7 [25, 26], LEF1 [25], BACH2 [27],
BCL11B [28], and THEMIS [29]), which have been previously de-
scribed in the literature (Fig. 3B). The list also included markers
for the CD16% cell population, such as FCGR3A (CD16), TCF7L2,
MS4A7,IFITM3, MTSS1,LST1, and WARS (Fig. 3C), which have been
associated with CD16+ cells in previous studies [30, 31]. Further-
more, our marker list encompassed known CD14" specific genes,
including VCAN, a marker of monocytic lineage [32]; CSF3R, previ-
ously described in the CD14* population [33]; and NEAT1 (Fig. 3D).
These findings validate the biological relevance of the selected
genes and highlight the utility of the MLme tool in biomedical re-
search.
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Implementation

The MLme is developed using the Dash library [34] in the Python
[35] programming language. Plots are generated using Plotly [36],
matplotlib [37], and bokeh [38] libraries. Pandas [39] and NumPy [40]
libraries are used to handle data storage and processing. The de-
velopment of the ML pipeline is facilitated by employing the Scikit-
Learn [41] and Imbalanced Learn [42] libraries.

Limitations

Currently, MLme focuses on classification problems since a sub-
stantial portion of research questions and available datasets are
aligned with the domain of classification. This limitation hinders
MLme’s applicability to regression or unsupervised learning tasks.
Additionally, the tool lacks built-in hyperparameter tuning capa-
bilities. This absence of a key feature may hinder users in fine-
tuning their models.

Overall, despite its limitations in handling regression and un-
supervised ML problems, the current version of MLme is well
equipped to develop pipelines for classification tasks. It is worth
noting that users have the flexibility to choose values for all the
parameters of a given algorithm through the user interface, to
some extent mitigating the impact of the lack of built-in hyper-
parameter tuning.

Conclusion

Our article introduces a user-friendly tool called MLme, which of-
fers a wide range of functionalities for ML analysis. Its primary
goal is to make ML accessible to users of all skill levels by remov-
ing technical barriers. With the Data Exploration feature, users
can efficiently explore datasets and gain initial insights into their
data. The AutoML feature simplifies ML usage, allowing them to
leverage ML capabilities without dealing with complex techni-
calities. Moreover, the CustomML functionality assists in creat-
ing personalized pipelines using an intuitive graphical user inter-
face that caters to specific requirements, eliminating the need for
coding complexities. Additionally, the Visualization features en-
able users to interactively explore and understand model perfor-
mance, without extensive data visualization or coding expertise.
In summary, MLme is a powerful and user-friendly tool that em-
powers researchers to enhance their research outcomes through
ML.

However, it is crucial to emphasize that, despite their impres-
sive capabilities, automated ML tools should never be regarded as
a replacement for domain expertise. Users of MLme must main-
tain a strong awareness of the invaluable role that domain knowl-
edge plays when using this software to address real-world prob-
lems. Consequently, expertise in the specific field remains irre-
placeable, and MLme should be viewed as a complementary tool
to augment, rather than replace, human understanding and in-
sights.

Outlook

Despite the limitations mentioned above, there are several
promising directions for future development of the MLme. Our
primary objective is to expand the capabilities of MLme to include
support for unsupervised learning and regression problems. This
expansion will greatly enhance the tool’s utility and enable its ap-
plication in a broader range of ML tasks.
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Figure 3: Identification of potential markers for CD8* naive, CD16", and CD14* cell populations in the PBMC dataset. (A) Heatmap visualization
showing the expression patterns of 50 genes selected by MLme. (B-D) Expression levels of key markers specific to CD8* naive, CD16%, and CD14" cell

populations, respectively, within each cell type.

Recognizing the importance of hyperparameter tuning in op-
timizing models, we plan to incorporate hyperparameter tuning
capabilities into the tool. This addition will enable users to fine-
tune their models and improve overall performance, thereby in-
creasing the effectiveness and reliability of MLme. Additionally,
we intend to introduce a feature that allows users to upload and
integrate their own algorithms into the pipeline. This feature will
enable users to use their preferred algorithms, even if they are not
currently available within the tool, thereby expanding its applica-
bility and customization options.

By drawing inspiration from other similar tools like MLbox [11],
TransmogrifAl [9], STREAMLINE [10], AutoSklearn [16], and Weka
[6], we aim to integrate advanced features into MLme. These in-
clude automated data cleaning, robust feature engineering, and
efficient data imputation. These future developments aim to over-
come the current limitations of MLme and enhance its function-
ality and adaptability. By addressing these limitations, we firmly
believe that the MLme will evolve into a more comprehensive and
valuable resource for ML practitioners.

Availability of Supporting Source Code and
Requirements

Project name: Machine Learning Made Easy (MLme)

Project
MLme

Operating system(s): Platform independent

Programming language: Python (version 3.9)

Other requirements: Docker or Python

License: GNU GPL

BioTool ID: MLme

SciCrunch ID: MLme (RRID: SCR_024439)

homepage: https://github.com/FunctionalUrology/

Additional Files

Supplementary Fig. S1. Key features of Machine Learning Made
Easy (MLme). (A) Data Exploration. (B) AutoML.

Supplementary Fig. S2.Key features of Machine Learning Made
Easy (MLme). (A) CustomML. (B) Visualization.

Supplementary Fig. S3. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) algo-
rithms trained on the chronic lymphocytic leukemia (CLL) dataset,
both during training (A) and testing (B). Each ML model is repre-
sented by a circle, and each vertex represents a specific perfor-
mance metric. A circle with a larger shaded area indicates better
performance.
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Supplementary Fig. S4. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) algo-
rithms trained on the cervical cancer dataset, both during train-
ing (A) and testing (B). Each ML model is represented by a circle,
and each vertex represents a specific performance metric. A circle
with a larger shaded area indicates better performance.

Supplementary Fig. S5. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) al-
gorithms trained on the TCGA mRNA dataset, both during train-
ing (A) and testing (B). Each ML model is represented by a circle,
and each vertex represents a specific performance metric. A circle
with a larger shaded area indicates better performance.

Supplementary Fig. S6. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) al-
gorithms trained on the TCGA miRNA dataset, both during train-
ing (A) and testing (B). Each ML model is represented by a circle,
and each vertex represents a specific performance metric. A circle
with a larger shaded area indicates better performance.

Supplementary Fig. S7. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) algo-
rithms trained on the peripheral blood mononuclear cell (PBMC)
dataset, both during training (A) and testing (B). Each ML model
is represented by a circle, and each vertex represents a specific
performance metric. A circle with a larger shaded area indicates
better performance.

Supplementary Fig. S8. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the top and worst 5 machine learning (ML) al-
gorithms trained on the glass identification dataset, both dur-
ing training (A) and testing (B). Each ML model is represented
by a circle, and each vertex represents a specific performance
metric. A circle with a larger shaded area indicates better
performance.

Supplementary Fig. S9. Projection of metrics scores on 2-
dimensional polar coordinates. The plots illustrate the perfor-
mance scores of the machine learning (ML) algorithms trained on
the body signal dataset, both during training (A) and testing (B).
Each ML model is represented by a circle, and each vertex repre-
sents a specific performance metric. A circle with a larger shaded
area indicates better performance.

Supplementary Fig. S10. Performance comparison of MLme,
TPOT, and hyperopt-sklearn across multiple datasets. Each bar in
(A), (B), and (C) represents the F1, accuracy, and recall scores, re-
spectively, on the test data for each dataset.

Supplementary Fig. S11. MLme’s list of algorithms and diverse
plot types for different machine learning stages. MLme offers an
array of diverse plots suitable for both exploratory data analy-
sis (EDA) (A) and visualizing outcomes derived from either Au-
toML or CustomML (B). MLme provides users with the flexibility
to design their own machine learning pipelines. (C) The potential
pipeline steps alongside corresponding algorithm choices and (D)
the steps and corresponding algorithms included in MLme’s de-
fault AutoML pipeline.

Supplementary Table S1. Comparison of features between
MLme and other similar machine learning automation tools.

MLme: A Tool for Machine Learning-Driven Data Analysis | 7
Supplementary Table S2. Example datasets used in this study.

Data Availability

All supporting data, including the input dataset, “inputParam-
eters.pkl,” and “results.pkl” files, for all evaluated datasets, are
available on Zenodo [43]. The “results.pkl” files can be visual-
ized using the Visualization feature of MLme. An archival copy
of the source code and supporting data is also available via the
GigaScience database, GigaDB [44]. DOME-ML (Data, Optimisation,
Model, and Evaluation in Machine Learning) annotation, sup-
porting the current study, is available through DOME Wizard.
The link to the DOME annotations for this study is available on
GigaDB [44].
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