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a b s t r a c t 

This study considers complex ice particles falling in the atmosphere: predicting the drag of such particles 

is important for developing of climate models parameterizations. A Delayed-Detached Eddy Simulation 

model is developed to predict the drag coefficient of snowflakes falling at Reynolds number between 50 

and 2200. We first consider the case where the orientation of the particle is known a posteriori, and 

evaluate our results against laboratory experiments using 3D-printed particles of the same shape, falling 

at the same Reynolds number. Close agreement is found in cases where the particles fall stably, while 

a more complex behavior is observed in cases where the flow is unsteady. The second objective of this 

study is to evaluate methods for estimating the drag coefficient when the orientation of the particles is 

not known a posteriori. We find that a suitable average of two orientations corresponding to the mini- 

mum and maximum eigenvalues of the inertia tensor provides a good estimate of the particle drag co- 

efficient. Meanwhile, existing correlations for the drag on non-spherical particles produce large errors ( ≈
50%). A new formula to estimate snow particles settling velocity is also proposed. Our approach provides 

a framework to investigate the aerodynamics of complex snowflakes and is relevant to other problems 

that involve the sedimentation of irregular particles in viscous fluids. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Snow plays a vital role in the climate system. Snowfalls de- 

end on weather conditions and the original form of snow crys- 

als, which are characterized by a wide range of shapes and sizes: 

rom tiny snow crystals (few micrometers) in the upper atmo- 

phere to large snowflakes (up to a few centimeters) near the 

round ( Kikuchi et al., 2013 ). Hence, predicting their drag coeffi- 

ient and falling speed is a crucial step towards the understand- 

ng of their falling behavior to constrain parametrizations used in 
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limate models that predict snow precipitations ( Newman et al., 

009; Garrett et al., 2012 ). To study snow crystals motion in the 

tmosphere, one must rely on the theory of the interaction be- 

ween a fluid and a particle immersed in it. This interaction de- 

ends strongly on object shape, type of fluid and on flow regime 

Reynolds number, Re ), which influence the aerodynamic forces 

cting on the object. 

The motion of spherical and non-spherical particles in the 

tokes regime ( Re < 1 , where Re = (u t D max ) /ν, with Re being the

article Reynolds number, u t the snowflake terminal velocity [m/s], 

 max the maximum span of the particle normal to the flow direc- 

ion [m], and ν the kinematic viscosity of air [m 

2 /s]) has been 

idely investigated in the past ( Brady and Bossis, 1988; Bren- 

er, 1963; Happel and Brenner, 1983; Leith, 1987; Proudman and 

earson, 1957; Stokes, 1851; Oseen, 1927 ). Notwithstanding this 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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xtensive research, snow particles cannot be approximated us- 

ng spheres or ellipsoids without introducing large errors, since 

heir shape irregularities entail much more complexity in their 

alling motion ( McCorquodale and Westbrook, 2020; Zeugin et al., 

020 ). Furthermore, Stokesian dynamics is valid only for small, sin- 

le crystals with maximum dimension D max smaller than 100 μm 

estbrook (2008) , while the majority of snow particles at the 

round fall as aggregated crystals with much larger D max Gunn and 

arshall (1957) , thus outside the Stokes limits. Due to the wide 

ange of sizes (i.e., Reynolds numbers), snow particles may display 

arious falling behaviors that encompass stable ( Re � 100 ) and un- 

table falling trajectories ( Re � 100 ), such as periodic (tumbling, os- 

illating) or chaotic motion (with random rotations around differ- 

nt axes). The types of motions that a particle exhibits at a given 

e, as well as the effect this has on C D , is fairly poorly understood

or particles with complex irregular shapes. It is thus difficult to 

chieve high accuracy in the drag prediction, especially at moder- 

tely high particle Reynolds numbers. To overcome this complica- 

ion and obtain a comprehensive understanding of snowflakes in- 

eraction with the surrounding air, both numerical and experimen- 

al approaches have been considered, with a major focus on the 

rag coefficient. 

Several attempts have been made to find empirical relations for 

erodynamics coefficients of non-spherical particles within and be- 

ond the Stokes regime. Sanjeevi et al. (2018) studied the drag, 

ift and torque coefficients and their dependency, not only on the 

eynolds number, but also on particle orientation, building on the 

ork of Leith (1987) , which focused on the Stokes regime only. 

hey proposed new formulas to evaluate the drag, lift and torque 

oefficients for non-spherical particles (namely disks, ellipsoids, 

nd fibers) as a function of the angle of incidence φ ( 0 ◦ < φ < 90 ◦)

nd shape coefficients for Re up to 20 0 0. These relations derive 

rom a series of fluid dynamics simulations of fixed particles at 

ifferent angles of incidence performed with the Lattice Boltz- 

ann method. The results were compared with the experimental 

nes from Hölzer and Sommerfeld (2008) ; Zastawny et al. (2012) , 

nd Ouchene et al. (2016) extended up to Re = 20 0 0 . While

anjeevi et al. (2018) and Zastawny et al. (2012) used shape 

oefficients for their empirical relations of aerodynamic coeffi- 

ients, Hölzer and Sommerfeld (2008) made use of the spheric- 

ty � (ratio between the surface area of the volume equiva- 

ent sphere and that of the considered particle) to describe non- 

pherical geometries. More complex shape factors were employed 

y Bagheri and Bonadonna (2016) ; Tran-Cong et al. (2004) and 

inder et al. (2006) to model the drag coefficient of volcanic par- 

icles and aggregates of spheres, respectively. These studies rep- 

esent only a first step towards a better prediction of complex- 

haped particles aerodynamic coefficients. In that, the analyzed 

articles and aggregates are rather simple (ellipsoid, fibers or ag- 

regates of spheres), while snow particles present more elaborate 

hapes. Additionally, the relation obtained for the aerodynamic co- 

fficients are generally empirical and not related to a physical be- 

avior, ergo the applicability beyond the specific cases remains un- 

ertain. 

Since the early 50s, experimental approaches have been used 

y the atmospheric sciences community to built mathematical re- 

ations for the drag coefficient and settling velocity of different 

hapes of snowflakes and snow aggregates. Langleben (1954) and 

agono and Nakamura (1965) found that the terminal veloc- 

ty ( u t ) of snow crystals is dependent on the shape and mass 

or density) of the particle and proposed a power-law to pre- 

ict it. Heymsfield and Westbrook (2010) proposed a new equa- 

ion for u t based on the area ratio A R (ratio between the pro- 

ected area of the snow crystal and the frontal area of the cir- 

umscribed disk) together with a relation between Reynolds and 

est numbers (defined as X = C D Re 2 , where X is the Best num-
2 
er) and compared it to limited experimental data, finding errors 

ower than 25%. The works of Mitchell and Heymsfield (2005) and 

eymsfield and Westbrook (2010) were compared in the paper by 

estbrook and Sephton (2017) , in which terminal velocities of 3D- 

rinted snowflakes falling in a mixture of glycerine and water were 

ecorded, showing a discrepancy in the final speeds of ≈ 80 % from 

itchell and Heymsfield (2005) and ≈ 45 % from Heymsfield and 

estbrook (2010) . Preferential orientations of different snow crys- 

als geometries were also investigated up to Re ≈ 10 0 0 in the same 

aper. 

As far as computational models are concerned, fall at- 

itudes of simple shapes, such as spheres, disks, hexagonal 

ce-plates, and columnar crystals Uhlmann and Dusek (2014) ; 

uguste et al. (2013) ; Cheng et al. (2015) ; Hashino et al. (2016) are

sually investigated at low and moderate Reynolds numbers. 

n this context, Direct Numerical Simulation using the Im- 

ersed Boundary Method Uhlmann and Dusek (2014) or grid- 

dapting solutions with 6DoF (degrees of freedom) solvers 

heng et al. (2015) are generally employed. These are good solu- 

ions to investigate complex particle trajectories, but such mod- 

ls become unnecessarily expensive in terms of computational re- 

ources if used with the only aim of drag coefficient prediction. In 

hese works, forces and torques acting on the particles together 

ith the wake structures and vorticity are taken into account. 

alling behavior is also investigated, although the falling trajecto- 

ies are restricted to stable or mildly unstable (oscillatory) motion, 

ue to limitations in the Reynolds number range. 

The empirical relations available in the literature for drag co- 

fficient and terminal velocity have a comprehensive purpose, but 

re usually limited by fitting parameters, which are restrained to 

pecific experimental set-ups and their related errors. On the con- 

rary, numerical models can give a more accurate prediction, how- 

ver very few studies have been published so far on more com- 

lex snow crystals or aggregates. For instance, the recent work 

f Zeugin et al. (2020) investigated realistic snow particles in the 

tokes regime and proposed sphericity-based relations to estimate 

erodynamic coefficients and the settling velocity of such particles 

p to Re ≈ 10 . Therefore, a more systematic approach to determine 

he drag coefficient of irregular particles for a broader range of 

eynolds numbers is needed and that is exactly the purpose of this 

aper. 

The first objective of this work is to present a Delayed-Detached 

ddy Simulation (DDES) model to predict the drag coefficient of 

omplex-shaped snow particles in air (within a Reynolds num- 

er range of 50 � Re � 2200 , i.e., ice particle size of roughly sev-

ral hundred microns to several centimeters) when the orienta- 

ions that the particles adopt in free-fall are known a posteriori 

 Section 3.1 ). That is, in the DDES model we investigate particles 

xed in the same orientation that we observed in laboratory exper- 

ments in which 3D-printed particles of the same geometric shape 

ell in a fluid at rest (see Sections 2.1 and 2.1.1 ). The fixed orienta-

ion of the particle in the DDES model corresponds to the orienta- 

ion observed in the laboratory experiments when the particles fell 

teadily (at low Reynolds number), which we refer to as the “final 

rientation and which serves as an “average final orientation” also 

or moderate and high Reynolds numbers. This approach is vali- 

ated by comparing the results from different LES and DDES (hy- 

rid URANS-LES) approaches with experimental data. A grid con- 

ergence study is also performed. 

The second objective of this work is to propose a new ap- 

roach to accurately estimate the drag coefficient of snow crys- 

als when the orientation that the particle adopts in free-fall is 

ot known a posteriori ( Section 3.2 ). This approach entails sim- 

lating snowflakes at two different orientations described by the 

aximum and minimum eigenvalues of their inertia tensor. For 

his purpose, a computational model is built, in which the airflow 
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round a fixed, single snow particle is solved. To save computa- 

ional time and, at the same time, preserve accuracy, the same 

DES approach is employed to model the airflow as we used in 

he final orientation model. The accuracy of this approach is also 

valuated by comparing the results with data from the laboratory 

xperiments. Ultimately, we provide an estimate of the snow par- 

icle settling velocity based upon geometrical information from the 

nertia tensor and experimental observations. 

We stress that both sets of simulations reported here are car- 

ied out with an open source code (OpenFoam), and thus are ac- 

essible to a broad spectrum of users (which is not the case for 

ost of DNS codes). In addition, the work presented in this paper 

ill be a valuable tool to estimate the drag coefficient of an irreg- 

lar particle, regardless the availability of a posteriori knowledge 

f the kinematics of the particle in free-fall. We anticipate that the 

resented model can also be used as the basis for the development 

f more complex models to investigate particle-fluid interactions in 

 much broader range of applications. 

. Materials and methods 

.1. Experimental set-up and final orientation reconstruction 

A series of laboratory experiments were conducted in which 

he motion of 3D-printed models of ice particles was recorded as 

he particles fell in fluids at rest. In order to include complex- 

haped particles within the study, 3D-printed analogs (density of 

174 kg/m 

3 ) were manufactured at a scaled-up size (typically 10–

0 mm in size) and dropped in a tank containing viscous liquids; 

his ensured that the particles fell at the same Reynolds numbers 

s ice particles falling in the atmosphere. In these experiments, 

he tank was filled with uniform mixtures of water and glycerol, 

n which the volume fraction of glycerol was set between 0 and 

pproximately 50% (density between 999 kg/m 

3 and 1144 kg/m 

3 ). 

The trajectory of falling analogs was recorded over a region ap- 

roximately 0.2 m × 0.2 m × 0.2 m in size using a system of three

ynchronized cameras positioned to have orthogonal views of the 
ig. 1. 3D geometries of the different snow particles taken into account in this paper (in

n nature: aggregates ( AgSt100, AgCr77, Ag15P1 , and AgSt18 ), rosette crystals ( MR172 and 

s used for the validation. Beside each geometry, their projection in the flow direction

egimes (in black). The names of the geometries are chosen to facilitate the comparison t

estbrook (2020) . (For interpretation of the references to color in this figure legend, the 

3 
ank. An algorithm (the Trajectory Reconstruction Algorithm im- 

lemented through Image anaLysis, TRAIL) was used to reconstruct 

he time-resolved trajectory and orientation of falling analogs over 

he recorded region. Using this system, the trajectories of 3D- 

rinted analogs were reconstructed to an accuracy of better than 

0.5 mm, whilst the orientation of the falling analogs was recon- 

tructed to an accuracy of ±2 . 5 ◦. The data generated by the algo-

ithm enables the determination of Re and C D to within an esti- 

ated accuracy of approximately 5% and 7% , respectively. More- 

ver, the data generated by the algorithm permits more complex 

nalyses of the observed motion. For example, the detailed recon- 

tructions generated using TRAIL facilitates the export of data de- 

cribing the precise orientation of falling particles across a series of 

ime steps. In other words, the shape of a particle is represented 

y a series of triangular facets within the TRIAL algorithm. The dig- 

tal reconstruction created using the TRAIL algorithm describes the 

ocation of the facets representing the particle surface, such that 

t is possible to export data describing the particle orientation in a 

ormat (stereolithography (STL) files) that could be readily incorpo- 

ated into the numerical model described in Section 2.2 . The exper- 

mental approach exploits dynamic similarity; when falling steadily 

he aerodynamics of ice particles is a function of only the geo- 

etric shape of the particles and the Reynolds number at which 

hey fall List and Schemenauer (1971) . Consequently, when falling 

teadily, relationships between dimensionless quantities, such as 

he Re and C D , are the same for ice particle analogs falling in vis-

ous liquids and natural ice particles falling in the atmosphere. 

Full details of the experiments used to validate the current 

ork, including a detailed description of the experimental pro- 

edure and a summary of drag coefficient measurements, are re- 

orted separately by McCorquodale and Westbrook (2020a,b) . 

.1.1. Steady and unsteady motion of falling snow particles 

Snow particles can be found in nature in many shapes and 

izes ( Kikuchi et al., 2013 ). The snow particle shapes incorpo- 

ated in this work are shown in Fig. 1 and are chosen such 

hat they comprise the snowflakes classes that are most com- 
 blue). They are illustrative of the four main categories of snow particles observed 

CR512 ), capped-column crystal ( CC20Hex2 ), and plate-like crystals ( D1007 ). AgSt100 

 x (according to the final orientation reconstruction) is shown for different flow 

o the extensive data reported in the supplementary material of McCorquodale and 

reader is referred to the web version of this article.) 
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Fig. 2. Time-averaged measurements of the angle between the principal axes and the fall direction for the particles D1007, CR512, CC20Hex2 , and MR172 (see legend in panel 

(c), which applies to all plots); (a) largest principal axis, (b) intermediate principal axis and (c) the smallest principal axis. Error bars show the range in orientations observed 

as particles traveled through the measurement region, either as a result of measurement uncertainty (small, ≈ 2 . 5 ◦) or where particles were observed to fall unsteadily (e.g., 

MR172 and CC20Hex2 ). Different symbols are used to distinguish between particles that were observed to fall steadily ( ×) and those that were observed to exhibit periodic 

( ◦) or chaotic ( �) motions as they fell. 
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A

on in nature: plate-like crystals ( D1007 ), rosette particles ( MR172 

nd CR512 ), capped-column crystals ( CC20Hex2 ), and aggregates 

 AgSt100, AgCr77, Ag15P1 , and AgSt18 ). The names of the snowflakes 

re chosen to facilitate the comparison to the extensive data re- 

orted in the supplemental material of McCorquodale and West- 

rook (2020) , which includes data on the particle geometries used 

n this study. We stress that these snowflakes have distinct ge- 

metries and as a consequence these particles were observed to 

xhibit distinct falling motions during the experiments described 

n Section 2.1 . A summary of the motions observed in the exper- 

ments is shown in Figs. 2 and 3 , in which we have plotted data

escribing the orientation that each particle was observed to adopt 

n free-fall at a range of Reynolds numbers. 

During experiments, the plate-like crystal D1007 fell steadily 

cross an extensive Reynolds number range ( 10 � Re � 1500 ), and

dopted an orientation broad-side onto the flow (i.e., with the 

aximum principal moment of inertia aligned parallel to the fall 

irection) as shown in Fig. 1 and 2 . That is, the particle fell

teadily with an orientation like that adopted by simple circular 

iscs, although steady falling motions were observed to occur at 

eynolds numbers an order of magnitude larger than observed for 

ircular discs ( Field et al., 1997 ). Likewise, the rosette CR512 was 

lso observed to fall steadily across an extensive Reynolds number 

ange ( 10 � Re � 10 0 0 ). However, a modest change in orientation
4 
hat the particle adopted in free-fall was observed at Re ≈ 10 2 , as 

hown in Figs. 1 and 2 . 

In contrast, the remaining particles were observed to present a 

ore complex range in motions as they fell at different Reynolds 

umbers. For example, the rosette MR172 was only observed to fall 

teadily with a stable orientation for Re � 100 ; for Re � 100 the

articles were observed to exhibit large-amplitude oscillations as 

hey fell, as shown in Fig. 2 . Initially, the reconstructed traces of 

isplacement and particle orientation corresponding to the oscilla- 

ions were periodical, but as Re increased the oscillations became 

haotic. Likewise, a distinct change in the observed motion of the 

apped-column CC20Hex2 was observed at Re ≈ 100 . For Re � 100 

he capped column was observed to fall steadily with its long-axis 

ligned perpendicular to the fall direction (i.e., with the smallest 

rincipal moment of inertia aligned perpendicular to the fall direc- 

ion) as shown in Figs. 1 and 2 . However, for Re � 100 the capped

olumns exhibited helical motions, whereby the long-axis of the 

article was approximately aligned parallel to the fall direction. A 

air of rigidly linked discs exhibited similar behavior, as reported 

y Kim et al. (2018) . Initially, the helical motions exhibited clear 

eriodicity, but as Re increased the helical motions became irregu- 

ar and the observed motion was chaotic. 

The more irregularly-shaped aggregate snowflakes ( AgSt100, 

gCr77, Ag15P1 , and AgSt18 ) also exhibited different motions in 
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Fig. 3. Time-averaged measurements of the angle between the principal axes and the fall direction for the particles Ag15P1, AgCr77, AgSt18 , and AgSt100 (see legend in panel 

(c), which applies to all plots); (a) largest principal axis, (b) intermediate principal axis and (c) the smallest principal axis. Error bars show the range in orientations observed 

as particles traveled through the measurement region, either as a result of measurement uncertainty or where particles were observed to fall unsteadily. Different symbols 

are used to distinguish between particles that were observed to fall steadily ( ×) and those that were observed to exhibit periodic ( ◦) or chaotic ( �) motions as they fell. 
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ree-fall. At low Reynolds number ( Re � 10 3 ), particles were ob- 

erved to fall steadily with a stable orientation but exhibited a 

piraling trajectory, whereby the particles rotated around a (ver- 

ical) axis aligned with the fall direction. The spiraling trajecto- 

ies observed were a result of a constant rotation of the parti- 

les due to the center of mass and center of drag not being co- 

ocated ( McCorquodale and Westbrook, 2020 ). Within this regime, 

gSt100, Ag15P1 , and AgSt18 were observed to display only mod- 

st changes in orientation as the Reynolds number increased, as 

hown in Fig. 3 . However, a distinct change in orientation was ob- 

erved to occur for AgCr77 at Re ≈ 100 . At higher Reynolds number 

the threshold is different for each particle) the snowflake parti- 

les were again observed to fall in spiraling trajectories, but (pe- 

iodic) small amplitude fluttering motions were observed to oc- 

ur, as shown in Fig. 3 . However, Fig. 3 also shows that much

arger amplitude fluttering motions were observed for AgCr77 at 

e ≈ 1200 ; in this case the fluttering motions were irregular and 

he motion of the particle was chaotic. The origin of the differ- 

nces in motions observed for AgCr77 relative to AgSt100, Ag15P1 , 

nd AgSt18 is currently unclear. 

The Reynolds numbers and the observed orientations are used 

o inform the computation model, providing the inflow velocity 

nd the particle orientation with respect to the flow direction, as 

escribed in Sections 2.2 and 2.2.1 . Fig. 1 shows the orientation 

f each snow particle used within the final orientation numerical 

b

5 
odel. This orientation corresponds to the one observed in a sin- 

le experiment where the particle was falling steadily. The position 

hat particles adopt when falling steadily are also used in the final 

rientation numerical model for cases in which particles were ob- 

erved in the experiments to fall unsteadily (i.e., at high Reynolds 

umber). This is a reasonably good assumption for most particles, 

ince the low Reynolds number orientation lies within the range of 

he orientations recorded when the particles fall unsteadily. How- 

ver, in Section 4 , we show evidence that for certain particles, at 

igh Re, the drag in this assumed orientation can be radically dif- 

erent to the actual value experienced by the particle as it under- 

oes complex unsteady motions. 

.2. Numerical model and convergence studies 

The computational model presented in this work solves for the 

uid domain, where a realistic snow particle is accounted for as 

 fixed object impinged by the airflow. The model geometry and 

izes are shown in Fig. 4 and are based on best practice guidelines 

or computational fluid dynamics ( Franke et al., 2007 ). Both do- 

ain size and grid convergence studies are performed to assess the 

omain dimensions and its spatial discretization errors by means 

f Richardson extrapolation ( Roache, 1994 ). As far as the domain 

ize convergence study is concerned, three different dimensions 

re tested: the actual size and other two with halved and dou- 

led dimensions, respectively. The domain is shown in Fig. 4 and 
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Fig. 4. Computational domain size as a function of volume-equivalent sphere diameter ( d eq ) and boundary conditions. This set-up is valid for all the simulations performed 

in this work. 

Fig. 5. (a) Mesh detail of the refinement zone close to the snowflake surface for particle AgSt100 (validation case). (b) Results from the grid convergence analysis with four 

different grid sizes (Total number of cells: Mesh 1 = 1 . 00 × 10 6 , Mesh 2 = 1 . 67 × 10 6 , Mesh 3 = 2 . 78 × 10 6 , and Mesh 4 = 4 . 64 × 10 6 ). 
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he results of the size convergence analysis can be found in the 

upplementary Material (Figure A). For the grid convergence study, 

he model set-up is the same as the validation case described in 

ections 2.2.1 and 2.2.2 . Four different grids with an increasing 

umber of cells (factor of 0.6) are tested and, for each of them, the 

rag coefficient is calculated using Eq. (4) . It emerges that the min- 

mum number of grid cells must be larger than � 3 . 0 × 10 6 (result-

ng in an error of ≈ 0.10%) to preserve model accuracy ( Fig. 5 (b)).

he final unstructured grid is composed of a hexagonal base mesh 

nd three refinement zones with triangular elements. The first two 

efinement zones cover the air domain upstream and downstream 

f the snow particle, and the third one comprises the fluid domain 

n the proximity of the snowflake. For the latter, the refinement 

ayers are built such that they reproduce a boundary layer mesh 

nd the thickness of the first layer is chosen to have y + ≈ 1 (di-

ensionless wall distance based on friction velocity and kinematic 

iscosity) in the wall-adjacent cells ( Fig. 5 (a)), obtaining a mini- 

um element size of ≈ 3 . 2 × 10 −5 m and a maximum cell size of

7 . 6 × 10 −3 m. The grid is generated using the OpenFOAM utility 

nappyHexMesh OpenFOAM (2017) . The total number of grid cells 

lightly varies ( ±5 %) for each snowflake. This is due to the dis- 

imilar snow particle shapes, which influence the cells generation 

specially of the refinement zone in the proximity of the parti- 

le. The mesh features, together with the outcome of the conver- 

o

6 
ence analysis are shown in Fig. 5 . The domain size and grid con- 

ergence study, together with the model validation are performed 

sing particle AgSt100 ( Fig. 1 ), while a subset of the particle ge-

metries used by McCorquodale and Westbrook, 2020 is employed 

or the remaining simulations, as illustrated in Fig. 1 . 

To keep the domain size constant, Reynolds similarity is used 

o match the conditions of the laboratory experiments (described 

n Section 2.1 ) used to validate the computational model. That is, 

he volume of each snowflake is arbitrarily scaled to be equal to 

hat of a sphere with a diameter of 1 cm (i.e., volume-equivalent 

phere), which is positioned with its center of mass at the coordi- 

ate center (see Fig. 4 ), whilst a (uniform) air speed that satisfies 

eynolds similarity is imposed at the inlet. The uniform air speed 

s calculated from: 

 ∞ 

= 

Re ν

D max 
, (1) 

here Re is the desired particle Reynolds number (a set of 

eynolds numbers for each snow particle is provided from exper- 

mental data (see Table 2 )), D max is the maximum dimension of 

he snow particle (normal to the flow direction) in [m], u ∞ 

is the 

niform inlet velocity in [m/s] and ν is the kinematic viscosity of 

he fluid [m 

2 /s]. In the experiments, the choice of D max as char- 

cteristic length for the Reynolds number was based not on a rig- 

rous, physical justification, but on practical reasons. That is, in- 
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Table 1 

Data from the turbulence models validation for snow particle AgSt100 ( Section 2.2, Fig. 1 ). The values obtained from the experiments described in Section 2.1 

are compared with the simulations, and the drag prediction for each Reynolds number is shown. The area ratio measured during experiment slightly changes 

due to the motion of the particle. For the model a fixed area ratio ( A R = 0 . 37 ) is considered by averaging the experimental values. The error is evaluated using 

Eq. (10) . Furthermore, the averaged absolute error is evaluated and the falling behavior observed during the experiments is reported (S = stable, P = periodic, C 

= chaotic). 

Turbulence model Area ratio Density Kinematic viscosity Re C D experiments Falling behavior C D simulations Error C D % 

0.37 1144 8 . 63 × 10 −6 38 3.10 S 3.31 6.32 

0.36 1144 8 . 71 × 10 −6 144 1.76 S 1.92 8.43 

0.38 999 1 . 12 × 10 −6 1366 0.93 P 1.02 8.29 

0.38 999 1 . 14 × 10 −6 2815 0.89 P 0.93 5.22 

0.38 999 1 . 13 × 10 −6 3868 0.94 P 0.90 −4.13 

averaged absolute error 6.48 

0.37 1144 8 . 63 × 10 −6 38 3.10 S 3.36 7.78 

0.36 1144 8 . 71 × 10 −6 144 1.76 S 1.93 8.78 

0.38 999 1 . 12 × 10 −6 1366 0.93 P 1.02 8.83 

0.38 999 1 . 14 × 10 −6 2815 0.89 P 0.94 5.52 

0.38 999 1 . 13 × 10 −6 3868 0.94 P 0.90 −3.95 

averaged absolute error 6.98 

0.37 1144 8 . 63 × 10 −6 38 3.10 S 3.48 10.79 

0.36 1144 8 . 71 × 10 −6 144 1.76 S 1.93 8.95 

0.38 999 1 . 12 × 10 −6 1366 0.93 P 1.05 10.99 

0.38 999 1 . 14 × 10 −6 2815 0.89 P 0.95 6.33 

0.38 999 1 . 13 × 10 −6 3868 0.94 P 0.90 −3.92 

averaged absolute error 8.20 
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trumentation used to obtain measurements of natural ice parti- 

les typically provides very limited geometric information about 

he particles. However, the maximum dimension of an ice par- 

icle in the flow (or fall) direction can be easily and accurately 

easured using a wide range of meteorological instrumentation 

 Garrett et al., 2012; Newman et al., 2009; Schönhuber et al., 

007 ). For this reason, D max is commonly utilized as the charac- 

eristic length for the Reynolds number of natural ice particles in 

eteorological applications. Moreover, due to the high variability 

f the snowflakes shapes Kikuchi et al. (2013) , it is difficult to 

onceive an alternative geometrical quantity that can be used to 

haracterize the shape of natural ice particles that is both sim- 

le to measure and that can be directly linked to the structure 

f wake of the particles. Therefore, the “conventional” approach is 

lso followed in the model. At the outlet, a zero static pressure 

s established. The snowflake is treated as a fixed wall on which 

 no-slip condition with zero roughness is set, and the symmetry 

oundary condition is set for the lateral boundaries of the flow do- 

ain ( Fig. 4 ). For the model validation ( Section 2.2.2 ), we match

he fluid properties (water-glycerin mixture) of the experiments 

ithin the flow domain ( Table 1 ) to accurately reproduce the lab- 

ratory conditions. The remaining case studies employ air proper- 

ies at 0 ◦C and atmospheric pressure at sea level ( ρ = 1 . 29 kg/m 

3 ,

= 1 . 33 × 10 −5 m 

2 /s) instead, to avoid changing the density for

ach Reynolds number, as shown in Table 1 for the validation case. 

e match the Reynolds numbers of the experiments for all the 

ase studies presented in this paper. 

.2.1. Governing equations and numerical simulations 

The computational model is built up with Open source Field 

peration and Manipulation (OpenFOAM 4.1) C++ software based 

n the finite volume method. In the model, the air flow motion is 

ttained by solving the transient Navier-Stokes equations: 

 · u = 0 , (
∂ u 
∂t 

+ ( u · ∇ ) u 

)
= −∇ p + μ∇ 

2 
u + ρ f , 

(2) 

n which u is the flow velocity [m/s], ρ is the fluid density in 

kg/m 

3 ], p the pressure in [Pa], μ is the dynamic viscosity of the 

uid in [Pa s] and f are any external forces per unit mass [N/kg]. 

he interaction between the air and the snow particle is described 

hrough Newton’s second law of motion. The forces generated by 

he flow impinging the snowflake comprise normal pressure and 
7 
angential viscous contributions: 

 = F p + F ν = 

∫ 
A 

p n dA + 

∫ 
A 

τ · n dA , (3) 

here n is the normal and tangential unit vector on the particle 

urface A and τ represents the viscous stresses [Pa]. The turbu- 

ence modeling and validation are described in Section 2.2.2 . 

The transient flow problem is discretized using second-order, 

entral-difference schemes. In particular, a second-order backward- 

ifferencing time-stepping scheme is chosen for the first-order 

ime derivative term in Eq. (2) , for it is a second-order, condition- 

lly stable scheme. Furthermore, for the divergence term of the 

elocity in Eq. (2) the Linear-Upwind Stabilized Transport (LUST) 

s employed, in which the linear-upwind scheme is blended with 

inear interpolation to stabilize the solution while maintaining a 

econd-order behavior. For all the selected schemes, the cell lim- 

ting option is also included to bound the extrapolated cell value 

o the one of the surrounding cells in the gradient scheme, while 

ivergence schemes are bounded to help to maintain boundedness 

f the solution and promoting better convergence. This is a second- 

rder, implicit scheme and conditionally stable OpenFOAM (2017) . 

With regard to the transient solver employed in the numerical 

odel, for each Reynolds number, the time step is selected such 

hat it fulfills the condition of CF L = (u ∞ 

� t) / (� x ) ≤ 1 (where � t

s the time step [s] and � x is the grid spacing [m]), the time dis-

retization being implicit. Each simulation runs for 20,0 0 0 time 

teps to obtain a fully developed wake behind the snow particle, 

ollowing the rule of thumb of minimum 5 flow through times (i.e., 

he time needed for the flow to enter and exit the domain at the 

nlet velocity set as boundary condition) Durbin and Medic (2007) . 

he PIMPLE algorithm is used for computing the solution. It is a 

ombination of PISO (Pressure Implicit with Splitting of Operator) 

nd SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

erziger and Peri ́c (2002) ; OpenFOAM (2017) . All these algorithms 

re iterative solvers, but PISO and PIMPLE are both used for tran- 

ient cases, whilst SIMPLE is used for steady-state cases. The PIM- 

LE algorithm works as the SIMPLE algorithm for each time step, 

here outer correctors set the number of iterations and, once con- 

erged, will move on to the next time step until the solution is 

omplete. Better stability is obtained from PIMPLE over PISO for 

his reason, especially when dealing with large time steps or when 

he nature of the solution is inherently unstable. The number of 
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Table 2 

Summary of the comparison between model and experiments for snow particles at their final orientation ( Section 2.2, 

Fig. 1 ). The error is evaluated using Eq. (10) . The falling behavior observed in the experiments is also highlighted (S = 

stable, P = periodic, C = chaotic). 

Particle name Re C D experiments Falling behavior C D simulations Error C D % 

158 1.92 S 1.95 1.74 

287 1.42 S 1.52 6.93 

799 1.01 S 1.07 5.49 

1254 0.96 P 0.96 0.74 

1314 0.94 P 0.95 1.16 

averaged absolute error 3.21 

145 2.95 S 3.01 2.11 

542 1.92 S 1.95 1.78 

909 1.69 S 1.66 −1.81 

1322 1.57 S 1.49 −5.30 

averaged absolute error 2.75 

77 1.59 S 1.63 1.05 

1009 0.81 P 0.75 −8.79 

1327 0.81 P 0.74 −9.65 

2049 0.81 P 0.73 −10.60 

averaged absolute error 7.52 

59 2.81 S 3.02 6.95 

251 1.08 P 1.63 33.56 

393 1.05 C 1.61 34.65 

858 1.00 C 1.69 40.63 

1315 1.01 C 1.65 38.68 

averaged absolute error 30.98 

100 1.77 S 1.81 2.18 

297 1.24 S 1.14 −8.79 

475 0.99 S 0.95 −4.30 

878 0.88 S 0.84 −5.10 

averaged absolute error 5.09 

62 1.72 S 1.83 6.11 

184 1.36 P 1.55 12.59 

472 1.37 C 0.97 −40.32 

890 1.37 C 0.92 −48.77 

1385 1.38 C 0.92 −49.74 

averaged absolute error 31.50 

223 1.23 S 1.36 6.73 

646 1.02 S 1.12 8.82 

926 0.96 P 1.00 4.09 

1222 0.94 P 1.00 6.26 

averaged absolute error 6.48 
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uter correctors of the PIMPLE algorithm defines how many times 

he system of equations is solved before it is forced to move onto 

he next time step, regardless of whether that time step has con- 

erged or not. The criterion for time step convergence is defined 

s the absolute tolerance of the solver, which is set to 1 × 10 −8 for

he described model Moukalled et al. (2016) . 

The first part of this work concerns a set of simulations to pre- 

ict the drag coefficient of real snow particles at their final falling 

rientation. To this purpose, instantaneous forces acting on the 

article are calculated and stored at each time step. Once the cal- 

ulation is done, the drag force is averaged over time, considering 

nly the last 10,0 0 0 time steps, out of the total 20,0 0 0 iterations,

o avoid taking into account initial flow instabilities (see Supple- 

entary Material, Figure B). From the average drag force, the drag 

oefficient is evaluated with the following formula: 

 C D 〉 = 

〈 F D 〉 
1 
2 
ρu 

2 ∞ 

A f 

, (4) 

here 〈 C D 〉 and 〈 F D 〉 are the time-averaged drag coefficient and

orce, respectively, and A f is the frontal (or projected) area of the 

now particle in the flow direction. It is directly evaluated by av- 

raging the area ratio A R given in the experimental data set (i.e., 

he ratio between the projected area of the particle and the cross- 

ectional area of a sphere with its diameter equal to the maximum 

imension of the particle ( D max ), in a plane orthogonal to the flow
8 
irection): 

 f = 

(
D max 

2 

)2 

πA R . (5) 

The second set of simulations accounts for when the parti- 

le final orientation is not known a posteriori. In this view, a 

ew approach to estimate the drag coefficient is presented. Firstly, 

our snow particles are selected from the geometries in Fig. 1 to 

est this new approach. Namely, aggregates ( AgCr77 and Ag15P1 ), 

osette ( MR172 ), and capped-column crystals ( CC20Hex2 ) are cho- 

en to include particles that exhibited both periodic and chaotic 

otion during free-fall experiments ( Section 2.1.1 ). Based on the 

TL files of each shape, the principal axes are calculated using the 

rimesh Python library ( Dawson-Haggerty et al., 2019 ). It is then 

ossible to calculate the maximum and the minimum principal 

oment of inertia, from which we obtain two correspondent pro- 

ected areas of the particle. Subsequently, for each case listed in 

able 3 , two different simulations (one for each projected area fac- 

ng the flow direction) are set up and solved. Following the same 

ethodology described above, the time-averaged drag coefficient 

or each case is evaluated: 

 C D, min 〉 = 

〈 F D, min 〉 
1 
2 
ρu 

2 
∞ , min 

A f, min 

, 〈 C D, max 〉 = 

〈 F D, max 〉 
1 
2 
ρu 

2 ∞ ,max A f, max 

, (6) 

n which the subscript max and min stand for the projected areas 

f maximum and minimum principal moment of inertia, respec- 
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Table 3 

Summarized prediction errors and averaged absolute errors for the geometries tested with the mean drag approach. The comparison between final 

orientation models, arithmetic, geometric and harmonic mean and experimental data is also shown. The falling behavior observed in the experiments 

is also highlighted (S = stable, P = periodic, C = chaotic). 

Error [%] 

Particle Reynolds number Falling behavior Final orientation Arithmetic mean Geometric mean Harmonic mean 

158 S 1.74 2.46 1.70 0.94 

799 S 5.49 1.03 0.92 0.81 

1314 P 1.16 1.92 1.92 1.91 

averaged absolute error 2.80 1.81 1.51 1.22 

77 S 1.05 3.86 3.83 3.81 

1009 P −8.79 5.40 5.40 5.39 

2049 P −10.60 −4.24 −4.24 −4.25 

averaged absolute error 6.81 4.50 4.49 4.48 

251 P 33.56 13.94 9.69 5.23 

858 C 40.63 16.10 7.87 −1.16 

1315 C 38.68 12.18 2.62 −7.98 

averaged absolute error 37.76 14.07 6.73 4.79 

472 C −40.32 9.10 4.68 0.05 

890 C −48.77 −4.82 −7.17 −9.56 

1385 C −49.74 −8.47 −10.57 −12.70 

averaged absolute error 46.28 7.47 7.47 7.44 
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ively. After obtaining the drag coefficients, the arithmetic mean 

 D arithm 

= 

〈 C D, min 〉 + 〈 C D, max 〉 
2 

, (7) 

he geometric mean 

 D geom 

= 

2 
√ 〈 C D, min 〉〈 C D, max 〉 , (8) 

nd the harmonic mean 

 D harm 

= 

2 〈 C D, min 〉〈 C D, max 〉 
〈 C D, min 〉 + 〈 C D, max 〉 , (9) 

re evaluated and compared with experimental data. The latter are 

he three most used types of means to estimate the central ten- 

ency (average or mean) of a data set. The arithmetic mean works 

ell with data in an additive (or “linear”) relationship and tends 

o a higher value of the central tendency compared to the geo- 

etric and harmonic means. The geometric (which uses a mul- 

iplicative relationship) is generally employed for non-linear data 

ets because it handles varying proportion with ease. Nonethe- 

ess, it tends to give a mean that is larger than the harmonic for- 

ula, which uses reciprocals and thus leans towards smaller val- 

es in the data set. In both set-ups (final orientation and maxi- 

um/minimum projected areas) the percentage error of the pre- 

iction is assessed (see Table 3 ) against the experimental data as: 

 = 

〈 C D,sim 

〉 − 〈 C D,exp 〉 
〈 C D,sim 

〉 · 100 . (10) 

In the final part of the paper, the particle terminal velocity is 

stimated using the drag coefficient obtained from the mean drag 

pproach. For this purpose, the arithmetic 

 p arithm 

= 

A p, min + A p, max 

2 

, (11) 

he geometric 

 p geom 

= 

2 
√ 

A p, min A p, max , (12) 

nd the harmonic mean 

 p harm 

= 

2 A p, min A p, max 

A p, min + A p, max 
, (13) 
9 
f A p, min and A p, max [m 

2 ] (i.e., the projected areas from the min- 

mum and maximum principal axes of the inertia tensor, re- 

pectively) are calculated. After evaluating the above mentioned 

eans (see Sections 3.3 and 4 ), following Westbrook and Seph- 

on (2017) and McCorquodale and Westbrook (2020) , the settling 

elocity is calculated as: 

 t,sim 

= 

√ 

2 gV 
ρ

ρ f luid C D,harm 

A p 

, (14) 

here g is the gravitational acceleration [m/s 2 ], V is the particle 

olume [m 

3 ], 
ρ is the density difference between the snow crys- 

al and the fluid density [kg/m 

3 ], ρ f luid is the fluid density [kg/m 

3 ], 

 D,harm 

is the harmonic mean of the drag coefficient from Eq. (9) , 

nd A p is the projected area of the particle. A suitable averaged 

rea A p is identified by comparing the calculated terminal veloc- 

ty with the one measured during laboratory experiments for the 

ame set of particles considered to illustrate the mean drag ap- 

roach. The respective error is evaluated as: 

 u t = 

u t,sim 

− u t,exp 

u t,sim 

· 100 . (15) 

It is found that the arithmetic mean ( Eq. (11) ) of the projected 

reas from the eigenvalues of the inertia tensor gives the best pre- 

iction of the particle’s terminal velocity. The results are presented 

n Section 3 and the respective discussion in Section 4 . 

.2.2. Turbulence modeling and validation 

The flow past an object may create turbulence in the bound- 

ry layer and develop a turbulent wake, which generally increases 

he drag exerted by the flow on the body. In the last decades, 

omputational Fluid Dynamics (CFD) has played an important role 

n research related to the study of aerodynamic forces acting on 

omplex-shaped objects. Three main approaches are now available 

or the computation of turbulent flows: Direct Numerical Simula- 

ion (DNS), which provides the most accurate results (no turbu- 

ence model is needed) at the highest computational cost, Large- 

ddy Simulation (LES) and a statistical approach based on the 

eynolds Averaged Navier–Stokes (RANS or URANS for unsteady 

ases) equations ( Pope, 20 0 0; Durbin and Medic, 2007 ). RANS 
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odels remain widely used in many applications, mainly due to 

heir affordable, low comput ational cost. However, they present in- 

rinsic difficulties in describing flow around complex-shaped par- 

icles, especially because large-scale eddy structures are usually 

ominant in the flow and unsteady processes like vortex shed- 

ing may occur. In these situations, LES approaches are becom- 

ng more and more common in the CFD community ( Celik, 2003; 

avidson, 2020 ). Large-Eddy Simulations explicitly solve 3D time- 

ependent Navier-Stokes equations ( Eq. (2) ) at the larger-scale ed- 

ies (resolved grid), while small-scale motions (subgrid), which 

annot be resolved on a given grid, are modeled using a filter that 

plits the domain between the two scales. Since resolving small 

cales is computationally expensive, LES approaches also overcome 

he drawbacks of DNS, providing high accuracy at a lower com- 

utational cost ( Davidson, 2020 ). In recent years, hybrid RANS-LES 

odeling strategies (DES - Detached Eddy Simulation) made their 

ay into fluid dynamics research, in particular for bluff body flows. 

ince LES requires high-resolution grids in near-wall regions, DES 

olves this issue by combining the best of both RANS and LES: 

 RANS (URANS) simulation in the viscosity-dominated boundary 

ayer and a LES in the unsteady separated regions ( Zhang et al., 

019 ). 

Two different LES and a hybrid URANS-LES models are com- 

ared with experimental data ( Section 2.1 ), namely the Smagorin- 

ky model Smagorinsky (1963) , WALE Nicoud and Ducros (1999) , 

nd DDES Spalart et al. (2006) . The latter being an improved ver- 

ion of DES that prevents a too early switch to LES. The DDES 

odel uses the Spalart–Allmaras turbulence closure model for ˜ ν
modified eddy viscosity) for the RANS calculation, described in 

etails in ( Spalart and Allmaras, 1992 ). Moreover, the model also 

ncludes a low Reynolds number correction function in the defini- 

ion of the length scale ( OpenFOAM, 2017; Spalart et al., 2006 ). In

his way, it is possible to cover a much broader range of Reynolds 

umbers and perform a full validation. To validate these meth- 

ds, the aggregate particle AgSt100 is chosen from the given set of 

nowflakes shown in Fig. 1 , in view of the fact that it is the parti-

le with the widest range of Reynolds numbers in the experimen- 

al data ( Section 2.1 and Table 1 ), therefore an extensive validation 

an be carried out. For this, five different Re values are solved and 

he resulting drag coefficient is compared with the experimental 

alue. The error is evaluated using Eq. (10) . The averaged absolute 

rror is 8.20% for the Smagorinsky, 6.98% for the WALE, and 6.48% 

or the DDES, the highest error being for the lowest Reynolds num- 

er ( Re = 38 ), while at Re = 3846 the error reduces consistently in

ll three tested models. Despite small differences among the per- 

ormances, the choice falls on the DDES since it proves to be the 

astest in terms of computational time. The results of the validation 

re presented in Table 1 and Fig. 6 . 

. Results 

The first objective of this work is to predict the drag coeffi- 

ient of complex-shaped snow particles in air (with Reynolds num- 

er range of 50 � Re � 2200 ) when their final orientation in free-

alling motion is known, as described in Section 3.1 . Secondly, we 

ropose a new approach to accurately estimate the drag coefficient 

f snow crystals by employing the same numerical model when 

he final orientation is not know a posteriori ( Section 3.2 ) and we

lso present a formula to predict the particle settling velocity and 

iscuss its accuracy. 

.1. Final orientation model 

In Fig. 7 , the values of the time-averaged drag coefficient ( C D )

s a function of Reynolds number are shown for each simulated 

ase (the brackets 〈〉 are dropped from now on for simplicity). 
10 
he drag coefficients calculated from the computational model are 

ompared with experimental values, displayed with their uncer- 

ainty ( ±7 %). A strong dependency of the prediction accuracy on 

he particle falling motion (steady, periodic or chaotic) is observed: 

or particles that fell steadily for the entire simulated Re range 

 D1007 and CR512 ), the averaged absolute error falls within the 

easurements uncertainty interval ( ±7 %) being 2.75% and 5.09% 

or D1007 and CR512 , respectively. At low Reynolds numbers ( Re � 

50 ), almost all the particles show a steady falling behavior dur- 

ng experiments. For these cases the model prediction errors fall 

gain within the experimental uncertainty. The only exception is 

he rosette crystal MR172 , which fell with a periodic motion al- 

eady at Re = 184 and for which the model slightly overpredicts 

he drag coefficient with an error of 12.59%. At low Reynolds num- 

er, particles with lower area ratio A R (e.g., plate-like particle) 

end to exhibit higher C D , while for Re � 250 this aspect is less

ronounced (except for the plate-like crystal D1007 ), as shown in 

ig. 8 . Fig. 8 (a) depicts the results for Reynolds numbers lower than 

pproximately 250, for which the errors in the drag coefficient es- 

imate fall generally below the experimental uncertainty ( ±7 %). 

A substantial difference in the drag prediction between snow 

articles is instead observable at higher Reynolds numbers 

 Re � 250 ). For aggregates ( AgCr77, Ag15P1 , and AgSt18 ), even if

hese geometries manifest a periodic motion above Re � 10 0 0 

 Section 2.1.1 ), the drag coefficient is still well predicted, with 

he largest absolute error being 10.60% for Ag15P1 at Re = 2049 

 Table 2 ). In contrast, for CC20Hex2 and MR172 , which showed pe- 

iodic/chaotic behavior at moderately high Reynolds numbers, the 

rrors in the drag estimate are much larger. CC20Hex2 displays 

 general overestimation of C D with a largest absolute error of 

0.63% for Re = 858 , while MR172 carries much larger differences 

ith the experimental data and a general underestimation of the 

rag (largest absolute error being 49.74% for Re = 1385 ). The weak- 

ess of the final orientation model in predicting the drag coeffi- 

ient in case of chaotic motion ( CC20Hex2, MR172 ) is clearly visi- 

le in Fig. 8 (b), which also collects the estimated error for all the 

ther cases at Re � 250 . Larger errors are also observed for parti- 

les with area ratio A R � 0.5 ( CC20Hex2 and MR172 ), particularly 

or Re � 250 . In Table 2 , all the computational and experimental

esults are listed for completeness, together with the area ratio val- 

es for each particle. 

The errors for CC20Hex2 increase from 6.95% (comparable to ex- 

erimental uncertainty) to 33.56% between Re = 59 and Re = 251 , 

hich correlates with a radical change in its fall motion. At Re = 

9 , the particle falls steadily with the column element positioned 

orizontally. At Re = 251 , the particle falls unsteadily, oscillating 

eriodically around an orientation where the column is vertical. 

s Re increases further, the motion becomes chaotic, and the er- 

ors become even larger (40.63% at Re = 858 ). Similar behavior 

s evident in the data for MR172 . At Re = 62 , where the particle

alls steadily, the error is only 6.11%. Increasing Re further leads 

o chaotic motions and larger errors (49.74% at Re = 1385 ). Based 

n this evidence, we argue that the large discrepancies between 

odel and experiments, especially at Re � 250 , are ascribable to 

arge-amplitude oscillations during chaotic motion. In these cases, 

n fact, the variation of the frontal area of the particle concerning 

he flow direction is more pronounced. Therefore, the assumption 

hat the orientation we observed when particles fell steadily can 

e considered representative of an “average” orientation for parti- 

les that fall unsteadily, becomes unreliable. As a consequence, the 

nal orientation model is not suitable anymore for cases in which 

he particle falls with a chaotic motion at high Reynolds numbers. 

his is a reason to look for a more general approach that accu- 

ately estimates the drag coefficient of complex-shaped particles, 

s described in Section 3.2 . 
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Fig. 6. Results from the validation (particle AgSt100 ) for the time-averaged drag coefficient prediction ( 〈〉 dropped for simplicity) using two different LES models (Smagorinsky 

and WALE) and a DDES (hybrid URANS-LES) model. The average error for the Smagorinsky, WALE, and DDES approach is 8.20%, 6.98%, and 6.48%, respectively. Laboratory 

data uncertainty is ±7 %. 

Fig. 7. Time-averaged drag coefficient comparison ( 〈〉 dropped for simplicity) between the model and experimental data (uncertainties of experimental data ±7 %). 

Fig. 8. Drag coefficient prediction errors of the model for (a) 50 � Re � 250 and (b) 250 � Re � 2200 . The zero line represents the reference values, i.e., experimental data. 

The dotted lines are the uncertainties in the experimental measurements ( ±7 %). The different colors indicate the area ratio A R for each particle, whose range is given in the 

color bar on the right. 

11 
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Fig. 9. Projected areas corresponding to the maximum (a, c) and minimum (b, d) 

principal moment of inertia of particles Ag15P1 (a, b) and MR172 (c, d). The flow 

direction coincides with the x axis. 
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.2. Drag coefficient estimate from arithmetic, geometric and 

armonic mean 

The second part of this work illustrates a systematic approach 

o evaluate the drag coefficient of irregular particles using our nu- 

erical model, when the final orientation is not known. 

From the eigenvalues of the inertia tensor of an object it is pos- 

ible to identify the maximum and minimum principal moment of 

nertia and their correspondent projected areas (these projected ar- 

as are not necessarily the particle maximum and minimum pro- 

ected areas normal to the flow, among all the possible orienta- 

ions). This calculation was performed on the STL files of the snow 

articles AgCr77, Ag15P1, MR172 and CC20Hex2 . These four particles 

re chosen among all the simulated ones because they are rep- 

esentative of cases in which periodic or chaotic motion was ob- 

erved during experiments, i.e., for which it is more difficult to de- 

ne an unequivocal final orientation. For each particle, only three 

eynolds number are chosen for demonstration purposes, namely 

e = 158 , 799 , 1314 , Re = 77 , 1009 , 2049 , Re = 251 , 858 , 1315 , Re =
72 , 890 , 1385 for AgCr77, Ag15P1, CC20Hex2 , and MR172 , respec-

ively. The projected areas corresponding to the maximum and 

inimum principal moments of inertia of Ag15P1 and MR172 are 

hown in Fig. 9 . A set of two simulations (one for each projected

rea) for each snowflake is thus built for each Reynolds number, 

ccording to Section 2.2 . Pairs of 〈 C D, min 〉 and 〈 C D, max 〉 are acquired

t different flow regimes and the arithmetic, geometric, and har- 

onic means are evaluated using Eqs. (7) –(9) , respectively. 

Fig. 10 depicts the final orientation’s errors and the differ- 

nt means with the experimental data as reference. The large 

ifference between the final orientation model and the different 

eans in the drag coefficient estimate is clearly visible. Aggre- 

ates ( AgCr77 and Ag15P1 ) present a slight improvement in the 

rediction of the drag coefficient with the adoption of the har- 

onic mean. The averaged absolute error goes from 2.80% and 

.81% for the final orientation model to 1.22% and 4.48% for AgCr77 

nd Ag15P1 , respectively (see Table 3 ). For the columnar crystal 

C20Hex2 and the rosette MR172 , the harmonic mean show a sig- 
12 
ificant improvement in the prediction compared to the final ori- 

ntation model. The averaged absolute error drops from 37.76% and 

6.28% to 4.79% and 7.44% for CC20Hex2 and MR172 , respectively. 

This novel approach takes advantage of the eigenvalues of the 

nertia tensor to extract the projected areas corresponding to the 

aximum and minimum principal moment of inertia of a parti- 

le to obtained 〈 C D, min 〉 , 〈 C D, max 〉 . From these values, a mean drag

s calculated using the harmonic mean, that provides a better es- 

imate of C D than the final orientation approach when falling be- 

avior is not stable. Therefore, it can be used to evaluate the drag 

oefficient of complex-shaped particles that fall with both stable 

nd unstable behavior, without requiring a posteriori knowledge of 

he kinematics of the particle. 

.3. Evaluation of snow particles terminal velocity 

For the evaluation of the snowflakes terminal velocities, 

q. (14) is used. A p,arith is identified as the most suitable area by 

omparing the terminal velocity calculated with Eq. (14) for differ- 

nt mean areas ( Eqs. (11) –(13) ) with the settling velocity from ex- 

erimental data, evaluating the errors according to Eq. (15) . The re- 

ults are shown in Table 5 and include the particles considered for 

he mean drag approach. From the table, one can see that for all 

he tested particles, the area measured during experiments gives 

he lowest averaged absolute error for the settling velocity predic- 

ion. However, measuring the area of such particles during their 

ree-fall is a very difficult task and not always achievable. Con- 

equently, the arithmetic mean of the projected areas ( A p,arithm 

) 

s chosen. Compared to the other means, it displays the lowest 

alue for all the geometries except from MR172 , for which the har- 

onic mean offers a slightly better performance. However, since 

or MR172 the difference between the error of A p,harm 

and A p,arithm 

s ≈ 1 %, the arithmetic mean can be employed in Eq. (14) without 

ntroducing larger errors. The errors related to the terminal veloc- 

ty prediction fall within the uncertainties of previous models in 

iterature ( Mitchell and Heymsfield, 2005; Heymsfield and West- 

rook, 2010 ). The choice of the area for the terminal velocity pre- 

iction is further discussed in Section 4 . 

. Discussion 

Experimental and numerical approaches have been employed to 

nvestigate the falling behavior of fairly simple geometries (such 

s disks Auguste et al. (2013) ; Sanjeevi et al. (2018) , cylinders 

oupoint et al. (2019) , planar polygons Esteban et al. (2019) , and 

late-like particles Cheng et al. (2015) ; Nedic et al. (2013) and to 

dentify the causes of the onset of unsteady behavior concerning 

eometrical features of falling objects ( Auguste et al., 2013; Vin- 

ent et al., 2016 ). Although these studies shed some light on the 

alling behavior, they are limited by less complex shapes and nar- 

ower Reynolds number ranges ( Re � 100 ). In this view, the final 

rientation model provides an accurate prediction of the drag co- 

fficient of complex-shaped particles when they fall steadily or 

ith periodic motion. It can also be used to identify a more suit- 

ble shape factor to improve models parametrizations. In this pa- 

er, only the dependency on A R is shown for consistency with the 

ork of McCorquodale and Westbrook (2020) , but further inves- 

igation is needed for what concerns shape factors. As shown in 

ection 3.1 , for A R � 0 . 5 the final orientation model shows a drop

n accuracy, which can be explained by the fact that particles with 

arger A R (such as CC20Hex2 and MR172 ) display unsteady falling 

ehavior already at Re � 100 ( Fig. 2 ). This exposes the model limi-

ations directly associated with the uncertainties in defining a rep- 

esentative “final orientation”, particularly for particles that exhibit 

haotic motion at high Re, which manifests as a dependence of the 
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Fig. 10. Comparison between mean drag coefficients evaluated with arithmetic (blue), geometric (green), and harmonic mean (red), and drag coefficients from simulations 

with the particles at their final orientations (grey). The zero line represents the reference values, i.e., experimental data. The dotted lines are the uncertainties in the 

experimental measurements ( ±7 %). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Comparison between absolute average errors of the drag coefficient estimate from the final orientation model, the 

mean drag approach, and two different models for irregular particles taken from the literature. 

Averaged absolute error (%) 

Particle Final orientation Harmonic mean Hölzer and Sommerfeld (2008) Dioguardi et al. (2018) 

AgCr77 2.80 1.22 48.21 63.27 

Ag15P1 6.81 4.48 58.97 75.56 

CC20Hex2 37.76 4.79 55.04 48.59 

MR172 46.28 7.44 37.29 58.99 

Table 5 

Averaged absolute error of the snow particle settling velocity 

evaluated with different means of the maximum and mini- 

mum projected area from the eigenvalues of the inertia tensor 

( Eqs. (11) –(13) ) and with the projected areas from the experi- 

ments ( A exp ). u t is evaluated using Eq. (14) , while the error ε u t 
with Eq. (15) . 

Settling velocity averaged absolute error (%) 

ε u t A arithm 
ε u t A geom 

ε u t A harm 
ε u t A exp 

AgCr77 23.75 26.54 29.22 18.75 

Ag15P1 24.13 24.38 24.62 22.17 

CC20Hex2 16.36 17.92 29.51 15.24 

MR172 16.34 15.89 15.43 12.66 
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imulation accuracy on the falling behavior for the final orientation 

pproach. 

Extensive work has been done on the drag coefficient for 

pherical particles ( Abraham, 1970; Clift et al., 1978 ), ellipsoids 

seen (1927) ; Sanjeevi et al. (2018) and disks ( Field et al., 1997 ).

or irregular particles, the tendency has always been to pro- 

ose models based on parameters that quantify the particle shape 

 Bagheri and Bonadonna, 2016; Mitchell and Heymsfield, 2005; 

eymsfield and Westbrook, 2010 ). These models perform quite 

ell at low Reynolds numbers ( Re � 100 ), but become less ac- 

urate as Re increases. Furthermore, previously proposed models 

 Hölzer and Sommerfeld, 2008; Dioguardi et al., 2018; Mitchell and 

eymsfield, 2005 ) suffer from the intrinsic difficulty of defining a 

nique shape factor that describes the particle behavior for a large 

ariety of flow regimes. This is also shown in the comparison of 

able 4 , in which the averaged absolute error of the drag coeffi- 

ient (over the Reynolds number range of the mean drag approach) 
13 
valuated with two different models from literature ( Hölzer and 

ommerfeld, 2008; Dioguardi et al., 2018 ) is compared with the 

nal orientation model and the harmonic mean approach. Large 

rrors ( � 50 %) are present for both literature models. This is ex- 

ected to some extent since the geometries considered in those 

orks have simpler shapes than snowflakes and the parametriza- 

ion is based solely upon sphericity. 

To overcome the drawbacks of the final orientation model and 

f parametrizations found in literature, the mean drag approach is 

resented. The latter relies on the projected areas derived from the 

inimum and maximum eigenvalues of the particle inertia tensor. 

s a result, it is not dependent on the final orientation reconstruc- 

ion; thereby, its accuracy is not limited by A R or by the snowflake 

alling behavior. Therefore, this approach can be used to investigate 

he aerodynamic response of ice particles for which no corroborat- 

ng data is available. To test the efficiency and the large applica- 

ility of this approach, the geometries AgCr77, Ag15P1, CC20Hex2 , 

nd MR172 were chosen among the ones that exhibited periodic 

r chaotic motion. The results discussed in Section 3.2 present the 

ean drag approach with the harmonic mean as a reliable alterna- 

ive to predict the drag coefficient of irregular particles, especially 

t high Reynolds numbers, for which the final orientation model 

r other parametrized models perform poorly ( Table 4 ). To better 

llustrate why the mean drag approach works, the projected areas 

 Fig. 11 ) and the drag coefficients ( Fig. 12 ) from the experiments,

he final orientation and the minimum and maximum eigenvalues 

odels are compared. From Fig. 11 , it emerges that for almost all 

articles the projected area of the final orientation is comparable 

o the average projected area measured during experiments, while 

he projected areas of the minimum and the maximum eigenval- 

es slightly (for aggregates) or considerably (for MR172 ) differ from 
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Fig. 11. Comparison between the projected areas of experiments (exp), final orientation model (f.o.), maximum (max) and minimum (min) eigenvalues projected area 

approach for particles (a) CC20Hex2 , (b) AgCr77 , (c) Ag15P1 , and (d) MR172 . For the capped-column CC20Hex2 , the final orientation and the minimum eigenvalue projected 

areas coincide. 

Fig. 12. Comparison between the drag coefficient evaluated from experiments (exp), final orientation model (f.o.), maximum (max) and minimum (min) eigenvalues projected 

area approach for particles (a) CC20Hex2 , (b) AgCr77 , (c) Ag15P1 , and (d) MR172 . For the capped-column CC20Hex2 , the drag of the final orientation model and the minimum 

eigenvalue one coincide, since the particle orientation (and thus the projected areas) are the same. 
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he laboratory measurements. This is not the case for CC20Hex2 , 

or which the areas from the final orientation and the minimum 

igenvalue projected area models coincide. The final orientation of 

ach geometry originates from the assumption that the orientation 

bserved when the particle fall steadily lies within the range of the 

ositions adopted during unsteady falling motion. In Fig. 11 (a), it 

s evident that this assumption is not valid for CC20Hex2 , which 

isplayed chaotic motion for the simulated Re . The final orientation 

odel does not perform well, as the error for CC20Hex2 becomes 
14 
arge at the point where the orientation of the particle changes by 

0 ◦ and becomes unsteady. To find an explanation on why the fi- 

al orientation model is not suitable for MR172 , we need to look 

t Fig. 12 (d). While for this particle the areas do not differ much, 

he drag coefficient of the final orientation seems to be at a local 

inimum. This is probably a consequence of the sharp change in 

he drag coefficient as the particle rotates in the vicinity of its “fi- 

al orientation”. Figs. 11 and 12 show that the mean drag approach 

ives us some rough estimate of the maximum and minimum pos- 
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Table 6 

Errors of the mean areas evaluated with Eqs. (11) –(13) in 

comparison with the projected areas measured from the 

experiments. 

Error (%) 

Re A arithm A geom A harm 

AgCr77 

158 13.18 19.55 25.45 

799 16.96 23.04 28.70 

1314 13.18 19.55 25.45 

averaged absolute error 14.44 20.71 26.53 

Ag15P1 

77 15.53 19.90 24.27 

1009 11.68 16.24 20.81 

2049 12.56 17.09 21.61 

averaged absolute error 13.26 17.74 22.23 

CC20Hex2 

251 7.69 32.31 50.00 

858 0.00 26.67 45.83 

1315 −0.84 26.05 45.38 

averaged absolute error 2.84 28.34 47.07 

MR172 

472 −4.17 −2.31 −0.46 

890 −10.84 −8.87 −6.90 

1385 −12.50 −10.50 −8.50 

averaged absolute error 9.17 7.23 5.29 
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ible drag coefficients for each particle (from all its possible ori- 

ntations), and then by averaging them with the harmonic mean, 

e get closer to the value of its real final orientation. These plots 

lso show that the real particle behavior is much more compli- 

ated because some particles present a strong dependency of the 

rag on their final orientation, whilst for others this influence is 

ess pronounced (aggregates). Table 4 also highlights that the cur- 

ent mean drag approach yields significantly smaller errors in drag 

rediction. In this study, we considered simple shapes, such as the 

endrite plate, as well as more complex, irregular geometries. In 

articular, during experiments we observed that the dendrite par- 

icle exhibits broadly similar kinematics to a circular disc (for ex- 

mple they both orientate with the largest area perpendicular to 

he fall direction) and so we expect the model to be valid also for 

ther simple shapes. 

An estimate of the terminal velocity of the same set of snow 

articles used for the mean drag approach is given by Eq. (14) . 

n the latter, A p is identified as the arithmetic mean of the max- 

mum and minimum projected areas from the eigenvalues of the 

nertia tensor ( Eq. (11) ). As already mentioned in Section 3.3 , the

reas measured during the laboratory tests display the lowest er- 

ors ( Table 5 ). However, measuring the area of complex-shaped ice 

rystals is generally unfeasible. Therefore, among different tested 

eans ( Eqs. (11) –(13) ), the arithmetic mean of the areas is chosen

 Eq. (11) ). This choice yields prediction errors within the range of 

ccuracy of previous models in literature ( Mitchell and Heymsfield, 

005; Heymsfield and Westbrook, 2010 ). To justify our choice, the 

rrors between the projected area measured for each particles dur- 

ng the experiments and the means evaluated using Eqs. (11) –(13) 

re reported in Table 6 . For all the tested particles, the error be-

ween the experimental area and the arithmetic mean of the ar- 

as from the inertia tensor falls below ≈ 17 %, the lowest among 

he compared values. The only particles that shows a different ten- 

ency is MR172 , for which the harmonic mean gives a slightly bet- 

er performance. To explain this, we need to look at Fig. 11 , in

hich it is evident that the experimental area of particle MR172 

ends to be closer to the smallest area extracted from the iner- 

ia tensor, due to the particle chaotic motion. In addition, the har- 

onic mean leans towards the smallest values. This is consistent 

ith the particle’s behavior ( Fig. 11 ) and explains why the har- 

onic mean yields lower errors for this geometry. On the other 
15 
and, the arithmetic mean favors the largest values and can than 

e related to the particle general tendency towards the lowest drag 

oefficient (i.e., the largest projected area). This behavior justifies 

he use of the arithmetic mean of the areas to evaluate the set- 

ling velocity. For MR172 , the averaged absolute error between har- 

onic and arithmetic mean remains � 1 % and hence the latter can 

e considered also for this particle, without introducing large er- 

ors in the settling velocity prediction. 

. Conclusions 

The objective of this work was twofold: to present a DDES 

odel to predict the drag coefficient of complex-shaped snow 

articles in air beyond the Stokes regime when their final ori- 

ntation during free-falling is known, and to describe a system- 

tic approach for the drag estimate when the final orientation is 

nknown a posteriori, employing the same computational set-up 

nd the eigenvalues of the inertia tensor. The model’s potential 

as demonstrated using a set of geometries representing the main 

nowflakes classes to render the model as widely applicable as 

ossible. 

The final orientation model was informed by experiments with 

D-printed analogs falling in a water-glycerin and the simulations 

esults were compared with experimental data to assess the model 

ccuracy. At Re � 250 , almost all the geometries showed steady 

alling motion during laboratory tests, and the model prediction 

rrors fell within the experimental uncertainty ( ±7%). The only ex- 

eption was the rosette crystal ( MR172 ), for which periodic mo- 

ion is already present at Re = 184 , and thus resulted in a slightly

oorer prediction. At moderately high Reynolds numbers ( 250 � 

e � 2200 ), the prediction errors remained below 10% for parti- 

les with steady and periodic motion. However, the model failed 

o predict the drag coefficient for snowflakes with chaotic mo- 

ion, yielding errors larger than ≈ 30%. A general dependency of 

he estimate accuracy on the snow particles’ falling motion was 

bserved, together with a lower accuracy for particles with area 

atio larger than 0.5. The latter dependency still needs to be fur- 

her investigated. The final orientation model provides a reason- 

bly accurate prediction of the drag coefficient of markedly irreg- 

lar particles with steady or periodic falling motion and may help 

ain insights on the particle behavior in relation to the changes in 

he wake structure ( Fernandes et al., 2007 ). The model also elu- 

idates how 3-dimensional geometric features influence the onset 

f unsteady motion Auguste et al. (2013) , which need to be fur- 

her investigated and will be the objectives of future steps of this 

ork. 

To overcome the difficulties in the estimate of the drag coef- 

cient for particles with chaotic falling behavior a novel, system- 

tic approach was proposed. From the eigenvalues of the iner- 

ia tensor of each snow crystal, the projected areas correspond- 

ng to the maximum and minimum principal moment of iner- 

ia were identified and used in the DDES model to obtain pairs 

f drag coefficients matching the Reynolds numbers of the ex- 

eriments. From these pairs of values, the arithmetic, geometric, 

nd harmonic mean were calculated and compared with experi- 

ental values. The harmonic mean gives the most accurate esti- 

ate of the drag coefficient (within the experimental uncertainty) 

or a diverse range of snowflakes geometries and provides much 

etter predictions than empirical correlations based on simpler 

hapes. 

Regarding the particles settling velocity, we found a satisfying 

rediction using Eq. (14) , in which we used the harmonic mean 

f the drag coefficient and the arithmetic mean of the areas ob- 

ained from the eigenvalues of the inertia tensor. The accuracy of 

he proposed formula for the terminal velocity lies within the one 

xhibited by other models in literature. 
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The DDES model presented in this work, combined with the 

ew approach based on the mean drag, is a reliable tool to predict 

he drag coefficient from irregular snow particles falling in air and 

onstitute a less computationally expensive solution than a 6DoF 

olver or DNS codes. This novel approach is also not dependent 

n the final orientation reconstruction and thus can be used to in- 

estigate the drag coefficient of snowflakes for which no extensive 

ata on orientation are available. Additionally, it represents an im- 

ortant step towards a much deeper understanding of the drag de- 

endence on shape parameters and wake structure, and a valuable 

ool to investigate the falling motion of complex-shaped particles 

n different types of industrial processes and environmental phe- 

omena. 
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