Predicting spatial precipitation extremes with deep learning models. A comparison of existing model architectures.

Horton, Pascal; Otero, Noelia (2023). Predicting spatial precipitation extremes with deep learning models. A comparison of existing model architectures. In: EGU General Assembly 2023. 10.5194/egusphere-egu23-7862

[img]
Preview
Text
EGU23-7862-print.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (294kB) | Preview

Item Type:

Conference or Workshop Item (Abstract)

Division/Institute:

08 Faculty of Science > Institute of Geography > Physical Geography > Unit Hydrology
08 Faculty of Science > Institute of Geography > Physical Geography > Unit Impact
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Institute of Geography
08 Faculty of Science > Institute of Geography > Physical Geography

UniBE Contributor:

Horton, Pascal, Otero Felipe, Noelia

Subjects:

500 Science > 550 Earth sciences & geology

Language:

English

Submitter:

Pascal Horton

Date Deposited:

17 Jan 2024 09:28

Last Modified:

02 Apr 2024 10:58

Publisher DOI:

10.5194/egusphere-egu23-7862

BORIS DOI:

10.48350/191701

URI:

https://boris.unibe.ch/id/eprint/191701

Actions (login required)

Edit item Edit item
Provide Feedback