Horton, Pascal; Otero, Noelia (2023). Predicting spatial precipitation extremes with deep learning models. A comparison of existing model architectures. In: EGU General Assembly 2023. 10.5194/egusphere-egu23-7862
|
Text
EGU23-7862-print.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (294kB) | Preview |
Item Type: |
Conference or Workshop Item (Abstract) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Geography > Physical Geography > Unit Hydrology 08 Faculty of Science > Institute of Geography > Physical Geography > Unit Impact 10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) 08 Faculty of Science > Institute of Geography 08 Faculty of Science > Institute of Geography > Physical Geography |
UniBE Contributor: |
Horton, Pascal, Otero Felipe, Noelia |
Subjects: |
500 Science > 550 Earth sciences & geology |
Language: |
English |
Submitter: |
Pascal Horton |
Date Deposited: |
17 Jan 2024 09:28 |
Last Modified: |
02 Apr 2024 10:58 |
Publisher DOI: |
10.5194/egusphere-egu23-7862 |
BORIS DOI: |
10.48350/191701 |
URI: |
https://boris.unibe.ch/id/eprint/191701 |