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Abstract  Single-cell and single-nucleus RNA-sequencing (scRNA-seq and snRNA-seq) technologies 
capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are 
gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes 
across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or 
between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized 
experimental and analytical procedures to support the acquisition of high-quality datasets are still missing. 
In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics 
in plants and propose general guidelines to improve reproducibility, quality, comparability, and 
interpretation, and to make the data readily available to the community in this fast-developing field of 
research. 

© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open 
Access article distributed under the terms of the Creative Commons Attribution License  
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 1
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Introduction: Plant-specific challenges for single-cell approaches 

Plant molecular and developmental biologists are fully embracing single-cell applications. 
Specifically, single-cell RNA-sequencing (scRNA-seq) and single nuclei RNA-sequencing 
(snRNA-seq) are gaining a lot of traction while spatial transcriptomics is emerging as a 
promising complementary technology (Figure 1). Despite an increase in the use and publication 
of plant single-cell experimentation (Figure 1A), it is fair to say that the plant field has, so far, 
not settled on common strategies, protocols, or analysis methods. Given the high complexity of 
the different technologies and sample types (Figure 1B-C), we feel it is important to provide a 
best-practice workflow and guidelines that will help in establishing a collectively accepted 
quality cut-off. These guidelines will aid in the evaluation of experimental approaches and 
computational analyses of single-cell transcriptome data, while also offering solutions to 
commonly observed challenges, thereby improving the reproducibility and comparability of 
experiments in the broader field of plant research. The present co-authors collectively accept 
these guidelines and commit to applying them to their research. We also highlight examples 
where consensus has not yet been achieved between co-authors, which will need to be resolved 
when both the technologies and the field develop further. As one example, single-cell multi-
omics and spatial transcriptomics are, in our opinion, not established enough in the plant field to 
propose any sort of definitive rules at this moment in time.  

To date, we have identified the following eight main challenges in the field of plant single-
cell/nucleus (sc/sn) transcriptomics : 1) deciding on the best single-cell methods to answer a 
specific biological question; 2) understanding experimental variability; 3) biases in protocols and 
platforms; 4) deciding on a sequencing strategy; 5) generating expression matrices and defining 
high-quality cells; 6) constructing cell clusters and mapping them to cell types; 7) trajectory 
inference methods and applications; and (8) documenting and publishing datasets (Figure 2). 
Each of these challenges is discussed in detail in the following sections. 

Challenge 1: Selecting the best approach to answer a specific biological 
question 

Before considering the best experimental approach to obtain single-cell transcriptome data, it is 
important to evaluate the potential benefits of accessing single-cell resolution over bulk RNA-
sequencing (bulk RNA-seq). This assessment depends on the biological system considered and 
the biological questions to answer. Sc/snRNA-seq provides a snapshot of the transcriptome of 
each cell within an organism, offering a high spatiotemporal resolution of the dynamic gene 
regulation involved in plant development, cell differentiation, or responses to biotic and abiotic 
stresses. Single-cell transcriptomics can also offer the required resolution to study cell type 
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specific responses during cellular evolution and adaptation mechanisms among plant species 
(Guillotin et al., 2023). We thus advocate using sc/sn transcriptomic technologies over bulk 
RNA-seq when working with a cellularly complex sample or to capture dynamic transcriptomic 
responses to stimuli. In other cases, the question at hand might be more easily addressed using 
bulk RNA-seq or targeted gene expression experiments. 

scRNA-seq versus snRNA-seq 

A thorough understanding of the different strategies and types of protocols (Figure 1C) is 
essential before one can make an educated decision on which technology will best answer a 
specific biological question. A first example of an important choice is whether to profile the 
transcriptome from isolated nuclei or cells. When doing scRNA-seq, the most popular choice to 
obtain single-cells from a plant organ requires the enzymatic digestion of cell walls and the 
generation of so-called protoplasts. There are a number of disadvantages of using protoplasts 
such as: some tissues (e.g. sclerenchyma) and species (e.g. Sorghum; (Guillotin et al., 2023)) are 
recalcitrant to cell wall digestion; enzymatic digestion affects the transcriptional status of the 
plant cells and could bias the outcome of experiments (Birnbaum et al., 2005); and the large size 
of protoplasts reduces their capture efficiency with most of the currently available 
commercialized single-cell platforms. Nuclei isolation followed by snRNA-seq gained traction in 
plant single-cell transcriptomics as well. However, the recovered data content per nucleus (e.g. 
UMI or genes) is up to ten (for UMIs) and three times (for genes) lower compared to scRNA-seq 
(Farmer et al., 2021; Guillotin et al., 2023). Furthermore, even though the transcriptome 
coverage is similarly efficient between scRNA-seq and snRNA-seq (e.g. 89% of all Arabidopsis 
expressed genes were captured in snRNA-seq data (Farmer et al., 2021; Guillotin et al., 2023)), a 
nuclear and a cellular transcriptome are not equivalent (Lee and Bailey-Serres, 2019; Reynoso et 
al., 2019). For example, differences in abundance and composition between transcripts obtained 
from nuclear versus polyA RNA under hypoxia, point towards nuclear transcript retention or 
enrichment as part of the stress response (Lee and Bailey-Serres, 2019; Reynoso et al., 2019). 
Furthermore, the half-life of the transcripts (estimations range between 12 min to more than 24 
hours in Arabidopsis cells (Narsai et al., 2007)) suggests that the cellular transcriptome is the 
result of the accumulation of the transcript synthesis over time, while the nuclear transcriptome 
is considered to accommodate faster to changes in gene activity. These differences are important 
to consider when selecting and later interpreting a single-cellular versus a nuclear-based 
transcriptome and should be determined by the experimental system or biological question. 
Therefore, when studying e.g. early stress responses of plant cells, a snRNA-seq could achieve 
higher resolution of rapid transcriptome changes, while scRNA-seq might be more informative 
when understanding the biology of a cell type or when studying cells that are enucleated at some 
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stages of development (e.g. sieve element cells in the phloem cell lineage (Miyashima et al., 
2019)). 

Biological replicates in single-cell transcriptomics 

As for all scientific observations, generating robust sc/sn data sets requires performance 
evaluation across multiple, independent biological replicates. We hereby note that a biological 
replicate relies on the independent growth, harvesting and processing of various plant samples. 
Any separation after protoplast or nuclei isolation cannot be classified as biological replicates 
and can only be reported as technical replicates. No standardized metrics are available within the 
community to evaluate reproducibility between replicates. We propose that a correlation 
coefficient of the average gene expressions among all cells would be an informative assay. 
Alternatively, one could compare the frequency of cell types or cell clusters across replicates. As 
such, we advise analyzing cell cluster-specific differentially expressed genes and annotating each 
replicate separately, before merging the replicates and applying batch effect correction. Other 
parameters, e.g. Average Silhouette Width (ASW) and Adjusted Rand Index (ARI), have been 
used to quantify cell type purity assessments after batch effect correction and can also be 
informative to evaluate replicate robustness (Tran et al., 2020).  

From a statistical point of view, independent biological replicates are unconditionally advised 
to increase the significance of biological datasets (Heumos et al., 2023). However, in many 
cases, replicates in sc/snRNA-seq experiments are currently performed to increase the total 
number of cells or nuclei analyzed, while the replicate information and a comparison between 
replicates is not necessarily incorporated in the actual statistical analysis. A statistical 
comparison among biological replicates is thus strongly advised to ensure high data quality and 
to prevent cluster formation based on replicate-specific artefacts. As such, biological replicates 
are imperative to add certainty on the reproducibility of the experiment. However, merely adding 
biological replicates does not remove transcriptional artefacts introduced during sample 
preparation in each of the replicates. One example is the effect of the enzymatic digestion needed 
to generate protoplasts or the procedures to extract nuclei on the transcriptome. Therefore, 
performing replicates by themselves does not provide sufficient confidence in the data to draw 
biological conclusions. To achieve confident biological interpretation, extensive downstream 
experimental validation is always required in the form of e.g. reporter lines, in situ hybridization 
or spatial transcriptomics. 
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Challenge 2: Experimental variability during sample preparation 

While the potential of sc/snRNA-seq for plant research is evident, its applicability depends 
largely on establishing reliable cell and nucleus isolation protocols. These protocols must support 
the generation of high-quality, high-yield nuclear and viable cellular suspensions within a short 
amount of time, and must be compatible with downstream procedures (e.g., limited usage of 
PCR inhibitors like CaCl2). The efficiency of protoplast generation from tomato roots for 
example was increased by optimizing the pH of the enzyme-containing buffer, and in part also 
by using hand sections instead of intact tissues (Omary et al., 2022). Preincubation in L-cysteine 
and sorbitol for roots of Maize, Sorghum and Setaria improves enzymatic cell wall digestion and 
protoplast generation (Ortiz-Ramírez et al., 2018, 2021), while L-Arginine positively influenced 
survival rate of Maize meristem protoplasts (Satterlee et al., 2020). In contrast, nuclei can be 
isolated from fresh (Farmer et al., 2021; Picard et al., 2021; Cervantes-Pérez et al., 2022; Conde 
et al., 2022; Liu et al., 2022b; Sun et al., 2022), frozen (Sunaga-Franze et al., 2021; Neumann et 
al., 2022; Abramson et al., 2022; Li et al., 2023) or fixed (Kao et al., 2021) starting material, 
offering flexibility in terms of sample handling and preparation, while simultaneously securing 
dynamic transcriptional changes upon their rapid fixation. While nuclei isolation seems more 
straightforward to conduct than protoplast isolation, the assessment of nuclei quality prior to 
snRNA-seq library construction remains a difficult task. The leaking and clumping of isolated 
nuclei should be seen as a sign of breakage of the nuclear membrane leading to RNA leakage 
and the generation of low-quality libraries. 

Overall, careful workflow optimization should include the following: 
1) visual assessment of tissue digestion or nuclei release through e.g. the observation of
protoplasts/nuclei produced from all desired cell types, via cell wall digestion of fluorescently-
tagged cells of a particular cell type (if available) as a proxy, or via gene expression
quantification of cell type markers in a pilot experiment.
2) rapid and non-destructive sample clean-up strategies including washing steps (e.g.,
centrifugation, filtration), fluorescence (and image-based) activated cell/nucleus sorting
(FACS/FANS), or microfluidic cell-enrichment devices can increase the population of viable
cells and the purity of cellular/nuclear suspensions. A careful analysis of nuclei shape will help
to identify problems with RNA leakage.
3) careful analysis of cell sizes for protoplasts since most commercial platforms have a cell size
restriction which might introduce a bias in cell capturing and a preference for incorporating
smaller over larger cells (see Challenge 3).
4) quantification of cell viability by manual cell counting (upon staining with trypan blue or
fluorescein diacetate) or with the help of automated cell counters.
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The procedure of cell wall digestion itself (Birnbaum et al., 2005) - as well as external factors 
introduced during sample collection and generation (e.g. growth and harvesting conditions, 
enzyme concentration and activity, temperature and timing) - affect cell viability, cell wall 
digestion efficiency, cell type representation, and the transcriptional profiles of cells. One of the 
most promising developments for reducing experimental biases is the inclusion of a fixation step. 
Until now, scRNA-seq compatible cell fixation protocols have mainly been described in 
mammalian research (Attar et al., 2018; Phan et al., 2021; Wohnhaas et al., 2019; Wang et al., 
2021a), but its application could drastically boost the plant single-cell field by massively 
reducing the effects of external factors during sample processing, including the generation of 
protoplasts. Indeed, protoplast isolation efficiency increased when plant tissues were fixed and 
digested at optimal enzyme activity temperature (Marchant et al., 2022). However, concerns 
about tissue fixation on protoplast shape (Marchant et al., 2022) and the sequencing results have 
been reported, motivated in particular by reduction of cDNA yields and biases towards 3´end-
enrichment (Wang et al., 2021a). Despite these limitations, the potential gains for the field could 
be major, warranting dedicated investments in tissue fixation approaches. 

Challenge 3: Biases and specificities of commercial platforms for plant single-
cell transcriptomic samples 

The most popular commercial platforms and scRNA-seq protocols used for plant samples rely on 
microfluidic droplet-based cell compartmentalization or nanowell-based cell separation (Figure 
1C). Techniques that can be performed by manual handling, such as combinatorial barcoding 
(Cao et al., 2017; Rosenberg et al., 2018), are rapidly expanding in the animal field, but have yet 
to be shown in use for plant samples. The choice of the sample processing method or platform 
must be taken carefully to allow uniform cell size capture rate, resolvability and, if necessary, a 
sample multiplexing option or flexibility towards cell capturing and lysis steps. Droplet-based 
platforms allow fast cell/nucleus processing but offer limited flexibility regarding the cell 
preparation workflow. Also, the level of pressure imposed on the sample when creating the 
emulsion could cause the bursting of cells into the droplet-based platform. Well-based methods 
like SMART-Seq2 (Lopez-Anido et al., 2021) and platforms used with plant samples, such as 
BD Rhapsody (Zong et al., 2022) or iCELL8 (Sunaga-Franze et al., 2021), require longer cell 
processing protocols, but offer more flexibility during the sample processing. However, the 
compatibility of commercial platforms to handle the size and fragility of plant protoplasts is not 
necessarily evaluated. Plant cell sizes typically lie in the range of 10-80 µm, with even larger 
values observed for endoreduplicated cells, which is far above the recommended cell size 
maxima from current technology providers (~40 µm). Furthermore, cell size heterogeneity can 
create cell capture biases, because droplet-based techniques favor smaller cells, while the well 
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sizes in nanowell techniques must be fine-tuned to reduce the possibilities of doublets from 
smaller cells while still allowing capture and processing of larger cells. The consequences could 
be high multiplet rates and/or imbalanced cell type/stage representation. Careful optimization of 
the maximum cell loading capacity, loading speed, cell compartmentalization time and the 
number of washing steps is necessary depending on the platform of choice. Identification of cell 
type or stage capture rates, however, requires in vivo experimental validation by quantification of 
cell types or tracing of developmental cell stages. This validation has been done by comparing 
cell numbers per cell type between scRNA-seq data and cell counting via imaging (Wendrich et 
al., 2020), but it could also be achieved by spiking-in a fixed ratio of cell types using transgenic 
marker lines. 

Furthermore, a detailed plant-specific benchmark study comparing the commercially 
available platforms and kits is urgently needed to evaluate benefits and pitfalls when applied to 
plant samples. Similar benchmark studies using human and mouse cell lines allowed practicality 
and financial comparisons of common methods, while also comparing cell capture rates and 
technical bias across cells with distinct cell properties (Mereu et al., 2020). Ideally, a benchmark 
study should cover numerous species and tissue combinations to allow the establishment of 
quality standards independent of the species or tissue used. A plant-specific benchmark study 
might in addition also focus on comparing the ability to recreate developmental or spatial cell 
states, because most plant single-cell samples offer a chance to also capture and compare 
developmental cell trajectories. Given the sensitive nature of protoplasts, it would also be 
important to address the effect of total sample processing durations, as well as the abundance of 
ambient RNA due to for example protoplast bursting. 

Challenge 4: Establishing an efficient sequencing strategy 

Full-length versus 3´- or 5´-end transcript sequencing 

Two approaches for library preparation are currently used in single-cell methodology, namely 
full-length transcript coverage and 3´or 5´-end transcript coverage. While most reported plant 
single-cell transcriptome datasets today (Figure 1C) were generated using 3´end transcript 
coverage, full-length transcript sequencing (used for example in Lopez-Anido et al., 2021) bares 
huge application potential in plant research, as it can help in improving transcriptome and epi-
transcriptome resources (reviewed in (Shen et al., 2023)) and in providing cell type-selective 
isoform usage (shown for example during neuronal maturation in mouse embryos (Lebrigand et 
al., 2020)).  

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koae003/7564676 by U

niversitaetsbibliothek Bern user on 18 January 2024



8 

Cell number and sequencing depth 

Although cDNA amount and profile after library preparation is used as a proxy for the overall 
quality of the sc/snRNA-seq library, sequencing followed by analysis currently remains the only 
way to fully estimate its quality and biological value. Two major issues that require careful 
consideration during the experimental planning and sample optimization are the number of 
cells/nuclei needed for optimal coverage of the cell type(s) of interest and the aimed sequencing 
depth per cell/nucleus. The number of cells/nucleus in published cell atlases is moving from 
thousands to hundreds of thousands. Increasing numbers is indeed beneficial for predicting novel 
marker genes, because it allows better coverage of rare populations and lowly expressed genes. 
This higher coverage in turn helps to outweigh the bias of differential expression analysis tools 
towards highly expressed genes (Squair et al., 2021) and dataset-specific noise (Fischer and 
Gillis, 2021). However, at what point does a cell atlas fully capture the cellular diversity of its 
samples? The meristematic region of an Arabidopsis root has about 3,000-4,000 cells, meaning 
that a dataset of 100,000 cells sufficiently covers each cell about 20-30 times, assuming that all 
cells are equally represented in the dataset. Alternatively, when a specific cell type is isolated 
from a tissue by upstream cell sorting, an atlas of 2,000 cells could already be saturating. As a 
rule of thumb, when the cell type composition of the tissue of interest is known, the minimum 
number of cells that need to be analyzed can be estimated from the probability to robustly 
capture the rarest cell type(s) (e.g. https://satijalab.org/howmanycells/). For example, to obtain at 
least 10 quiescent center cells (estimated to represent 0.1% of all cells within the Arabidopsis 
root meristem according to (Cartwright et al., 2009; Shahan et al., 2022)) with 95% confidence, 
one would need to profile 15K-20K cells. 

Additionally, the required sequencing depth must be adapted depending on the biological 
question, the tissue complexity, and the sample quality. However, it is recommended that 
optimal coverage is given with one read per cell per gene (Zhang et al., 2020). Alternatively, 
sequencing can be staged by first initiating a shallow sequencing of the library (e.g. up to 10,000 
reads/cell) before deeper sequencing (e.g. aiming for 50,000 reads/cell). Such shallow 
sequencing allows evaluating the performance of cell cluster analysis and annotation and is 
sufficient to capture the entire cell type heterogeneity of the sample (Zhang et al., 2020). Another 
common suggestion for a preliminary sample quality control is to analyze the expression of a 
gene subset related to a biological question (Zhang et al., 2020). Sequencing even less for testing 
the quality of the library is possible but will affect the retrieval of cell types with a lower number 
of transcripts, which might be lost within the background of empty droplets if the sequencing is 
too shallow. The desired final read depth will depend on the goal of the experiment but should 
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ensure sequencing enough cells at a sequencing depth that captures individual events robustly 
(e.g. 50% sequencing saturation (Table 1)). 

When assessing the most cost-effective sc/snRNA-seq technologies, should one profile many 
cells/nuclei but have shallow sequencing or should one profile fewer cells/nuclei but with deeper 
sequencing? In many cases, the ideal scenario will be something in-between assuming that the 
researchers are working on high quality cells/nuclei. Nevertheless, a choice towards either a 
higher number of cells/nuclei or higher sequencing depth can be made depending on the 
biological question, the quality of the biological entities used for the analysis, and the relative 
abundance of each cell type composing the organ. If the aim is to generate an atlas potentially 
uncovering rare cell types, a better strategy would be to profile many cells/nuclei with a lower 
sequencing saturation. However, a minimal depth in sequencing (Table 1) upon maximizing 
cell/nucleus quality is still necessary to ensure that low-abundance transcripts that define rare 
cell types are captured and to saturate the transcriptome of the sample. Validation of high-
throughput technologies in the plant field that enable to access the transcriptomes of hundreds of 
thousands and even up to one million cells or nuclei, combined with the on-going expansion of 
sequencing capabilities and the decrease in sequencing costs, could help to overcome this 
dilemma. If the goal is to do functional gene discovery and generate gene regulatory networks 
(GRN) for example (Ferrari et al., 2022), a high sequencing saturation per cell/nucleus favors 
discovery of low abundance gene transcripts. To achieve this goal, one can select a subset of 
genes related to the biological question and adjust the sequencing depth until at least one read per 
cell for each of those genes is reached (Zhang et al., 2020). In all cases, we recommend 
optimizing cell and nucleus isolation methods to ensure the capture of the largest number of 
transcripts from each biological entity.  

Challenge 5: Generating an expression matrix from high-quality cells/nuclei 

Once mRNA sequence reads are obtained, reads are mapped to the genome and ultimately to 
genes and cells of origin using a reference genome and UMI and cellular barcode information. 
Standard data analysis workflows further include quality control filtering, quantification of gene 
expression in each cell, clustering and visualization of cells based on transcriptome similarity 
(Figure 3). While the recommendations below are given with the intention to standardize sample 
quality parameters within the field (see recommendations in Table 1), we want to highlight that a 
sn/scRNA-seq experiment (with a read depth of 30K reads/nucleus or cell) should typically 
result in the capture of 1000 expressed genes/nucleus or 3000 expressed genes/cell, respectively. 
Furthermore, utilizing universal preprocessing pipelines for single-cell genomics data (e.g., 
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Booeshaghi et al., 2023) can help in streamlining cell quality filtering and enhance data 
reproducibility in the future. 

Read mapping 

Plant genomes in general and crop genomes in particular are poorly annotated compared to e.g. 
human or mouse genomes. Moreover, due to frequent whole genome duplications (Fox et al., 
2020), many plants are polyploid and thus contain multiple similar copies of each gene. 
Structural annotations of genes are especially important for most droplet-based technologies 
using a 3’ capturing strategy to properly map the sequencing reads and to quantify transcript 
abundance. The distribution of the mapped reads on the genome can give an indication about the 
quality of the annotations. Poor mapping efficiency consequently causes gene loss, which can be 
dramatic especially for popular 3´-based single-cell technologies. Even for Arabidopsis scRNA-
seq datasets, mapping rates vary, but should be e.g. > 85% (Table 1). A high percentage of reads 
mapping to intergenic regions (e.g. >20%) can be an indication that either not all genes are 
annotated or that the annotated 3’ UTR regions should be longer. As a note, it is important to 
mention that the sequencing reads generated upon conducting a snRNA-seq experiment should 
be mapped against the exonic and intronic sequences of the annotated transcripts, a reflection of 
the capture of spliced and unspliced transcripts. 

Removal of low-quality cells/nuclei 

After read mapping, low-quality cells/nuclei (e.g. cells/nuclei with low number of UMIs and 
genes) need to be filtered out (see numerical recommendations in Table 1). Impairments in 
applying low-quality cell filtering may increase the noise in the dataset and reduce the accuracy 
in downstream analysis, including cell clustering or erroneous identification of cell types (Figure 
4A-B). General filter parameters will depend on the application and sample type (i.e., cells vs. 
nuclei). For plants it is good practice to exclude cells with high mitochondrial (e.g. >10%) and 
chloroplast (e.g. > 5-10%) reads (Table1). Such cases may indicate cells under stress because of 
perturbations during the sample preparation. These values might need to be adapted when 
studying highly or lowly metabolically active cells, or cells undergoing e.g. programmed cell 
death. If no mitochondria or chloroplast genome is available, plotting the number of genes vs. the 
total UMI count can be used instead to show cells with low data content. The barcode-rank-plot 
(“knee plot”) is a commonly used tool to determine sample quality by ranking all barcodes 
according to their UMI content (Figure 4A). A sample of low quality can be identified if there is 
no clearly defined boundary between barcodes with high UMI content and barcodes with 
significantly lower UMI content (Figure 4C). Similarly, poor cluster separation in a sample that 
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fails to differentiate cell types indicates an insufficient amount of transcript content per 
cell/nuclei.  

Ambient RNA and the presence of empty droplets and doublets – both associated with 
droplet and nanowell-based technologies – can also lead to noise in the expression matrices, 
inaccurate cell clusters, and falsely differentially expressed genes. Therefore, it is important to 
ensure low amount of ambient RNA introduced during sample preparation (e.g., by mixing 
cells/nuclei from multiple species) and to optimize cell loading concentration (Figure 4C). 
Bioinformatic tools (e.g. SoupX (Young and Behjati, 2020) or CellBender (Fleming et al., 2023)) 
can be used to computationally remove transcriptional noise introduced by ambient RNA. 
Experimentally, even though not yet shown suitable for plant single-cell transcriptomics, 
doublets can be detected using antibody (cell hashing, (Stoeckius et al., 2018)) or lipid-tagged 
indices (MULTI-Seq; (McGinnis et al., 2019)) sample multiplexing strategies. Here, doublets are 
identified if the cell-specific barcode is connected to multiple antibody or lipid-tagged indices, 
respectively. Mixing cells/nuclei from multiple species in one sample offers another 
experimental set-up to identify doublets ((Shulse et al., 2019), Figure 4C). In this case the 
doublet is identified due to the cell-specific barcode being linked to multiple species. While an 
experimental set-up that allows doublet identification would be the best practice for identifying 
doublets, it will not help in removing doublets from already existing data sets. Even though 
significant advances have been made in identifying doublets computationally (see benchmark 
study (Xi and Li, 2021)), it remains a major challenge in general and even more in plant sc/sn 
transcriptome analysis due to the presence of endoreduplication. Such polyploid cells will appear 
as outliers when plotting the gene content or UMI/cell, but additional expression quantification 
of ploidy marker genes (if available) allows to distinguish endoreduplicating cells (Wendrich et 
al., 2020). 

Identification of protoplast-induced genes 

In order to exclude that the invasive enzymatic treatments needed to generate protoplasts might 
influence the observed transcriptional status of certain cells or cell populations, the overall 
transcriptome responses induced during these procedures should be determined using bulk RNA-
seq in each experimental set-up (Birnbaum et al., 2005; Brady et al., 2007). Indeed, protoplast 
isolation adds a definite stressing factor to each cell type (Denyer et al., 2019; Wang et al., 
2021b; Xu et al., 2021). Although the absence or presence of protoplast induced genes did not 
alter cell clustering or annotation in Arabidopsis root scRNA-seq data (Denyer et al., 2019), 
these genes should at least be flagged in the dataset to avoid misinterpretation. 
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Challenge 6: Cell cluster identification and annotation 

Data normalization, dimensionality reduction and cell cluster visualization 

Considering the limited number of transcripts per cell, single-cell transcriptomics fail to detect 
transcripts for most genes in a given cell. This sparsity is further enhanced by intrinsic noise 
from stochastic transcript fluctuations, cell-cycle state, and cell heterogeneity among other 
biological factors. As a result, it is necessary to implement scRNA-seq-specific normalization 
and batch correction protocols (see (Luecken and Theis, 2019) for a review on this specifically). 
Clusters of cells (i.e., cells that share similar expression profiles) are constructed using 
community detection algorithms, which control the degree to which similar cells should be 
grouped together or stay separate based on preset parameters. To visualize the data, ‘dimensional 
reduction’ algorithms are applied to the data, typically via PCA, t-SNE or UMAP. However, a 
word of caution is necessary here: whereas PCA involves linear projections, t-SNE and UMAP 
are non-linear transformations introducing significant distortions (Chari and Pachter, 2023). 
Indeed, visualizing a synthetic dataset with tSNE or UMAP revealed that cluster distances and 
locations in discrete and trajectory simulations are inaccurately represented compared to the 
defined distances in the original data (Wu et al., 2018). These results indicate that cluster 
distances or locations cannot be used alone to draw biological conclusions. If different clustering 
outcomes (produced with customized parameters) seem equally plausible, it is appropriate to 
apply the next step - mapping clusters to cell types - to each possibility and then use that extra 
information to decide which clustering makes most sense from a biological point of view.  

Cell cluster annotation 

The annotation of clusters (meaning mapping each cluster to a cell type or state) is facilitated 
using manual or automated cell annotation methods (Figure 5). Manual annotation requires 
previous transcriptome knowledge gained from as many different cell types as possible. Cell type 
marker genes for plant tissues in well-studied species can come from manually curated lists that 
are based on bulk RNA-seq data from purified cell populations (Jin et al., 2022) or from already 
annotated single-cell datasets. However, to date, databases containing this information are rare 
and restricted to few plant species and tissues (e.g. (Jin et al., 2022)). One can appeal to inter-
species correspondences to support the functional annotations of the clusters, assuming that a 
substantial fraction of orthologous genes shares similar cell type transcriptional specificities. For 
instance, if an atlas for another species is available, one can attempt to extend the orthology 
between genes to orthology between cell types. Such an approach has been very successful, 
leading to atlases for instance in rice (Wang et al., 2021b; Li et al., 2023), Medicago truncatula 
(Cervantes-Pérez et al., 2022), Maize, Sorghum and Setaria (Guillotin et al., 2023). However, 
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this approach also has its limitations: genes often exist in multi-gene families rendering the 
orthology mapping ambiguous, and conservation of marker gene/cell type pairs is far from 
perfect (Movahedi et al., 2012). An additional limitation of these approaches is that they require 
multiple marker genes per cluster to ensure proper annotation. 

Another option is so-called label-transfer: transferring cluster labels between existing single-
cell expression atlases (e.g. for roots: https://rootcellatlas.org/, or other organs: 
http://neomorph.salk.edu:9000/) to unlabeled datasets. Common tools used are scmap (Kiselev et 
al., 2018), SingleCellNet (Tan and Cahan, 2019), SingleR (Aran et al., 2019) and Seurat (Stuart 
et al., 2019), which differ in their accuracy and their ability to handle sample- and protocol-
related nested batch effect removal and the presence or absence of cell types in the reference 
atlas or target dataset (Luecken et al., 2022). The advantage of this approach is that already 
published data can be directly re-used. With both automated annotation approaches it is 
important to consult several tools and select one final annotation, for instance using a majority 
rule.  

As an alternative or complementary approach, clusters can be annotated manually. To 
achieve this, marker gene expression of cells can be visualized in a UMAP plot or via a dot plot 
showing cluster specific expression of marker genes. Cell clusters with conflicting annotations or 
no annotation, due to e.g. low quality of the transcriptomic information or capture of 
uncharacterized cell (sub)type or cell transition state, should be marked as “unknown”.  

Refining cell cluster annotation 

Ideally each cluster will be clearly associated with one cell type, using any of the approaches 
described above. However, the current literature often mixes different levels of anatomical 
annotations. The ambiguity between classical anatomical descriptions and the new molecular 
characterizations of these cell types, tissues and structures make it even more challenging to 
navigate among these definitions. Hence, to resolve these ambiguities, multiple hierarchically 
structured annotations can be used in which cells/clusters can be annotated according to e.g. 
broad expression domains, the tissue or the cell type level (Michielsen et al., 2021). Until there is 
a consensus in the community, we recommend to separate the different level of annotations (cell 
type, tissue, cell cycle) to distinct plots. This will avoid ambiguity and misinterpretation of the 
data (Figure 5).  

Validation of cell cluster annotation 

Independent of the annotation approach used, we strongly recommend experimentally validating 
the main annotations by e.g. generating corresponding reporters, performing RNA in situ 
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hybridizations or complementing the data with spatial transcriptomics. This independent 
experimental approach is the only way to assess if differential gene expression observed in a 
high-throughput single-cell experiment is relevant in vivo, or an artefact introduced by one of the 
many steps, e.g. protoplasting. 

Beyond these more classical approaches, spatial transcriptomics can be used to support the 
annotation of clusters identified in plant sc/snRNA-seq datasets (Guillotin et al., 2023; Lee et al., 
2023; Nobori et al., 2023). The technologies that allow probing tissue gene expression and 
simultaneously retaining its spatial location can be divided into two main categories: targeted 
and untargeted. The division into those two categories is based on the type of approach applied 
to analyze the tissue gene expression information. Specifically, targeted methods (i.e., in situ 
sequencing (ISS) (Ke et al., 2013; Laureyns et al., 2021), MERFISH (Moffitt et al., 2016; Lee et 
al., 2023; Nobori et al., 2023), Xenium (Ke et al., 2013; Lee et al., 2015; Janesick et al., 2022; 
Liu et al., 2022a), NanoString CosMx (He et al., 2022), Molecular Cartography (Groiss et al., 
2021; Guillotin et al., 2023; Yang et al., 2023) to list a few) require a priori knowledge on which 
genes to study, since these approaches use gene-specific probes to fluorescently visualize and 
count the gene transcripts of interest in the tissue. In contrast, untargeted methods (e.g. Visium 
(Giacomello et al., 2017; Liu et al., 2022a, 2022b; Peirats-Llobet et al., 2023), DBiT-Seq (Liu et 
al., 2020), Slide-seq v2/Curio (Stickels et al., 2021; Lee et al., 2023) and Stereo-seq (Xia et al., 
2022)) leverage a localized capture of polyadenylated transcripts, thus allowing to obtain 2D 
whole transcriptome maps. Both targeted and untargeted approaches can aid in determining the 
spatial location of specific cell types or stages of interest (e.g. indeterminate and determinate 
SAM cells in Maize, defined by their expression levels of PLASTOCHRON1 (Laureyns et al., 
2021)), annotate cluster identities obtained in sc/snRNA-seq experiments and/or validate marker 
genes (Guillotin et al., 2023; Lee et al., 2023; Nobori et al., 2023). As such, spatial 
transcriptomics and sc/snRNA-seq are complementary technologies for obtaining high resolution 
spatiotemporal expression data. 

Challenge 7: Application of trajectory inference in plant single-cell 
transcriptomics 

Trajectory inference can predict developmental or stress-response trajectories in sc/snRNA-seq 
datasets, allowing one to pinpoint e.g. cell cycle transitions or bifurcations when new specific 
cell identities branch off from another lineage. While trajectory interference is a very promising 
tool to identify novel biological phenomena and questions, it is important to understand that the 
pseudotemporal ordering of cells along a trajectory is purely based on transcriptome similarities, 
meaning that a sufficient, unbiased sampling of cells is required, as well as prior knowledge to 
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assign a developmental direction (see (Tritschler et al., 2019) for general recommendations). 
Furthermore, no conclusions about the spatial organization can be drawn, and it is advised to 
confirm and complement the trajectory output with other methods. Multiple trajectory 
interference methodologies have been developed, benchmarked and used in the animal field 
(Saelens et al., 2019), but they show special promise in plants because plants have many 
continuous developmental programs and plant cells have remarkable capabilities for 
dedifferentiation and adaptation. Trajectory analysis gave significant insight into recreating cell 
(type)-specific transcriptional events during plant developmental processes, such as lateral root 
development (Serrano-Ron et al., 2021), stomata development (Kim et al., 2023), root hair 
(Denyer et al., 2019; Shulse et al., 2019), pistil (Li et al., 2023) or phloem development (Roszak 
et al., 2021; Otero et al., 2022). For example, when combined with live-imaging, trajectory-
predicted expression gradients and cell type specific transcriptional networks allowed a complete 
reconstruction of the developmental process and a precise, cell-by-cell linage tracing during 
protophloem development (Roszak et al., 2021). An interesting computational analysis that can 
be applied to verify predicted trajectories in plant tissues is making use of the ploidy increase in 
plant cells as they mature from meristematic cells with 2C/4C content into a more differentiated 
stage, marked by 8C/16C or higher content. In Arabidopsis root tissues, these ploidy states have 
been linked to specific markers, leading to predictions of the ploidy status of each individual cell. 
This increase in ploidy level allows to pinpoint or validate the more meristematic cells with low 
ploidy levels and the more differentiated cells in a sc/snRNA-seq dataset with higher ploidy 
levels (Bhosale et al., 2018; Wendrich et al., 2020; Shahan et al., 2022). 

Challenge 8: Documentation and publication of plant single-cell data sets 

Recent advances in single-cell omics technologies in plants have enabled insights into diverse 
aspects of physiology and development and have been the centerpiece of a growing number of 
elegant studies. However, there is additional potential for single-cell resources through their re-
use in integrative meta-analyses (showcased e.g. in (Leote et al., 2022)). The multiple 
applications would increase their power and depth through greater numbers of cells, a more 
comprehensive assessment of biological variation, and enhanced enrichment for different cell 
types or states that are targeted by individual studies. Popular methods enabled within software 
packages (e.g. Seurat, Monocle, Scanpy, Harmony, etc.) (Wolf et al., 2018; Korsunsky et al., 
2019; Van den Berge et al., 2020; Hao et al., 2021) have streamlined the process of stitching 
datasets together across samples, studies, experimental platforms, even across tissues and 
species, allowing for a more expansive use of single-cell data for describing and understanding 
biological organization across scales. 
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To make optimal use of the generated data in the plant field, there is an urgent need for 
published single-cell data and their associated metadata to be more easily accessible and usable. 
First steps towards establishing a suitable infrastructure that allows data storage and comparison 
have been taken within the framework of the Plant Cell Atlas (Fahlgren et al., 2023). To a large 
extent, this FAIR (Findable, Accessible, Interoperable, Reproducible) principle has not been an 
issue for raw single-cell data. Unprocessed FASTQ files are deposited routinely through major 
data portals, such as the National Center for Biotechnology Information Short Read Archive 
(NCBI SRA; http://www.ncbi.nlm.nih.gov/sra), and accessibility to raw data is usually mandated 
by journals, funding agencies, and institutions. In most cases, well-indexed raw data is available 
and cited in journals. However, care must be taken for single-cell data generated through popular 
platforms in that only reads from the paired-end sequencing strategy, as well as indexed and/or 
UMI FASTQ must be deposited. These genomic reads alone are insufficient for reconstructing 
the single-cell counts matrix necessary for nearly all analysis steps. Processed data should also 
be stored in publicly accessible repositories such as the NCBI Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo). Processed data includes the cell/gene counts matrix at 
minimum, but can also include more complex data objects such as those generated by the Seurat 
(R) (Hao et al., 2021) or AnnData (python) (Wolf et al., 2018) packages. The EBI Single-cell 
Expression Atlas is another repository that will accept processed count matrices and allows for 
deposition of cell metadata (see below). 

Less prevalent is the public accessibility of metadata associated with single-cell studies. This 
metadata takes several forms: 1) experimental metadata describing how samples were treated, 
what tissues were harvested, how the samples were processed, and what platforms/versions 
single-cell sequencing was performed on them; and 2) imputed metadata describing attributes of 
cells defined by downstream analysis of the raw data, including the cell’s identifier (usually a 
sequence barcode), the number of distinct genes detected, total transcripts detected, assigned cell 
type or cluster number, or other features that are described in a study but not immediately 
available from the raw data. Experimental metadata, including protocols used to generate 
samples, should be well-documented in the manuscript that presents them, and we encourage 
depositing the protocol in a public repository. Protocols.io is emerging as a standard for this (see 
e.g. the repository for the Plant Cell Atlas; https://www.protocols.io/workspaces/plant-cell-atlas), 
and detailed sample information should go along with the raw data when submitting to a 
repository like GEO/SRA. Imputed metadata can be provided along with the raw data in the 
NCBI GEO as a simple machine-readable table (.csv or .tsv). All forms of metadata are vitally 
important for integrative analysis, as it is difficult, if not impossible, to recreate exactly the 
analysis steps performed from a published study to replicate results. In Table 1, we have listed 
important metadata parameters which should be accompanying all publications using sc/snRNA-
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seq data to ensure transparency in data quality and will allow for a better interpretation of the 
results and their use in larger meta-analyses. Although it is challenging to give an exact number 
for these parameters due to the vast differences in experimental systems, species, tissues, and 
technologies, we do attempt to provide a range based on the collective author’s experience in 
processing and analyzing multiple species and organs to guide the less experienced user. An 
empty version of this table can be downloaded as Table S1 and freely used for publication. All 
co-authors collectively commit to start using this table in all publications. 

Finally, analysis scripts, software environments, and (ideally) visualization portals should be 
made publicly available on established repositories/portals. Where possible, a well-documented 
code can be stored in dedicated repositories. Analysis environments should at minimum be well-
documented (with versions specified for all software packages used for analysis).  

Many of these tools are only valid for single-cell transcriptomic or chromatin accessibility 
methods that use DNA sequence as an output and are thus incompatible with other data 
modalities such as proteomics or metabolomics. While these data types are outside the scope of 
this review, they too should adhere to FAIR principles (Wilkinson et al., 2016) to ensure that 
they can be integrated with other datasets when the computational infrastructure develops. These 
data management tools are also not guaranteed to be future-proof. New technologies may arise 
that will render existing datasets/tools obsolete. Thus, it is imperative that, as the field evolves, 
we do not forget about legacy data, and ensure that it is preserved in a way that will be useful 
before this becomes impossible. 

Conclusion and Outlook 

Even for more advanced users, it is challenging to keep up with the rapidly evolving field of 
sc/snRNA-seq. Continuous advancements are not limited to the actual technology, but also 
include the choice of which technology to use for a specific problem, which method to use to 
isolate high-quality cells or nuclei, and how to analyze, compare and store these vast amounts of 
data. In this commentary, we discuss recommendations regarding data generation, analysis, 
storage and documentation to ensure transparency in publication and optimal use of the 
generated data across experiments, tissues, species and laboratories. We collectively commit to 
following the guidelines and recommendations (Table 1). Future research and method 
maturation will allow us to fine-tune and expand these guidelines and recommendations. 

Supplemental Material

Supplemental Table S1. Necessary reported information to allow evaluation and repetition of a 
plant single cell/nucleus experiment.
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Figure 1. Overview of plant single-cell and single-nuclei experiments. 
A. Number of publications describing sc/snRNA-seq data in the plant field per year from 2019 until 2022.
B. Distribution of species used in these papers (n:46). C. Overview of the different single-cell/nucleus
technologies and their usage in the plant field. Example references used: a. (Farmer et al., 2021; Cervantes-
Pérez et al., 2022; Conde et al., 2022; Neumann et al., 2022; Sun et al., 2022; Liu et al., 2022b; Li et al.,
2023; Guillotin et al., 2023) ;b. (Tian et al., 2020; Marand et al., 2021); c. (Wendrich et al., 2020; Graeff et
al., 2021; Lopez-Anido et al., 2021; Ortiz-Ramírez et al., 2021; Wang et al., 2021b; Apelt et al., 2022; Otero
et al., 2022; Kim et al., 2023); d. (Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse
et al., 2019; Turco et al., 2019; Zhang et al., 2019; Satterlee et al., 2020; Bezrutczyk et al., 2021; Chen et
al., 2021; Gala et al., 2021; Kim et al., 2021; Liu et al., 2021; Ma et al., 2021; Yang et al., 2021; Zhang et
al., 2021a, 2021b; Li et al., 2022; Shahan et al., 2022; Tao et al., 2022); e. (Kao et al., 2021; Picard et al.,
2021; Sunaga-Franze et al., 2021; Abramson et al., 2022; Li et al., 2023); f. none; g. (Efroni et al., 2016;
Lopez-Anido et al., 2021; Roszak et al., 2021; Serrano-Ron et al., 2021; Omary et al., 2022); h. (Zong et
al., 2022); and i. (Nelms and Walbot, 2019; Song et al., 2020; Xie et al., 2022).
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Figure 2. Challenges in plant single-cell and single-nuclei transcriptomics. 
Overview of the different steps of performing sc/snRNA-seq in plant samples and summary of how the 
most important challenges discussed here influence this flow-chart. 
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Figure 3. Workflow for sc/snRNA-seq data analysis. 

Figure 4. Overview of common problems in sc/snRNA-seq analysis and possible solutions. 
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Figure 5. Cluster annotation and appropriate labels. A common technique to represent single-cell RNA-
seq data requires mapping of each cell´s transcriptome to a low (typically two-) dimensional domain (e.g. 
tSNE or UMAP), after which highly similar cells group together into initially unannotated clusters. 
Annotating cells to a cell type or developmental stage is important for further interpretation of transcriptome 
signatures. Traditional, manual annotation methods screen differentially expressed genes within each 
cluster for the presence of individual marker genes or by transferring knowledge on cluster annotation from 
a reference data set to an unannotated data set (reviewed in (Clarke et al., 2021)). Without prior knowledge 
of marker genes and reference data sets, automated annotation methods (e.g. eager, lazy and marker 
learning methods (Xie et al., 2021)) can aid in assigning labels based on comparing cell cluster-specific 
genes and their biological functions. Cells and clusters that cannot be annotated with high confidence to 
(only) one cell type must be analyzed carefully to determine if they represent a mix of sub-cell types and/or 
cell states. Although there is currently no standardized definition of a “cell type” or a “cell state” (discussed 
in more detail in (Amini et al., 2023)), it has been proposed that a cluster with homogenous marker gene 
expression among all cells likely represent a cell type, while expression gradients among the cells within a 
cluster represent cell states (Clarke et al. 2021). However, as these definitions are still evolving, caution 
should be taken to not mix different anatomical levels (cell types, tissues or organs) and cellular processes 
(e.g. cell division, cell cycle) within the same visual representation. To avoid confusion, we recommend 
using multiple figures with different levels of labels (e.g. separate cell types, cell division states, tissues and 
so on). 
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Table 1. Necessary reported information to allow evaluation and repetition of a plant single-cell/nucleus experiment. A 
downloadable empty version for use in publications can be found as Supplemental Table S1. If numerical values deviate from the 
recommended numbers provided below, an explanation should be provided. The numerical values in this table are derived from 
available studies in plants, most of which originated from Arabidopsis. 

  Details Recommendations 

Biological 
material 

Species  e.g. Arabidopsis thaliana, Zea mays 

  Accession e.g. Col-0 

  Genotype e.g. WT or mutant background 

  Tissue type e.g. root, leaf, stem, seed 

  Detailed growth conditions e.g. temperature, light conditions, medium etc. 

  Harvest conditions e.g. age of plants, time of day, amount harvested 

Sample 
preparation 

Isolation protocol  Short description of the way the sample was isolated  

  Tissue dissection  e.g. razor blades, needles, tissue homogenizer 

  Fixation Short description of the way the sample was fixed if this was done 

  Cell/nuclei enrichment  e.g. sucrose gradient, FACS (incl. model, nozzle size & temperature) 

  Total sample preparation time For cells: <90 min for Arabidopsis roots (from material harvest to cell loading)*  
*Duration may increase depending on starting material and time needed for optimal tissue digestion  
For nuclei: 30-60 min (depending whether a nuclei enrichment step is included) 

  Estimated cell/nuclei number 
loaded 

An estimation of the amount of cells or nuclei loaded, based on the cell/nuclei concentration and volume 
that was loaded 

  Instrument/Method/Kit e.g. 10X Genomics 3’ v3.1, BD Rhapsody WTA 

  Cell viability test For cells: Trypan blue, fluorescein diacetate, calcein, propidium iodide, 4´,6-Diamidino-2-phenylindol  
For nuclei: Not applicable 

Libraries Library construction Protocol and revision/version that was followed, e.g. CG000204 Rev D for 3’ v3.1 

  Amplification method e.g. number of PCR cycles used for cDNA amplification ACCEPTED M
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  End bias e.g. 3´end mainly; excess of rRNA or TSO sequences 

Sequence 
results 

Instrument/method e.g. NovaSeq, NextSeq, ONT, DNBSEQ  

  Library layout/paired-end Consider to use standardized library structures (Booeshaghi et al., 2023)  

  N° sequenced reads 20,000-50,000/cell for RNA or more 
20,000-40,000/nucleus for RNA or more 

Raw data Reference genome Link to Ensembl Plant fasta file, JGI, NCBI, PLAZA 

  Annotation version If custom annotation, also include .gtf/.gff/.gff3 files 

  Mapping method (incl. software, 
customized settings) 

e.g. STAR (cellranger) 

  Mapping efficiency >85% for Arabidopsis* 
* value may be lower in other species 

  Sequencing saturation >50% 

  Estimation of ambient RNA Fraction of reads in cells > 60% for scRNA-seq 
Fraction of reads in cells > 50% for snRNA-seq 

 Imputation method and settings If relevant 

Processed 
data 

N° captured cells/nuclei e.g. 60% of estimated number 

  N° high quality cells/nuclei  e.g. 20% of estimated number 

  Filter criteria: % mitochondrial 
reads/cell or nucleus 

<10% for scRNA-seq* 
close to 0% for snRNA-seq* 
*value may deviate depending on biological context  

  Filter criteria: % chloroplast 
reads/cell or nucleus 

<5-10% for scRNA-seq* 
close to 0% for snRNA-seq* 
*values may be higher depending on biological context 

  Filter criteria: 
Minimum N° UMI/cell or nucleus 

 >1000 for scRNA-seq 
 >400 for snRNA-seq 

  N° total detected transcripts Dependent on the species but e.g. 60% of total number of transcripts in the annotated genome 

  Doublet rate Estimates according to 10X Genomics user guide based on number of loaded cells/nuclei 
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  Replicate comparisons Provide coefficient correlation of the most variable genes or cluster-specific genes between independent 
replicates or compare pseudo-bulk from sc/snRNA-seq vs. bulk RNA-seq 

  Batch correction method for 
merging (incl. reasoning for batch 
correction) 

e.g. Seurat, Harmony 

  Additional processing  e.g. removal of protoplast induced genes, cell cycle regression, noise (ambient RNA) removal, cluster 
membership bias between replicates, removal of low quality clusters 

Validation Method of automatic annotation 
of clusters  

e.g. Label transfer, spatial transcriptomics 

  Method of manual annotation 
(markers, gene function info) 

e.g. Marker genes, orthologous, correlation with bulk RNA-seq and microarray data; Index of Cell Identity 
calculation 

  Verification in planta (e.g. 
Number of markers used for 
validation) 

e.g. Spatial transcriptomics; RNA in situ hybridization; promoter fusions 

Data 
availability 

Analysis scripts & codes (GitHub) If relevant 

 
Excel Tables DEG for each 
cluster 

 e.g. Lists for each cell type/developmental stage from FindMarkers (Seurat) 

 
Objects/count matrix in repository 
(which one, where?) 

e.g. use NCBI GEO to store count matrices and Seurat object 

 
On-line tool/browser URL  List the URL if relevant 

 
Cell-level metadata table Include cell type annotations for each cell barcode 

Additional additional comments from the 
authors 

e.g. annotation/counting of rRNA, allow for rRNA estimation, consideration of intronic reads  
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