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Data‑driven models 
for the prediction of coronary 
atherosclerotic plaque  
progression/regression
Carlos A. Bulant 1,2, Gustavo A. Boroni 1,2, Ronald Bass 3, Lorenz Räber 4, Pedro A. Lemos 5,6, 
Héctor M. García‑García 3,7* & Pablo J. Blanco 8,9*

Coronary artery disease is defined by the existence of atherosclerotic plaque on the arterial wall, 
which can cause blood flow impairment, or plaque rupture, and ultimately lead to myocardial 
ischemia. Intravascular ultrasound (IVUS) imaging can provide a detailed characterization of lumen 
and vessel features, and so plaque burden, in coronary vessels. Prediction of the regions in a vascular 
segment where plaque burden can either increase (progression) or decrease (regression) following a 
certain therapy, has remained an elusive major milestone in cardiology. Studies like IBIS-4 showed 
an association between plaque burden regression and high-intensity rosuvastatin therapy over 13 
months. Nevertheless, it has not been possible to predict if a patient would respond in a favorable/
adverse fashion to such a treatment. This work aims to (i) Develop a framework that processes lumen 
and vessel cross-sectional contours and extracts geometric descriptors from baseline and follow-up 
IVUS pullbacks; and to (ii) Develop, train, and validate a machine learning model based on baseline/
follow-up IVUS datasets that predicts future percent of atheroma volume changes in coronary 
vascular segments using only baseline information, i.e. geometric features and clinical data. This is a 
post hoc analysis, revisiting the IBIS-4 study. We employed 140 arteries, from 81 patients, for which 
expert delineation of lumen and vessel contours were available at baseline and 13-month follow-up. 
Contour data from baseline and follow-up pullbacks were co-registered and then processed to extract 
several frame-wise features, e.g. areas, plaque burden, eccentricity, etc. Each pullback was divided 
into regions of interest (ROIs), following different criteria. Frame-wise features were condensed 
into region-wise markers using tools from statistics, signal processing, and information theory. 
Finally, a stratified 5-fold cross-validation strategy (20 repetitions) was used to train/validate an 
XGBoost regression models. A feature selection method before the model training was also applied. 
When the models were trained/validated on ROI defined by the difference between follow-up and 
baseline plaque burden, the average accuracy and Mathews correlation coefficient were 0.70 and 0.41 
respectively. Using a ROI partition criterion based only on the baseline’s plaque burden resulted in 
averages of 0.60 accuracy and 0.23 Mathews correlation coefficient. An XGBoost model was capable of 
predicting plaque progression/regression changes in coronary vascular segments of patients treated 
with rosuvastatin therapy in 13 months. The proposed method, first of its kind, successfully managed 
to address the problem of stratification of patients at risk of coronary plaque progression, using IVUS 
images and standard patient clinical data.
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Coronary artery disease (CAD) is defined by atherosclerotic plaque deposition on the arterial wall, which can 
trigger blood flow impairment and ultimately lead to myocardial ischemia. Predicting the regions of the artery 
that will suffer plaque burden increase (progression) or decrease (regression) remains an elusive major milestone 
in cardiology. For the past three decades, the primary tool to invasively assess atherosclerotic plaque has been 
intravascular ultrasound (IVUS) imaging, currently considered the gold standard for plaque quantification. A 
recent review1 showed a minor effect on plaque regression in patients with CAD treated with various therapeutic 
strategies that modify systemic markers such as LDL, HDL, and/or blood pressure. In such a study, the impor-
tance of IVUS imaging as a tool to guide treatment based on plaque burden and composition is highlighted under 
the hypothesis that plaque evolution could be predicted from such images. The IBIS-4 clinical trial2 is one such 
study, which showed that high-intensity rosuvastatin therapy over 13 months was associated with regression of 
coronary atherosclerosis in non-infarct-related arteries.

Such landmark studies help strengthen the body of evidence about the efficacy of drugs, create clinical guide-
lines, and establish consensus on standard treatments. Nevertheless, they are not suitable for a patient-specific risk 
prediction at the most granular scale, i.e. to discover those regions of the compromised artery that are susceptible 
to plaque progression or regression. Such fine-scale characterization could provide a complementary paradigm 
for treatment and ultimately indicate localized preventive interventions.

From now on, we distinguish scientific contributions to the field into two categories, descriptive and predictive. 
The former study type usually presents results of widespread classical methods from medical statistics, such as 
descriptive statistics and exploratory data analysis, or logistic regression models to investigate the association 
between plaque progression-related end-points at follow-up and baseline variables. In turn, studies in the second 
category, shift the focus from descriptive statistics to patient-, or artery-specific predictive models. Most of these 
predictive models fall into the family of machine learning models, such as support vector machines or random 
forests. Moreover, the outcomes delivered by these predictive models are assessed using classification metrics 
such as accuracy, sensitivity, specificity, and so on.

Remarkably, while the prediction of plaque evolution is a major milestone, only a small number of studies 
have moved from descriptive statistics to predictive models in the context of coronary artery disease. Moreover, in 
such studies, the model development relies on a small number of patients, limiting the models’ predictive power. 
Noteworthy, the inputs of the models are based on morphological and biomechanical features, by integrating 
image-based analysis and computational simulations to estimate hemodynamic- and mechanical-derived indexes 
such as wall shear stress, and plaque stress, among others.

Comprehensive reviews related to image-based computational modeling of human carotid and coronary 
plaque, as well as grand challenges and uncertainties in the field to develop predictive patient screening tools, can 
be found in3,4. Although several models have been proposed to capture the many factors theoretically related to 
plaque formation and evolution, as model complexity grows, the number of patients drastically decreases, even 
to the point of a single case of study. The reader is referred to5, for a review of the literature focused on descriptive 
and predictive studies on coronary plaque evolution. Most predictive studies incorporate heavy image processing 
to extract features and generate computational models of the arteries for blood flow-, wall mechanics-, species 
transport-, and even mass transfer simulations.

To the best of our knowledge, there is a handful of predictive publications, summarized in a table in the sup-
plementary material. It is essential to point out that they all share a joint core group of authors, who proposed a 
computational framework that uses morphological measures from images and biomechanical indexes estimated 
by fluid-dynamics/mechanical simulations6–10. Although morphological features require simple image segmen-
tation and processing techniques, some of them require virtual-histology-IVUS, optical coherent tomography 
(OCT), or even 3D quantitative coronary angiography (3DQCA) to compute the features. Moreover, on top of 
these more sophisticated protocols, assumptions about model parameters, and boundary conditions are also 
needed to perform computational simulation for calculating the biomechanical features. Regarding the end-
point, always at the frame level, these studies have employed changes in lumen-, plaque-area, plaque burden, or 
even indexes for plaque vulnerability and risk (proposed by the same research group). In terms of classification 
models, they used support vector machines, random forest, discriminant analysis, and generalized linear logisti-
cal regression models, using five-fold cross-validation (at the frame level and typically without repetition), or 
out-of-bag for random forest methods.

In this work, we propose a predictive machine learning model to estimate the change in the percent of 
atheroma volume ( �PAV ) as the end-point, using baseline lumen and vessel contours from IVUS images and 
patient data, e.g. age, gender, body mass index, etc. Predictions are performed at a region-wise level instead of 
frame-wisely. We develop a model to estimate �PAV based on an XGBoost regressor. Data is split into training/
test groups, and we employ a five-fold cross-validation (at the patient level) with 20 repetitions to assess model 
performance. Model input consists of morphological features extracted from IVUS lumen and vessel contours. 
Note that the change in percent atheroma volume is the gold standard in terms of plaque quantification and 
assessments from the clinical point of view. The proposed model is developed with a subset of the IBIS-4 data 
set, spanning 140 arteries from 81 patients, becoming the largest data set ever used for plaque progression/
regression prediction models.

Materials and methods.
Database
The reader is redirected to the seminal paper2 for details regarding the study design behind the IBIS-4 trial, image 
acquisition procedures, and population demographics. The IBIS-4 study is part of the NCT00962416 clinical 
trial11, and was published in 2014. All the patients provided written informed consent, the study was carried 
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out in compliance with all guidelines and regulations, and the study was approved by the ethics committee and 
review boards of the Inselspital, University Hospital Bern (Bern, Switzerland), and all participating centers.

A 20-MHz ultrasound catheter (Eagle Eye, Volcano Cooperation, Rancho Cordova, CA) was used, at a speed 
of 0.5 mm/s. Images were acquired at 30 frames per second, meaning that frame spacing is 1/60 mm . Baseline 
(BL) and Follow-up (FU) pullbacks were acquired 13 months apart. For each (BL, FU) pullback pair, the largest 
common region available was assessed using dedicated software between two anatomical landmarks (e.g. distal: 
side branch, proximal: LM bifurcation or ostium of the RCA). Those common matching frames that were identi-
fied were used to manually identify the same anatomical region on both pullbacks. For the selected frames (mean 
frame spacing 0.4 mm), the lumen and the vessel contours were delineated using the same dedicated software 
(QIVUS, Medis, Leiden, The Netherlands).

A total of 140 arteries from 81 patients were included in the present study. Figure 1 presents the (BL, FU) 
pullback pair of IVUS images. Clinical variables definitions and demographics are provided in Table 1. The 
original IBIS4 study by2 analyzed arterial cross-sectional geometry through area-based measurements and plaque 
composition. The later measurements were unavailable at the time of the present study. Therefore, the set of 
geometric descriptors shared with the IBIS4 study is listed in Table 2.

Figure 1.   For a selected patient, longitudinal views of the baseline IVUS pullback ( BL , left panel), and the 
corresponding follow-up IVUS pullback ( FU right panel). The horizontal axis indicates the frame number and 
the vertical axis indicates the pixel coordinate of the images, giving a sense of the image resolution of the IVUS 
frames ( 480× 480).

Table 1.   Baseline characteristics for the 81 patient sample. For continuous variables, the mean (std) is 
presented, for boolean variables the n (percentage of total) is presented. CAD: Coronary Artery Disease, PCI: 
Previous Percutaneous Infarction, DAPT: Dual Anti-Platelet Therapy. a Total cholesterol >5.0 mmol or 190 mg/
dL or requiring treatment. b >60 eGFR.

Age, AGE 58.6 (9.9)

Male Sex, MSX(%) 75 (93)

Body Mass Index, BMI 27.5 (3.8)

Cholesterol

 High-density lipoproteins, HDL 1.1 (0.3)

 Low-density lipoproteins, LDL 3.4 (0.9)

Cardiovascular risk factors (%)

 Diabetes, DIA 8 (10)

 Hypertension, HYT 38 (47)

 Hypercholesterolaemiaa , HYC 35 (43)

 Current Smoker, CSK 34 (42)

 Family history of CAD, FHC 24 (31)

 Renal failure, RFLb 3 (4)

 Previous myocardial infarction, PMI 2 (2)

 Previous PCI, PPI 1 (1)

Cardiovascular medications at 30 days (%)

 Statin use prior to enrolment, STA 7 (9)

 Aspirin, ASP 81 (100)

 Prasugrel, PRA 63 (78)

 Clopidogrel, CLO 17 (21)

 Any DAPT, DAPT 80 (99)

 Beta-blocker, BB 77 (95)

 ACE inhibitor, ACE 60 (74)
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The variable of interest in the present study, also referred to as the target variable, is the difference in the 
percent atheroma volume, follow-up (FU) minus baseline (BL), defined as

We define plaque progression whenever �PAV > ε and regression whenever �PAV < −ε . Condition 
−ε < �PAV < ε is regarded as stationary plaque. In this work, we use ε = 0 , as in the original IBIS study2.

Frame‑wise feature definition
For any given frame of a pullback, BL or FU, for which the contour delineation of the lumen (L) and the vessel 
(V) are available, a set of geometry-based descriptors are calculated, see Table 3. Since healthy arteries have, 
ideally, a circular cross-section lumen and vessel contours, with relatively uniform wall thickness, the proposed 
features aimed at capturing the contour geometry complexity, and deviation from such ideal references, using 
well-known measures such as eccentricity, circularity, and local curvatures. Also, we proposed features that aim 
at characterizing the plaque distribution over the contour.

Pre‑processing
Frame-wise features were linearly interpolated to fill gaps between unevenly spaced frames and generate longitu-
dinal signals. Features PB and �V were used to (manually) co-register BL and FU signals, resulting in anatomi-
cally consistent signals, with a uniform frame spacing of 60 frames/mm , see Figure 2, for an illustration. Manual 
co-registration consisted of shifting and clipping the tails of the signals until matching of the local extrema.

(1)�PAV = PAVFU − PAVBL

Table 2.   List of features used in the original IBIS-4 study. We refer to these features as Clinical features. They 
are defined from the (lumen and vessel) area of the manually delineated contours at each frame and then 
condensed to volumes by numerical integration. The change in percentage atheroma volume is the variable of 
interest of the study.

Clinical frame-wise features

 �L Area enclosed by lumen contour, in mm2.

 �V Area enclosed by vessel contour, in mm2.

 �P Area between vessel and lumen contours, defined as the �V −�L , in mm2.

 PB Plaque burden defined as (�P/�V)× 100 , in %.

Clinical condense features

 TLV Volume of the lumen along a set of consecutive frames, integration of �L , in mm3.

 TVV Volume of the vessel a set of consecutive frames, integration of �V , in mm3.

 TAV Volume of the plaque along a set of consecutive frames, integration of �P , in mm3.

 PAV Percentage atheroma volume (TAV/TVV)× 100 , in %.

Variable of interest

 �PAV The difference of the PAV variable between follow-up ( FU ) and baseline ( BL ) at a specific region of interest, in %.

Table 3.   List of proposed geometric features based on manually defined lumen (L) and vessel (V) contours. 
Proposed features aimed at capturing the contour geometry complexity using well-known measures such as 
eccentricity and local curvatures. Also, we proposed features that aim at characterizing the plaque distribution 
over the contour.

ξ[L|V ]

Ratio between the maximum and minimum lumen (L) or vessel (V) diameters, measured using the line that runs through the 
image origin and joins opposite points through the corresponding contour.

ξP
Distance between the centroids of the lumen and vessel contours, divided by the average between the lumen minimum and maxi-
mum diameters.

ρ[L|V ] Percentage of circumferential angle for which the ratio between plaque thickness and lumen (l) or vessel (v) radius is over 0.2.

̺ Ratio between the maximum plaque thickness over the mean plaque thickness, along the circumferential direction.

ψ[L|V ]
Geometric definition of eccentricity for ellipses, 

√

1− (min/max)2  , where min and max are the smallest and larger diameters of 
the lumen (L) or vessel (V).

φ[L|V ] Geometric circularity of a polygon, 4πA/P2 , where A and P are the area and perimeter of the lumen (L) or vessel (V) contours.

τ[L|V ]

Curvature irregularity12, defined as the difference between the maximum and minimum curvature of the lumen (L) or vessel (V) 
contour.

κ[L|V ]

Curvature roughness12, reflects the lumen surface evenness concerning the curvature, smaller values representing a more circular 
or even surface, and a perfect circular lumen shape will have roughness being 1. It is calculated using the following formula 
√

(r/2π)
∑

κ
2�l , where r is the radius of the circle best fitting the lumen or vessel contour, κ is local curvature, and �l is the 

local length between adjacent points).
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For each frame-wise feature (longitudinal signals) described in Tables 2 and 3, the first derivative was com-
puted using a central finite difference approximation. Hereafter, ∂f  indicates the first derivative of the frame-wise 
feature f, and it is itself a frame-wise feature represented as a longitudinal signal.

Region of interest
A single IVUS pullback can be used to image a large portion of an epicardial coronary artery. Changes in the PB, 
from BL to FU , along the entire segment can either be positive (progression) or negative (regression), in a wide 
range of magnitudes. Furthermore, by considering a certain threshold, the outcome could be an unchanged PB. 
Since the target variable, �PAV , is defined over an arterial volume, it is key to define regions of interest within 
the pullback, for which the regression/classification model will analyze and predict the associated �PAV (value, 
or sign).

We defined the ROIs in 6 ways to analyze the potential and limitations of the proposed classification meth-
odology. We propose to use (a) the complete pullback (FP criterion); (b) ROIs defined by using the difference 
between PB of the FU and BL (ChPAV criterion); (c) ROIs defined by using thresholding on the BL PB signal 
(PBR criterion), and three different fixed-length widows (W30O10, W60O20, and W120O20 criteria). Table 4 
presents the criteria used for ROI definition.

Condensed feature definition
All the frame-wise features presented here were condensed into ROI-wise features using classical statistical 
indexes such as the median, Shannon’s entropy (H), and discrete Fourier Transform (FFT). Moreover, the ROI’s 
length is also used as a condensed feature. Each of these ROI-wise features is a real number, and a set of n features 
represents each ROI as a point in an Rn space. The arterial label, eg. LAD, LCx, or RCA, is the only categorical 
variable used in this work. Table 5, presents all ROI-wise features.

Machine learning model
We use an XGBoost regressor model13. Hyperparameters were defined empirically and remained fixed for all the 
tests performed in this work. The XGBoost setup consists of 256 estimators with a maximum depth of 12 levels, 
and the loss function was the squared error. The complete list of hyperparameters is given in the Appendix.

Figure 2.   Illustration of the manual BL/FU registration procedure for one selected pullback. Top panel: raw 
plaque, vessel, and lumen signals of the BL (blue-toned) and FU (red-toned). Bottom panel: co-registered 
signals. Co-registration produced anatomically consistent signals, by a two-step method: first, homogenizing 
frame spacing to 60 frames per second using linear interpolation; and second, manual shifting, and clipping tails 
of the signals until matching of the local extrema was reached..
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Feature handling
We use an initial feature set, followed by standardization, and feature selection. Regarding the initial feature set, 
we employ the following notation for the three alternatives studied here.

•	 S
a : set of clinical features, see Table 1;

•	 S
b : set S a plus set of geometric features from the original IBIS-4 study, see Table 2;

•	 S
d : set S b plus all condensed features presented in Table 5;

For a given feature d, we standardize it (feature is now called d̂ ), simply by computing the mean ( ̄d ) and standard 
deviation ( ¯̄d ), and apply the following transformation d̂ = (d − d̄)/ ¯̄d.

Finally, we use feature selection of the k-best features using mutual information as a proxy classification func-
tion. See the Appendix for implementation details. Following the feature set notation defined here, this results 
in the following feature sets:

•	 S
d
k=8 : set S d , where we select the best k = 8 features (see also the Appendix).

•	 S
d
k=32 : set S d , where we select the best k = 32 features (see also the Appendix).

Training/test methodology
A repeated stratified k-fold cross-validation (RSKFCV) strategy was used for training and testing. Folds were 
always defined at the pullback level, i.e. using the FP criterion for ROI definition. Then, depending on the 

Table 4.   Definition of criteria for the generation of ROIs. We propose to assess our methodology using the 
complete pullback (FP), the partition using the difference between PB of the FU and BL (ChPAV), a threshold 
on the BL PB signal (PBR), and three different fixed-length widows (W30O10, W60O20, and W120O20).

ROI code name Criterion

FP
Full (complete) pullback. This criterion results in larger ROIs in which sub-regions of progression or regression may occur. Neverthe-
less, it is useful to establish a level of comparison and also to separate sets for training and validation at a global level, as will be shown in 
forthcoming sections.

ChPAV

Each pullback is divided into ROIs where the difference between BL and FU of PB is positive (or negative) in all (interpolated) frames of 
the ROI. Note that this approach for ROI definition is not applicable in clinical scenarios, where a new pullback is being analyzed and the 
FU data is not available. Nevertheless, for studying the potential of the method, this methodology provides an ideal ROI definition for 
�PAV regression/classification models. Regions with |PBFU − PBBL| < 0.5% were discarded. Regions spanning less than 15 interpolated 
frames, i.e. less than 0.25 mm, were discarded.

PBR The BL PB is binarized into three categories, PB ∈ [0, 30) , PB ∈ [30, 60) , and PB ∈ [60, 100] . Then, continuous frames with the same 
category are packed into ROIs. Regions spanning less than 15 interpolated frames, i.e. less than 0.25 mm, were discarded.

W30O10 ROIs are divided using a fixed window size of 30 (interpolated) frames, which is shifted at 30 frames over the complete pullback. The ROI 
generation is repeated using 0, 10, 20 frames as offsets. Given the frames-spacing, these ROIs span 0.5 mm in length.

W60O20 ROIs are divided using a fixed window size of 60 (interpolated) frames, which is shifted at 60 frames over the complete pullback. The ROI 
generation is repeated using 0, 20, 40 frames as offsets. Given the frames-spacing, these ROIs span 1.0 mm in length.

W120O20 ROIs are divided using a fixed window size of 120 (interpolated) frames, which is shifted at 120 frames over the complete pullback. The 
ROI generation is repeated using 0, 20, 40, 60, 80, 100 frames as offsets. Given the frame-spacing, these ROIs span 2.0 mm in length.

Table 5.   List of condensed features defined within each ROI. Frame-wise features are condensed into real-
number features using classical statistical indexes such as the median, using the Shannon entropy (H), and 
discrete Fourier Transform (FFT). In addition, the arterial label and ROI’s length are also used. as condensed 
features..

Statistics over each frame-wise feature (f)

 MED(f ) The median of f in the ROI.

 IQR(f ) The interquartile range of f in the ROI, i.e. difference between percentiles 75% - 25%.

 ICR(f ) The central 80% range of f in the ROI, i.e. difference between percentiles 90% - 10%.

Information-theory over each frame-wise feature (f)

 H(f )
Shannon’s Entropy from an approximation of the discrete probability function of the 
frame-wise feature f.

Fourier analysis over frame-wise feature (f)

 FFTm(f ) The magnitude of the 1st Fourier harmonic, of the point-wise feature f.

 FFTp(f ) The phase of the 1st Fourier harmonic, of the point-wise feature f.

Macro features

 A The arterial label, e.g. LAD, LCx, RCA, etc, that was interrogated.

 ℓ The length of the ROI.
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experiment, the corresponding ROIs for each pullback were accordingly assigned to the training or testing sets 
in the fold. Moreover, fixing the random generator’s seed parameter of the RSKFCV implementation ensures 
that all experiments are trained/tested over the same pullback sets, what is changed are the ROIs defined inside 
the pullbacks. Stratification was based on the sign of the �PAV variable, at the pullback level. The following 
pipeline is performed for each model/scenario. 

1.	 Choose the initial feature set from the ones defined in Sect. "Feature handling"
2.	 Perform feature standardization using the training samples to compute standardization parameters, see 

Sect. "Feature handling".
3.	 Feature selection, see Sect. "Feature handling".
4.	 Train an XGBoost regressor model configured as detailed in Sect. "Machine learning model".
5.	 Perform prediction over the test set. This involves standardization, feature selection (both steps using param-

eters from the training set), and then forward-passing through the model.
6.	 Compute prediction metrics over the test set: mean absolute error (MAE), mean square error (MSE), Pear-

son’s correlation coefficient (r).
7.	 Perform classification over the regression estimation using 0 as the threshold to classify in estimated progres-

sion or regression.
8.	 Compute prediction metrics over the test set. Accuracy (ACC), Mathews Correlation Coefficient (MCC), 

F1-score for �PAV < 0 class ( F1− ), F1-score for �PAV > 0 class ( F1+ ), and the average F1-score between 
the two classes ( F1a).

After iterations are completed, the mean and standard deviation of each prediction metric are gathered for 
assessing and comparing the performance. Figure 3 illustrates the complete pipeline to perform one regression/
classification experiment.

All tests reported in this study were performed using the same data set partitions at pullback level, for the 
RSKFCV loop. Also, the XGBoost configuration remained fixed for all tests. Regarding the feature selection, it 
also remained fixed (whenever used), the only parameter that changed was the number of features to be selected 
(either 8 or 32). The reader is directed to the Appendix for more details.

We make use of Shapley additive explanations (SHAP) values, proposed by14, to measure the impact of each 
feature on the output of the XGBoost model. The SHAP value of a feature can be computed for each sample and 
then averaged over the test set. The larger the mean absolute SHAP value of a feature over the test set, the greater 
the impact on the prediction of the model relative to the mean prediction over the test set.

Results
Table 6 presents basic statistics for the �PAV variable considering the different criteria to define the ROI parti-
tions. Furthermore, the total number of samples per class (progression ” + ” or regression ”−”) is reported, as well 
as the distribution in terms of mean, (std), [min, max] of the number of samples per class for training (tr) and 
test (te) sets for the RSKFCV iterations. Observe that the class representing plaque progression ( + ) is the minor-
ity class for all partitions. Moreover, the class imbalance is more notorious at FP partition (34%), and it is most 
balanced for the ChPAV partition (47%), while the rest of the partitioning criteria exhibit a similar prevalence 
of the progression class (between 40% and 43%). In terms of sample size, the FP partition contains the smallest 
number of samples ( n = 140 ), followed by PBR with ( n = 763 ) which is almost 3 times smaller than the ChPAV 
partition sample size ( n = 2167 ). The other partitions are much larger in terms of sample size.

The statistics of the prediction metrics for all tests included in this work are presented in Table 7. These tests 
are characterized by the dataset (ROI definition criterion), and by the set of features/feature-selection-strategy 
employed.

For an in-depth analysis, we considered the ChPAV and PBR ROI definition criterion. The former is useful as 
a reference because it represents the best possible ROI partition criterion since all frames in a given partition will 
render either progression or regression. In turn, the PBR criterion was chosen because it rendered the best results 
among the rest of the ROI partition criteria. Moreover, we selected the best-performing feature set according to 
the mean MCC metric, as presented in Table 7. Specifically, the S d

k=32 feature set for both, the ChPAV and PBR 
criteria, is used for an in-depth analysis.

Next, we exploited the fact that each ROI was used in 20 different models as part of the test set during the 
RSKFCV, therefore the means of the prediction and absolute error for each ROI are computed for the 20 models, 
which differ among ROIs. The correct classification rate (CCR) represents the number of times a given ROI was 
classified correctly by the set of 20 models. This metric is used to discriminate between CCR​> 0.5 and those 
with CCR​≤ 0.5 , i.e. those ROIs that were more often classified correctly than incorrectly. In Fig. 4, ROIs were 
divided by their CCR status and ordered by the true �PAV value (blue marker). The top panel corresponds to 
the ChPAV criterion and the bottom panel to the PBR criterion. Reddish regions stand for mostly incorrectly 
classified ROIs (CCR​≤ 0.5 ), and greenish regions for mostly correctly classified ROIs (CCR​> 0.5 ). Black mark-
ers represent the mean prediction per ROI (as given by the 20 models), and the envelope-colored area around 
those markers is obtained by adding and subtracting the mean absolute error. This allows both a qualitative and 
quantitative comparison of the mean accuracy of the models. Note that the mean absolute error (reddish and 
greenish regions) seems to be related to the magnitude of the �PAV , except for the ROIs when CCR​≤ 0.5 in 
the PBR criterion when �PAV < 0 in the prediction. Another qualitative conclusion that can be extracted from 
the plots is that the mean prediction seems to be limited in a more narrow range than the actual �PAV , more 
observations on this are made in the following paragraph.
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In Fig. 5, besides separating ROIs by their CCR status, we discretized them according to their �PAV in even 
intervals. Finally, we use the mean error of each ROI over the 20 models in which it belongs to the test group, to 
construct a box/violin-plot. It is noteworthy that distribution on both cases, ChPAV and PBR, condense 96% and 
88% on the [−10, 10) �PAV interval respectively. This interval corresponds to the prediction range mentioned in 
the previous paragraph. Moreover, classification rates outside of the interval are mostly correct. Which somehow 
shows that the prediction seems robust to out-layers.

In Fig. 6, the concept of mean percentage of correct classified length (CCL) per pullback is introduced, and it 
is used to dichotomize pullbacks by a threshold of CCL> 0.5 . Recalling the cross-validation strategy explained 
in Sect. "Training/test methodology", folds are defined at pullback level, which ensures that all ROIs of a given 
pullback are used for training xor testing. Therefore, again we use for each pullback only the 20 models in which 

Figure 3.   Illustration of the complete processing pipeline. The data preparation block comprises co-registration 
between BL and FU pullbacks, followed by signal interpolation, frame-wise feature computation, ROI definition, 
and ROI-wise feature characterization using elements from statistics, information theory, and signal processing. 
The cross-validation folds are defined at the pullback level, but actual partitions are defined from corresponding 
ROIs. Training samples are standardized, and a feature extraction algorithm is used (optionally) to reduce 
the dimension of the feature space. An XGBoost regressor is trained and then used to predict �PAV data 
for the current fold. Finally, ROI-wise comparison of the predicted values by the regressor, and the resulting 
classification into progression/regression is performed, and several performance metrics are computed and 
analyzed.
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it was used as a test sample, to compute the mean and std of the CCL. Specifically, the CCL index for a given 
pullback is computed as the ratio of the summation of the lengths of ROIs correctly classified and the summation 
of all its ROIs lengths. In qualitative terms, there is no association of the CCL to the length of the pullback. The 
distributions of CCL are presented in the box-/violin-plots in Fig. 7. It can be noted that for CCL> 50 %, the mean 
and median are close to 70%, with an interquartile range (IQR) of around 20%, being slightly larger for the PBR 
case compared to the ChPAV one, also the distribution looks more homogeneous in the PBR case. Regarding the 
cases for CCL≤ 50 %, the ChPAV case presents half the number of samples in this category than the PBR case. 
Moreover, the distribution yields mean and median values close to 40% and an IQR around 10%. While the PBR 
case features more spread distributions of CCL, with mean and median close to 30% and an IQR around 25%.

Regarding the initial set of features, feature selection, and feature impact on model prediction, we present 
the following analysis. Scenarios presented here, namely ChPAV and PBR, used the same initial feature set and 
selection strategy, S d

k=32 . The top panel in Fig. 8 presents the selection count and the selection ratio times the 
summation of the mean absolute SHAP value. Note that the mean absolute SHAP value of a feature is computed 
for each of the 100 models used during the RSKFCV procedure, using the corresponding test samples. Since 
feature selection of k=32 is performed prior to model training, we count the number of times a feature was 
selected throughout the 100 models and then compute the selection ratio as the selection count over 100, and 
we use it to weight the mean absolute SHAP value of the feature. Ordering by this weighted value and retrieving 
the top ten, we obtain the features with more impact on model predictions over the 100 models. The mid panel 
of Fig. 8 presents a histogram ordered by the selection count. This visualization shows that from the initial set of 
242 features, the selection process always selects the same  10 (selection count equals 100), and that this count 
rapidly drops around 20 for the  50th feature. From there different features are rarely selected, as seen in the 
selection count plot.

Table 8 presents the selection count and total mean absolute SHAP values times the selection ratio (SR) values 
for all clinical features defined in Tables 1 and 2, in addition to the arterial label ( A ) and ROI length ( ℓ ). Interest-
ingly, the TLV , TVV , and ℓ were rarely selected and when selected the impact in the models in terms of SHAP 
values was low, for the ChPAV and the PBR cases. Instead, the TAV impacted the ChPAV models considerably, 
but its contribution to the PBR models was poor. Overall, the PAV was the most impactful feature regarding the 
PBR models, while in the ChPAV case, the PAV contributed weakly. Also, although the arterial label A reached 
a high selection count, its impact was weak on the PBR models and was close to zero on the ChPAV case. In 
terms of the clinical variables defined at the patient level, they were seldom selected within the ChPAV cases, 
and, consequently, the overall impact was close to zero. In turn, for the PBR case, the MSX, DAPT, and HDLwere 
selected in all 100 models, although their overall global impact was weak. As for the rest of the clinical features, 
although they were selected more often in the PBR than in the ChPAV case, displayed poor relevance.

We now focus the analysis on the models that resulted in the best prediction performance according to the 
MCC metric. Again, for the ChPAV and PBR scenarios using S d

k=32 feature management setup. Figure 9 presents 
the regression plots and their prediction metrics. Importantly, the ChPAV scenario renders better performance 
because ROIs are built, by definition, using the regression/progression feature as a proxy. Using this scenario 
as a reference, the PBR case resulted in almost double the mean absolute error (MAE=5.04%), moderate linear, 
and Mathew’s correlation ( r = 0.37 and MCC=0.36) which are 0.07 and 0.16 lower than the ChPAV scenario. 
In terms of accuracy and mean F1-scores, we get fairly good results (ACC​= F1a = 0.65 ), compared to 0.76 in 
the ChPAV case. Regarding the most influential features for these scenarios, Fig. 10 shows the mean absolute 
SHAP values of the five most influential features. The top three features of each model were selected to visualize 
the entire ROI sample distributions in both scenarios, ChPAV and PBR, see Fig. 11. The foremost features are 
those related to plaque burden (PB) and lumen-area ( �L ), according to mean absolute SHAP values. Namely, the 
FFTp(∂PB) , FFTm(∂�L) , and IQR(PB) for the ChPAV case and the MED(PB) , and FFTp(∂�L)for the PBR case. 
Note that in the PBR case, the clinical feature HDL is the second most relevant feature for the model according to 
the mean absolute SHAP values. Nevertheless, as can be seen in Fig. 11, the mean HDL is not different between 
the regression/progression groups when taken as ROI level for ChPAV or PBR. This can be explained because 
HDL is defined at the patient level, meaning that for all ROIs of a pullback (regardless of the �PAV sign), the 
HDL is the same. Therefore, it is the interaction of HDL with the other features that produce an impact on the 
model output. Analogous reasoning can be used to explain the impact of other patient-level clinical features on 

Table 6.   For each ROI partition criterion, we present the sample Mean (std) of �PAV and the total number of 
ROIs (n) and the number of ROIs of class regression ( n− ) and class progression ( n+). The right part of the table 
provides the statistics (mean, std, minimum, and maximum) for the number of ROIs in the classes regression 
and progression for the training set (·)tr and for the testing set (·)te in the RSKFCV process.

ROI �PAV n n
−

n
+

n
−

tr
n
+

tr
n
−

te
n
+

te

FP − 1.01 (3.47) 140 92 48 73.6 (0.49) [73,74] 38.4 (0.49) [38,39] 18.4 (0.49) [18,19] 9.6 (0.49) [9,10]

ChPAV − 1.31 (8.35) 2167 1146 1021 916.8 (20.79) [861,961] 816.8 (19.32) [762,854] 229.2 (20.79) [185,285] 204.2 (19.32) [167,259]

PBR − 1.02 (6.90) 763 454 309 363.2 (11.58) [334,391] 247.2 (9.87) [223,269] 90.8 (11.58) [63,120] 61.8 (9.87) [40,86]

W30O10 − 0.91 (6.94) 23821 13656 10165 10924.8 (233.75) [10372,11435] 8132 (196.57) [7695,8669] 2731.2 (233.75) [2221,3284] 2033 (196.57) [1496,2470]

W60O20 − 0.91 (6.70) 11734 6734 5000 5387.2 (118.24) [5099,5646] 4000 (98.4) [3786,4282] 1346.8 (118.24) [1088,1635] 1000 (98.4) [718,1214]

W120O20 − 0.90 (6.26) 11314 6580 4734 5264 (122.21) [4946,5530] 3787.2 (97.11) [3574,4088] 1316 (122.21) [1050,1634] 946.8 (97.11) [646,1160]
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this model and the impact of other features for which no statistically significant difference in mean values among 
the regression/progression groups is observed.

Discussion
Main contribution
Plaque progression/regression in response to treatment, as quantified from IVUS images, has been the focus of 
research for more than 20 years. Nevertheless, that research centered primarily on describing the association 

Table 7.   Predictive capabilities of the model trained/tested under different ROI definition criteria using the 
same RSKFCV procedure, with 20 repetitions and 5 folds. For each metric, the mean (std) and [min, max] 
values are reported. The global maximum mean values per column are highlighted in bold and italic font, while 
the local maximum values, i.e. per ROI partition criterion, are highlighted in italic font. The columns headers 
stand for: method for the definition of the Region of Interest (ROI); Feature set (F. Set); Accuracy (ACC); 
Mathew correlation coefficient (MCC); Average F1 score ( F1a ); F1 score of regression class ( F1− ); F1 score of 
the progression class ( F1+ ); Average F1 score ( F1a ); Mean absolute error (MAE); Mean square error (MSE); 
Pearson’s correlation coefficient (r).

ROI F. Set ACC MCC F1
a

F1
−

F1
+ MAE MSE r

FP S
a 0.65 (0.08) 

[0.5,0.82]
0.21 (0.17) 
[-0.22,0.62]

0.6 (0.09) 
[0.39,0.81]

0.73 (0.07) 
[0.46,0.87]

0.46 (0.13) 
[0.12,0.76]

2.81 (0.35) 
[1.99,3.52]

13.38 (3.31) 
[6.25,22.24]

0.35 (0.15) 
[-0.11,0.67]

S
b 0.43 (0.11) 

[0.21,0.71]
0.03 (0.18) 
[-0.5,0.47]

0.39 (0.12) 
[0.18,0.7]

0.30 (0.23) 
[0.00,0.76]

0.48 (0.09) 
[0.17,0.67]

3.62 (1.06) 
[1.87,7.46]

21.19 (11.15) 
[5.6,69.21]

0.05 (0.22) 
[-0.43,0.52]

S
d 0.55 (0.1) 

[0.29,0.82]
-0.02 (0.19) 
[-0.51,0.6]

0.48 (0.1) 
[0.24,0.8]

0.66 (0.1) 
[0.33,0.86]

0.31 (0.14) 
[0.00,0.74]

2.97 (0.45) 
[1.9,4.23]

15.66 (5.05) 
[5.2,32.76]

-0.06 (0.21) 
[-0.52,0.41]

S
d
k=8

0.54 (0.09) 
[0.25,0.71]

-0.02 (0.17) 
[-0.47,0.35]

0.48 (0.09) 
[0.2,0.67]

0.63 (0.14) 
[0.00,0.80]

0.33 (0.14) 
[0.00,0.62]

3.09 (0.49) 
[1.93,4.48]

16.08 (4.88) 
[6.63,31.99]

0.01 (0.2) 
[-0.53,0.43]

S
d
k=32

0.56 (0.1) 
[0.36,0.79]

0.01 (0.21) 
[-0.47,0.56]

0.5 (0.1) 
[0.26,0.78]

0.67 (0.09) 
[0.47,0.86]

0.33 (0.15) 
[0,0.73]

2.94 (0.46) 
[2.01,4.09]

15.05 (4.58) 
[6.02,26.69]

0.03 (0.2) 
[-0.38,0.51]

ChPAV S
b 0.51 (0.02) 

[0.46,0.56]
0.03 (0.04) 
[-0.07,0.13]

0.51 (0.02) 
[0.46,0.56]

0.53 (0.05) 
[0.38,0.64]

0.49 (0.04) 
[0.32,0.58]

3.58 (0.28) 
[3.01,4.38]

23.69 (3.55) 
[16.58,33.87]

0.05 (0.05) 
[-0.1,0.17]

S
d 0.70 (0.02) 

[0.64,0.75]
0.40 (0.04) 
[0.29,0.49]

0.70 (0.02) 
[0.64,0.74]

0.72 (0.02) 
[0.66,0.77]

0.68 (0.02) 
[0.63,0.73]

2.57 (0.19) 
[2.01,3.08]

15.86 (2.52) 
[9.51,22.84]

0.42 (0.06) 
[0.28,0.56]

S
d
k=8

0.67 (0.02) 
[0.63,0.73]

0.35 (0.04) 
[0.26,0.46]

0.67 (0.02) 
[0.63,0.73]

0.70 (0.02) 
[0.65,0.74]

0.65 (0.03) 
[0.58,0.72]

2.97 (0.18) 
[2.4,3.38]

17.52 (2.19) 
[11.46,22.84]

0.35 (0.04) 
[0.23,0.47]

S
d
k=32

0.70 (0.02) 
[0.66,0.76]

0.41 (0.04) 
[0.32,0.52]

0.70 (0.02) 
[0.66,0.76]

0.72 (0.02) 
[0.67,0.79]

0.68 (0.02) 
[0.63,0.75]

2.6 (0.2) 
[2.06,3.1]

16 (2.52) 
[10.02,21.57]

0.42 (0.06) 
[0.24,0.56]

PBR S
b 0.50 (0.07) 

[0.36,0.68]
0.10 (0.09) 
[-0.13,0.34]

0.47 (0.09) 
[0.27,0.66]

0.39 (0.19) 
[0.02,0.74]

0.55 (0.05) 
[0.38,0.67]

5.86 (0.91) 
[3.93,9]

60.28 (15.15) 
[26.81,108.82]

0.16 (0.12) 
[-0.14,0.44]

S
d 0.60 (0.04) 

[0.46,0.69]
0.19 (0.08) 
[-0.06,0.37]

0.59 (0.04) 
[0.45,0.68]

0.65 (0.05) 
[0.49,0.75]

0.53 (0.06) 
[0.33,0.67]

5.03 (0.52) 
[4.06,6.2]

48.21 (10.96) 
[28.54,73.43]

0.27 (0.07) 
[0.07,0.44]

S
d
k=8

0.58 (0.05) 
[0.41,0.69]

0.19 (0.09) 
[-0.02,0.39]

0.57 (0.05) 
[0.39,0.68]

0.58 (0.1) 
[0.21,0.74]

0.55 (0.08) 
[0.22,0.67]

5.91 (0.84) 
[4.32,8.1]

60.06 (15.03) 
[32.46,107.02]

0.26 (0.07) 
[0.11,0.4]

S
d
k=32

0.60 (0.05) 
[0.42,0.68]

0.23 (0.08) 
[0.02,0.36]

0.59 (0.05) 
[0.38,0.68]

0.62 (0.08) 
[0.20,0.75]

0.57 (0.05) 
[0.35,0.67]

5.42 (0.71) 
[4.09,8.1]

52.24 (13.12) 
[30.54,105.19]

0.30 (0.08) 
[0.00,0.5]

W30O10 S
b 0.52 (0.03) 

[0.45,0.61]
0.07 (0.05) 
[-0.08,0.21]

0.51 (0.03) 
[0.4,0.6]

0.5 (0.09) 
[0.22,0.67]

0.52 (0.06) 
[0.36,0.61]

7.05 (0.75) 
[5.59,8.97]

84.25 (17.72) 
[50.02,127.72]

0.09 (0.08) 
[-0.09,0.27]

S
d 0.49 (0.06) 

[0.38,0.61]
0.04 (0.07) 
[-0.18,0.23]

0.47 (0.06) 
[0.35,0.61]

0.41 (0.16) 
[0.16,0.72]

0.52 (0.07) 
[0.3,0.61]

6.63 (0.81) 
[4.91,8.71]

74.9 (16.92) 
[41.85,127.09]

0.06 (0.09) 
[-0.15,0.33]

S
d
k=8

0.55 (0.03) 
[0.43,0.63]

0.08 (0.05) 
[-0.03,0.21]

0.53 (0.04) 
[0.32,0.6]

0.59 (0.1) 
[0.05,0.72]

0.46 (0.07) 
[0.15,0.59]

5.83 (0.74) 
[4.82,10.05]

59.33 (14.92) 
[39.42,154.96]

0.12 (0.07) 
[-0.03,0.3]

S
d
k=32

0.57 (0.03) 
[0.5,0.64]

0.1 (0.04) 
[-0.02,0.19]

0.53 (0.03) 
[0.45,0.59]

0.66 (0.05) 
[0.47,0.75]

0.39 (0.09) 
[0.19,0.56]

6.04 (0.69) 
[4.97,8.04]

63.33 (13.67) 
[43.49,110.01]

0.16 (0.05) 
[0.01,0.28]

W60O20 S
b 0.49 (0.04) 

[0.37,0.61]
0.04 (0.07) 
[-0.17,0.22]

0.47 (0.05) 
[0.35,0.6]

0.41 (0.12) 
[0.13,0.69]

0.53 (0.04) 
[0.33,0.62]

6.81 (0.87) 
[4.62,9.41]

81.11 (21.24) 
[40.48,155.94]

0.04 (0.1) 
[-0.24,0.31]

S
d 0.49(0.05) 

[0.39,0.61]
0.03 (0.07) 
[-0.19,0.21]

0.46 (0.06) 
[0.31,0.58]

0.41 (0.17) 
[0.05,0.7]

0.51 (0.08) 
[0.26,0.61]

6.14 (0.72) 
[4.06,7.93]

65.25 (13.51) 
[30.57,106.85]

0.04 (0.08) 
[-0.15,0.26]

S
d
k=8

0.52 (0.04) 
[0.39,0.62]

0.07 (0.06) 
[-0.12,0.22]

0.51 (0.06) 
[0.3,0.61]

0.5 (0.14) 
[0.01,0.7]

0.52 (0.06) 
[0.3,0.62]

5.89 (0.77) 
[4.64,8.98]

58.91 (13.65) 
[36.81,114.38]

0.13 (0.08) 
[-0.05,0.32]

S
d
k=32

0.56 (0.03) 
[0.47,0.64]

0.1 (0.05) 
[-0.01,0.23]

0.54 (0.03) 
[0.45,0.61]

0.61 (0.08) 
[0.32,0.74]

0.47 (0.07) 
[0.27,0.59]

5.38 (0.5) 
[4.5,6.76]

51.59 (8.9) 
[35.36,78.84]

0.15 (0.06) 
[0.02,0.31]

W120O20 S
b 0.49 (0.04) 

[0.39,0.66]
0.04 (0.07) 
[-0.12,0.2]

0.48 (0.05) 
[0.36,0.56]

0.44 (0.11) 
[0.19,0.77]

0.52 (0.06) 
[0.31,0.64]

6.49 (0.78) 
[4.75,8.54]

73.82 (18.29) 
[42.52,130.85]

0.04 (0.1) 
[-0.21,0.34]

S
d 0.47 (0.05) 

[0.4,0.61]
0.02 (0.06) 
[-0.16,0.2]

0.45 (0.05) 
[0.35,0.59]

0.38 (0.14) 
[0.14,0.69]

0.52 (0.06) 
[0.3,0.61]

5.72 (0.6) 
[3.92,7.61]

56.63 (10.46) 
[28.25,92.32]

0.03 (0.07) 
[-0.16,0.21]

S
d
k=8

0.49 (0.04) 
[0.39,0.59]

0.03 (0.05) 
[-0.07,0.16]

0.46 (0.07) 
[0.28,0.57]

0.41 (0.19) 
[0,0.68]

0.51 (0.08) 
[0.29,0.63]

5.73 (1.08) 
[4.28,8.95]

55.88 (17.8) 
[32.15,112.97]

0.07 (0.08) 
[-0.09,0.27]

S
d
k=32

0.54 (0.04) 
[0.39,0.62]

0.09 (0.05) 
[-0.02,0.21]

0.52 (0.04) 
[0.36,0.6]

0.55 (0.11) 
[0.18,0.72]

0.5 (0.06) 
[0.32,0.6]

5.11 (0.56) 
[4.08,6.6]

45.73 (9.01) 
[27.63,70.72]

0.15 (0.07) 
[-0.03,0.31]
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between treatment and plaque evolution in terms of basic statistics1,3. More recently, researchers presented pre-
dictive models to assess plaque evolution, see the supplementary material for a summary.

In this work, we presented an XGBoost regressor model to estimate the change in the percent of atheroma 
volume ( �PAV ) as the end-point, which is the standard measurement of plaque evolution1. Previous works 
did not use such a machine learning model, nor used the �PAV , because they center on frame-wise prediction 

Figure 4.   Distribution of mean �PAV prediction and absolute error segregated as a function of the true 
�PAV . Mean prediction per ROI as is shown with black markers (left axis), the colored areas are computed by 
adding or subtracting to each black marker the mean absolute error of the ROI (left axis). Samples are separated 
by the correct classification rate (red: CCR​≤ 0.5 , green: CCR​> 0.5 ), and ordered by the sample’s �PAV value, 
blue markers (right axis). Top panel corresponds to the ChPAV ROI definition criterion, and the bottom panel 
plot corresponds to the PBR definition criterion..

Figure 5.   Violin-/box-plots of the mean �PAV prediction per ROI for each range of the true �PAV . Mean 
error in the prediction of �PAV for the different ROIs, segregated according to the correct classification rate 
(red: CCR​≤ 0.5 , green: CCR​> 0.5 ), and ordered from left to right according to the �PAV value range. The top 
panel corresponds to the ChPAV ROI definition criterion, and the bottom panel plot corresponds to the PBR 
definition criterion..
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instead of region-wise prediction. We have detailed our pre-processing and training methodology, for which we 
use 5-Fold cross-validation (20-repetitions) at the patient level, which is considerably more robust than using 
cross-validation at frame-level since consecutive (and therefore very similar) frames are expected to provide 
highly correlated data into the training and validation phases. The input data for our method are vessel and lumen 
contours extracted from IVUS pullbacks, which are already the standard measurement in the clinic, in contrast 
to other methods that need VH-IVUS, OCT, or 3DQCA and segmentation of other structures such as lipids 
to obtain morphological features and to construct computational domains for complex computer simulations. 
Finally, the proposed model was developed with a subset of the IBIS-4 data set, spanning 140 arteries from 81 
patients, becoming the largest data set ever used for plaque progression/regression prediction models, compared 
to state-of-the-art publications which used at most 9 pullbacks.

This work is the first of its kind that aims to contribute to the field through: (i) proposing a complete method-
ology to process contours extracted from IVUS to generate a comprehensive geometric description; (ii) develop-
ing a machine-learning-based model to predict plaque progression/regression from such features and patient 

Figure 6.   For each pullback, the CCL is computed and used to group samples. The length per pullback (blue 
marker, right axis), is used to sort them. Black markers (right axis) represent the CCL, that is, the average length 
of a pullback that was correctly classified (left axis). The colored areas are created by adding and subtracting the 
std of CCL as predicted by the 20 models. Top panel plots samples from the ChPAV ROI definition criterion, 
and the bottom panel plots samples for the PBR criteria.

Figure 7.   Box-/Violin-plots for the mean percentage of correct classified lengths per pullback grouped by 
CCL>0.5. Left panel plots samples from the ChPAV ROI definition criterion, and the right panel plots samples 
for the PBR criteria.
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data. That is, the main contribution consists in the development of a predictive model to estimate plaque evolu-
tion over time, based on information collected at baseline from IVUS images and clinical data.

Impact of ROI definition
When the full pullbacks were used for model training, i.e. when the FP ROI definition criterion was employed, the 
models trained with feature sets containing geometric-based descriptors performed poorly. Such a result could be 
attributed to the fact that full pullbacks in the data set cover different lengths and is common for them to contain 
regions in which the plaque will increase (progression) and others in which the plaque decrease (regression). 
The compensation of these regions in the total �PAV is hard to predict when frame-wise features are condensed 
over the complete pullback. In other words, this confirms the fact that the plaque progression/regression problem 
depends upon focal phenomena, something that is widely accepted in the specialized literature.

In turn, the FP ROI definition criterion was adequate to test the feature subset S a , i.e. standalone clinical 
features defined at the patient level defined in Table 1. Under such a scenario, the method resulted in an average 
of 0.65 ACC and 0.21 MCC . It is worth noting that such predictive capabilities are similar to those obtained using 
the ROI definition criterion based on baseline plaque burden alone (PBR). Nonetheless, to correctly interpret 
such results, the following points should be taken into consideration.

Figure 8.   The top panel presents the selection count and the weighted total mean absolute SHAP values of the 
top ten features for the ChPAV (left) and PB (right) ROI definition criterion. A sorted histogram of the selection 
count is presented in the bottom panel, again for the ChPAV (left) and PB (right) criterion.
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•	 The FP ROI criterion results in only 140 pullbacks from 81 patients, while PBR ROI criterion resulted in 763 
ROIs.

•	 The feature set S a was not used directly on the PBR ROI criterion tests because clinical features are defined 
at the patient level.

Table 8.   For all geometric features defined in the original IBIS-42 paper and all clinical features defined at the 
patient level, the selection count and total mean absolute SHAP values times the selection ratio. Results are 
presented for the ChPAV and PBR ROI definition criteria.

Feature ChPAV ROI definition critera PBR ROI definition criteria

SR × �Mean(|SHAP|) Sel. Count SR × �Mean(|SHAP|) Sel. Count

PAV 5.289 27 146.803 99

TAV 34.345 76 0.198 4

TLV 0.000 0 0.000 0

TVV 0.009 1 0.039 2

A 0.000 1 6.439 84

ℓ 0.602 9 0.000 0

AGE 0.004 8 0.071 9

MSX 0.000 0 8.286 100

BMI 0.007 6 0.138 13

FHC 0.018 12 1.049 37

DIA 0.003 5 0.026 6

CSK 0.003 6 0.027 6

HYT 0.006 7 0.083 11

HYC 0.008 8 0.018 5

PMI 0.002 14 0.036 7

PPI 0.003 7 0.003 2

STA 0.002 3 0.024 6

RFL 0.001 9 0.068 11

ASP 0.001 2 0.069 11

CLO 0.001 2 0.024 6

PRA 0.003 7 0.236 19

ACE 0.006 9 0.000 1

BB 0.000 3 0.060 9

DAPT 0.000 0 5.118 100

HDL 0.000 0 3.075 100

LDL 0.000 3 0.075 16

Figure 9.   Model prediction vs �PAV for the models with the largest MCC for the ChPAV (left) and PBR 
(right) ROI definition criteria.
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•	 Comparing FP and PBR criteria on all other feature subsets (including the S a ) resulted in a clear superior 
performance of the PBR scenarios.

•	 Importantly, some clinical variables (see Table 8) impacted the predictions of the models based on PBR ROI 
criterion.

Figure 10.   Mean absolute SHAP values (blue bars), with corresponding standard deviations (black lines), for 
the top five features with more impact on model predictions. The models with the largest MCC for the ChPAV 
case (left) and for the PBR case (right) were selected.

Figure 11.   Violin-/box-plots of the top 3 features with more impact on the best-performing models in the 
scenarios ChPAV and PBR regarding the ROI definition criterion.
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Regarding the ChPAV ROI definition criterion, we present it as a reference for comparison. It highlights that the 
proposed methodology could reach outstanding prediction capabilities (averages of 0.70 ACC and 0.41 MCC ) 
when the ROIs are homogeneous regarding regression xor progression. It is worth noting that in this scenario, the 
clinical features portrayed a weak influence on the model’s output (see Table 8). In turn, the PBR ROI definition 
criterion resulted in averages of 0.60 ACC and 0.23 MCC for the case S d

k=32 , which were the best output among 
all ROI definition criteria that do not used follow up data.

We performed further tests in which models trained with ChPAV ROIs were used to predict PBR, W30O10, 
W60O20, and W120O20 ROIs, exploiting the fact that RSKFCV generated folds at the patient level, but predic-
tion metrics were similar to the ones when the same ROIs strategies were used to train/validate in each case. For 
the sake of clarity, we did not include such results in this manuscript.

Our findings indicate that the locality of the plaque progression/regression problem pointed out above can be 
tackled using strategies to divide each pullback into ROIs, where geometric features are retrieved using statistics-, 
information theory- and signal processing-based tools. Of course, the criteria to define these ROIs produce an 
impact on model performance. This is because of the way in which the homogeneity, the sign, and the zeros of 
function PBFU − PBBL are characterized through each criterion. Indeed, more research should be granted to 
better delineate ROIs and exploit the information contained in an IVUS pullback to its fullest.

Predictive value of features
It is worth noting that feature values are intrinsically related to the ROI definition criterion. In Sect. "Impact of 
ROI definition" we discussed the use of standalone clinical features on the full pullback analysis scenario. We 
found that clinical features had less predictive power when using the referential ChPAV criterion than when using 
the PBR criterion. This indicates that the predictive capabilities of these clinical features are moderate to poor 
(see Table 8). It is plausible that the explanation behind such behavior relies on the number of ROIs per pullback: 
the ChPAV case generates almost three times the number of ROIs than the PBR case. Since clinical variables are 
defined at the patient level, then it is expected that they lose predictive power when pullbacks contain regions 
where plaque either increases or diminishes.

Feature condensation was proved to work better in the ChPAV scenario. This indicates some susceptibility of 
the condensation methods to the ROI definition criterion. It is possible that condensing a region with multiple 
progression/regression sub-regions undermines the predictive capabilities of the features defined in this work.

In addition, we showed that performing feature selection improves results. We tested several feature selection 
methods, e.g. sequential (forward/backward), Boruta15, and conditional likelihood maximization16. Being the 
one presented in Sect. "Training/test methodology" the one that resulted in the best predictive metrics.

Adding to this discussion on the feature’s impact on model prediction, it is worth noting that dimensionality 
reduction techniques are commonly used to transform high-dimensional spaces to a (more human-friendly) 
low-dimensional representation. We tested the use of Principal Component Analysis (PCA17) and Uniform 
Manifold Approximation and Projection (UMAP18). Nevertheless, since performance metrics did not improve, 
for the sake of clarity such tests were not presented in this manuscript.

Finally, it is important to recall that machine learning algorithms, such as the one proposed in this study, may 
often lack interpretability, making it challenging to understand the underlying features or the rationale behind 
their predictions. To gain insight into the role of the features, we used SHAP values14 to highlight the feature 
impact on the model’s prediction outcomes. Such a method could provide clinicians with explanations for the 
algorithm’s decisions, leading to an overall improvement in trust, acceptance, and adoption in clinical practice.

Clinical impact
The insidious development of atherosclerosis over years to decades and resultant coronary artery disease increase 
the risk for the more sudden and dreadful symptomatic variety, acute coronary syndrome (ACS)19. Globally, ACS 
due to plaque rupture and erosion remains a major mortality and morbidity burden for patients. Research has 
revealed that plaque morphology including but not limited to large necrotic core volumes, plaque burden, thin 
fibrous caps, and inflammatory mediators define a high-risk plaque prone to rupture and lumen obstruction20. 
Coronary plaque progression and inflammation have thus been a major target for pharmacotherapy and evalu-
ation with intravascular imaging. Primary and secondary prevention with intensive statin therapy has proven 
effective in reducing clinically significant major adverse cardiac events21. Studies such as IBIS-4 (Integrated 
Biomarkers and Imaging Study-4) (NCT00962416) showed an association between plaque burden regression in 
non-infarct-related coronary arteries and high-intensity rosuvastatin therapy over 13 months in STEMI patients2. 
Nonetheless, appropriately treated patients on statin therapy are still at risk. Prediction of plaque burden progres-
sion among patients and whether a patient would respond favorably to treatment represent elusive major mile-
stones in cardiology. Further, knowing the local regions that would experience progression in advance, one would 
like to investigate whether local therapies such as drug-eluting balloons can modify the course of the disease.

Next steps
In this manuscript, we have performed a thorough in-depth analysis of the proposed methodology. We have 
tested variations on the feature selection strategy and the use of dimensionality reduction techniques (latter not 
reported). Moreover, we have explored the use of other classification/regression methods, specifically: Nearest 
Neighbors, Support Vector Machines, Gaussian Process, Fully Connected Neural Networks, Gaussian Naive 
Bayes, Quadratic Discriminant Analysis, Gaussian Mixture Models, and Linear Regression, not reported in this 
work. Overall, the XGBoost regressor delivered the best results regarding the metrics presented here. For brevity 
and clarity, we opted not to present the results of the other models.
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The next steps of this research should be oriented towards improving prediction performance by (i) collect-
ing more data and (ii) envisioning a different analysis of ROIs. Regarding the first point, there are two possible 
courses of action, (i.a) try to access retrospective data of studies similar to IBIS4; or (i.b) design and execute 
new trials. Regarding the second point, we propose three courses of action, (ii.a) to process frame-wise features 
as spatial signals (in contrast to ROI-wise features strategies) using models for signal forecasting or natural lan-
guage processing, such as Recurrent Neural Networks; (ii.b) to explore alternative image-related features from 
the IVUS pullbacks that could be markers for plaque evolution, such as plaque composition (e.g. image texture, 
among others), and localization (e.g. bifurcation); and finally, ii.c) to estimate hemodynamic and mechanical 
environments (through blood flow and structural computer simulations) to gather information on wall shear 
stresses or plaque inner stresses, and used them as complementary features in the methodology proposed here.

Limitations
While the machine learning algorithm presented in this study showed promising results in detecting coro-
nary plaque regression or progression from IVUS pullback and standard patient clinical data, it is essential to 
acknowledge the limitations that should be considered in interpreting and applying the findings presented here.

•	 Regarding the characteristics of the data, it is known that the performance of any machine learning algorithm 
heavily relies on the quality and representativeness of the dataset used for training and evaluation. In this 
context, we highlight the following:

–	 All patients were treated with high-intensity statin therapy during the 13-month time window between 
BL and FU acquisitions. Therefore, the data set may not fully represent the diversity and heterogeneity of 
lumen, vessel, plaque geometry, and hemodynamic/environmental scenarios that affect atherosclerotic 
plaque regression and progression mechanisms in different patient populations.

–	 The size of the dataset, was deemed adequate for the present pilot study. Nevertheless, the present study 
must be replicated using a larger, more diverse patient cohort.

•	 Since lumen and vessel contours used in this work were manually defined by specialized cardiologists, the 
method’s sensitivity to inter- and intra-observer variability remains to be investigated. Moreover, variability 
and subjectivity in the annotation process may introduce inherent biases. Furthermore, other intrinsic IVUS 
image characteristics, e.g. image noise, artifacts, image resolution, gating, and so on, may affect the accuracy 
of contour delineation, and consequently impact the prediction model. Automatic segmentation of lumen and 
vessel contours by machine learning algorithms can help to circumvent this issue and increase the number 
of patients involved in the analysis.

•	 Although we tackle the interpretability of the model predictions through the incorporation of SHAP values, 
there is still a considerable number of features, relevant to the proposed methodology, which is not as intuitive as 
{PAV, TAV, TLV, TVV} (those commonly used by cardiologists). This could delay adoption in clinical practice.

In summary, further research and validation efforts are necessary to overcome these limitations and enhance the 
algorithm’s robustness, generalizability, interpretability, and ethical and regulatory compliance.

Conclusions
In this work, we presented promising results toward predicting atherosclerotic plaque regression/progression 
over time from patient data at baseline. Specifically, clinical data was integrated with IVUS-derived data (lumen 
and vessel contours) at two time points, baseline, and 13-month follow-up, to train an XGBoost regressor/classi-
fier. When such a model is trained/validated on regions defined by the very progression/regression of the plaque 
burden, the accuracy, and the Mathews Correlation Coefficient were, on average, 0.70 and 0.41 respectively, for 
stratified k-fold cross-validation ( k = 5 , r = 20 , 100 models in total). Using an ROI partition criterion based only 
on the plaque burden at baseline yielded, on average 0.60 and 0.23 for the accuracy and the Mathews Correlation 
Coefficient, respectively. The use of fix lengths along the pullback to define ROIs did not improve these metrics.

The proposed framework enables the prediction of plaque changes (positive: progression, and negative: 
regression) in patients treated with rosuvastatin therapy. Moreover, the method may help to stratify patients at 
risk of coronary plaque progression, using IVUS images and standard patient clinical data.

Data availability
The data-set used during the current study is not publicly available and is part of the IBIS4 Study, https://​clini​
caltr​ials.​gov/​ct2/​show/​NCT00​962416.
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