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Abstract: Artificial intelligence (AI) is gaining increasing interest in the field of medicine because
of its capacity to process big data and pattern recognition. Cardiotocography (CTG) is widely used
for the assessment of foetal well-being and uterine contractions during pregnancy and labour. It is
characterised by inter- and intraobserver variability in interpretation, which depends on the observers’
experience. Artificial intelligence (AI)-assisted interpretation could improve its quality and, thus,
intrapartal care. Cardiotocography (CTG) raw signals from labouring women were extracted from
the database at the University Hospital of Bern between 2006 and 2019. Later, they were matched
with the corresponding foetal outcomes, namely arterial umbilical cord pH and 5-min APGAR score.
Excluded were deliveries where data were incomplete, as well as multiple births. Clinical data
were grouped regarding foetal pH and APGAR score at 5 min after delivery. Physiological foetal
pH was defined as 7.15 and above, and a 5-min APGAR score was considered physiologic when
reaching ≥7. With these groups, the algorithm was trained to predict foetal hypoxia. Raw data
from 19,399 CTG recordings could be exported. This was accomplished by manually searching
the patient’s identification numbers (PIDs) and extracting the corresponding raw data from each
episode. For some patients, only one episode per pregnancy could be found, whereas for others, up
to ten episodes were available. Initially, 3400 corresponding clinical outcomes were found for the
19,399 CTGs (17.52%). Due to the small size, this dataset was rejected, and a new search strategy
was elaborated. After further matching and curation, 6141 (31.65%) paired data samples could be
extracted (cardiotocography raw data and corresponding maternal and foetal outcomes). Of these,
half will be used to train artificial intelligence (AI) algorithms, whereas the other half will be used
for analysis of efficacy. Complete data could only be found for one-third of the available population.
Yet, to our knowledge, this is the most exhaustive and second-largest cardiotocography database
worldwide, which can be used for computer analysis and programming. A further enrichment of the
database is planned.

Keywords: obstetrics; cardiotocography (CTG); foetal monitoring; artificial intelligence (AI); machine
learning (ML); deep learning (DL); neural network (NN)

1. Introduction

Artificial Intelligence (AI) encompasses a wide variety of technologies with cognitive
functions like problem-solving and learning. AI has become a part of our everyday life in
the form of drones, smartphones, and virtual assistants. Moreover, it is gaining interest
in the field of medicine in the form of physical objects like “carebots” [1] or surgery

Methods Protoc. 2024, 7, 5. https://doi.org/10.3390/mps7010005 https://www.mdpi.com/journal/mps

https://doi.org/10.3390/mps7010005
https://doi.org/10.3390/mps7010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mps
https://www.mdpi.com
https://orcid.org/0000-0002-0221-2491
https://orcid.org/0000-0003-0113-2761
https://orcid.org/0000-0002-5678-548X
https://orcid.org/0000-0002-7183-6257
https://orcid.org/0000-0001-7705-1584
https://doi.org/10.3390/mps7010005
https://www.mdpi.com/journal/mps
https://www.mdpi.com/article/10.3390/mps7010005?type=check_update&version=2


Methods Protoc. 2024, 7, 5 2 of 12

assistants [2], as well as in virtual form represented by generative artificial intelligence [3]
and machine learning (ML) [4]. ML and deep learning (DL) [5] systems learn through
experience. These systems are able to recognise patterns, classify sequences based on
algorithms, and form a strategy to solve problems [6]. Processing and learning from big
data are other main factors in AI systems [7].

The main foetal surveillance method in obstetrics is cardiotocography (CTG). It records
the foetal heart rate (FHR) and uterine contractions (UC), as well as their temporal relation.
Furthermore, it represents an assessment of the foetal state before and during labour.
Physicians decide on further management based on the CTG signals to prevent poor
neonatal outcomes like neonatal acidosis or hypoxia, stillbirth, and cerebral palsy [8].
The impact of CTG is widely discussed because of intra- and interobserver variability
in interpretation as well as low specificity. Since its introduction in the 1960s, caesarean
section rates and instrumental vaginal births have increased, but no clear reduction in poor
neonatal outcomes has been achieved [9]. The observer’s experience has a great influence
on the quality of CTG interpretation, which offers a suitable background to implement
AI-assisted interpretation. Especially human factors like long hours of work, less time to
interpret because of a big workload, or less experience play an important role in the quality
of interpretation. AI is not impacted by these factors [10].

In the field of radiology, studies have shown that AI systems interpret images in
the same variability range as experienced specialists [11,12]. Another study shows the
high performance of a decision support system in foetal ultrasound examination [13].
Since CTG interpretation is also image-based, it is hoped that AI-assisted interpretation
leads to an improvement in the quality of the interpretation. With an improvement in
CTG interpretation, a lower rate of unnecessary medical interventions and ameliorated
intrapartal care is expected [10].

In this area, literature is still scarce. Several commercially available systems exist, with
equal efficiency compared to human interpretation, yet none of these has gained general
acceptance or widespread use. Solely, the Omniview–Sisporto system could be proven
to be superior to expert interpretation so far, yet in one single study with retrospective
design [14]. With AI algorithms developing and improving, new approaches in AI-assisted
CTG interpretation are being studied. It is generally known that the bigger the data, the
better the AI system functions. It is a general purpose of every AI project to generate a large
dataset on which the algorithms are based. Furthermore, data has to be accurate, include
no artefacts, and be homogenous.

The objective of this manuscript is to obtain dataset curation prior to programming,
which was accomplished by the author within the Centre Suisse d’Electronique et de Mi-
crotechnique (CSEM). The final objective is to develop an AI system for CTG interpretation
and thus improve foetal outcomes by reducing inter- and intraobserver variability in CTG
interpretation. The authors intend to develop an AI system for CTG interpretation and thus
improve foetal outcome by reducing inter- and intraobserver variability in interpretation.
The authors do not intend to measure inter- and intraobserver variability itself but to
compare foetal outcomes with and without additional use of the created AI system in a
future prospective randomised clinical trial.

2. Material and Methods

We conducted a retrospective study as a collaboration between the obstetrics depart-
ment at the University Hospital of Bern (UHB) and Centre Suisse d’Electronique et de
Microtechnique in Neuchâtel, Switzerland (CSEM).

The author participated in data curation at the UHB, particularly by accomplishing
data export and anonymisation. The methodology will be described as follows.

Following this, we describe the medical system Intellispace perinatal [15], which is
used in our hospital for CTG monitoring, data collection, and storage.
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3. Intellispace Perinatal

Intellispace perinatal [15] is a production of PHILIPS [16], the Department of Obstet-
rics, and the Laboratory of Computer Science of the Massachusetts General Hospitals. It
allows documentation and monitoring of the foetus and mother before, during, and after
birth. The manufacturers claim easy access to the documentation from multiple sources
due to the fact that Intellispace can be easily integrated into different clinical software
systems. Furthermore, it functions based on an alarm system that prevents the user when
a critical event occurs. The algorithms detect baseline changes, variability, accelerations,
decelerations, and contractions as defined by the National Institute of Child Health and Hu-
man Development (NICHD) [17]. Critical events include foetal tachycardia or bradycardia,
signal loss, low or absent variability, and decelerations.

A medical file is created for each patient (mother) and saved in the system. One file
can contain several episodes. An episode represents a recording for a specific period of
time. As the system can be used ante-, intra-, and postpartum, each woman can present
different episodes originating from one pregnancy, as well as different episodes from
different pregnancies. This is highly dependent on the need to monitor of a pregnancy.

The top of the interface depicts the patient data, the actual date, and the time. The
alarms are coded as a bell in different colours. In the middle, the foetal heart rate (FHR)
is shown with a numeric scale in beats per minute (bpm). The maternal heart rate (MHR)
is illustrated in a different colour. If there are multiple foetuses, each FHR is represented
with a different colour. Below the heart rate, foetal movements are pictured as black bars.
Maternal contractions appear with their numeric scale in millimetres of mercury (mmHg).
As the heart rates and the contractions are shown on the same timeline, relationships
between the FHR and the maternal contractions can be seen directly. Figure 1 depicts a
graphical representation of a CTG, as it is seen in maternity wards on a daily basis.
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Figure 1. Graphical representation of a cardiotocogram in Intellispace Perinatal [15]. (A) Foetal heart
rate (FHR). (B) Maternal heart rate (MHR). (C) Foetal movement. (D) Uterine contractions.
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4. Data Collecting

Data collection was conducted on two pillars: CTG data and corresponding clini-
cal data.

5. Defining the Cohort and Collection of Clinical Data

For obtaining a complete overview of the deliveries during the predefined study
period, different sources were considered: the written archives of the delivery ward (the
so-called “delivery books”), the digital database of the puerperium department, and/or the
digital database of the patient management department. Finally, we opted for the patient
management database, which proved to be the most complete. The written archive could
have potentially represented an even wider source of data. However, manually searching
for every patient in a written book would have been too labour-intensive, so this method
was excluded due to a lack of efficiency. The digital database of the puerperium department
only started to be written in 2016, so this option was excluded from the start due to its
limited size. The final study sample was listed in tabular form with a tab for each year.

The collection of outcomes corresponding to each mother–foetus pair started in January
2021 with an application for foetal and maternal outcomes to the Insel Data Centre (IDC).
A Data Transfer Agreement between CSEM and the UHB was created in March 2021 in
collaboration with legal advisors at Unitectra. In June 2021, the IDC reported missing
elements in the patient identification numbers (PIDs), yet correct identification of the
patients was still possible. Correct identity was confirmed by the study team. The purpose
of obtaining clinical data was to analyse foetal outcomes corresponding to each CTG, which
is indispensable for training the AI system. The main foetal outcomes of interest were
umbilical cord arterial pH as well as a five-minute APGAR score. These outcomes helped
assess foetal asphyxia during labour and the clinical adaptation of the newborn. Clinical
data were collected from the digital archives of the University Hospital of Bern (UHB),
Switzerland, and included all deliveries between 2006 and 2019.

6. CTG Data

CTG data assessment was conducted in IntelliSpace Perinatal [15]. Although exclu-
sively graphical data are being used in the daily routine, this is not sufficiently accurate for
programming an AI system. Thus, raw data had to be extracted for each CTG. To achieve
data extraction, an update of the Intellispace perinatal [15] software was necessary in the
first phase (version Rev. K). For the initial extraction process, the author searched patients
by their names, surnames, and date of birth in the Intellispace system [15]. This process led
to a large amount of missing data because of spelling discrepancies/mistakes. The search
was restarted by means of PID, which consistently increased the accuracy of the search.

For the purpose of downloading raw data, a shared folder was created by the infor-
matics department at our hospital, with the support of the Philips [16] technicians. Access
was exclusive to study personnel.

7. Eligibility Criteria

We included CTG files from the obstetrics department of the University Hospital of
Bern (UHB) in our database, as well as the corresponding foetal outcomes. The CTG files
were from women who delivered from 2006 to 2019 at our institution. Only peripartal CTG
files have been included.

Excluded were births from patients who did not give their consent to use their data,
as well as patients for whom the data were incomplete. Multiple births were excluded.

Physiological foetal pH was defined as 7.15 and above; the five-minute APGAR score
was considered physiologic when reaching ≥7. There is no generally accepted definition of
hypoxia internationally, so the authors decided on the values corresponding to the internal
hospital guidelines.
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8. Results
8.1. CTG Data

Raw data from 19,399 CTG recordings could be exported. This was accomplished
in the CTG recording system Intellispace Perinatal [15] by manually searching PIDs and
downloading the corresponding raw data of each episode. For some patients, only one
episode per pregnancy could be found, whereas for others, up to ten episodes were avail-
able. We did not statistically analyse the number of episodes per patient since this was
not relevant to our study. For each patient, the episode corresponding to the latest time
point in the current pregnancy was extracted because this always corresponded to the
labour period.

At the beginning of the Methods section, we have depicted a graphical image of
the CTG, which is commonly used by midwives and obstetricians for interpretation. As
follows, we present an example of raw data depiction (“the data behind the data”). These
appear in an Excel document containing numbers, which represent data points of the CTG.
An example is shown in Figure 2 to illustrate this. It is important to mention that this is an
incomplete data example because of the enormous size of these documents.
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In Table 1, a listing of manually extracted CTG episodes per year is shown.
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Table 1. Women per year manually extracted from the Intellispace perinatal system at the University
Hospital of Bern.

Year Number of CTG Episodes

2006 0

2007 204

2008 376

2009 526

2010 542

2011 1690

2012 1742

2013 1820

2014 1800

2015 2294

2016 2888

2017 345

2018 271

2019 164

8.2. Clinical Data

For the 19,399 CTG documents, clinical outcomes were searched using the IDC. In
August 2021, IDC provided the study team with the first data sample, which contained
3400 outcomes. Due to the small size of the cohort where clinical outcomes were available,
the dataset was rejected by the study team, and a new search strategy was elaborated
together with the IDC. The authors used control measures for the quality of the dataset,
including the number of cases provided, completeness of data (meaning a set of CTG
and complete corresponding clinical parameters), availability of signed general consent
where applicable, and the presence of both physiological and pathological clinical outcomes
following a standard distribution.

The initial small sample size resulted from a high number of search criteria provided
to the IDC. The most important limitation factor was the delivery stage, which was de-
fined by the clinician team using two landmarks: the opening of the cervix at four and
ten centimetres. This led to an extremely time-consuming search and a limited number
of samples. Moreover, information about the use of peridural anaesthesia (PDA) was
inconsistent and was finally not considered for data curation. Although it represented
a further limitation search factor, the delivery mode was finally coded in abbreviations
and kept for the search. The IDC proposed to provide a separate list with the diagnosis at
discharge, which was accepted.

Finally, using the second strategy, a cohort of 15,744 patients with available correspond-
ing clinical outcomes could be obtained. An extensive list of assessed neonatal outcomes is
depicted in Table A1 in the Appendix A.

Eventually, the data were anonymised for further use by creating pseudo-PIDs. After
the first attempt of manual anonymisation was proven too extensive, a computer algorithm
was created to facilitate anonymisation and data matching (CTG raw data with clinical
outcomes). Finally, after exclusion from duplicates, multiple births, and datasets with
missing information, as well as matching the foetal outcomes with the corresponding CTG
file, a dataset of 6141 complete data samples was obtained, as shown in Figure 3.
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Fetal outcomes 

N = 15,744 

N = 15,744 

01.01.2006- 31.12.2019 

            N = 15,743 

N = 15,486 

Single birth 

N = 13,688 

Fetal data provided 

N = 12,599 

pH in physiological range 

N = 12,563 

N = 9298 

Without consent 

0 excluded 

Not in cohort 

1 excluded 

Duplicates 

257 excluded 

Multiple birth 

1798 excluded 

Fetal data not provided 

1089 excluded 

No physiological pH 

36 excluded 

No pH values 

3265 excluded 

With CTGfile 

N = 6141 

CTG files 

N = 19,399 

N = 18,160 

01.01.2006 - 31.12.2019 

           N = 12,520 

Without CTG file 

3157 excluded 

Duplicates 

1239 excluded 

Not in cohort 

5640 excluded 

Figure 3. Selection of collected data (Flowchart, Centre Suisse d’Electronique et de Microtechnique
CSEM SA, 2021).

9. Discussion

To our knowledge, we curated the most exhaustive as well as the second-largest
CTG and foetal outcome database worldwide. Its purpose is computer analysis and
programming for AI-based interpretation. Furthermore, the database distinguishes itself
from all the internationally existing ones by its complexity and completeness [18].

The currently largest existing database was created within the controverted INFANT
study conducted at Oxford University [19]. This includes outcomes from 47,062 women
(and the corresponding 47,648 infants). The exact content of this database cannot be
ascertained since it is not publicly available. It was used to obtain an AI system that finally
could not achieve better neonatal outcomes than observer interpretation [19]. The INFANT
study was controversial because of its design weakness: Robert Keith and others raised the
concern that cross-over effects could have been present because of unblinded co-located
clinicians [20].

Our database is currently not publicly available. To our knowledge, two public
databases exist: the CTU-UHB database from the Czech Republic [21] and the UCI reposi-
tory [22].

The CTU-UHB database contains 552 intrapartal CTG tracings. The tracings were
assessed at the University Hospital of Brno between 2010 and 2012. Although it contains
complete CTG episodes, the CTG sets in this database are characterized by an important
number of missing data points, especially at the end of labour. This is common if the car-
diotocograph cannot receive a signal because the detector is being moved, for example, by
movements or other disturbance factors. Missing data points make the AI-assisted analysis
of the CTGs more difficult, which could have an influence on performance results [21].
Compared to our database, it comprises considerably fewer data samples. As a reminder,
AI systems work best when trained with a large amount of data.
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The UCI machine learning repository contains 2126 CTG tracings from the University
of California Irvine. Three expert obstetricians classified the CTG tracings in addition to
automatic processing [22]. This database was used by Ayres de Campos et al. to create
SisPorto 2.0 [23]. As mentioned before, SisPorto is currently the most promising AI system
for CTG interpretation, yet it has not reached extensive market penetration so far.

AI-assisted interpretation of CTG could support clinical reasoning during delivery.
There is an ongoing debate concerning the possibilities of improving neonatal outcomes.
Improve CTG interpretation is one way to advance in intrapartum care, as foetal hypoxia
prediction during birth could support clinical decision-making. Reversely, the use of CTG
itself has been widely discussed and debated ever since its introduction decades ago.

The size of the created database is a strength of our study. Yet, the potential of
the assessment at this study start was substantially higher, as only a third of the initial
candidates could be selected for final introduction into the dataset. This is due to data loss,
duplication, incorrect assessment, etc. This underlines the difficulty of data curation and
creation of large datasets with patients’ outcomes originating from different sources, which
often leads to underpowered analyses.

One limitation of this study could be the risk of bias due to low recruitment in certain
population categories, such as patients with a language barrier where general consent is not
collected because explanations cannot be properly provided. Other biases are represented
by limited recruitment in the first years of this study, where the electronic database had
just been implemented, and data loss was still very high. However, these biases can be
balanced, in our opinion, by the large number of patients included.

The main challenge of the dataset curation in our study was obtaining the raw data
for CTGs. This required extensive and time-consuming preparation, an important update
of the entire Intellispace system [15], and was associated with high costs. Taking a glance at
the size of one single episode of raw data, it is easy to understand why the observer’s eye
is not able to interpret every single variation in foetal heart rate, especially in correlation
with further features such as the presence of contractions and the delivery stage.

The “data behind the data” and its computerised interpretation show immense poten-
tial for computer-assisted AI interpretation, yet considering the current advances in the
medical field in regard to artificial intelligence, foetal surveillance is still making “baby
steps” in taking advantage of this trend.

While the use of continuous foetal surveillance during labour is an issue being debated
in its own right [9], the authors of this study believe that withholding information from the
observer is not the solution but rather a refinement of interpretation algorithms, whether
based on AI or other models [24].

Our project is still ongoing. An extension of the database was approved by the
Ethical Committee of Bern and is currently under work (deliveries up to April 2022). After
further refinement, the dataset will be used to program and train an AI algorithm for
CTG interpretation, with the intention to test its efficacy in a future randomised controlled
trial (RCT).

10. Conclusions

Our work reveals how extensive data curation can be and brings a new perspective
for clinicians mainly working on projects of a clinical or laboratory nature. This endeavour
underlines the importance of interdisciplinary collaborations for the medical practice of the
future, where boundaries between biology and technology, thus human and computer, are
getting fainter as we advance through the century, hopefully only to our best.

Even though bigger data are always better for AI interpretation, our curation is, to
our knowledge, the second-largest CTG database worldwide and distinguishes itself by
completeness and complexity, being the most exhaustive of its type currently available.
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Abbreviations

AI artificial intelligence
bpm beats per minute
CNN convolutional neural network
CSEM Centre Suisse d’Electronique et de Microtechnique
CTG cardiotocography
DL deep learning
FHR foetal heart rate
IDC Insel Data Centre
LR logistic regression
LSTM long short-term memory
MHR maternal heart rate
ML machine learning
mmHg millimetres of mercury
NICHD National Institute of Child Health and Human Development
PDA peridural anaesthesia
PID patient identification number
RCT randomized controlled trial
RNN recurrent neural network
SP signal-processing
SVC support vector classification
SVR support vector regression
UC uterine contractions
UCI University of California Irvine
UHB University Hospital of Bern
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Appendix A

Table A1. Foetal and maternal outcomes extracted from the Insel Data Centre (IDC).

Item Label Exemplification Datatype & Unit

Name name

First name first_name

Patient-ID pid

Case-ID fid

Date of birth mother dob

General consent (since 2017) GC
Binary:
0 = no
1 = yes

General consent vital signs GCstatus Binary

Gravidity gravidity Birth report, first number from SAFT-Code Numeric

Parity parity Birth report, summation of last two numbers
from SAFT-Code Numeric

Gestational week gestation_week Birth report, number + seventh

Date of birth delivery_date Birth report Date

Time of birth delivery_time Birth report Datetime

Date cervix at 4 cm 4 cm_date Partogram Date

Time cervix at 4 cm 4 cm_time Partogram Datetime

Date cervix complete 10_date Partogram Date

Time cervix complete 10 cm_time Partogram Datetime

PDA PDA Partogram
Binary:
0 = no
1 = yes

Date PDA insertion PDA_date Partogram Date

Time PDA insertion PDA_time Partogram Datetime

Date spontaneous or artificial
rupture of membranes ROM_date Partogram Date

Time spontaneous or artificial
rupture of membranes ROM_time Partogram Datetime

Delivery mode delivery_mode Birth report Categorical/grouped

Foetal sex sex Birth report Categorical/grouped

Birth weight birthweight Birth report Numeric (gram)

Birth weight percentile birthweight_p Birth report Other

Head circumference head Birth report Numeric
(centimetre)

Head circumference percentile head_p Birth report Other

Body length length Birth report Numeric
(centimetre)

Body length percentile length_p Birth report Other

APGAR 1 min apgar_1 Birth report Numeric

APGAR 5 min apgar_5 Birth report Numeric

APGAR 10 min apgar_10 Birth report Numeric
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Table A1. Cont.

Item Label Exemplification Datatype & Unit

Venous pH NSV_pH Birth report Numeric

Arterial pH NSA_pH Birth report Numeric

Base excess BE Birth report Numeric

Intrauterine growth
retardation IUGR

Diagnoses from birth report:
intrauterine

Wachstumsrestriktion,
intrauterine

Wachstumsretardierung,
IUWR

Freetext

Small for gestational age SGA Diagnoses from birth report:
small for gestational age, SGA Freetext

Macrosomia macrosomia Diagnoses from birth report:
Makrosomie Freetext

Amniotic fluid with
meconium meconium

Diagnoses from birth report:
mekoniumhaltiges

Fruchtwasser,
mekoniumhaltiges FW,

Mekoniumabgang

Freetext

Unsuccessful tocolysis unsuc_tocolysis Diagnoses from birth report:
Tokolysedurchbruch Freetext

Amnion infection syndrome AIS Diagnoses from birth report:
Amnioninfektsyndrom, AIS Freetext

Gestational diabetes GDM
Diagnoses from birth report:

Gestationsdiabetes, GDM,
iGDM, dGDM

Freetext

Preeclampsia/HELLP PE
Diagnoses from birth report:
Präeklampsie, PE, HELLP,

HELLP-Syndrom
Freetext

Blood loss bloodloss Diagnoses from birth report:
Blutverlust, BV Numeric (mL/L)
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