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Abstract
Objective.Online adaptive radiotherapy aims to fully leverage the advantages of highly conformal
therapy by reducing anatomical and set-up uncertainty, thereby alleviating the need for robust
treatments. This requires extensive automation, amongwhich is the use of deformable image
registration (DIR) for contour propagation and dose accumulation. However, inconsistencies inDIR
solutions between different algorithms have caused distrust, hampering its direct clinical use. This
work aims to enable the clinical use ofDIR by developing deep learningmethods to predict DIR
uncertainty and propagating it into clinically usablemetrics.Approach. Supervised and unsupervised
neural networks were trained to predict theGaussian uncertainty of a given deformable vector field
(DVF). Since bothmethods rely on different assumptions, their predictions differ andwere further
merged into a combinedmodel. The resulting normally distributedDVFs can be directly sampled to
propagate the uncertainty into contour and accumulated dose uncertainty.Main results.The
unsupervised and combinedmodels can accurately predict the uncertainty in themanually annotated
landmarks on theDIRLABdataset. Furthermore, for 5 patients with lung cancer, the propagation of
the predictedDVF uncertainty into contour uncertainty yielded for bothmethods an expected
calibration error of less than 3%.Additionally, the probabilisticly accumulated dose volume histograms
(DVH) encompass well the accumulated proton therapy doses using 5 different DIR algorithms. It was
additionally shown that the unsupervisedmodel can be used for different DIR algorithmswithout the
need for retraining. Significance.Ourwork presents first-of-a-kind deep learningmethods to predict
the uncertainty of theDIR process. Themethods are fast, yield high-quality uncertainty estimates and
are useable for different algorithms and applications. This allows clinics to useDIR uncertainty in
their workflowswithout the need to change theirDIR implementation.

1. Introduction

Intensitymodulatedphoton andproton therapy, aswell as volumetricmodulated arc therapy, offer high
conformality of thedose to the tumor and therefore spare healthy tissuemore than traditional radiotherapy
techniques (Lomax 1999, Bortfeld 2006,Otto 2008, Tran et al 2017,Moreno et al 2019).However, the effectiveness
of these techniques depends onaccurate dose delivery,which can be compromised by changes in thepatient’s
anatomyor set-up variations. Such variations are especially important for proton therapy,where the locationof the
dose peak is highly sensitive to tissuedensities along thebeampath (Lomax 2008, Zhang et al 2011). To compensate
for these uncertainties, treatment plans are oftenmademore robust by addingmargins around the target area
(Albertini et al2011)orusing robust optimization techniques (Liu et al 2012,Unkelbach et al2018).Whereas these
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approaches can help to ensure sufficient target coverage, they also increase thedose to healthy tissue and therefore
diminish someof the potential benefits of conformal therapy.

Instead of accounting for anatomical and set-up uncertainty, adaptive radiotherapy aims to reduce it by
acquiring a 3D image shortly before the treatment. Reoptimizing the treatment plan based on this daily
information reduces the need for robustness, and, hence, lowers the dose to the healthy tissue. Tominimize the
uncertainty about the treated anatomy, the time between image acquisition and treatment needs to be as short as
reasonably possible, in the order ofminutes. This excludesmanual execution ofmany adaptation steps, so
adaptive therapy requires extensive automation.

One tool enabling adaptive therapy is deformable image registration (DIR), i.e.finding a (deformable)
transformation thatmaps one image to another. DIR is used for three distinct applications in adaptive therapy:
contour propagation, dose accumulation and synthetic CT generation (Rigaud et al 2019, Paganetti et al 2021).
For contour propagation, the planningCT is registered to the daily image and the resulting transformation is
applied to the planning contours of the organs-at-risk (OARs) and target volumes (TVs). This results in contours
on the daily image, which are necessary for reoptimization of the treatment plan. As this needs to happen
between image acquisition and treatment, it should be relatively fast, i.e. in the order ofminutes. Several works
have shown great potential forDIR for contour propagation, both geometrically and dosimetrically (Hardcastle
et al 2013, Kumarasiri et al 2014, Smolders et al 2023a, 2023b).

Another application ofDIR is dose accumulation, i.e. the process of summing up doses fromdifferent time
points on a common reference anatomy (Murr et al 2023). Dose accumulation hasmany applications outside
adaptive therapy, e.g. to correctly evaluate the cumulative delivered dose in case of re-irradiation. In adaptive
therapy, it is evenmore important. Due to the daily reoptimization, the treatment plan varies fromday to day.
To ensure that the total treatment adheres to the prescribed dose, all the daily doses have to be accumulated.
Contrary to contour propagation, dose accumulation does not need to happen during the patient appointment.
It could be part of an offline quality assurance (QA) procedure, e.g. after the patient treatment or once per week,
so the time constraint is less stringent.

WhereasDIR has a large potential, its clinical use is currently limited. Due to the technical limitations of
medical imaging (such as resolution and contrast), the corresponding points on two images of the same anatomy
cannot be found in an unambiguousmanner. This requires practical DIR algorithms to impose additional
constraints (e.g. smoothness) in the optimization. Since the implementation and strength of these constraints
vary betweenDIR algorithms, their solutions usually differ (Brock et al 2017).

To overcome the distrust inDIR and enable its use in the clinic, several works have developedmethods to
predict the uncertainty of aDIR solution. Some authors have proposed probabilistic DIR algorithms that
directly output a distribution of solutions rather than a unique solution (Simpson et al 2013,Heinrich et al
2016). The downside of thesemodels is that they are often relatively slow, that the quality of the solutions does
not reach those of non-probabilistic algorithms or that their implementations are complex, so they are rarely
used in practice. Otherwise,Monte-Carlo (MC) sampling could be used to quantifyDIR uncertainty. By
sampling the uncertain input parameters, such as regularization strength, or sampling fromdifferent DIR
algorithms, the spread inDIR solutions can be quantified.However, such samplingwould requiremany
independentDIR runs, which, given the longDIR runtimes, would be inadequate for adaptive therapy. Another
work tried to predict the uncertainty of a givenDIR solution using linear regression (Amstutz et al 2021).
Whereas thismethod is fast and has the advantage of being independent of theDIR algorithm itself, the
uncertainty prediction is solely based on themagnitude of the transformation and disregards any image
information.

In ourwork, we develop deep learning based uncertainty predictionmethods forDIR. This has, to the best of
our knowledge, not yet been attempted. Themethods do not calculate the registration, but aim to predict the
uncertainty of a givenDIR solution.We focus onCT toCT registration, therefore either assuming that the daily
image is a CT or that a daily synthetic CT is available. A supervised, unsupervised and combinedmodel are
trained and their results are compared for both contour propagation and dose accumulation. The network
architecture, loss functions, datasets and training parameters are detailed in section 2. Section 3 discusses the
model calibration and compares the performance for the respective applications. These results are followed by a
discussion in section 4 and a general conclusion in section 5.

2.Materials andmethodology

2.1. Gaussian deformable vectorfield (DVF)
Ourwork aims to predict the uncertainty of a givenDVF, the output of aDIR algorithm. TheDVF together with
its uncertainty can be considered as a probabilistic DVF z.Whereas z can in principle have any distribution, it is
here assumed to be amultivariate Gaussian, i.e.
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z q z , 1( ) ( ) ( )m~ = S

withμ themeanDVF given by an existingDIR algorithm andΣ the covariancematrix. In 3D,μ contains
3×H×W×D elements, withH,W,D the dimensions of the image.Ourmethods aim to predictΣ, which has
(3×H×W×D)2 elements, containing not only the variance of each vector, but also its covariance with other
vectors. For an average CT of size 512× 512× 100, storingΣ infloat precisionwould require 24 petabytes,
which is impossible for practical applications.

Therefore, we further assume a fixed correlationmatrix ρ between neighboring voxels, i.e.

G G 2T ( )rS =

withG a diagonalmatrix with its elements representing the standard deviationsσp,x,σp,y andσp,z of each
component of each vector of theDVF. Themodels only predictG, which has 3×H×W×Dnonzero elements,
requiring only 314MBof storage for an average CT. Lastly, we define ρ as

C C 3T
c c

( )r = s s

with C
cs thematrix corresponding toGaussian smoothingwith kernel widthσc, which correlates vectors that are

spatially close (Dalca et al 2019). The largerσc, the larger the correlation between the vectors which results in
smootherDVF samples.With these assumptions, DVF samples zk can be generated as

z GC 4k kc ( )m= + s

with 0, 1 ( )~ , a tensor of uncorrelated standard normally distributed elements (Kingma et al 2015). The
matrix product C

c
s does not need to be calculated explicitly: after reshaping ò into theDVF shape

(3×H×W×D), it is simply aGaussian smoothing of ò correlating the neighboring elements (Dalca et al 2019).
Note that the elements of C

cs need to be rescaledwith the sumof the squared elements of the smoothing kernel,
so that the individual elements of C

c
s remain standard normally distributed and only correlatedwith their

neighbors.

2.2.DIR algorithms
The neural networks predictingGwere trained usingplastimatchb-spline (Sharp et al 2010), but otherDIR
algorithmswere included in the evaluation to verify whether the approach can be generalized to otherDIR
algorithmswithout retraining. The includedDIR algorithms are shortly detailed hereafter:

• Plastimatch b-spline: many (commercial)DIR algorithms use a b-spline approach because it is fast and
generally yields good results (Rueckert et al 1999, Sotiras et al 2013). Ourmodels were trained using the
plastimatch b-spline algorithmbecause it is scriptable and publicly available. Recent work further
showed good results for contour propagation forOAR contours in both head and neck and lung cancer
patients (Smolders et al 2023b). Another advantage is that the hyperparameters can be changed, which is
necessary for our supervised training (see further). Unless stated otherwise, the optimization usedmean-
squared-error (MSE) as similarity criterion, two consecutive resolutions with grid spacing s respectively 40
and 20 mmand regularizationλr= 0.002 (Nenoff et al 2020).

• Plastimatch demons: demons is a commonly usedDIR algorithm (Thirion 1998). Contrary to the b-spline
algorithm, it is a non-parametricmethod.Here,plastimatch demonswas used. The implementation
details can be found in the supplementarymaterial ofNenoff et al (2020).

• Velocity: the VelocityDIR algorithm (VarianMedical Systems, Palo Alto, USA)was further included as it is
clinically usedDIR at theCenter for ProtonTherapy (CPT).

Three additional commercial DIR algorithmswere used to benchmark dose accumulation uncertainty. These
include RaystationAnaconda (RaySearch Laboratories AB, Stockholm, Sweden),Mirada (MiradaMedical,
Oxford, UK), and a preclinical DIR algorithmprovided byCosylab (Cosylab, d. d., Control SystemLaboratory,
Ljubljana, Slovenia).

2.3.Datasets
Thiswork uses 4 different datasets (table 1). Thefirst dataset contains CT scan pairs of patients treated at CPT
between 2013 and 2021 andwas used to train the neural networks. A total of 50 patients were included, which,
because some hadmore than one repeated CT, yielded a total of 63 scan pairs. Since each scan of a pair can be
considered once as the fixed and once as themoving image, this results in 126 input instances. All scan pairs were
initially rigidly registered using theElastix toolbox (Klein et al 2010) and resampled to afixed resolution
1.95× 1.95× 2 mm.

3
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The performance of themodels was quantitatively assessed using the public DIRLABdataset (Castillo et al
2009, 2010). It contains 10 patients with in- and exhale CT scanswith each 300manually annotated landmarks
(LMs). 4 patients were used for hyperparameter tuning, and 6 for evaluation.

The last two datasets contain each 5 patients with respectively non-small cell lung cancer (NSCLC) and
various indications of head and neck cancer (HNC). None of themwere included in the training dataset. This
data has been described in Smolders et al (2023b). All patients each have one planningCT and several repeated
CTs, all withmanually contouredOARs and clinical target volumes (CTV). TheNSCLCpatients each had 9
repeatedCTs andOARs including lungs, heart, spinal cord and esophagus. TheHNCpatients had 4–7 repeated
CTs, and theOARs included in this work consist of the eyes, optic nerves, chiasm, brainstem, parotids, spinal
cord and thyroid. Even though these patients were not treatedwith adaptive therapy, the repeated scans can be
considered as example daily CTs in an adaptive treatment.

For theNSCLC andHNCdatasets, an adaptive proton therapy treatment was simulated by reoptimizing the
treatment plan on each repeatedCT.Only the spot positions andweights were reoptimized, and thefield angles
andOAR constraints were kept the same. TheNSCLCplans delivered a 2 GyRBE fraction dosewith three fields
with angles and constraints specific for each patient tomaximize organ sparing. TheHNCplans delivered 1.6 Gy
RBEwith a 2.2 GyRBE to a boosted region and all had the same 3-field configurationwith gantry angles 65°,
180° and 295°. OAR constraints were imposed in line with standard clinical objectives andwere the same for all
patients. This yields for each patient a series of different daily dose distributions, which can be accumulated on a
reference CT to validate the entire treatment.

2.4.Model architecture
The deep learningmodels predictingG are based on a 3DUNet architecture (figure 1) (Çiçek et al 2016). The
fixed andmoving images are given as input to an existingDIR algorithm and the resultingDVF is considered as
themeanfieldμ. This DVF is concatenated to both images, yielding a 5×H×W×D tensor as network input
(appendix A). Based on this input, which contains information about themagnitude of the deformation and the
local image contrast, the network aims to predict a 3×H×W×D tensorG, containing the voxel-wise standard
deviationsσp,x,σp,y andσp,z of theDVF.G is in part directly used in the loss function. For unsupervised training,
G is additionally used togetherwithμ to generateDVF samples (equation (4)), which are used towarp the
moving image in the spatial transformer network (Jaderberg et al 2015). These sampledmoved images are also
used in the loss function to compare to thefixed image.

The 3DUNet has an initial convolution creating 16 featuremaps, which are doubled in each of the 3
consecutive encoder blocks. Each encoder and decoder block consists of 2 convolutional layers with kernel 3 and
stride 1, each followed by aReLU activation function. Downsampling between the blocks is donewithmax

Figure 1. Schematic network architecture.

Table 1.Overview of the datasets.

Name No. patients No. scans Anatomical region

CPTdataset 50 106 head and neck (64%), thorax (14%), abdomen (22%)
DIRLABdataset (Castillo et al 2009, 2010) 10 20 thorax

NSCLCdataset 5 50 thorax

HNCdataset 5 33 head and neck

4
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poolingwith kernel 2 and stride 2.Upsampling uses nearest-neighbour interpolation. Afinal convolutionwith
kernel 1× 1× 1 is used to convert the 16 features intoG.

2.5. Loss function
The above network architecture is used in threeways, with the only difference being the loss function used
during training: supervised, unsupervised and a combination of both.

2.5.1. Supervised learning
Theplastimatch b-spline algorithmhas two important hyperparameters: the grid spacing s, i.e. the distance
between the b-spline control points, and the regularizationλr, a hyperparameter in the objective function
regulating the importance of the smoothness of theDVF.Depending on the patient, anatomical location and
magnitude of the deformation, different hyperparameters are optimal. Instead of using a single value forλr and s,
we can assume probability distributions p(s) and p(λr), and this uncertainty in hyperparameters can be
propagated usingMC sampling to the correspondingDVFuncertainty (Smolders et al 2022b). Even though this
is too slow in practice, it can be used to generate standard deviation labelsGgt, which can be used to train a neural
network.

For each image in the training set, p(s) and p(λr)were sampled 100 times and the b-spline algorithmwas run
with the sampled hyperparameters, yielding 100DVF samples.Ggtwas then calculated as the standard deviation
of these samples with respect to themeanDVFμ

G
N

z
1

5gt
k

N

k
1

2( ) ( )å m= -
=

withN= 100 the number of samples. Note thatμ is not calculated as themean over these 100 samples, but as the
algorithm’s output when runwith hyperparametersμs and r

ml , as would be the case upon inference. The
network is then trainedwith themean absolute error (MAE), i.e.

f m G G, , , . 6s gt ( ) ∣ ∣ ( )mY = -

with f andm respectively thefixed andmoving images,μ themeanDVF andΨ the network parameters.
To sample p(s) and p(λr), their parameters need to be specified. Since grid spacings below the voxel spacing

or above the image size are pointless, s is naturally bound and p(s) is therefore assumed uniform. Becauseλr� 0,
but is not bound inmagnitude, we assumed a lognormal distribution. Even though s is naturally bound, very
high or low values likely result in inaccurate DVFs for all practical applications, and should therefore not be
considered. Tofind reasonable parameters of both distributions, the b-spline algorithmwas run for a range of
parameters s andλr on theDIRLAB validation scans, and for each hyperparameter set, the target registration
error (TRE)was evaluated. Hyperparameters for which the TRE is high are less likely to be the optimal ones, so
the parameters of the distributionswere chosen based on this TRE.

2.5.2. Unsupervised learning
FollowingDalca et al (2019), the unsupervisedmodel is trained based on a variational Bayesmethod.With z the
DVF, the network aims tominimize theKullback–Leibler (KL) divergence between the posterior probability p(z|
f,m) and theGaussianDVF q(z). It is additionally assumed that:

• f is a noisy observation of the transformedmoving imagem◦z: p f m z m z I, , ;I
2( ∣ ) ( ◦ )s=

• the prior probability is given by p z 0, z( ) ( )= S , with D Az z
1 ( )lS = L = -- ,λ a hyperparameter,D the

graph degreematrix andA the adjacencymatrix;

• q z G G, T( ) ( )m r= with C C T
c c

r = s s , as indicated above.

Minimizing theKL divergence with the above assumptions yields a loss function (Dalca et al 2019, Smolders et al
2022a):

f m
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withK the number of samples (equation (4)), i, j respectively the rows and columns ofΣ, i.e. indexing the voxels,
andN(i) the neighbouring voxels of voxel i, including itself. By construction, D A 6i j,( )- = if i= j and
D A 1i j,( )- = - if i≠ j. Because of the fixed ρ, the components ρi,j have only to be computed once at the
beginning of the training.Kwas set to 1 to limit GPUmemory usage.

The unsupervised loss function contains two hyperparameters: λ and I
2s . Their value influences both the

magnitude of the predicted uncertainty aswell as the trade-off between contrast and uncertainty. To tune these
hyperparameters, the probability of observing themoving landmarks xm


given the predicted probabilistic DVF

wasmaximized for theDIRLAB validation scans. This can be calculated as

p LMs p x DVF , 8
i

CTs

j

LM

m i j i, ,( ) ( ∣ ) ( ) =

assuming that each landmark is independent of the others, which is reasonable if the landmarks are sufficiently
far apart. Because theGaussian distribution is continuous, the probability of observing exactly xm


is

infinitesimally small.We thereforemaximized the probability that xm


is observedwithin a cube of 1mm3

around it with a homogeneous probability density, which is equal to the probability density at xm

. The 1%points

with the lowest probability were further discarded, because p(LMs) is heavily affected by these outliers. Themean
log p(LMs) is reported,making themetric independent of the number of landmarks.

Thewidthσc of theGaussian smoothing during sampling is not learned but taken as a constant value for the
whole image and dataset. However, its value needs to be tuned: an overly large value would result in overly
smoothDVF samples, and a too-small value could lead to folding voxels. Furthermore, the largerσc, the larger
thewidth of the smoothing kernel has to be, increasing the sampling time.σcwas therefore iteratively increased
until the average fraction of folding voxels on theDIRLABdatawas below 0.01% for themodel with optimalλ
and I

2s . Thefinal values wereσc= 15 voxels and kernel width 61, which are used for allmodels in this work.

2.5.3. Combining super- and unsupervisedmodels
The super- and unsupervisedmethods are based on different assumptions and quantify the uncertainty
differently. The one is likelymore accurate in some cases and anatomical regions, and the other one in other
cases. As it is a priori difficult to predict whichmethodwould bemost appropriate for each case, a conservative
approach is to predict themaximumuncertainty of bothmethods.

In principle it should be possible to change the loss function during training to predict thismaximum
directly. However, we found that the resulting discontinuity in the loss around themaximum impeded smooth
convergence, even by setting different weighting factors for both loss termsWe therefore opted to combine the
results of both the super- and unsupervised in postprocessing by taking themaximumσp for each individual
voxel. This technique is referred to as the combinedmodel. Even though this doubles the inference time of the
neural network, the total runtime of the applications (see later) is affectedmuch less since inference accounts for
only aminor fraction of the total runtime.

2.6. Training
Allmodels were implemented inPytorch and trained for 250 epochswith an initial learning rate 5e− 4, which
was halved every 50 epochs.Adamwas used for optimization (Kingma andBa 2014). Allmodels used random
cropping as data augmentation, with patch size 256× 256× 96, and the unsupervisedmodel additionally used
axis-aligned flipping. Themodels were trained usingNVIDIARTX2080TiGPUswith 12 GBVRAM.

The training of the unsupervised network sometimes failed and diverged because of the sampling process
used to calculate the loss function. To limit GPUmemory, we only used one sample to calculate the loss
function. If this sample is at the tails of the distribution, thismight cause a very high loss and hence sudden
divergence of the training, especially if this happens early during trainingwhen the predicted uncertainties are
not necessarily reasonable. Usingmore sampleswould avoid this, but requiresmoreGPUmemory. Instead, for
the hyperparameter tuning,model trainingwas restarted using, as initial weights, the parameters of the initially
converged unsupervised network, which simplified convergence as the predicted uncertainties are already in a
reasonable range.

2.7. Evaluation
Since a complete ground truth deformation does not exist for patient images (Brock et al 2017), DIR accuracy is,
for clinical purposes, often evaluated usingmanually annotated landmarks (Brock et al 2005,Weistrand and
Svensson 2015, Kadoya et al 2016, deVos et al 2019,Hering et al 2023) or contours (Klein et al 2009,Weistrand
and Svensson 2015, Balakrishnan et al 2019, deVos et al 2019,Hering et al 2023). Similarly, DIR uncertainty can
also be evaluated using landmarks and contours. Here, theDVFuncertainty was directly evaluated using the
landmarks on theDIRLAB test scans. The uncertainty predictionwas additionally evaluated for both contour
propagation and dose accumulation. For both applications, it isfirst explained howDVFuncertainty can be
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propagated into contour or dose uncertainty, after which the evaluationmethods are explained. The runtime of
the applications was evaluated using anNVIDIARTX2080TiGPUwith 12 GBVRAM.

2.7.1. Landmark uncertainty
The quality of the uncertainty predictionwas assessed by splitting the predicted standard deviations σp into bins,
and grouping all landmarks within each bin together, similar to a reliability diagram (Guo et al 2017). For an
infinite number of landmarks and aGaussian distribution ofDVFs, the root-mean-squared error (RMSE) of the
landmarks within each group should be equal to themeanσp of that group.We comparedσp to the RMSE to
assess the quality of the uncertainty prediction and to compare differentmodels. Analogous to the expected
calibration error (see further andGuo et al 2017), we define the landmark expected calibration error (LECE) as

B

n
B BLECE RMSE 9

m

M
m

m p m
1

∣ ∣ ∣ ( ) ( )¯ ∣ ( )å s= -
=

withBm a bin of landmarks,M the number of bins, |Bm| the number of landmarks in the bin, n the total number
of landmarks,RMSE(Bm) the root-mean-squared error of the landmarks and Bp m( )s the average predicted
uncertainty in the bin. In this work, thewidth of each bin is set to 0.25 mm.

2.7.2. Contour propagation
Contours can be propagated by sampling theDVF distribution (equation (4)) andwarping the contours with the
DVF sample. By doing this several times, likeMC sampling, a set of potential contour samples are obtained on
the daily CT, hereafter referred to as probabilistic contour propagation. For each voxel, the proportion of samples
for which it lies within the contour sample yields an estimate of the confidence that this voxel is part of the
contour, i.e. the contour uncertainty. For example, if a voxel lies within 65 out of 100 contour samples, the
confidence that this voxel is part of the corresponding structure is considered 65%.

To evaluate the accuracy of these confidences, the planning contours of theNSCLC andHNCpatients were
probabilistically propagated to each repeatedCT, using 100 samples. For each voxel in every repeatedCT, this
results in one confidence per propagated contour (OARs andCTV). Similar to the evaluation ofσp, the predicted
confidences can be split up into intervals, and the voxels with confidencewithin each interval can be grouped
together. Using themanual contours, the proportion of voxels of each group thatwere inside the respective
contour can be calculated. For awell-calibratedmodel, the average confidence of each group should be equal to
this proportion.We evaluated our trainedmodels for contour propagation by comparing the predicted
confidence to the target proportions using a reliability diagram, as well as by calculating the expected calibration
error (ECE) (Guo et al 2017). Only voxels with confidences between 1%and 99%are considered in the ECE,
because otherwise it would be artificially low due to the high number of voxels very far from the contour, for
which it is easy to predict 0% confidence.

2.7.3. Dose accumulation
Similar to contour propagation, theDVFdistributions can be sampled to obtain an accumulated dose sample.
However, several DVFs need to be sampled to obtain one accumulated dose sample (figure 2). First, each dose on
the repeatedCTs is warpedwith a sample of its correspondingDVF to the planningCT. Thismeans that n
different probabilistic DVFs are each sampled one time. Secondly, thesewarped doses on the planningCT are
accumulated, yielding one accumulated dose sample. Repeating thisK times yieldsK accumulated dose samples,
which allows to calculate the accumulated dose uncertainty.We refer to this process as probabilistic dose
accumulation.

As each accumulated dose sample requires oneDVF sample for each repeatedCT, acquired at different times
through the treatment course, additional assumptions need to be taken about the temporal correlation between
theseDVF samples. This correlation is highly complex and depends on the patient, anatomical location andDIR
algorithm. For simplicity, only two cases are considered: fully correlated (FC) and not correlated (NC). In the case
of full correlation, the same òk is used for eachDVF sample of the different CTs (equation (4)).Without
correlation, òk is sampled independently for eachDVF.

The doses of the repeatedCTswere probabilistically accumulated on the planningCTwith 50 samples for
eachNSCLC andHNCpatient, once fully correlated and once not correlated. For each accumulated dose sample,
a dose volume histogram (DVH)was created. TheseDVHswere combined in a probabilistic DVH , with the
lower and upper bound of theDVH representing for each volume increment the 2.5th and 97.5th percentile of
all sampled doses.

Whereasmanual contours allow the evaluation of contour uncertainty, evaluating the dose accumulation
uncertainty is difficult because the ground-truth accumulated dose is unknown.However, the uncertainty can
still be evaluated by considering howwell itmatches a set of plausible deformation samples. In previouswork
(Nenoff et al 2020, Amstutz et al 2021, Smolders et al 2023c), the solutions of several independent DIR
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algorithmswere assumed to be plausible deformations andwere used to quantify DIR and accumulated dose
uncertainty. Similarly, we accumulated the dosewith 6 different DIR algorithms (section 2.2) and evaluated the
volume fraction forwhich theDVHs of these accumulated doses lie within the error bounds of the probabilistic
DVH , hereafter referred to as the encompassed volume fraction EVF. An accurate EVF, i.e. close to 95%, therefore
means that our predictionmatches well the uncertainty resulting from accumulatingwith differentDIR
algorithms. For this evaluation, a threshold of 0.1%was added to both bounds. This is necessary because
homogeneous dose regions cause both bounds and theDVHs of otherDIR algorithms to lie very close to each
other. In that case, interpolation effects can cause theDVHs to lie outside the bounds, but the difference is
clinically insignificant, and should therefore not be reflected in themetrics.

3. Results

3.1.Hyperparameter tuning
The procedure to tune the hyperparameters of the supervised and unsupervisedmodels can be found in
appendix B.

3.2.Model comparison
Themagnitude and spatial distribution of the predicted uncertainty of the unsupervised, supervised and
combinedmodels is different (figure 3). This is due to the different assumptions onwhich themodels are based.
The supervisedmodel predicts high uncertainty in regionswith large deformation or non-correspondences, as
theDIR solutions of the b-splinemodel vary strongly with the hyperparameters in those regions. The
unsupervisedmodel predicts high uncertainty in regionswith low contrast and inversely, and is not affected by
themagnitude of the deformation. In the following, themodels are quantitatively compared for landmark
prediction, contour propagation and dose accumulation in combinationwith the b-spline algorithm. For the
unsupervisedmodel, the results using otherDIR algorithms are also included.

3.2.1. Landmark uncertainty prediction
For allmodels, there is a positive correlation between the predicted uncertaintyσp and the RMSE, i.e. the errors
are on average larger for landmarkswith higher uncertainty (figure 4). For the supervisedmodel, the landmark
RMSE is systematically above the predicted uncertaintyσp, meaning that thismodel underestimates the
uncertainty in theDIRLAB landmarks (figure 4(a)). This is because the uncertainty in hyperparameters does not
cover the total DIRuncertainty. The LECEof the unsupervised and combinedmodels is 0.65 and 0.64 mm
respectively,much lower than the LECE= 1.34 mmof the supervisedmodel. Thatmeans that their uncertainty
prediction ismore accurate. In case of large uncertainty, bothmodels underestimate the uncertainty
(RMSE> σp for the right part offigure 4(a)), but this is only for a limited number of landmarks. The difference
between the unsupervised and combinedmodel is small, as the unsupervisedmodelmostly predicts a higher
uncertainty than the supervisedmodel.

Figure 2. Schematic overview of probabilistic dose accumulation.
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Furthermore, the unsupervisedmodel can predict with similar accuracy the uncertainty of the velocity DIR
(LECE= 0.63 mm) and evenwith higher accuracy the uncertainty of demons (LECE= 0.41 mm) (figures 4(b)
and (c)). For bothDIRs, the hyperparameter tuning results in a larger uncertainty prediction than for b-spline, as
the b-spline algorithmhas a higher accuracy on theDIRLAB landmarks.

3.2.2. Probabilistic contour propagation
The propagated contour confidences are spread out over the interval [0, 1]where the contours are crossing
regionswith highDIR uncertainty (figure 5). For theNSCLCpatients, probabilistic contour propagationwith
the supervisedmodel is generally overconfident (figure 6(a)). For voxels with low predicted probabilities, i.e.
voxels for which themodel is relatively certain that they are outside the contour, a part was actually inside the
contour. This part is larger than the predicted probability. Themodel is therefore overconfident, i.e. too certain
that these voxels were outside the contour. Similarly, for voxels with high predicted probabilities, a part was
actually outside the contour. Thismeans that the uncertainty is underestimated, similar towhat was found for

Figure 3.Visualization of the predicted uncertainties with the differentmodels: (a)fixed (purple) andmoving (green) image together
with themeanDVF (red arrows); (b) supervisedmodel; (c)unsupervisedmodel; (d) combinedmodel.

Figure 4. Landmark reliability diagram for the threemodels for b-spline (a) and the unsupervisedmodel for demon and (b) velocity
(c). The line plots represent the root-mean-squared error (RMSE, left axis), and the histograms depict howmany landmarks were
within the respective bin (nlandmarks, right axis).
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theDIRLAB landmarks. The expected calibration error (ECE) is 11.2%on average, and even 15.5% for theCTV
(table 2).

Contrarily, the unsupervised and combinedmodels are slightly underconfident (figure 6(a)). For voxels with
lowprobabilities (<0.5), the actual fraction of voxels inside the contour is even lower, i.e.model should have
beenmore certain that these voxels were outside the contour. However, bothmodels aremuch better calibrated
than the supervisedmodel, with average ECEs respectively 2.8% and 2.6% (table 2). Thatmeans that for a large
enough group of voxels with confidence x, we can expect the proportion of voxels within the contour to be
within x± 2.8%. Even though the difference in average ECE between bothmodels is small, the unsupervised
model has amuch larger ECE for theCTV (7.7% versus 3.7%) and spinal cord (5.5% versus 3.6%), showing the
superiority of the combinedmodel.

Figure 5.Visualization of the resulting propagated contour confidences of the left lung together with themanual contours for example
in figure 3.

Figure 6.Contour reliability diagram for the threemodels for b-spline (a) and the unsupervisedmodel for demon and (b) velocity (c).
The line plots represent the actual proportion of voxels within the corresponding interval that werewithin the contour (target
probability, left axis), and the histograms depict the number of voxels within the interval (nvoxels, right axis).

Table 2.Expected calibration error (ECE) for the differentmodels [%]. The ECE is reported for the
individual structures aswell as averaged over all. The lungswere omitted as themanual contouring
was inconsistent with regard to including theCTV into the lung structure or not.

CTV Esophagus Heart Spinal cord All

B-spline Supervised 15.5 9.3 9.0 10.4 11.2

Unsupervised 7.7 1.6 2.9 5.5 2.8

Combined 3.7 2.7 4.4 3.6 2.6

Demons Unsupervised 7.1 3.8 4.3 5.7 3.0

Velocity Unsupervised 5.6 3.1 6.0 6.0 3.7
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Similarly, the tuned unsupervisedmodels for demons and velocity are also underconfident but relatively well
calibrated for contour propagation (figures 6(b) and c). Their ECEs are respectively 3.0%and 3.7%, slightly
worse than the corresponding results for b-spline.

The total runtime of the algorithm, includingmodel inference, generating 100DVF samples andwarping the
7 contours to the repeatedCTs, was on average 37 s for the supervised and unsupervisedmodels. For the
combinedmodel, inference has to be run twice, resulting in 44 s runtime.

Even though themodels were tuned on deformation in the thorax region, their ECE averaged for all organs is
only slightly worse for theHNCdata (table C1 in the appendix). The supervisedmodel again underestimates the
uncertainty, but the unsupervised and combinedmodels yield good results. However, the ECE for the individual
structures varies significantly, indicating that themodel is only well-tuned on average, but not for each
individual organ. Specifically, themodel overestimates theDIR uncertainty in regionswith low contrast in the
skull. The low contrast causes the unsupervisedmodel to predict largeDIR uncertainty, but since there is only
little deformation, the registration is relatively well-defined. This effect is especially visible for the brainstem
(figure 7). Therefore, before using themodel onHNCdata, the hyperparameters would have to be retuned.

3.2.3. Probabilistic dose accumulation
The predicted 95% confidence bounds of the probabilistically accumulatedDVHs are largely dependent on the
assumed correlation between theDVF samples of the repeatedCTs (figure 8). Assuming that the samples are not
correlated, dose differences cancel out, resulting in narrow bounds (figure 8(a)). Comparing these boundswith
the accumulatedDVHs for otherDIR algorithms, wefind that they are too narrow. For allmodels, the EVF of
the accumulatedDVHwith otherDIR algorithms is ranging between 29.9 and 62.4%,well below 95%,meaning
that these bounds do not encompass such potential accumulated doses (table 3). Since the uncertainty
prediction for a singleDVF is well-tuned for both landmarks and contour propagation, thismeans that
consideringDVF samples as independent is inaccurate.

Contrarily, assuming that the samples are fully correlated, theDVF samples exhibit systematic errors which
result in systematic dose differences, leading towiderDVHbounds (figure 8(b)). For allmodels andDIR
algorithms, except the supervisedmodel, the EVF is close to 95%,which is the target given the 95% confidence

Figure 7.Contour reliability diagram for the brainstem for threemodels for b-spline (a), demons (b) and velocity (c). The line plots
represent the actual proportion of voxels within the corresponding interval that werewithin the contour (target probability, left axis),
and the histograms depict the number of voxels within the interval (nvoxels, right axis).

Figure 8.Example probabilistic DVHs (shaded areas) compared to the correspondingDVHs using 6 differentDIR algorithms (dashed
lines) for not correlated accumulation (a) and fully correlated accumulation (b).
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bounds. TheDVHboundswith the combinedmodel are slightly toowide, as the EVF is larger than 95%. This
means that the uncertainty is likely overestimated, similar towhat was found for contour propagation.

Even though the fully correlatedmodels on average capture theDVHuncertainty from accumulatingwith
differentDIR algorithms, the EVF differs for the individual structures. For example, the unsupervisedmodel
combinedwith velocity predicts toowide bounds for all OARs (EVF>95%) and too narrow ones for theCTV
(EVF<95%), although yielding awell-tuned prediction on average. The effect is less pronounced for the other
models andDIRs, but it shows the importance of evaluating the uncertainty on a structure-by-structure basis.
Additionally, it can be visualized spatially, which shows that the accumulated dose uncertainty is high in regions
where both the dose gradient andDIR uncertainty are high (figure 9).

The probabilistic dose accumulation for a single patient with 9 repeatedCTs takes on average 3.5 min for the
supervised and unsupervised networks: 91 s for running the 9 timesmodel inference, 68 s forwarping and
accumulating the doses and 53 s for creating the probabilistic DVH. The combinedmodel takes on average 5 min,
asmodel inference has to be run twice.

Also for theHNCdata,wefind that the supervisedmodel underestimates theDIRuncertainty (EVF<< 95%)
and that fully correlated samples yield better results thannot correlating (tableC2 in the appendix). Even though
the fully correlatedunsupervised and combinedmodels averageEVFs close to 95%, the EVF for the individual
organs clearly shows that themodels are notwell-tuned. For theOARs, theEVF is always close to 100%, showing
that error bounds are toowide, i.e. overestimate theDIRuncertainty. This is in linewith the results for contour
propagation.

For theCTV, the EVF is too low. Interestingly, this is also caused by an overestimation of theDIR
uncertainty. Inside theCTV, the dose is relatively homogeneous, and it drops only outside theCTV.When the
DIR uncertainty is high, warping the dose at theCTV edgewithDVF samples will sometimes result in the dose
sampled inside theCTVand sometimes outside theCTV. Since the dose is homogeneous towards the inside of
theCTV, and drops towards the outside of theCTV, the dosewill only drop and never increase (contrary to

Figure 9.Mean accumulated dose (left) and standard deviation (right) for the patient depicted infigure 3.

Table 3.Average encompassed volume fraction (EVF) of each structure in theNSCLCdataset for which the accumulatedDVH lies within
the predicted accumulated probabilisticDVH [%]. The results are averaged over 5DIR algorithms, excluding the 6th algorithmwhichwas
used to create the probabilisticDVH. The fractions are shown for eachmodel and referenceDIR algorithm, both for not correlated (NC) and
fully correlated (FC).

CTV Eso-phagus Heart Left lung Right lung Spinal cord All

B-spline Supervised NC 68.4 36.9 14.3 13.5 16.2 30. 29.9

FC 86.3 66.2 24. 30.5 31.2 63.5 50.3

Unsupervised NC 61.1 77.2 63.5 36.9 48.9 75.8 60.6

FC 93.8 97.6 99.6 90.8 94.2 95.5 95.3

Combined NC 56.9 80.2 62.8 42.8 48.2 83.4 62.4

FC 96.7 98. 100. 97.3 98.7 96.4 97.8

Demons Unsupervised NC 32.2 66.2 58.7 27.6 45.6 65.5 49.3

FC 82.8 98.3 100. 91.6 96.2 98.9 94.6

Velocity Unsupervised NC 29.2 59. 64.7 32.9 32.7 64.3 47.1

FC 76.2 99.9 100. 97.2 99.9 98.9 95.3

12

Phys.Med. Biol. 68 (2023) 245027 A Smolders et al



OARs). Since theCTV is large, therewill always be some regions on the edgewhere the dosewarping yields a
lower dose, causing the probabilistic DVH to shift downward in the lowdose area (figure 10). It was verified that
reducing theDIR uncertainty indeed increases the EVF, even though thewidth of the error bounds decreased.
This again shows that the hyperparameters of themodel should be retuned before using it forHNC.

4.Discussion

Despite the assumptions ofGaussianDVFuncertainty and afixed correlationmatrix, the unsupervised and
combinedmodels accurately predict landmark and contour uncertainty, and accumulated dose uncertainty
resulting from running differentDIR algorithms. Indeed, the predicted contour confidences deviate on average
less than 3% from the expected values and the probabilistic DVHs encompass close to 95%of theDVHs
accumulatedwith differentDIR algorithms. This indicates that approximating theDIR uncertainty with a
Gaussian is sufficient for practical applications, even though the underlyingDIR uncertaintymay not be
Gaussian. Futurework could investigate whethermore complex distributions, such as skewedGaussians, or
learning the correlationmatrix could further improve the performance.

The supervisedmodel yields too lowuncertainty estimates. This is because the uncertainty in the considered
hyperparameters only accounts for part of the total DIR uncertainty, while other factors such as the
transformationmodel and similarity criterion are ignored. This was further verified by generatingGgt for
theDIRLAB scans, which showed thatGgt as defined in this work underestimates the landmark uncertainty
(figureD1 in appendixD). The approach, however, is general. In futurework, theMC samplingmethod used to
generateGgt can be expanded to include different DIR algorithms, transformationmodels, and similarity
criteria, thereby accounting for a greater fraction of theDIR uncertainty.

The expected calibration error and encompassed volume fraction show that the unsupervised and combined
models on average produce reliable uncertainty estimates. However, themetrics areworse when evaluating
individual organs. This highlights a general problem for uncertainty evaluation: averaging results overmany
instances can conceal inaccuracies on the individual level. For example, in a hypothetical case with only two
voxels, one in themiddle of a contour and one very far from the contour, amodel that predicts 50% confidence
for both voxels would be considered perfectly calibrated (ECE= 0), even though these confidences are
intuitively highly unlikely. Although ourmodels would notmake such predictions andmanymore voxels are
considered, a similar averaging cannot be avoided during evaluation as it is inherently linked to quantifying
uncertainty. It is therefore important to also assess thesemetrics for individual organs. In this case, this shows the
superiority of the combinedmodel over the unsupervisedmodel, since the ECEs and EVFs for the individual
organs aremore uniform.

The advantage of the unsupervisedmodel is that, even though it is trainedwith b-spline, it can be used to
predict the uncertainty of otherDIR algorithms. Indeed, for all applications studied here, the quality of the
models for demons andVelocity is similar to the one for b-spline. This suggests that otherDIR algorithms could
use this networkwithout the need for retraining, it would only requirefinding the optimal hyperparameters out
of a set of already convergedmodels. To tune the hyperparameters, we trainedmodels with awide variety of
hyperparameters, so such convergedmodels are already available and easy to share.

Figure 10.Zoomof the probabilistic DVH (shaded area) of theCTVof aHNCpatient together with theDVHs of 5 differentDIR
algorithms (black lines).
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The unsupervised (and combined)models are slightly underconfident for contour propagation,meaning
that the predicted uncertainties are a bit too large. This is because themodel is tuned on theDIRLAB landmarks,
and not on theNSCLCdata itself. Since someDIRLAB scans contain larger deformations than theNSCLC scans,
theDIR uncertainty is generally larger, so tuning on theDIRLAB scans results in a slight overestimation of the
uncertainty for theNSCLC scans. Thismeans that themodels are on the conservative side, which is likely best for
radiotherapy in general. However, by adjusting the hyperparameters, the predicted uncertainty can be decreased
resulting in a lower ECE,which indicates that retuning the hyperparameters for a specific task or anatomy can
improve the uncertainty estimation.

The runtime of the probabilistic contour propagation is below oneminute and therefore suitable for online
adaptive therapy. Thismeans that futurework can aim to use the predicted voxel-wise contour probabilities in
combinationwith robust optimization, enabling the use ofDIR for contouring in adaptive therapy. Probabilistic
dose accumulation takes severalminutes, which is significantly longer, as the inference and sampling procedure
needs to be executed for each repeated scan.However, as part of an adaptive therapyworkflow, this task can be
performed offline and hence a runtime of severalminutes is acceptable for clinical use in adaptive therapy. Also,
the results can be stored after each fraction, requiring only the daily dose to be added, whichwould require
approximately only twominutes each day.

The results clearly show that fully correlatingDVF samples fromdifferent time points ismore accurate than
not correlating them.However, the accumulation only consisted of 9 daily doses, which is less than normally
fractionated treatments. If there is a random component in theDVFs fromdifferent time points inmostDIR
algorithms, this random component will cancel outmorewhen accumulating overmore fractions. Therefore,
futurework should verify whether fully correlatingDVF samples also yields realistic DVHboundswhen
accumulating over amore realistic number of fractions. Additionally, othermodels for temporal correlation
should be tested, such as partially correlating a sample to the sample of the previous time point or linearly
decreasing correlation.

The evaluation of the probabilistic dose accumulation relies on the assumption that the solutions of otherDIR
algorithms are potential samples of the deformation distribution, since the ground truth is unknown. The high
EVFwefind thereforemainlymeans that we can predict the uncertainty of such samples, rather than the
underlying deformation uncertainty. The analysis could be extended in futurework by the use of (digital)
phantomdata, where the ground truth deformation is known.Whereas we believe that this is an important
extension, the results of such a study should be treatedwith care. Similar to our assumption that several DIRs
span the actual deformation uncertainty, using phantomdata requires the assumption that the phantom
deformations span the actual patient deformations. Digital phantomsmostly rely on simplified deformation
models, and therefore,might not cover all themodes of deformation plausible in a patient.

The accuracy of intensity-basedDIR algorithms depends on the regularization strength. The optimal
strength depends on the tissue type (Zhang et al 2021) or even the application (Kirby et al 2013). The
performance of amodel tuned for one anatomical region therefore generally dropswhen applied to another one.
Similarly, ourmodel was tuned for thorax deformation, and evaluation in the head and neck region shows that
the performance drops.More specifically, our results indicate an overestimation of the predicted uncertainty.
This is not surprising, as deformation in the thorax is generally larger which causes theDIR uncertainty to be
larger. Thismeans that themodel is not directly applicable to other anatomical regions. In futurework, this
downside could be overcome by changing the hyperparameters of the unsupervised network. By either
increasingλ or decreasingσI, the predicted uncertainty decreases whichmight improve the results on theHNC
data. Since the unsupervisedmodel has already been trained for awide range of hyperparameters in this work,
using it for another anatomywould not require retraining, only the evaluation of the ECE and EVF for the library
of already convergedmodels.

Finally, ourwork focuses onCT-to-CT registration. However, inmost cases, a daily CBCTorMRI is
acquired instead of a daily CT.Our approach could remain useable in case such daily images are converted into a
synthetic CT, which is anywaymostly necessary for reoptimization of the treatment plan.However, as the
quality of synthetic CTs differs from actual CTs, futurework should validate whether theDIR uncertainty
prediction alsoworks for synthetic CTs. Additionally, the loss function could be adjusted for intramodality
registration, whichwould allow e.g. probabilistic contour propagation fromCT toCBCT, or even probabilistic
generation of a synthetic CT. For the supervisedmodel, this would simply require running b-spline
intermodality with different hyperparameters. For the unsupervisedmodel, this could be attempted by changing
thefirst term in equation (7) by an intermodality similarity criterion, such asmutual information.
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5. Conclusion

In this work, deep learningmodels were developed to quantifyDIR uncertainty to estimate propagated contour
and accumulated dose uncertainty. The results show that the unsupervised and combinedmodels predict the
DIR uncertaintymore accurately than the supervisedmodel in the thorax region. Evaluating the propagation of
the uncertainty predicted by thesemodels into contour uncertainty yields expected calibration errors of
respectively 2.8% and 2.6%. Furthermore, propagation ofDIR uncertainty into probabilistic accumulated
DVHs yields encompassed volume fractions close to the expected 95%.Combinedwith acceptable runtimes,
this demonstrates that themodels are promising for use in adaptive radiotherapy, even though hyperparameter
retuning and validationwill be necessarywhen themodel is used for different anatomical regions or in
combinationwith otherDIR algorithms.
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AppendixA.Model input

Allmodels in this work predict theDVFuncertainty based on three inputs: the fixed image, themoving image
and a (mean)DVF calculated by anotherDIR algorithm. ThisDVF is included in the input for twomain reasons:

(i) If the DVF were not included, the networks would not know where the mean field is exactly pointing. That
would alsomean that it does not knowhowwell the fixed and themoved imagematch given themeanfield,
and it could therefore not as accurately predict the uncertainty of theDIR.

(ii) The DVF contains the magnitude of the deformation. Especially for the supervised model, we find that the
predicted uncertainty is very strongly correlatedwith thismagnitude, and therefore themodel could again
not predict as accurately theDIR uncertainty.

This last point can be shownby comparing the results of the supervised networkwith andwithout theDVF as
input (table A1).

TableA1.Mean absolute error (MAE) for the supervisedmodel with and
without themeanDVF as input. The results are shown for the test and
validation set of theCPTdataset, containing each approx. 10%of
the data.

WithDVF

input WithoutDVF input

ValidationMAE [voxels] 0.14 0.18

TestMAE [voxels] 0.14 0.21
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Appendix B.Hyperparameter tuning

The hyperparameters of the supervisedmodel consist of the parameters of the probability distributions of the
b-spline regularizationλr and grid spacing s, and need to be tuned before training. B-splinewas run for the
validation scans of theDIRLABdataset for a range ofλr and s, and for each set the target registration errorwas
evaluated (figure B1).

The TRE isminimal forλr= 0.1. It increases strongly forλr> 1, but is not strongly affected byλr< 0.01,
because in that case the regularization does not affect the solution anymore. This leads to the choice of
distribution log 1.5, 1.25r10 ( )l ~ - (figure B1(a)). The optimal grid spacing is s= 13 mm.TheTRE increases
strongly when s is decreased, and increasesmuch slowerwhen s is increased. This leads to the choice of
distribution s 5, 50 mm( )~ (figure B1(b)). For both hyperparameters, the boundswere purposely set
relatively wide, as these could be necessary for other anatomical regions ormagnitudes of deformation.

Unsupervised trainingwas repeated for several combinations of the hyperparametersλ and I
2s and the

posterior probability of theDIRLAB landmarks p(LM) of the validation set was evaluated (figure B2(a)). For
b-spline, it ismaximal whenλ= 20 and 2 10I

2 4·s = - .
Since themodel is unsupervised, it should principally be able to predict the uncertainty of anyDVF, not only

of those resulting from a b-spline algorithm, andDVFs fromother algorithms can also be used as input.
However, depending on the quality of that algorithm, different hyperparameters are optimal. Evaluating the p
(LM) for demons, wefind that the optimal hyperparameters areλ= 10 and 2 10I

2 4·s = - . For velocity,λ= 20,

10I
2 3s = - andλ= 5, 3 10I

2 4·s = - yield similar optimal results, and the latter is used in the following.

Figure B1.Target registration error TRE for the landmarks in theDIRLAB validation set for different values of the regularizationλr
(left) and grid spacing s (right). For the left plot, the TRE is averaged over all values of s, and for the right one averaged overλr. The
corresponding selected probability densities are visualized on the right axis.

Figure B2.Mean log of the posterior probability of observing themovingDIRLAB landmarks for different values of the
hyperparametersλ and I

2s for unsupervised learning. Results are shown individually for (a) b-spline, (b) demon and (c) velocity.
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AppendixC. Results head andneck cancer patients

C.1. Probabilistic contour propagation

C.2. Probabilistic dose accumulation

AppendixD.Ggt forDIRLAB scans

TableC1. Expected calibration error (ECE) for the differentmodels in theHNCdataset [%]. The ECE is reported for the individual
structures aswell as averaged overall.

CTV CTVboost Spinal cord Brainstem Chiasm Eyes Parotids Optic nerves All

B-spline Supervised 15.2 16.4 14.1 17.1 19.8 13.7 18.1 12.9 15.4

Unsupervised 2.5 5.7 3.5 7.8 2.8 3.6 6.9 3.1 2.4

Combined 2.5 4.6 2.0 8.2 2.7 3.7 5.6 3.3 2.5

Demons Unsupervised 4.4 4.9 3.6 8.8 2.0 6.5 4.0 3.7 4.1

Velocity Unsupervised 4.8 4.5 1.5 9.3 1.4 7.6 4.3 3.6 4.7

TableC2.Average encompassed volume fraction (EVF) of each structure in theHNCdataset forwhich the accumulatedDVH lies within the
predicted accumulated probabilisticDVH [%]. The results are averaged over 5DIR algorithms, excluding the 6th algorithmwhichwas used
to create the probabilisticDVH. The fractions are shown for eachmodel and reference DIR algorithm, both for not correlated (NC) and fully
correlated (FC).

CTV

CTV

boost

Spinal

cord Brainstem Chiasm Eyes Parotids

Optic

nerves All

B-spline Supervised NC 64.7 95.9 51.1 24.3 43.0 37.5 32.2 43.0 45.8

FC 79.7 97.0 74.6 44.3 61.4 66.7 56.9 63.0 66.4

Unsupervised NC 53.6 81.0 81.9 99.3 82.3 100.0 90.0 91.9 87.4

FC 86.0 99.0 98.1 100.0 100.0 100.0 100.0 100.0 98.5

Combined NC 48.3 76.5 82.0 99.4 78.2 98.6 92.4 92.1 86.4

FC 76.7 99.0 99.6 100.0 99.9 100.0 100.0 99.3 97.6

Demons Unsupervised NC 50.2 80.0 86.7 99.5 93.8 100.0 94.4 94.7 89.9

FC 81.9 98.9 100.0 100.0 100.0 100.0 99.8 100.0 98.2

Velocity Unsupervised NC 31.4 53.8 92.2 99.4 98.9 97.8 89.5 90.3 84.6

FC 58.7 98.3 99.9 100.0 100.0 100.0 100.0 99.9 96.1

FigureD1.Comparison of theDIRLAB landmark uncertainty between the supervisedmodel prediction andGgt derived by creating
100 samples varying the b-spline parameters.
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