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Abstract

Deformable image registration (DIR) is a versatile tool used in many applications in radiotherapy
(RT). DIR algorithms have been implemented in many commercial treatment planning systems
providing accessible and easy-to-use solutions. However, the geometric uncertainty of DIR can be
large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement
in the RT community on how to quantify these uncertainties and determine thresholds that
distinguish a good DIR result from a poor one. This review summarises the current literature on
sources of DIR uncertainties and their impact on RT applications. Recommendations are provided on
how to handle these uncertainties for patient-specific use, commissioning, and research. Recommen-
dations are also provided for developers and vendors to help users to understand DIR uncertainties
and make the application of DIR in RT safer and more reliable.

1. Introduction

Deformable image registration (DIR) is used in multiple applications in radiotherapy (RT), including image
fusion, contour propagation, dose mapping, and dose accumulation. Many improvements in patient quality of
care may be facilitated by DIR, including clinical delineations using multiple images (Brock et al 2017, Barber
etal 2020), organ sparing with adaptive techniques (Albertini et al 2020, Glide-Hurst et al 2021), and better
understanding of patient morbidity and mortality risks incorporating adaptive RT (ART) with accumulated
dose (Murr et al 2023, Smolders et al 2023b). The efficacy of these techniques relies on the accuracy and
reproducibility of the results of DIR. Incorporation of DIR-facilitated processes without an understanding of the
impact of uncertainties may affect RT patient treatments.

© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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Figure 1. Schematic overview of radiotherapy applications influenced by uncertainty in DIR-generated transformations. DIR:
deformable image registration, ART: adaptive radiotherapy.

The potential and risks of DIR in RT are well covered in current literature (Brock et al 2017, Paganelli et al
2018, Lowther et al 2022, Murr et al 2023). The American Association of Physicists in Medicine Task Group 132
(AAPM TG-132) report (Brock et al 2017) provided early guidance for work on qualification and commissioning
of DIR algorithms and processes. AAPM TG-132 remains an excellent review of DIR and quality assurance
(QA), but the report does suffer from some limitations. Latifi et al noted difficulties in applying the AAPM TG-
132 recommendations in clinical practice (Latifi et al 2018) . Hussein et al and Rigaud et al report barriers to DIR
clinical implementation with alack of suitable evaluation tools and consensus on their implementation (Rigaud
etal2019, Hussein et al 2021). Barber et al and Paganelli et al addressed the requirements of patient-specific DIR
QA and commissioning, and discussed the difficulties of consensus DIR QA metrics (Paganelli er al 2018, Barber
etal 2020). Recent position papers out of the Australasian College of Physical Scientists and Engineers in
Medicine (ACPSEM) (Barber et al 2020) and the Medical Image Registration Special Interest Group (MIRSIG)
(Lowther et al 2022) have proposed consensus evaluation strategies for local geometric accuracy and vector grid
suitability.

Despite recommendations on geometric tolerances present in the literature, the reporting of uncertainty
quantification in clinically implemented DIR is not well standardised for RT applications in today’s literature,
particularly with respect to dosimetric measures. This review aims to summarise the current understanding of
uncertainties in DIR-facilitated processes and their clinical impact. The authors analysed the current literature
about uncertainties in multiple DIR-facilitated applications, and summarised and extended recommendations
with the general aim of raising awareness.

This review is structured as follows: We first summarise DIR algorithms used in RT (Chapter 2), and give a
short explanation about the sources of DIR uncertainties (Chapter 3). Next, we review methods to quantify DIR
uncertainties geometrically and dosimetrically (Chapter 4), and describe the effects and severity of these
uncertainties for different RT applications (Chapter 5). Finally, we discuss uncertainty tolerances (Chapter 6)
and summarise and expand current recommendations and recommend future research avenues (Chapter 7).

2. DIR algorithms

DIR is applied between two images, aiming at aligning corresponding anatomic regions in both images. The
result of a DIR is a transformation, which is often represented as a displacement vector field (DVF), which can be
applied to images, structures, or dose distributions (figure 1). The earliest DIR algorithms were based on optical
flow (Horn and Schunck 1981) or thin plate splines (Bookstein 1989). Classical algorithms, such as intensity-
based matching or biomechanical models remain popular, but recently research in deep-learning (DL) methods
is increasing. For a comprehensive overview of DIR algorithms, we refer the reader to review articles (Maintz and
Viergever 1998, Holden 2008, Haskins et al 2020, Chen et al 2021, Teuwen et al 2022, Zou et al 2022).

2.1. Classical image registration

Classical methods, in their simplest form, follow a process illustrated in figure 2. There are two input images, a
moving image and a fixed image, where the goal is to deform the moving image into the coordinate system of the
fixed image. The algorithm proceeds by iteratively optimising transformation parameters to find a registration
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Figure 2. Classical image registration optimises transformation parameters by comparing a fixed image against a warped moving
image. This figure is inspired by and adapted from the ITK Software Guide, reproduced with change under the Creative Commons
Attribution 3.0 Unported License (Johnson et al 2019).

that minimises a similarity metric. The transformation parameters represent a displacement field, a velocity
field, spline parameters, or other deformable transform representations. The similarity metric typically includes
aregularisation term, which limits permissible transformations to those considered desirable or physically
plausible, in addition to a similarity metric that matches intensity, such as mutual information or correlation
coefficient.

Intensity-based DIR matching criteria are developed to use image intensity to optimise metrics such as
mutual information (MI), sum of the squared difference (SSD) of image intensity, or cross-correlation (CC) (Oh
and Kim 2017, Lietal 2021). Intensity-based DIR can achieve high accuracy for image areas with clear image
features and high contrast. In poor contrast regions, intensity-based DIR accuracy may be less robust (Elmahdy
etal2019, Lietal 2021, Tascén-Vidarte et al 2022). To improve DIR accuracy, hybrid DIR algorithms consider
pointlandmarks or structures defined on both image sets to improve registration results (Zhong et al 2012,
Weistrand and Svensson 2015, Qin et al 2018, Motegi et al 2019, Shah et al 2021). Some algorithms rely on
distance criteria to determine correspondence and transformations (Xiong et al 2006, Vasquez Osorio et al 2009,
Zakariaee et al 2016) others use biomechanical properties.

Biomechanical algorithms are influenced by modelled physical properties of the tissues (Sotiras er al 2013,
Polan etal 2017, Velec et al 2015, 2017). Finite element methods (FEM) model the properties of the tissues under
mechanical force. Although the use of FEM requires the challenging definition of material properties, geometry,
and boundary conditions, its robustness and plausibility are well demonstrated (Sotiras et al 2013). Compared to
intensity-based DIR, it can improve multi-modal registration and registration in low-contrast regions (Velec
etal2015).

2.2.Deep learning-based DIR

In the past decade, machine learning algorithms in radiotherapy have increased dramatically, and DL has
likewise made advances in the field of medical DIR (Teuwen et al 2022, Zou et al 2022). Topical reviews of the
literature present extensive summaries of the current state of DL algorithms within DIR (Boveiri et al 2020, Xiao
etal2021, Zou et al 2022). DL in image registration is implemented through two approaches: deep similarity
metrics in classical image registration algorithms, and deep neural networks that directly estimate the DVF.

2.2.1. Deep similarity metrics (DSMs)

As described in section 2.1, classical algorithms approach the problem of image alignment through a process of
iterative optimization. These algorithms search for a global minimum of the solution space, but the choice of
similarity metric remains problematic. DSMs aim to improve classical iterative image registration by improving
the similarity term. This approach is particularly useful in multi-modal imaging where it has been shown to
outperform mutual information (Wu et al 2013, Simonovsky et al 2016). Improvements in difficult monomodal
registration problems, low contrast regions and large transformations, have been reported in the literature
(Zhao and Jia 2015).

2.2.2. Direct determination of DVFs by machine learning algorithms
Direct DVF DL algorithms use historic DVFs or artificial DVFs as training data to determine registrations. The
optimization phase happens in the training phase, where model parameters are determined. The vast majority of
DL models aim for a direct regression of DVF transforms in a supervised approach. Variation between models is
primarily a result of algorithm design and methodology.

Reviews (Boveiri et al 2020) cover a range of algorithm architectures. DL architectures include staked auto-
encoders (SAEs) (Wang et al 2017, Krebs et al 2018), bayesian frameworks (Deshpande and Bhatt 2019,
Khawaled and Freiman 2020, 2022a), implicit neural representations (Wolterink et al 2022) and convolution
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neural networks (CNNs) (Cao et al 2018, Ferrante et al 2018, Hu et al 2018, Balakrishnan et al 2018, 2019, Kim
etal2019, Kuang and Schmah 2019, Liu et al 2019, Jian et al 2022, Wolterink et al 2022, Xi et al 2022, Liang et al
2023). CNNs have been researched for direct DVF regression, with reported improvements in DVF when
coupled with spatial transformer networks (Jaderberg et al 2015). CNN architecture use encoder-decoder
networks, rather than a fully connected layer. Such approaches are currently implemented in well-cited
solutions (VoxelMorph (Balakrishnan etal 2018, 2019) and U-NET (Liang et al 2023)). Despite the growth of
multimodal foundational models in image creation, these reviews do not find application in image registration.

In general, DL training is divided between supervised and unsupervised learning methods (Chen et al 2021).
For supervised registration methods, ground truth is either a DVF or a segmentation. The DVF may be created
by a conventional DIR algorithm or from synthetic deformations, and the segmentations may be created by
manual contouring or other methods. Unsupervised registration methods are further split into training by
similarity metrics or generative adversarial networks (GANs) (Mahapatra et al 2018, Elmahdy et al 2019). If
similarity metrics are used no ground truth is needed for the learning process but, as in traditional image
registration, these models are limited by the same issues as similarity metrics in classical DIR optimization. If
GAN is used, a discriminator judges if the warped moving image can be discriminated from the fixed image.
When the warped image cannot be distinguished from the fixed image, the registration is deemed to be optimal
(Goodfellow et al 2014). GANs show promise for multi-modality DIR problems as they do not require image
similarity terms.

One advantage of DL algorithms is improvements in multi-modal registration, which is challenging for
classical similarity metrics. Additionally, DL-based algorithms are more computationally efficient (Rohé et al
2017, Cao etal 2018, Balakrishnan et al 2018, 2019).

3. Source of uncertainties

The uncertainties of DIR can arise from a variety of sources. Many are image-based uncertainties, caused by
anatomical changes, artifacts and different image modalities, as well as algorithm-based uncertainties, caused by
intrinsic mathematical limitations and similarity metrics.

3.1.Image-based

3.1.1. Anatomical changes

Non-rigid variations in patient anatomy, such as weight gain or loss, neck flexion and tumour changes can be
poorly mapped by rigid and affine registrations. DIR can improve the locally accurate alignment of anatomy
(Hill et al 2001). While regularisation is useful to reduce the likelihood of physically unrealistic deformations, the
magnitude of anatomical changes may exceed those allowed by an algorithm’s settings. This can result in large
DIR errors in areas near significant shape changes, particularly in low contrast image regions (Kashani ez al 2008)
or due to forced anatomical changes such as between external beam RT and brachytherapy

(Véasquez Osorio et al 2015) (figure 3(a)).

Anatomical changes can be elastic, where the surrounding tissue follows the change and occupies the
previous space (e.g. movement, position changes, or displacement) or inelastic, where the surrounding tissue
stays in place (e.g. tissue growth, regression or emptying/filling cavities) (Amugongo et al 2022) figures 3(b) and
(). Modelling these changes is challenging (Sonke and Belderbos 2010, Mencarelli et al 2014, Sonke et al 2019).
Certain implementations of regularisation can result in significant registration inaccuracies in sites in which
naturally sliding boundaries occur, such as a rib bone and its adjacent lung (Sonke et al 2019). Some solutions
were proposed to incorporate missing tissue during the DIR (Nithiananthan et al 2012, Vishnevskiy et al 2017,
Eiben etal 2018).

3.1.2. Artifacts/Image quality
The anatomical changes caused by natural patient motion, such as respiration, muscle contraction, and blood
flow can lead to image artifacts (Nehmeh and Erdi 2008, Zhang et al 2012, Spin-Neto and Wenzel 2016, Giganti
etal 2022). For example, motion artifacts during the image acquisition can result in implausible anatomy
(Yamamoto et al 2008, Persson et al 2010) and implants such as prostheses in the imaging area can lead to
streaking or voids (Ritter et al 2009, Fontenele e al 2018, Lee et al 2021). As these artifacts disrupt the true image
intensity gradients of the patient tissue several papers have demonstrated decreased intensity-based DIR quality
in their presence (Serban et al 2008, Sonke and Belderbos 2010, Fusella et al 2016) (figure 4).

Sensitivity of DIR algorithms to image noise, resolution (Constable and Henkelman 1991, Verdun et al 2015,
Zhao et al 2016, Sarrut et al 2017), field of view (Barber et al 2020) and image contrast (Mencarelli et al 2014,
Barber et al 2020, Dowling and O’Connor 2020) has been demonstrated in the literature. However, other studies
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Figure 3. Examples of large anatomical changes. (a) Large changes during combined treatments with external beam radiotherapy
(EBRT) and brachytherapy (BT) of the uterus. Image from (Vasquez Osorio et al 2015) with permission. (b) Large anatomical changes
in the lung. (c) Weight loss for a head and neck patient during the course of treatment.

Figure 4. Examples of (a) dental artifacts (image from the United States National Cancer Institute (NCI) “The cancer imaging archive’
(TCIA) (Clark et al 2013, Ang et al 2014, Bosch et al 2015)), (b) 4 D artefacts in lung (image from TCIA (Roman et al 2012, Balik
etal 2013, Clark et al 2013, Hugo et al 2017)) and (c) metal artifact in liver.

find that the effect of image noise has only minor effects on DIR results for computed tomography (CT) to CT
registrations (Nesteruk et al 2022).

Research on the implementation of iterative image reconstruction algorithms has shown reduced noise and
improved image quality for both CT and cone-beam CT (CBCT) (Held et al 2016, Giacometti et al 2019, Jarema
and Aland 2019, Greffier et al 2020, Loi et al 2020), which may allow for improved quality intensity-based DIR.
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Figure 5. Example of gradient effects in MRI that may increase DIR uncertainties. Figure from (Vasquez Osorio et al 2012), with
permission. MRI: magnetic resonance imaging, DIR: Deformable image registration.

3.1.3. Multimodal registration

Multimodal DIR offers considerable clinical benefit in contour propagation (Sohn et al 2008, Vésquez Osorio
etal2012, Barber et al 2020, Zachiu et al 2020). However, multimodal DIR remains challenging, and similarity
metrics must be selected with care.

For example, magnetic resonance imaging (MRI) to CT registration in the lung is difficult because of low
contrast and resolution in MRI (Yang et al 2015) and in the prostate, lack of a clear boundary of the prostate
gland in CT may lead to failures in MR-CT DIR (Zhong et al 2015). In the HN, limited soft tissue contrast and
dental artifacts in CT images compared to MR influence the DIR uncertainty (Nix et al 2017, Kiser et al 2019).
Additionally, gradient contrast artifacts in MRI may impair the DIR quality between different image modalities
(figure 5) (Vasquez Osorio et al 2012). McKenzie at el. found monomodal registration from synthetic CT
(generated from the MRI) to CT to be more accurate than the multimodal registration from the original MRI to
CT for large deformations of HN patients (McKenzie et al 2020). Of course, the synthetic CT generation also
faces uncertainties, for example the resulting Hounsfield units (HUs) differ between CT and synthetic CT.
Boulanger et al report a mean absolute error of 76 HU in head and liver, and 42 HU in the pelvic area in average
over multiple methods generating synthetic CTs (Boulanger et al 2021). Geometric differences between
structures can also appear (Palmér et al 2021).

3.2. Algorithm-based

The choice of the DIR algorithm and parameter settings influences the DVF obtained when registering the same
image pair. Several studies investigate the performance of different DIR algorithms, for example in HN
(Hardcastle et al 2012, Mo¢nik et al 2018, Qin et al 2018, Lee et al 2020, Kubli et al 2021), lung (Kadoya et al 2014,
Scaggion et al 2020a), liver (Zhang et al 2012, Sen et al 2020) or pelvis (Hammers et al 2020). Some commercial
DIR algorithms offer the possibility of parameter adjustments, such as registration metrics, guiding structures,
regularisation levels, regularisation weights, or contrast level sensitivity, which causes uncertainty of the
algorithm to vary (Ziegler et al 2019). However, most commercial algorithms are closed systems and not
adjustable. Some studies find that even a single commercial DIR software can show variability in the results
(Kadoya et al 2016, Miura et al 2017), depending on the specific workflows used. The performance of the same
DIR algorithm might also vary between anatomical sites. For example, in a series of three separate studies
comparing the Velocity and MIM algorithms (Kadoya et al 2016, Pukala et al 2016, Fukumitsu et al 2017) on
different patient anatomies, the published results come to different conclusions regarding the performance.

4. Quantification of uncertainties

The quantification and evaluation of uncertainties in the applications of DIR are difficult due to multiple aspects.
Firstly, a true ground truth is lacking and secondly, there are a wide range of DIR-facilitated applications which
have differing requirements for accuracy. For dose monitoring, alow point-to-point error is necessary in steep
dose gradients, while in low gradient or homogeneous dose regions, even larger point-to-point errors will not
impact the mapped dose. For contour propagation, a high correspondence between organ boundaries is of
importance (Rigaud et al 2019). Quantifying DIR uncertainties is crucial, as the DIR results are used for
consecutive steps (Brock et al 2017, Paganelli et al 2018). So far, there is no standard procedure for uncertainty
quantification of DIRs. Indeed, most commercial and research systems omit uncertainties entirely.
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4.1. Using a digital or physical phantom as ground truth

The validation of DIR results is challenging due to the lack of ground truth. Therefore, evaluation strategies have
been developed, questioned, and improved over the past decades. To create a ground-truth surrogate, digital
phantoms and physical phantoms have been proposed. Digital phantoms (Castillo et al 2009,
Vandemeulebroucke et al 2011, Brock et al 2017) are created using voxel-based reference deformations, which
DIR algorithms are expected to recover. This can cause bias in results. For example, a digital phantom deformed
with displacements generated by a B-spline might result in better agreement when testing algorithms that use
B-spline transformations (Fatyga et al 2015, Loi et al 2018, Balakrishnan et al 2019, Boyd et al 2021). Digital
phantoms allow for the comparison of contour-based evaluation methods and direct evaluation of DVF errors.
In contrast, physical phantoms (Graves et al 2015, Niebuhr e al 2019, Kadoya et al 2021) provide geometrical
verification through landmarks or structures. Therefore, physical phantoms suffer from a similar lack of ground
truth as patient images. Intrinsic errors due to inter- and intra-observer variability due to the manual
identification (Machiels et al 2019, Roach et al 2019) remain present in phantoms. The use of markers (Machiels
etal2019), guidelines (Lin et al 2020), auto segmentation (Rey et al 2002, Yang et al 2018, Cardenas et al 2019,
Schipaanboord et al 2019, Vrtovec et al 2020, Harrison et al 2022) and automated landmark extraction (Paganelli
etal2018) can reduce observer uncertainties, but are not necessarily more accurate. Also, just as with patient
images, these methods quantify DIR performance only near the points or structures under consideration (Shi
etal2021) and do not provide a holistic assessment of the DIR performance. The deformations of physical
phantoms might not always be anatomically realistic. While both, digital and physical phantoms, are useful for
commissioning and QA of applications involving DIR, it is important to keep their weaknesses in mind.

4.2. Geometric and dosimetric uncertainty quantification

With the lack of ground truth, alternative measures have to be used to quantify the effects of DIR uncertainty.
Most commonly geometric measures are used, comparing warped points of interest or structures to reference
points and structures. These reference-based geometric measures are however not always available and have
their own uncertainties, such as intra- and inter-observer variability. Reference-free measures have also been
proposed, they can be applied without reference data. A short summary of various geometric uncertainty
measures is given in table 1. For a more detailed overview about geometric measures and which methods are
proposed for specific applications please refer to the AAPM TG 132 (Brock et al 2017) and MIRSIG (Lowther
etal2022). In addition to geometric measures multiple methods to visualise and quantify dosimetric
uncertainties have been proposed (table 1).

In this review, we refer to dose mapping as the process of warping/projecting/transferring a dose
distribution, defined in one image, to a second image of the same patient. We refer to dose accumulation as the
summation of the mapped dose distribution and a secondary dose distribution defined in the second image.
Quantifying the correctness of dose mapping is challenging but essential in RT (Murr et al 2023). Some authors
suggest using TG-132 thresholds (Xiao et al 2020), but the TG-132 report explicitly states ‘[t]he use of
deformable registration for dose accumulation ... is outside of the scope of this task group.” (Brock et al 2017).
For this reason, we feel that the metrics and thresholds proposed by TG-132 are not sufficient to evaluate image
registration for dose mapping/accumulation. Instead, dosimetry uncertainty measures for clinical practice are
needed.

4.2.1. Correlation within measures

Geometric measures are not independent and self-correlate. Loi et al found a linear relationship between mean
distance to agreement (MDA) and dice similarity coefficient (DSC) (Loi et al 2018). Also, a correlation between
distance discordance metric (DDM) and Harmonic energy (HE) has been found (Kierkels et al 2018). Reporting
multiple measures is still useful despite being redundant. For example, the DSC limitations can be critically
analysed in conjunction with other metrics, such as MDA for different structures and volumes (Jena et al 2010,
Brock etal 2017, Loi et al 2018). Combining different geometrical metrics can improve the understanding of the
overall quality of the DIR for a specific application.

Different implementations and specific ways to use the same measure can lead to vastly different results. For
example variations of up to 50% in DSC, 50% in Hausdorff distance (HD) and 200% in MDA were found
between the same structure sets, evaluated by different institutions (Gooding et al 2022). Comparing results
from different studies and centres should therefore be taken with care. The correlation between geometric and
dosimetric measures was found to be low (Hvid et al 2016, Pukala et al 2016, Poel et al 2021, Nash et al 2022,
Kamath et al 2023).




Table 1. Description, strengths and limitations of commonly used geometric and dosimetric uncertainty quantification metrics. DVH: Dose-volume-histogram.

Metric Description Strengths (+) /Limitations (—)
Reference- based Target registration + Distance between anatomical landmarks defined by different methods, e.g. warped with DIR versus + Distance, in mm
error (TRE) physician-drawn reference (Fitzpatrick et al 1998, Datteri and Dawant 2012, Brock et al 2017)
+ TRE=1T(pp) — p,l + Spatially resolved
* T(py): estimated transformation of point from fixed image, p,, position of point on moving image — Reference points required (manual or automatic defi-
nition), additional inherent uncertainties, and time con-
suming definition
— Validity depends point quantity and relevance
— Limited to areas with sufficient image contrast
— Requires reference/ground truth
Dice similarity * Measure of the overlap between two contours (Dice 1945, Brock et al 2017) + Widely used, useful to compare to literature
coefficient (DSC)

Hausdorff distance (HD)

Mean distance to agree-
ment (MDA)

Centre of mass displace-
ment (COM)

XAV

© DSC=

IX(Y1: volume covered by both structures, IX| + |Y1: volume covered by at least one of the

structures

* Maximum distance of the closest approach of each point on one contour to all points of the other contour
(Hausdorff 1920, Huttenlocher et al 1993)
+ HD(X,Y) = max(d(X, Y), d(Y, X)) with d(X, Y) = maxex minycyllx — yll d(X, Y) distance between two

pointsets

* Mean distance of the closest approach of each point on one contour to all points of the other contour
(Vrtovec et al 2020)
< HD(X, Y) = mean(d(X, Y), d(Y, X))

- Shift in center of mass between two structures (Choi e al 2011, Takayama et al 2017)

COM = JAx? + Ay? + A2 with Ax? = R, — Ry, Ay? = ﬁl,y — Ry, A2 = R, — R, and
= i f f f p(7) 7dV M: mass of the structure, p(7) density distribution structure

ST

— Strongly volume dependent, lacks sensitivity for large
structures
— Special care needed for tubular structures
— Hard to interpret/no meaningful unit
— Requires reference/ground truth

+ Distance, in mm
— Sensitive to outliers

— Requires reference/ground truth
+ Distance, in mm

+ Less sensitive to outliers than HD
— Misses local uncertainties
— Requires reference/ground truth
+ Distance, in mm

— Lacks sensitivity to variations in contour boundary

— Requires reference/ground truth
+ Useful in contrast-poor areas
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Table 1. (Continued.)
Metric Description Strengths (+) /Limitations (—)
Reference- free Distance discordance *» Mean distance of points from moving images which are registered to the same point in the a fixed reference
measures metric (DDM) image (Saleh eral 2014)
+ For mathematical description please refer to the original publication (Saleh et al 2014) + Spatially resolved, reference-free
— Needs at least four registered images
Local uncertainty + Uncertainties within a uniformly-dense structures can be calculated based on points defined on the organ edges + Spatially resolved, reference-free
metric (LU) (Takemura et al 2018)
+ For mathematical description please refer to the original publication (Takemura et al 2018) + Works in uniformly-dense regions
— Requires contours
Jacobian determinant + The first derivative of the DVF, distinguish between regions which are locally expanding in volume J>1 and those + Local volume gain/loss detection
shrinking with volume J<1 (Chung et al 2001)
o J=det (%) = det (% %" ‘% % % % % % % )with T the transformation + Spatially resolved, reference-free
— Misleading for actual mass change
— Necessary but not sufficient
Harmonic energy (HE) + A measure of the nonlinearity of the transformation, inversely proportional to the smoothness of the deformation + Measure for smoothness
(Forsbergetal 2012, Varadhan et al 2013)
* HE = lljacllp = / Zf: 12?:1”:‘;’ I beeing the Frobenius norm of the Jacobian + Spatially resolved, reference-free
— Hard to interpret
— Fails with sliding surfaces
Inverse consistency error + Applying a registration from image A to image B and then back to image A, it is assumed that all points will be mapped + Related to algorithm repeatability
(ICE) / Transitivity on their original position. ICE is defined as the difference between the original point and the transformed point map-
error (TE) ped back to the fixed image grid (Bender and Tomé 2009), TE extends this idea to more than two images (Bender et al
2012)
-+ Spatially resolved, reference-free
— No indication of accuracy in the result
— Necessary but not sufficient
Dosimetric Dose parameter variations * Report of relevant dosimetric point variations (e.g. V95%, D2%, V10Gy, mean dose) and DVH bands caused by + Clinically relevant dosimetric parameters
measures and DVH bands uncertainties in propagated structures or dose mapping/accumulation (Nassef et al 2016, Lowther et al 2020a, 2020Db,
Garcia-Alvarez et al 2022)
+ Aknown or estimated DIR uncertainty is necessary, either simulated (Wang et al 2018, Smolders et al 2022b), DIR -+ Applicable for illustrating uncertainties caused by pro-
variations (Nenoff et al 2020, Amstutz et al 2021b) or with known reference deformations (Kirby et al 2016, Covele et al pagated structures and/or mapped/accumulated doses
2021)

+ No reference required
— Previous measure for DIR uncertainty is necessary
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Table 1. (Continued.)

Metric

Description

Strengths (+) /Limitations (—)

Local uncertainty maps

Energy-conservation-based
criterion

« Highlights regions with anticipated discrepancies due to voxel-wise uncertainties
+ Voxel-wise uncertainties can be based on geometric factors (Salguero et al 2011), principal component analysis (Mur-
phyetal2012) or stochastic methods (Hub et al 2012)

« Structure-wise comparison of delivered energy with the energy of the warped representation of the dose (Zhong and
Chetty 2017, Wu et al 2023)

-+ Spatially resolved dosimetric uncertainty information
+ No reference required

— Previous DIR uncertainty measure required
+ Reliability measure for regions with mass/volume
change
— References required
— Only structure-wise information

suiysiiand dol

T0M.L¥T (£207) 89 101 ‘PO ‘sAyd

712 JJOUN T




10P Publishing

Phys. Med. Biol. 68 (2023) 24TR01 LNenoffetal

4.3. AI/DL-based uncertainty quantification

Further to its implementation as a DVF generator for the registration process, DL can also be used for the
quantification or prediction of uncertainties in DIR (Smolders et al 2022b, 2022a, 2023a). DSM that are not used
in the optimization of output DVFs, provide further uncertainty quantification metrics that can be used to
determine the quality of the overall registration and highlight regions of poor accuracy (Galib et al 2020). The
implementation of algorithms for automated image segmentation allows for the potential use of reference-based
DIR evaluations (table 1) with limited or no user interaction. In this case the segmented structures must be
consistent between the datasets used in the image registration. Additionally, DL-based DIR showed the potential
of having inherent uncertainty assessments within the DL framework (Grigorescu et al 2021, Gong et al 2022,
Khawaled and Freiman 2022b).

4.4. Treatment margins

Uncertainties in any DIR-facilitated process that is used to generate contours (e.g., image registration for
standard treatment planning or atlas-based segmentation) should be quantified and included in the treatment
margins. To achieve this, population-based studies would be required where the calculated uncertainties can be
used in the margin formula (van Herk et al 2000). However, guidelines detailing the quantification and inclusion
of these uncertainties are missing.

5. Application-specific DIR uncertainty

In this chapter, studies investigating the effect of DIR uncertainties for the deformation of images, structures and
doses used in RT are reviewed (figure 1).

5.1. Deformed images

5.1.1. Applications at planning

The TG-132 report and other recommendations suggest imaging the patient in the treatment position whenever
possible to minimise the magnitude of the required deformation during registration (Brock eral 2017, Barber
etal 2020).

5.1.2. Intrafraction applications

DIR has been used to derive motion-corrected images from 4D CT scans (Wolthaus et al 2008) with average
landmark-position differences of 0.5 mm for all directions in the tumour region. DIR is also used to reconstruct
time-resolved 4D MRI (Nie et al 2020), with reported centre of mass differences of 2.940.6 mm. We expect the
geometrical uncertainties of propagated images to be similar to those of structure propagation, considering both
utilise the same input data.

5.1.3. Interfraction applications

With MRIlinac or CBCT-based online adaptation becoming more commonly available, the interest in
deforming images between fractions for dose calculation and optimization is increasing (Kraus et al 2017,
Tenhunen et al 2018, Irmak et al 2020, Byrne et al 2021). In these workflows, the calculated dose distribution is
unlikely to be accurate considering the spatial uncertainties in the deformed CT, especially in areas with large
density changes.

To correct for density changes that are not represented by the deformed image such as moving air in the
gastro-intestinal organs, the density in these areas is often overwritten with the density of air or water (van
Timmeren et al 2020). Research investigating the impacts of these overwrites on photon RT has found these
impacts to be not clinically relevant (Pham et al 2022), except for very large air cavities (Thapa et al 2019). For
protons, these density corrections are likely more relevant.

To avoid the use of DIR and manual density overwrites, direct dose calculation on the MRI or CBCT images
hasbeen investigated. The generation of synthetic CT images from MRI is reviewed elsewhere (Owrangi et al
2018, Hoffmann et al 2020, Boulanger et al 2021). Methods of scatter correction to make CBCT usable for dose
calculation are widely explored (Kurz et al 2016, Giacometti et al 2019, Jarema and Aland 2019, Lalonde et al
2020, Trapp et al 2022).

5.1.4. Intervention follow-up

Follow-up images after intervention can be registered to a planning CT to understand the relation and location
oflocal failure such as recurrence or necrosis with a planned dose distribution and planning structures (Chang
etal2018, Kamal et al 2020, Abdel-Aty et al 2022). In these cases, dramatic changes are observed caused by the
time between images, surgical intervention, or other medical issues. Systematic studies quantifying the impact of
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DIR uncertainties for intervention follow-up are rare and further work needs to be done to quantify and account
for them in patterns of failure.

5.2. Propagated structures
5.2.1. At planning
For treatment planning, structures are commonly defined on the planning CT. Structure definition can be
challenging on CT due to low contrast compared to other imaging modalities such as MRI. Including multiple
imaging modalities for contouring canlead to a reduction in inter-observer variability (Caldwell et al 2001,
Farina etal 2017, Hall et al 2018). Though it is common to merge CT with PET, MRI or other images for
contouring, the effect of deformable registration errors is not well investigated. (Barber et al 2020) therefore
suggested using rigid registration wherever possible.

DIR is also used in atlas-based auto-segmentation, which is increasingly used in clinics to assist contouring.
In this case, DIR is applied between images from different patients (Vrtovec et al 2020). Research showing a time
benefit in using altas-based contours also show the necessity of manual corrections (Gooding et al 2013,
Cardenas etal 2019, Welgemoed et al 2023). To our knowledge, there are no systematic studies on the impact of
DIR implementation and DIR uncertainty for atlas-based segmentation. Studies do however investigate the
impact of atlas selection (Schipaanboord et al 2019) or institution-specific implementation (Gooding et al 2013).
As an alternative to atlas-based auto-segmentation, DL-based auto-segmentation was developed. Different auto-
segmentation methods are reviewed elsewhere (Cardenas et al 2019, Schipaanboord et al 2019, Vrtovec et al
2020, Harrison et al 2022). The details of auto segmentation methods are out of the scope of this study.

5.2.2. Intrafraction applications

DIR is used to map contours between different breathing phases, or intrafraction changes in patient treatment
positions, to reduce the time needed for contouring. In clinical practice, the propagated structures are visually
checked and corrected if necessary (Gaede et al 2011, Peroni et al 2013, Liu et al 2016, Ma et al 2017, Willigenburg
etal2022).

5.2.3. Interfraction applications

Structure propagation can speed up recontouring for repeated imaging of a patient (Sonke et al2019). This can
be used for evaluation of recalculated doses or adaptive planning, but it is especially important for online
adaptive workflows. The clinical availability of regular or daily imaging, such as scheduled repeated CT or daily
CBCT, and the implementation of online adaptive workflows has led to multiple studies on the quality of
deformed structures for adaptive planning.

Table 2 summarises recent studies investigating geometric DIR uncertainties for structure propagation for
different anatomical sites and imaging modalities. The structures have been evaluated using geometrical
measures introduced in table 1. Commercial and open access algorithms show similar performance (Scaggion
etal 2020b). The majority of studies incorporate reference structures of a single expert physician. Variations
between structures defined by different physicians are observed in many studies, and these inter-expert structure
variations are currently de-facto the clinically accepted variability. Research comparing DIR propagated
structure uncertainties to physician-to-physician uncertainties, has demonstrated results approaching inter-
expert contour variation (Riegel er al 2016, Woerner et al 2017, Rigaud et al 2019, Nash et al 2022).

Currently, there is no consensus on the use of DIR propagated structures for plan adaptation in the
literature. Some authors conclude that propagated structures can be used for reoptimization and/or dose
evaluation (Beasley et al 2016, Hvid et al 2016, Qiao et al 2019, Nenoff et al 202 1b, Nash et al 2022), while others
found that manual corrections are still necessary (Li et al 2017, Christiansen et al 2020, 2021). Generally, the
literature agrees that a visual inspection of the DIR propagated structures remains necessary for dose evaluation
and optimization. Furthermore, it has been observed that for most organs at risk (OARs) geometric
uncertainties correlated only weakly to dosimetric errors (Hvid et al 2016, Pukala et al 2016, Nash et al 2022).

There are a small number of studies evaluating the dosimetric effect of uncertainties in propagated structures
for dosimetric evaluation or plan optimization during adaptive RT (table 3). For pancreas stereotactic body
radiotherapy (SBRT), physician-drawn structures were compared to propagated structures by MIM and
Precision DIR algorithms (Magallon-Baro et al 2022). They compared uncorrected propagated structures with
physician-drawn structures in 0.5, 1 and 3 cm distance rings from the target. They found that replanning with
uncorrected propagated structures improves the target coverage and OAR sparing compared to no adaptation.
For the majority of fractions, manual correction of propagated structures could be avoided or be limited to the
region closest to the target. Ray at al. evaluated the use of automatic deformed CTVs compared to physician
defined CTVs and proposed a framework to determine PTV margins based on automatic deformed CTVs for
adaptive planning (Ray et al 2020). Nash et al showed that even large geometrical structure differences rarely had
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Table 2. Literature review of quantified geometric uncertainties in DIR-facilitated processes for different anatomical regions and imaging modalities. §
DIR algorithm and/or §
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference @
S
Brain MRI to MRI Demons, HAMMER, and Compare to seg- IXI dataset and XI dataset: (Wuetal 2
state-of-the-art registra- mented structures in ADNI dataset Demons: 0.752 2013) /g
tion methods with inte- the datasets M-+PCA: 0.790 th/
grated learned features M-+ISA: 0.789 R
from unsupervised deep HAMMER: 0.789 ;
learning. ICA: Indepen- H+PCA: 0.754 =
dent Component Analysis H-+ISA: 0.801
ADNI dataset:
Demons: 0.869
M+PCA: 0.789
M-HISA: 0.844
HAMMER: 0.821
H+PCA:0.820
H+ISA:0.873
Brain MRI to MRI ANTs, VoxelMorph-1 Compare to segmen- 7829 T1 weighted Average DICE: Affine only: 0.567 (Balakrishnan
(DL-based), Vox- tations performed by brain MRI scans etal2018)
elMorph-2 (DL-based) FreeSurfer checked from eight publicly
by visual inspection available datasets
ANTSs: 0.749
VoxelMorph-1:0.724
VoxelMorph-2:0.750
Brain MRI to MRI Cue-Aware Deep Regres- Compare to seg- Three databases, i.e. Average overall DICE: 0.7526 Average surface distance (ASD) in (Caoetal
sion Network (DL-based) mented structures in LONI LPBA40, IXI, mm:Overall ~ 0.6-0.7 (25th-75th 2018)
the dataset and ADNI percentile)
Brain MRIto MRI (2D) Unsupervised DL-based Compare to 4 largest MGH10 dataset, 10 Overall DICE (Khawaled
(Bayesian Framework) anatomical structures subjects, 10 sli- and
in the reference ces each Freiman 2020)
dataset
VoxelMorph: 0.7109
Proposed: 0.736
Brain Inter-patient MRI TransMorph: Transfor- Inter-patient MRI: Inter-patient MRI: Please consult (Chen et al 2022) for Please consult (Chen et al 2022)for Please consult (Chen et al 2022)for (Chenetal
mer for unsupervised compare to 30 anato- 260 T1-weighted en extensive comparison of DICE en extensive comparison of HD en extensive comparison of SDlog] 2022)

image

mical structures
labeled by FreeSurfer

brain MRI images
from John Hopkins
University

values

values

and SSIM values
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Table 2. (Continued.)
DIR algorithm and/or
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference
Atlas-to- patient registration Atlas-to-patient MRI: Atlas-to-
MRIXCAT-to-CT compare to 30 anato- patient MRI:
mical structures 576 T1-weighted
labeled by FreeSurfer brain MRIimages
from the IXI
database
XCAT-to-CT:
XCAT phantom and
50 non-contrast
chest-abdomen-pel-
vis CT scans
Head and neck CTtoCT MIM, Velocity, Raysta- Compared to physi- 10 virtual head and Mean TRE: 0.5 mm — 3 mm (Pukala etal
tion, Pinnacle, Eclipse cian drawn reference neck phantoms 2016)
(DIREP)
Maximum TRE: 22 mm
Head and neck CTtoCT MIM, Velocity, Eclipse Compared to physi- 35 institutions, 10 Mean TRE: (Kubli et al
cian drawn reference virtual head and neck 2021)
phantoms (DIREP)
Velocity 2.04+0.35 mm;
MIM 1.10+0.29 mm; Eclipse 2.35
+0.15 mm
Allmean TRE < 3 mm
Maximum errors >2 cm
Head and neck CTtoCT Raystation (simple Ana- Compared to physi- 10 head and neck GTV DSC:Simple Anaconda 0.78 & (Zhanget al
conda, detailed Ana- cian drawn reference cancer patients 0.11;Detailed Anaconda 0.96 + 2018)
conda, simple Morfeus, 0.02;Simple Morfeus 0.64 +0.15;
detailed Morfeus) Detailed Morfeus 0.91 + 0.03;Lar-
ger DSC for OARs larger than the
eye compared to smaller OARs
Head and neck CTtoCT 10 DIR combinations Compared against 15 patients, 6 Landmark Registration Error: inter- (Rigaud et
using demons and free each otherand 2 weekly CTs observer distance 2.01 mm (1.29 al2019)
form deformations (FFD) expers using mm), most effective DIRs 2.44 mm
landmarks (and 1.30 mm)
Head and neck CTto CBCT NiftyReg Compared to physi- 5head and neck Mean DSC: 0.850 External con- (Veigaetal
cian drawn reference patients tour: 0.986 2014)

Bony anatomy: 0.846
Soft tissue: 0.790
(DIR better than rigid registration)
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Table 2. (Continued.) E§
DIR algorithm and/or %
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference ;‘
S
Head and neck CTto CBCT Five commercially avail- Compared to physi- 10 head and neck clinician drawn reference: Brain- clinician drawn reference:Brain- MDA: clinician drawn reference: (Nashetal 5
able DIRs (RayStation, cian drawn and STA- patients: 5 orophar- stem 0.68(0.09),Spinal Cord, 0.62 stem 10.8(3.5),Spinal Cord,7.1 Brainstem 2.9(0.1),Spinal Cord, 1.5 2022) ~
ADMIRE, Mirada, Pro- PLE reference yngeal, 2 oral cavity, (0.14),Larynx 0.75(0.1),Left Parotid (2.8), Larynx 10.2(4.5),Left Parotid (0.5),Larynx 2.2(1.1),Left Parotid 2.2 §
Soma, Pinnacle) 1 hypopharynx, 1 0.72 (0.08),Right Parotid 0.76(0.06) 12.9(4.8),Right Parotid 12.2(3.9) (0.5),Right Parotid 2.0(0.5)STAPLE e
supraglotticand 1 STAPLE reference:Brainstem 0.93 STAPLE reference:Brainstem 4.4 reference:Brainstem 0.8(0.5),Spinal E
of unknown pri- (0.04),Spinal Cord 0.87(0.04),Lar- (2.7), Spinal Cord 4.3(2.7),Larynx Cord, 0.5(0.2),Larynx 0.5(0.3),Left =t
mary (target below ynx 0.93(0.04),Left Parotid 0.93 3.5(1.1),Left Parotid 3.5(1.1),Right Parotid 0.5(0.2),Right Parotid 0.5
nasal region) (0.06),Right Parotid 0.92(0.03) Parotid 3.4(1.1) (0.2)Centroid separation in mm:
clinician drawn reference:Brainstem
5.7(2.9),Spinal Cord, 9.7(5.8),Larynx
3.2(2.7),Left Parotid 3.6(1.6),Right
Parotid 3.1(1.4)STAPLE reference:
Brainstem 1.6(1.3),Spinal Cord, 2.8
(2.1),Larynx 0.9(1.0),Left Parotid 0.9
(0.6),Right Parotid 0.9(0.6)
Head and neck CTto CBCT MIM DIR Compared to physi- 30 HN patients, First CBCTParotid L 0.95Parotid R First CBCTParotid L 0.7 cmParotid (Hvid et al
cian structures squamous cell car- 0.95Submandibular L 0.91Sub- R 0.7 cmSubmandibular L 2016)
cinoma of the oral mandibular R 0.93Esophagus 0.6 cmSubmandibular R
cavity, pharynx or 0.85Spinal cord 0.89Last CBCTPar- 0.6 cmEsophagus 0.5 cmSpinal
larynx, DIR to first otid L 0.95Parotid R 0.95Sub- cord 0.3 cmLast CBCTParotid L
and last CBCT mandibular L 0.85Submandibular R 0.7 cmParotid
0.87Esophagus 0.84Spinal cord 0.87 0.7 cmSubmandibular
0.7 cmSubmandibular
0.7 cmEsophagus 0.8 cmSpinal
cord 0.3 cm
Head and neck CT to CBCT 10 DIRs (optical flow, Compared to physi- 21 HN patients data not shown in tables, please data not shown in tables, please (Lietal2017)
Demons, Level set, Spline) cian reference refer to the plots in the paper. refer to the plots in the paper.
Head and neck MRI to MRI Monaco DIR Compared to manual 17 patients, larynx MRIto MRIGTV-T 0.55GTV-N IOVGTV-T 9.8 mmGTV-N mean surface distance,JOVGTV-T (Christiansen
defined structures (3), oropharynx 0.58Brain Stem 0.89Spinal cord 5.0 mmBrain Stem 3.0 mmSpinal 2.2 mmGTV-N 1.1 mmBrain Stem etal2021)

and intra observer

variability

(10), oral cavity (1)
and hypopharynx
(3), planning MRO
+ 3 repeated MRI

0.86 R parotid 0.81 Lparotid 0.82 R
submand 0.77 Lsubmand
0.78Thyroid 0.74IO0VGTV-T
0.68GTV-N 0.72Brain Stem
0.96Spinal cord 0.89 R parotid
0.93 L parotid 0.88 R submand
0.89 L submand 0.88Thyroid 0.81

cord 2.8 mm Rparotid3.7 mm L
parotid 4.4 mm R submand
3.1 mm Lsubmand
3.3 mmThyroid 4.3 mmMRI to
MRIGTV-T 7.6 mmGTV-N
5.7 mmBrain Stem 4.3 mmSpinal
cord 5.0 mm Rparotid 7.7 mm L
parotid 7.1 mm R submand
5.0 mm Lsubmand
4.6 mmThyroid 7.2 mm

0.2 mmSpinal cord 0.5 mm R par-
otid 0.4 mm Lparotid 0.8 mm R
submand 0.5 mm L submand
0.6 mmThyroid 0.8 mmMRI to
MRIGTV-T 2.0 mmGTV-N
1.6 mmBrain Stem 1.0 mmSpinal
cord 0.6 mm Ryparotid 1.2 mm L
parotid 1.1 mm Rsubmand
1.1 mm L submand
0.9 mmThyroid 1.4 mm
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Table 2. (Continued.)
DIR algorithm and/or
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference
Head and neck, thorax, CTtoCT Velocity Compared to two 30 head and neck mean HD, structure dependenceH- (Riegel et al
pelvis observers and 20 prostate can- Nintraobserver variation 0.7mm- 2016)
cer patients 2.3 mm, interobserver variation
1.0mm-5.0 mm,DIR error 1.1mm-
3.0 mmPelvisIntraobserver varia-
tion 1.3mm-2.5 mm, interobserver
variation 1.6mm-3.1 mm,DIR
error 1.9mm-3.1 mm
Head and neck, thorax, CTtoCT RayStation, MIM, Velo- Compared to refer- synthetic CT images HN 0.84-0.93Thorax Mean Distance to Conformity (Loietal 2018)
pelvis city Al and Smart Adapt, ence contours gener- (simQA), thirteen 0.52-0.97Pelvis 0.45-0.87 (MDC) in mmHN 2.26-3.36Thorax
Mirada XD, ABAS ated with a ground institutions 2.38—4.57Pelvis 3.69-6.03
truth DVF
Head and neck, pelvis CTtoCT MIM-Maestro, Raysta- Compared to refer- 9 pairs of synthetic trachea, esophagus, spinal cord, and MDA (mm):trachea, esophagus, (Shietal2021)
tion, Velocity ence contours gener- CTs (simQA) spinal canal0.95-0.98pituitary spinal cord, and spinal canal
ated with a ground 0.34-0.92 2.10-2.70pituitary 3.02-3.81
truth DVF
Head and neck, Pros- CBCTto CT Physician-to-physician, Compared to physi- HN 6 patients, HN Mean DSC:Physician-to-physi- All:Mean HD:Physician-to-physi- (Woerner et al
tate, Pancreas Velocity cian drawn reference prostate 5 patients, cian 0.87DIR 0.77ProstateMean cian 11.32 mmRigid 12.1 mmDIR 2017)
pancreas 5 patients DSC:Physician-to-physician 12.0 mm
0.9DIR 0.74Pancreas:Mean DSC:
Physician-to-physician
0.93DIR 0.84
virtual phantoms and CTtoCT Smart Adapt (Eclipse) Compared to physi- 10 virtual phan- Brain 0.91 (0.04)HN 0.84 (0.03) Brain 1.37 (0.97)HN 1.06 (0.22) Center of mass,Brain 1.69 (0.84)HN (Jamema et al
brain, HN, cervix, cian structures toms, and brain Prostate 0.81 (0.05)Cervix 0.77 Prostate 2.70 (0.24)Cervix 3.23 1.63 (0.30)Prostate 5.19 (1.34)Cer- 2018)
prostate (n=5),HN(n=9), (0.05)per-structure DSCs in paper (0.78)per-structure HD in paper vix 5.79 (1.42)per-structure COM
cervix (n = 18) and in paper
prostate (n = 23)
patients
Abdominal, Head and 4DCT Mirada Compared to physi- 3 abdominal Abdominal:Nearly all OARs Thoracic:Mean TRE: 3.4-8.9 mm (Latifietal
neck,Thoracic cian drawn reference patients,7 thoracic DSC > 0.90, pancreas 0.74-0.88HN: (above AAPM report recommenda- 2018)
patients, two ima- Lower DSC, lowest for pharyngeal tion)Maximum TRE:
ges from extreme constrictor low contrast in this 10.1-29.0 mm
respiratory phases region, small size of structure and
proximity to air cavities, Thorax:
Nearly all OARs DSC > 0.90, eso-
phagus 0.79-0.85
Retina and Heart Retina: Colour GAN (DL-based) Retina: Compare to Retina: 26 image Average DICE:RetinaGAN: HD95 (95th percentile HD):Retina- Mean absolute surface distance (Mahapatra
fundus images to registration ground- pairsHeart: 0.946DIRNet: 0.911Elastix: GAN: 4.2DIRNet: 5.9Elastix: (MAD):RetinaGAN: 3.1DIRNet: etal2018)
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Table 2. (Continued.) ~§
DIR algorithm and/or %
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference ;‘
=
fluorescein angio- truth derived with Sunybrook cardiac 0.874Before registration: 9.7Before registration: 11.4Heart: 5.0Elastix: 8.7Before registration: g«e
graphyHeart: MRI ITKHeart: Compare dataset, 45 cardiac 0.843Heart: GAN: 0.85DIRNet: GAN: 3.9DIRNet: 5.03Elastix: 9.1Heart:GAN: 1.3DIRNet: )
to MRI to manual segmented cine MRI scans 0.80Elastix: 0.77Before registra- 5.21Before registration: 7.79 1.83Elastix: 2.12Before registratio §
structures (short-axis cardiac tion: 0.62 e
image slices each E
containing 20 =
timepoints)
abdomen, thorax, 4DCT, MR-MR, Morpheus (Raystation) Compared to manu- 74 patients, thoracic mean DTA <1 mm for controlling (Velecetal
pelvis CT-MR ally defined contours and abdominal strucutres and 1.0-3.5 mm for 2017)
and langmarks 4DCT and MR,, implicitly deformed strucutresTRE:
liver CT-MR, pros- 2.0 mm — 5.1 mm
tate MR-Mr
Thorax/Esophagus 4DCT Bspline (Velocity), free Compared to manual 5 esophagus 3D registration errors B-spline 1.84 (Kadoya et al
form deform (FDD), landmarks patients from DIR (0.97)—3.72(3.17) mmFDD 2.49 2014)
Horn-Schunk optical lab dataset (1.21)—4.52(3.45)0OF 1.42 (0.92)
flow (OF), Demons —3.40(2.93)Demons 1.40 (0.96)
—4.39(4.23)
Thorax CTtoCT 4 RayStation (RaySearch5 Compared to expert 10 patients with 3D registration errorRayStation (Kadoya et al
MIM Software (Cleve- defined anatomical esophageal or lung 1.26-3.91 mm,MIM 2016)
land, OH),3 used Velocity landmarks (DIR-Lab cancer 2.17-3.61 mmVelocity
references) 4.02-6.20 mm
Lung CTtoCT Demons, Salient Feature Compared to physi- 17 NSCLC patients, data not shown in tables, please data not shown in tables, please COMGTV-tumor (Hardcastle
BAsed registration (PIn- cian structures 4D CTs (50% refer to the plots in the paper. refer to the plots in the paper. 0.27-0.29 cmnodal-GTVs etal2013)
nacle), Morphons exhale was used) 0.31-0.37 cm
Lung 4DCT-4DCBCT Demons, SICLE Compared to physi- 10locally advanced Day-to-dayMean DSC:SICLE (Balik et al
cian drawn reference non-small cell lung 0.75Demons 0.70Rigid-tumor 2013)
cancer patients, one registration 0.66Rigid-bone regis-
4D fan-beam CT tration 0.6Phase-to-phase (4D
and 7 weekly cone- CBCT):SICLE 0.8Demons: 0.79
beam CT;Day-to-
day and phase-to-
phase registrations
Lung 4DCT In-house Bspline, MIM Compared to physi- 4D-CTs of 12 lung Mean DSC:In-house Bspline Mean HD:In-house Bspline Mean MDA:In-house Bspline (Guyetal
freeform cian drawn reference cancer patients 0.8MIM 0.8 22.5 mmMIM 22.6 mm 2.3 mmMIM 2.1 mm 2019)
acquired in prone =
and supine %
positions 2
Lung 4DCT ?
2
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Table 2. (Continued.) E§
DIR algorithm and/or %
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference ;‘
=
10 DIR algorithms (opti- Compared to physi- 5 patients implan- TREFM positions (Hanetal g«e
cal flow, demons) cian defined refer- ted fiducial markers 1.82-1.98 mmtumor position TREs 2022) ~
ence/fiducials (FM) (FM) as ground 1.29-1.78 mm §
truth I
Heart MRIto MR SVF-Net (DL-based) Compare to seg- 187 3D MRI cardiac No numbers reported, only plots, No numbers reported, only plots, (Rohéetal E
mented structures in images box-plot (25%-75%):Left ventricle box-plot (25%-75%):Left ventricle 2017) S
the dataset myocardium = 0.75-0.8Right ven- myocardium & 4-5.5 mmRight
tricle myocardium = 0.45-0.55Left ventricle myocardium ~
ventricle blood pool ~ 5-6 mmLeft ventricle blood pool &
0.85-0.9Right ventricle myo- 4-5 mmRight ventricle myo-
cardium ~ 0.75-0.85 cardium ~ 4.5-6 mm
Cervical cancer CTtoCT Velocity, Elastix Compared to physi- 5 cervical bra- Mean DSC:Bladder Velocity Mean HDRectosigmoid Velocity (Belonetal
cian drawn reference chytherapy patients 0.85Rectum Velocity 0.72Recto- 35.94 mmRectosigmoid Elastix 2015)
sigmoid Velocity 0.47Bladder Elas- 40.76 mm
tix 0.76Rectum Elastix
0.68Rectosigmoid Elastix 0.50
Intraheptic cholangio- CTtoCT Five commercially avail- Compared to physi- 29 THCC patients Mean TRE:Demons 4.6+2.0 mmy; (Senetal
carcinoma (IHCC) able DIRs (Demons, cian drawn reference B-splines 7.442.7 mm,; salient fea- 2020)
B-splines, salient feature- ture-based 7.242.6 mm; anatomi-
based, anatomically con- cally constrained 6.34:2.3 mm;
strained, finite element- finite element-based 7.5+4.0 mm;
based algorithm) Maximum errors > 1 cm for all
techniques
Liver CTtoCT MIM, Velocity., Compared to fiducial 24 Patients with FM errorMIM: 0.4-32.9 (9.3 £9.9) (Fukumitsu
markers (FM) as liver tumor, pre and mmVelocity 0.5-38.6 (11.0 + etal2017)
ground truth post treatment ima- 10.0) mm
ges (median 10
months)
Liver CTtoCT Unsupervised Cycle-Con- Compare to 20 anato- Liver cancer (HCC) TREArterial to PortalElastix: (Kim et al
sistent CNN (DL-based) mical points in the patients at Asan 3.26VoxelMorph: 6.67CNN: 2019)
liver and adjacent Medical Center, 4.91Delayed to PortalElastix:
organs marked by Seoul, South 2.96VoxelMorph: 5.35CNN: 3.76%
radiologists Korea:555 scans for of Jacobian determinant < OArterial

training, 50 scans

for testing

to PortalVoxelMorph: 0.0327CNN:
0.0175Delayed to PortalVox-
elMorph: 0.0311CNN:
0.0181NMSE (normalized mean
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Table 2. (Continued.) E§
DIR algorithm and/or %
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference ;‘
=
square error)Arterial to PortalVox- g«e
elMorph: 0.0278CNN: ~
0.0277Delayed to PortalVox- §
elMorph: 0.0213CNN: 0.0199 I
pancreatic CTto CBCT B-spline regis- Compared to physi- Fifteen pancreatic best registration outcome for the (Ziegler et al E
trationmutual-informa- cian drawn reference cancer patients visual comparison, the lowest med- 2019) =
tion (MI), mattes mutual- ian deviation was obtained with
information (mattes) and GM(A=0.005) and GM(A =0.05),
gradient magnitude (GM) whereas the variation over the
and also different regular- patient collective was much smaller
ization levels A € {0.05; for GM(A=0.05).
0.005;0.00025},
GM(\ = 0.05),
Prostate CT to ultrasound Rigid, MIM 10 prostate patients, Mean DSC:Rigid 0.78 £0 .06 DIR Mean HD:Rigid 11.64 £+ Mean MDA:Rigid 2.50 £0 (Vozzo etal
HDR-brachy 0.9340.01 2.38 mmDIR 5.19 & 1.47 mm .70 mmDIR 0.69 £ 0.06 mm 2021)
therapy
Prostate CTtoCT intensity based Elastix Compared to manual 18 prostate cancer prostate 0.87 £ 0.05, seminal vesi- 95 percentile HDprostate 3.35 + mean surface distance (MSD)pros- (Qiaoetal
delineation patients, 7-10 cles 0.63 +0.18, lymph nodes 0.89 1.19 mm, seminal vesicles 4.76 + tate 1.42 4+ 0.48 mm, seminal vesi- 2019)
repeat CT 4+ 0.03, Rectum 0.76 =+ 0.06, Blad- 2.77 mm, lymph nodes 3.57 + cles 1.97 £ 1.22 mm, lymph nodes
der 0.86 +0.09 0.99 mm, Rectum 10.83 & 1.46 £ 0.44 mm, Rectum 3.29 &
5.93 mm, Bladder 8.91 4+ 6.76 mm 1.31 mm, Bladder 2.92 + 1.90 mm
Prostate CTtoCT improved AI DIR in Compared to manual evaluation on 2 results on two datasetsProstate 0.87 results on two datasets in mmPros- mean surface distance (MSD)results (Elmahdy et al
Elastix delineation datasets 14418 +0.08/0.87 & 0.12seminal vesicles tate 3.07 £ 1.30/3.93 & 2.24semi- on two datasets in mmProstate 1.29 2019)
patients, follow up 0.70+£0.13/0.75 £ nal vesicles 3.82 +-3.19/4.92 + +0.39/1.54 £ 0.67seminal vesicles
on Quiao et al, 0.18Lymph nodes 0.87 +0.07/ — 5.13Lymph nodes 3.74 4 1.02/ — 1.48+1.16/1.67 &+
improved adaptive Rectum 0.82+0.12/0.78 + Rectum 8.66 +6.92/10.4 + 1.38Lymph nodes 1.49 +0.44/ —
dose constraints 0.15Bladder0.89 +0.12/0.83 7.77Bladder 5.11 +4.38/11.5 Rectum 2.39 +1.92/2.67 +
with this one +0.17 +12.5 1.76Bladder 1.72 £ 1.17/3.89
+4.00
prostate CT-CBCT anaconda Compared to physi- 10 prostate patients body ROI controlling:prostate 0.84 COMbody ROI controlling (mm): (Takayama
cian drawn reference =+ 0.05rectum 0.75 £ 0.05bladder prostate 2.0 £ 1.5rectum 3.7 etal2017)
0.69 £ 0.07seminal vesicles 0.65 £ 1.4bladder7.8 £ 2.2seminal vesicles
0.11all ROIs controlling:prostate 3.6 % 1.2all ROIs controlling (mm):
0.98 £ 0.00rectum 0.97 £ 0.01blad- prostate 0.1 = 0.0rectum 0.3 &
der 0.98 £ 0.00seminal vesicles 0.94 0.2bladder 0.2 + 0.1seminal vesicles =
+0.03 0.6 0.6 Z
Prostate CTtoCTand CT 3 DIR algorithms imple- Compared to manu- 20 patients (453 CT to CTbladder: CT to CTbladder: 7.26-18.40 MDA in mmCT to (Hammers %
to CBCT mented in MIM (DIR ally drawn reference fractions) 0.729-0.943rectum: 0.737-0.913CT mmrectum: 9.63-16.37 mmCT to CTbladder:0.86—4.47rectum: etal 2020) g;
a
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Table 2. (Continued.) E§
DIR algorithm and/or %
Indication Image modality vendor Assessment method Study type DICE HD others (TRE, MDA, COM, ...) Reference ;‘
g
Profile, normalized inten- to CBCTbladder: CBCTbladder:12.24-22.57 mmrec- 0.89-2.96CT to g«e
sity-based (NIB) and sha- 0.713-0.906rectum: 0.710-0.879 tum: 11.25-18.49 mm CBCTbladder:1.51-4.68rectum: ~
dowed NIBDIR 1.31-3.29 S
algorithms) I
Prostate CT to MRI, MRI Monaco DIR Compared to manual 12 high-risk pros- CT to MRIProstate 0.84, Seminal CT to MRIProstate 7.16 mm, mean surface distance,CT to MRI- (Christiansen E
to MRI defined structures tate cancer patients, Vesicles 0.68,Rectum 0.77, Bladder Seminal Vesicles 6.55 mm,Rectum Prostate 1.6 mm, Seminal Vesicles etal 2020) =t
and intra observer prostate and pelvic 0.87, R fem. Head 0.93, L fem. Head 12.36 mm, Bladder 10.88 mm, R 1.48 mm,Rectum 2.41 mm, Blad-
variability lymph nodes trea- 0.91MRI to MRIProstate 0.90, fem. Head 4.96 mm, L fem. Head der 1.96 mm, R fem. Head
ted on MRI linac Seminal Vesicles 0.76,Rectum 0.87, 4.98 mmMRI to MRIProstate 1.09 mm, L fem. Head
Bladder 0.92, R fem. Head 0.95, L 5.10 mm, Seminal Vesicles 1.37 mmMRI to MRIProstate
fem. Head 0.94Inter observerPros- 5.54 mm,Rectum 8.89 mm, Blad- 1.00 mm, Seminal Vesicles
tate 0.92, Seminal Vesicles 0.81,Rec- der 5.71 mm, R fem. Head 1.17 mm,Rectum 1.25 mm, Blad-
tum 0.95, Bladder 0.97, R fem. Head 4.77 mm, L fem. Head der 1.11 mm, R fem. Head
0.95, L fem. Head 0.94 4.75 mmlnter observerProstate 0.81 mm, L fem. Head
4.89 mm, Seminal Vesicles 0.81 mmlnter observerProstate
5.31 mm,Rectum 07.65 mm, Blad- 0.88 mm, Seminal Vesicles
der 4.05 mm, R fem. Head 0.86 mm,Rectum 0.65 mm, Blad-
4.41 mm, Lfem. Head 5.21 der 0.55 mm, R fem. Head
0.75 mm, L fem. Head 1.05 mm
Prostate MRI to transrectal Weakly-supervised CNN Compare to manually 108 pairs of T2- Composite-NetMedian: 0.82Per- TRE (mm):Composite-NetMedian: (Hueral2018,
ultrasound (DL-based) segmented structures weighted MR and centiles [25th, 75th]: [0.78,0.86] 4.7Percentiles [25th, 75th]: [3.3,7.5] p218)
TRUS images
Phantoms Elastix, BRAINS, Plasti- Compared to results 4 computational Mostly DSC > 0.850nly smallest In case of severe deformations (Scaggion et al
match, Raystation from synthetic image anthropomorphic structures mild failure DSC < 0.75 MDC >3 mm 2020a)
datasets from apply- phantoms
ing synthetic DVFs

DIR: deformable image registration, HN: Hausdorff distance, TRE: target registration error, MDA: mean distance to agreement, COM: center of mass, HD: Hausdorff distance

712 JJOUN T




1C

Table 3. Literature review of quantified dosimetric uncertainties in DIR-facilitated processes for different anatomical regions and imaging modalities. DIR: deformable image registration, SBRT: stereotactic body radiotherapy, VMAT:
volumetric modulated arc radiotherapy, IMPT: intensity modulated proton therapy, DDM distance discordance metric.

Image DIR algorithm Assessment
Application Indication modality and/or vendor method Study type Dosimetric uncertainty Reference
Structure Photons Head CTto CBCT MIM compared to 30 head and neck Dose difference when dose is evaluated on propagated versus reference structures (Hvid etal
propagation interfraction and neck physician patients, squamous First CBCT Last CBCT 2016)
dose reference cell carcinoma of the Parotid Parotid
recalculation oral cavity, pharynx or L0.1 Gy L0.1 Gy
larynx, DIR to firstand Parotid Parotid
last CBCT R-0.1 Gy R—0.1 Gy
Submandibular ~ Submandibular
L0.1 Gy L—-0.3 Gy
Submandibular ~ Submandibular
RO.1 Gy R—-0.5Gy
Esophagus Esophagus
0.0 Gy 0.3 Gy
Spinal Spinal
cord 0.1 Gy cord 0.0 Gy
Photons Head CTto CBCT Five commer- compared to 10 head and neck Spinal cord D1cc occasionally exceeds planning tolerance (44 Gy) by (Nash etal
interfraction and neck cially available physician patients: 5 orophar- 7-250 cGyBrainstem D1cc occasionally exceeds planning tolerance (54 Gy) by 2022)
dose DIRs (RaySta- drawn and yngeal, 2 oral cavity, 1 (29-199 cGy)Despite poor geometric agreement, the DVH parameters of propa-
recalculation tion, ADMIRE, STAPLE hypopharynx, 1 supra- gated contours gave a reliable estimate of the organ dose
Mirada, Pro- reference glotticand 1 of
Soma, Pinnacle) unknown primary
(target below nasal
region)
Photon adap- Pancreas CTtoCT Precision, MIM compared to 35 pancreas patients, Plans optimized on propagated and reference contours, evaluated on reference (Magallon-
tive planning physician 98 fx CTs, breathhold contours Baro et al
(cyberknife) reference 2022)

Dose difference between no adaptation and

a) Physician b) Precision ¢) MIM
reference
PTV —2.0% PTV —-2.7% PTV —5.1%
GTV —0.1% GTV —0.4% GTV —1.6%
Stomach V35 Stomach V35 Stomach
Gy —0.2 cc Gy —0.1 cc V35
Gy —0.1 cc
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Table 3. (Continued.)

Image DIR algorithm Assessment
Application Indication modality and/or vendor method Study type Dosimetric uncertainty Reference
Duodenum Duodenum Duodenum
V35Gy—0.4cc  V35Gy—0.2 cc V35
Gy —0.2 cc
Proton adap- Prostate CTtoCT Elastix compared to 18 prostate cancer Plans optimized on propagated and reference contours, evaluated on reference con- ~ (Qiao et al
tive planning manual patients, 7-10 tours Propagated contours could be directly used for reoptimization (V95% > 98% 2019)
delineation repeat CT for each target volume) in 89% of cases
Proton adap- Lung CTtoCT Plastimatch (B- compared to 5NSCLC patientswith  Plans optimized on propagated and reference contours, evaluated on reference con- (Nenoff
tive planning splines, demons, physician 9 repeated DIBH CTs tours0.04% average difference in CTV V95 with DIR versus 0.06% with rigid propa- etal
Velocity, Mirada, reference gation and 9.7% without adaptation 2021b)
Raystation (Ana-
conda, Morfeus)
Proton adap- Lung & CTtoCT Rigid registra- autocontouring 5NCSLC patients 9 Plans optimized on automatic OARs contours showed small dependence on the (Smolders
tive planning Head tion, Plastimatch techniques repeated CTsand 5 contouring method (<5%). For automatic target contours the dosimetric effectcan ~ etal2023a)
and neck B-splines, Com- compared to head and neck cancer be larger than 5%. Compared to non-adaptive approaches the automatic contour-
mercial CNN, manual patients with 4-7 repe- ing showed improved target coverage.
patient-spe- delineation ated CTs
cific CNN
Dose accumu- Photon adap- Head CTtoCT Raystation Ana- Not applicable 10 head and neck Deformed weekly doses accumulated and compared to primary planning dose- (Zhang
lation tive planning and neck conda (simple & patients with weekly Difference to primary planned dose: etal2018)
detailed)Raysta- offline replanning
tion Morfeus
(simple &
detailed)
Simple Detailed Simple Detailed
Anaconda Anaconda Morfeus Morfeus
Homogeneity 0.137 £0.115 0.006 0.197 0.006
index +0.032 +0.096 +0.033
Main difference between simple and detailed algorithms.
Simple presetting: 344.6 cGy, 109.9 cGy, 329.0 cGy for D95, Dmean, Dmin in
average
Detailed presetting: less than 20 cGy
Photon4D Lung, 4DCT 6 open sourse Not applicable 5 patients with multi- GTV D95% difference between plan on average CT and 4D dose simulationLung (Mogadas
dose liver algorithms from ple lung metastasis, 5 metastasis: Variations mostly negligible (<0.5 Gy), but up to 7.85 GyLiver metas- etal2018)
calculation EMPIRE chal- patients with multiple tasis: Lager variations more diverging, higher negative, up to —29.09 Gy
lenge (ANTS,
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Table 3. (Continued.)

Image DIR algorithm Assessment
Application Indication modality and/or vendor method Study type Dosimetric uncertainty Reference
VarReg, DIR- liver meta-
ART, NiftyReg, satsis, VMAT
FElastix,
Plastimatch)
Photon 4D Lung 4DCT SmartAdapt, Not applicable 6lung SBRT If results are limited to visually acceptable deformed images:Maximum difference in (Sarudis
dose Velocity, Ana- patients, VMAT the evaluated DVH parameters was <3.0% for GTV D98, spinal cord D29%, heart etal2019)
calculation conda D2% and <3.6% of the total structure volume for the ipsilateral lung
(Raystation)
Proton4D Liver 4DCT (gen- Plastimatch (B- Notapplicable 9 liver cancer patients CTV V95 differences up 11.34+12.57% for single fields without rescanning, large (Ribeiro
dose erated from splines, demons, with generated motionCTV V95 differences up to 3.46+1.40% for three-field plans with rescan- etal2018)
calculation 4D MRI) in-house DIR, 4DCTs, applying ning, large motionCTV V95 differences up to 0.374-0.38% for three-field plans with
Mirada, Raysta- motion from rescanning, small motion
tion (Anaconda, 4DMRI, IMPT
Morfeus)
Photon dose Lung CTto CBCT Admire (Eleta) Notapplicable 20 lung SBRT patients, 95-percenteile of DDM (in mm) and dosimetric errors (in Gy) (Huesa-
calculation comparison if inter- Berral etal
inter and and intrafractional 2022)
intra-fraction differences
Structure DDM Intrafrac- DDM Inter- DDM Inter-
tionin mm fraction fraction
inmm dosimetric
in Gy
GTV 0.93 1.54 1.67
Lung 1.86 2.16 0.86
Ribs 1.66 5.13 1.05
Heart 6.26 2.34 0.57
Esophagus 1.38 2.55 0.29
Spinal cord 0.16 8.00 1.28
The dosimetric impact of Interfraction changes is larger than intrafraction motion
Photondose ~ Abdomen CTtoCT Thin Plate Spline Not applicable 16 liver SBRT patients, After selection of ‘realistic’ deformations, average difference between the 1stand (Wangetal
calculation —Robust Point DIR uncertainty mod- 99th percentile of the cumulative maximum doses:1.4 Gy for esophagus0.7 Gy for 2018)
Matching eled by systematic stomach0.9 Gy for duodenum (maximum difference for one patient: 3.3 Gy)
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Table 3. (Continued.)

Image DIR algorithm Assessment
Application Indication modality and/or vendor method Study type Dosimetric uncertainty Reference
algortuhm with variation of registra-
variable settings tion parameters
Tomotherapy Head CT to mega- PreciseART Notapplicable 20 Head and neck Doses from daily MVCTs reconstructed and accumulated on the planning CT and (Garcia-
and neck voltage CT (Accuray) patients with daily compared to planned dose with warped contours on the daily MVCTs.Average dose Alvarez
MVCTs uncertainty bounds (and confidence interval) for the cumulative treatment were: etal2022)
Parotids mean dose: 3.5% (97.1%-107.0%)Parotids D50%: 6.6% (98.2%—110.4%)
Parotids V20Gy: 4.6% (95.6%—111.1%)PTV D95%: 0.4% (98.2%—100.2%)
Photon adap- Head CT to CBCT 4 different Nif- Not applicable 5Head and neck can- The four DIR methods resulted in similar geometrical matching, but smoothness (Veigaetal
tive planning and neck tyReg cer patients with and inverse consistency differed. The root mean squared dose difference of the dif- 2015)
approaches weekly CBCT's ferent warped doses was 1.9%7-0.8%.9%=+4% of voxels within the treated volume
failed a 2% dose difference test, this value was larger in high dose gradient regions
(21%=£6%) and for poor CBCT quality regions (28%=+9%).
Photon Head CT to CBCT Bspline DIR, Not applicable 12 Head and neck In-silico reference created with a B-spline algorithm. Inverse consisteny was asses- (Lowther
VMAT and neck Varian’s patients with 4 CBCT's sed by forward and backward deformation. Dose was reconstructed by the demons 2020a,
demons DIR algorithm and compared to the in-silico ground truth.98.5% of all voxels were 2020b)
inverse consistent with the following confidence interval for the dose reconstruction
of a single fraction relative to planned dose: Target structures: [2.3%; 42.1%]Critical
OARs: [10.2%; +15.2%]Non-critical OARs: [9.5%; +12.5%]Inverse inconsistent
voxels were associated with higher uncertainties.
Photon dose Prostate CTtoCT Demons Notapplicable 1 prostate patient with Quantification of errors with unbalanced energy (UE) and compared to standard (Zhong
calculation algorithm 9CTs displacement error (SDE). High Pearson correlation above 70% between UE and etal 2008)
SDE.Mean dose reconstruction error in target over nine fractions 1.68%.
Photon dose Prostate CTto CBCT Demons Notapplicable 24 prostate patients Quantification of differences between planned and cumulated doses using DIR- (Nassef
calculation algorithm with 8 weeklc CBCT's based dose accumulation and quantifying the dose accumulation uncertainties with etal2016)
inter-fraction for 21 patients and anumerical pelvis phantom.Standard deviation of the dose difference between
daily CBCTs for 3 planned and accumulated doseMean bladder dose: 6.9 GyMean rectum wall dose:
patients 2.0 GyDose accumulation uncertainty:Mean bladder dose: 2.7 GyMean rectum wall
dose: 1.2 Gy
Proton adap- Lung CTtoCT Plastimatch (B- Not applicable 5NSCLC patients with PTV-V95 decrease without adaptation by 14% (range: 1.5% — 40.5%)DIR-caused (Nenoff
tive planning splines, 9 repeated DIBH CT's variations in PTV-V95 of accumulated doses on average 8.7% (range 1.0% etal
demons), —26.3%) 2021b)
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Table 3. (Continued.)

Image DIR algorithm Assessment
Application Indication modality and/or vendor method Study type Dosimetric uncertainty Reference
Velocity, Mirada,
Raystation (Ana-
conda, Morfeus)
Proton adap- Head CTtoCT Plastimatch (B- Notapplicable 1 Head and neck After individually warping the dose with the different DIR algorithms, the volume (Amstutz
tive planning and neck splines, patient with 8 repe- for which the dose uncertainty in the accumulated dose was larger than 10% was etal2021a)
demons), ated CTs (Vdosedifr>109%):Contralateral parotid: 28.1%]psilateral parotid: 13.9%Contralateral
Velocity, Retina: 9.4%Contralateral Macula: 8.9%
Proton, Pho- Lung CTtoCT Plastimatch (B- Not applicable 5NSCLC patients with  Difference between the deposited fractional energy and the energy in the representa- (Wuetal
tonand splines, 3 repeated DIBH CTs tion of the warped dose on the planning CT:Energy conservation violation in the 2023)
Combined demons), Velo- accumulated energy averaged over treatment modalities and DIR algorithms com-
proton-pho- city, Mirada, pared to fractional deposited energy:GTV: 40.9%PTV: 32.1%OARs: randomly dis-
ton adaptive Raystation (Ana- tributed within +10%Energy conservation violation in traditional intensity-based
planning conda, Morfeus) DIR is linearly correlated to mass/volume variations.
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Phys. Med. Biol. 68 (2023) 24TR01 LNenoffetal

astatistically significant impact on OAR dose-volume-histograms (DVH) parameters and concluded that DIR
propagated structures are suitable for dose evaluation (Nash et al 2022). Similar conclusions were found by Hvid
etal (2016).

Also for proton therapy the dosimetric impact of using propagated structures for proton dose evaluation and
optimization has been investigated: Qiao et al and Elmahdy et al investigated prostate structures propagated
from CT to CT with the open source DIRs in Elastix (Elmahdy et al 2019, Qiao et al 2019). They gave an extensive
geometrical evaluation (included in table 2) and dosimetric evaluation (included in table 3) that showed that DIR
propagated structures can be used for optimization in online-adaptive intensity-modulated proton therapy
(IMPT). Similar conclusions were found for lung cancer patients by Nenoff et al, showing that daily IMPT
optimization on CT based on propagated, uncorrected structures was better than no adaptation (Nenoff et al
2021b). Daily manual recontouring on each CT gives a small additional benefit for some patients and OARs.
They also investigated if including the inter-algorithm variation between structures propagated with DIR in the
adaptive IMPT optimization could improve the adapted plan against structure uncertainties (Nenoff er al 2022).
They found that adaptation on propagated, uncorrected structures showed a benefit over no adaptation for
MRI-to-MRI registrations for pancreas and liver patients and CT-to-CT registrations for HN patients. Only for
the HN patients including structure propagation uncertainties in the optimization significantly improved the
adapted plan. Recently, Smolders et al compared the effect of different auto-segmentation methods, among
those DIR based structure propagation, for the dosimetric quality of online adaptive proton therapy plans. They
found the dosimetric influence of using automatic contours for the optimization to be small for OARs and larger
for targets, with DIR propagated structures performing best for both OARs and targets (Smolders et al 2023a).

5.3. Mapped/Accumulated doses

In this section we outline the influence of DIR uncertainty on dose mapping and accumulation. For more details
about dose mapping and accumulation, including direct dose mapping versus energy,/mass mapping, biological
considerations and (dis)appearing tissue please refer to the recent review of (Murr et al 2023).

5.3.1. Intrafraction applications

A commonly proposed use of dose accumulation is for 4D treatment planning or the dose reconstruction of the
dose in a moving area. Both, 4D optimisation (Graeff e al 2013, Engwall et al 2018, Spautz et al 2023) and 4D
dose evaluation (Zhang et al 2019, Meijers et al 2020) require DIR and therefore show DIR-related uncertainties.
Both are mostly applied in anatomical areas affected by breathing motion, registering all phases of a4D CT or 4D
MRI scan into a reference phase or average image (Rosu and Hugo 2012, Engwall et al 2018, Meijers et al 2020).
Most 4D dose optimisation and dose calculation studies do not investigate DIR-facilitated dosimetric
uncertainties (table 3). Those who do, report different metrics between different studies, to quantify these
uncertainties. For example, (Ribeiro et al 2018) found differences in the target V95% of up to 11.34% for 4D
dose accumulation of liver cancer proton therapy. In contrast, (Sarudis et al 2019) found only dose deviations of
<3.0% between different visually acceptable DIRs in 4D lung volumetric modulated arc therapy (VMAT) dose
accumulations. Mogadas et al tested five open-source registration algorithms on lung and liver SBRT, using the
delta D95% of the target using 4D dose reconstruction compared to the static plan. For lung metastases,
accumulated dose distributions were similar regardless of the DIR algorithm. In contrast, for liver metastases,
accumulated dose distributions strongly varied, due to large DIR uncertainties in low contrast regions (Mogadas
etal2018).

5.3.2. Interfraction applications

Another DIR-facilitated application has been to map doses re-calculated (or re-optimized) on 3D images from
different fractions on the planning CT, to get an estimation of the total delivered treatment dose (Chetty and
Rosu-Bubulac 2019, Ziegler et al 2019, Nenoff et al 2020). This technique has been extended to evaluate the
validity of treatment plans with reduced margins (Wu et al 2009, van Kranen et al 2016, Lowther et al 2020b, van
der Bijl eral 2022). The reporting of the uncertainties is very application-dependent and not standardised, which
makes direct comparisons challenging (table 3). Examples of the magnitude of dose mapping uncertainties for
interfractional changes include (Nenoff et al 2020), reporting differences caused by DIR uncertainties of 8.7% in
the CTV of accumulated proton doses and (Wang et al 2018) reporting a maximum dose variation of 3.3 Gy for
hollow organs in the abdomen for interfraction dose mapping. More recently, (Huesa-Berral et al 2022) reported
a dosimetric uncertainty between fractions below 2 Gy in tumour and OAR in lung SBRT. This study also
concluded that inter-fraction variations dominated and that dose accumulation for these patients should
prioritise day-to-day changes over respiratory motion.
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There have been several propositions to also predict uncertainties on the geometrical and the dosimetric
level. The inter-algorithm variability was proposed to be used for geometric as well as dosimetric DIR
uncertainties (Nenoff et al 2020, Amstutz et al 2021b). Probabilistic unsupervised DL methods have also been
proposed to predict the variance of DVFs in interfraction datasets (Gong et al 2022, Smolders et al 2022b, 2022a).

5.3.3. Intertreatment applications
Dose mapping and accumulation have been used in work on treatment method combinations and patient re-
irradiation. Application of the technology presents the possibility of greater outcome modelling in combined
methodologies, and long term outcomes in re-irradiation. Research regarding the combination of external beam
RT and brachytherapy was done for cervical cancer patients (Vasquez Osorio etal 2015, Swamidas et al 2020, Zeng
etal 2020). Van Heerden did not find clinically relevant improvements when using DIR for dose accumulation
compared to adding uniform external beam RT doses or overlapping high dose volumes (van Heerden et al 2017).
In recent years, improved survival has led to an increase in the numbers of re-irradiations (Nieder et al 2013,
Andratschke et al 2022) with particular focus made on cancers of the brain (glioma), lung, HN, abdomen, pelvis and
spine (Abusaris et al 2012, Mantel et al 2013, De Ruysscher et al 2014, Nieder et al 2016). Dose from previous treatments
can be deformed to the current anatomy to evaluate potential dose overlap (Meijneke et al 2013, Nix et al 2022).
Thereby, being used to define safe dose tolerances in those previously treated regions (Embring et al 2021, Andratschke
etal 2022, Brooks et al 2022, Nix et al 2022). In addition, DIR-facilitated dose warping can be used to correlate places of
local failure with previously planned and/or delivered dose distributions (Boman et al 2017, McVicar et al 2018,
Skjetskift et al 2018, Embring et al 2021, Nix et al 2022). Registration algorithms are challenged by dramatic anatomical
changes caused by the time between treatments, often months or years, not to mention sequels of treatments such as
fibrosis resulting from radiation or surgery (Nix et al 2022, Vasquez Osorio et al 2023b). Systematic studies about the
DIR uncertainties in the re-irradiation setting are rare, but some reports indicate that DIR uncertainty increases with
the magnitude of anatomical changes, in particular for lung radiographic changes after SBRT (Mahon et al 2020). DIR
uncertainty is only one of multiple uncertainty factors which makes the definition of organ constraints for re-
irradiation challenging. The lack of standardised toxicity scoring or cumulative DVHs over multiple treatments,
partially influenced by DIR uncertainty remain reasons why the recovery of organs over time is not well quantified. The
calculation of biologically effective dose can improve the understanding of normal tissue responses over time (Brooks
etal 2022, Nix et al 2022) and allow a better estimation of safe dose constraints during re-irradiation.

5.4. Other DIR-facilitated applications
DIR uncertainties can affect other medical physics and imaging applications.

5.4.1. TCP and NTCP calculation

Currently, tumour control probability (TCP) and normal tissue complication probability NTCP) models are
built on planned doses. They are however designated to correlate to delivered doses which can differ from the
planned dose. Dose accumulation of reconstructed doses on repeated images, requiring DIR in most anatomical
areas, is the closest surrogate to the delivered dose that is available. The impact of DIR uncertainty on the
accumulated doses directly affects the outcome calculation (Nenoff er al 202 1a, Smolders et al 2023b).
Deformation-free methods (Niemierko 1997, Niebuhr et al 2021) have their own (not well quantified)
uncertainties. Niebuhr et al found larger differences when assuming a registration error of 3 mm, compared to
changing alpha-beta values for prostate RT. (Niebuhr et al 2021) There is more research needed to fully
understand and quantify the impact of DIR uncertainty for outcome calculation.

5.4.2. Outcome modelling based on spatial/voxel-based analyses
Conventional outcome modelling simplifies the planned dose distribution to a single value, often using DVH
statistics. Voxel-based analysis techniques that maintain the spatial distribution of doses have been used to
explore local correlations between dose and treatment outcomes. Voxel-based analysis (figure 6) relies on DIR to
‘spatially normalise’ dose distributions into a common reference anatomy (Palma et al 2020, Shortall et al 2021).
In summary, DIR is first performed between the planning CTs of each patient and an arbitrarily selected
reference CT scan. The DIR result is then used to map the dose distributions to the reference anatomy allowing
thelocal dose to be correlated with the studied outcome. The region is evaluated with statistical modelling, often
quantifying the improvement in model discrimination when the dose to the identified region is included in a
multivariable predictive model (including other demographic and clinical variables). The region is then used to
generate hypotheses which are then tested and validated in external cohorts aiming at generating dose
constraints to ultimately improve treatment outcomes.

With voxel-based techniques, doses to anatomical subregions have been linked to outcomes, such as the
dose to the base of the heart to overall survival in lung RT (McWilliam et al 2017, Green et al 2020), the
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Figure 6. Voxel-based analysis applied to exploring local relationship between dose and a given outcome. This technique relies on
deformable image registration to map the dose distributions of the studied patients to a selected reference anatomy.

inferior—anterior hemi-anorectum dose to rectal bleeding in prostate RT (Dréan et al 2016) and the

cricopharyngeus muscle, cervical oesophagus and the base of the brainstem dose to dysphagia in HN RT

(Montietal2017).
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Figure 7. Examples of dose accumulation uncertainty, calculated as the voxel-wise difference between the maximum and minimum
dose accumulated with one of six deformable image registration algorithms. Figure from (Nenoff et al 2020) with permission.

Table 4. Voxel-wise dosimetric uncertainty as a function of the
dose gradient and the uncertainty of the DIR. DIR: deformable

image registration.
Dose gradient
Low Medium High
DIR uncertainty 1 %/mm 10 %/mm 25 %/mm
Low 1 mm 1% 10% 25%
Medium 5 mm 5% 50% 125%
High 10 mm 10% 100% 250%

Several measures to evaluate DIR uncertainty for voxel-based analysis have been proposed (Palma et al 2020,
Shortall er al 2021, McWilliam et al 2023). Quantified DIR uncertainties are often incorporated in the analysis by
treating them as random errors and blurring the mapped dose distributions (McWilliam et al 2017, Beasley et al
2018, Green et al 2020, Vasquez Osorio et al 2023a). Therefore, DIR uncertainties can result in a decrease of
significance for small radiosensitive regions and local changes in their shapes.

6. Uncertainty tolerances of DIR-facilitated dosimetric procedures

Specifying tolerances for the uncertainty in DIR-facilitated procedures is a challenging task and these should be
based on clinical needs rather than achievable results. The demands on the accuracy of DIR vary by application.
In aretrospective analysis, larger tolerances might be sufficient, while for interventional applications tighter
tolerances might be indicated. For example, visualising a voxel-wise dose uncertainty map might be sufficient for
acrude estimation of the dose in a re-irradiation case while precise DVH metrics along with their uncertainty
estimation are necessary for correlating the dose to organs with outcome and toxicity data in clinical trials. In
contrast to tolerances for geometric uncertainties, there is a scarcity of literature describing these for dose
mapping or accumulation. There is no generally accepted approach on how to analyse and report DIR-related
dosimetric uncertainties. Publications evaluating DIR-facilitated dosimetric differences are summarised in
chapter 5 and table 3. A common finding in dose accumulation studies is that areas with steep dose gradients are
more sensitive to DIR-facilitated uncertainties (Saleh-Sayah et al 2011, Swamidas et al 2020, Amstutz et al
2021b). Therefore, in areas with steep dose gradients DIR uncertainties are more relevant than in homogeneous
dose areas or areas with low doses. Table 4 shows clinically relevant examples of dose gradients as well as
geometric DIR uncertainties. Multiplying the dose gradient with the geometric DIR uncertainty gives an
assessment of the dosimetric uncertainties expected in these situations. Low dose gradients are typically found in
the central region of the target. Medium dose gradients are found in OARs in the beam path and high dose
gradients are found close to the target boundary. As both the dose gradient and DIR uncertainty typically vary
within an organ, voxel-wise dose uncertainty maps can visualise dose distribution uncertainties (figure 7).
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Figure 8. An example approach on how to assess dosimetric uncertainties of accumulated dose caused by DIR-uncertainties. The
shading indicates the level of knowledge/confidence of the individual steps.

Since there is no standard agreed upon in the literature on how to quantify dosimetric DIR uncertainties or
tolerances, we propose a short ‘recipe’ (figure 8). The first step is the selection of the DIR algorithm. Second, the
algorithm must be commissioned for the specified application (recommendations in chapter 7 and
commissioning document in the supplement). Third, the DIR uncertainty is evaluated using geometric
measures. We consider geometric measures in dimension of distance (e.g. target registration error (TRE), MHD)
necessary to define tolerances. The quantification of geometric measures needs to be done for different
structures and points of interest such as targets, OARs, anatomical landmarks close to the target or in the
beam path.

Steps 1-3 are described in multiple recommendations (Brock et al 2017, Barber et al 2020, Lowther et al
2022). In step 4 a voxel-wise geometric uncertainty map of geometrical measures is created (Amstutz et al
2021b). The simplest method is using the worst-case or average difference distance in all directions for all voxels
of a given region or structure. More individualised methods have been investigated (Amstutz et al 2021b,
Smolders et al 2022b, 2023¢) and provide patient specific voxel-wise uncertainties maps. We recommend using
such voxel-wise uncertainty maps whenever possible. However, due to the lack of commercial implementations,
simpler global geometrical metrics are easy-to-implement alternatives. Using these metrics may lead to locally
over- or underestimated geometric uncertainties, but its use is an improvement over no geometric uncertainty
estimation, and will help pave the way to include such concepts in clinics.

In step 5 the geometric uncertainty map is applied to the dose by calculating the scalar product of the dose
gradient and the geometric uncertainty of the DIR transformation on a voxel-wise level. This uncertainty map
can be used to calculate DIR-facilitated variations of DVH parameters or DVH bands. To define geometric
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tolerances of DVFs, steps 6 to 3 can be propagated backwards: starting with a maximum allowed DVH variation
or uncertainty in a given voxel resulting in a maximum allowed DVF uncertainty. Since multiple relevant
methods are not yet widely available or still require future research the definition of tolerances is not trivial.

Another method to calculate the required accuracy of a registration to achieve a given tolerance is the
distance-to-dose difference (DTD), proposed by Saleh-Sayah et al The DTD indicates how large local
registration errors can be before they introduce mapping errors breaching the given tolerance. For example
accurate DVFs (1 mm) are required in high dose gradient regions while large DVF errors (>20 mm) are
acceptable in low dose gradient regions. Another approach is to divide the acceptable dosimetric tolerance by the
dose gradient (TDG). Compared to the TDG, the DTD gives a more conservative assessment (Saleh-Sayah et al
2011, Saleh et al 2014).

7.Recommendations

Several publications have offered recommendations for methods and action thresholds for assessing registration
quality. We endorse these efforts. This section summarises these recommendations and extends
recommendations for the community.

7.1. Recommendations for patient-specific use

TG-132 recommends visual inspection for patient-specific use, using split-screen, fusion, contour overlay, or
other tools (Brock et al 2017). Visualisation should focus on alignment of anatomic landmarks, organ or tissue
boundaries, vessels, and other distinct features. When software allows, the displacement field should be
inspected to identify implausible deformations. Qualitative assessment can optionally be verified using
quantitative metrics such as those summarised in table 2. TG-132 also recommends a threshold of 2-3 mm
accuracy in TRE and MDA, although this is not achievable in practice (Rong et al 2021). Vector field smoothness
should be tested for locations with negative Jacobian determinant. We suggest this threshold might lie between
0.2 and 2.0. MIRSIG recommends additional tests on the displacement field using DVF histograms, transitivity
errors, and harmonic energy, but no thresholds are provided. TG-132 recommends a 2-3 mm threshold for
inverse consistency, and a 0.8—0.9 threshold for DSC, with the caveat that DSC varies widely by structure
volume.

Applications using dose deformation or dose accumulation should focus on the important regions of
interest. Usually these are the volumes with meaningful dose levels, relevant structures and high dose gradients.
The recipe proposed in chapter 6 can provide guidance how to calculate dosimetric uncertainties on a voxel-wise
level.

7.2.Recommendations for commissioning

System commissioning requires testing software interchange, and TG-132 recommends using a physical
phantom for this purpose. It also recommends testing on digital phantoms to recover known, artificial
deformations. Best practices prospectively evaluate registration software on treatment sites of interest, but there
are few guidelines on this. Glide-Hurst et al recommend centralised review of each fraction for at least the first
three cases in adaptive therapy clinical trials (Glide-Hurst et al 2021). We recommend five representative patient
cases to assess with quantitative metrics. These metrics should be compared to typical values from the literature
(tables 2 and 3, commissioning document in the supplement) and with inter-observer variability.

7.3.Recommendations for developers, vendors, and the community
TG-132 recommends that vendors provide a basic description of the registration algorithm, vector field export,
and basic quantitative tools (DSC, MDA, TRE). Unfortunately software providers still fail to apply these
quantitative assessment tools (Rong et al 2021). More recently, Murr et al evaluated contour distance metrics and
DVF analysis tools, such as DVF visualisation, transitivity analysis, and Jacobian determinant (Murr et al 2023).
They recommend vendors to implement dose uncertainty tools, a region of interest (ROI) tool to limit
registration domain, multiple algorithms for sensitivity analysis, and a greater selection of state-of-the-art
algorithms.

In additional to these recommendations, we add:

+ Tools for generating artificial warps

+ ROItools for quantitative metrics within a contour or dose level

+ DIR correction tools, such as a smudge tool to locally push the registration, vector field smoothing tool,
landmark-based correction, and contour-based correction
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+ Open access resources of reference images, structures, landmarks, and vector fields
+ Tools torestrict DIR to be locally rigid or locally mass-preserving
+ Tools to import and export DVFs in a consistent dicom format

+ Voxel-wise uncertainty quantification and visualisation

7.4.Recommendations for future research
Finally, we propose areas where research is still needed.

TCP and NTCP metrics. It is unclear how DIR-generated dose distributions are related to clinical outcomes,
considering uncertainties. Uncertainties in DIR-generated doses should be quantified with the metrics described
in table 1 and utilised with the aim of generating more accurate TCP and NTCP models.

DIR failure modes. While it is possible to obtain typical uncertainty estimates during commissioning, many
DIR algorithms have unexpected failure modes which are hard to enumerate. It is desirable to better understand
the causes of these failures so that automated tests can be performed.

Uncertainty estimation methodology. There are multiple methods in use for estimating the uncertainty of
DIR, and they are difficult to compare as they measure different aspects. Efforts should be made to find
consensus on which methods should be preferred for each application.

Avoiding DIR. For online ART, improvements in imaging and dose calculation could eliminate the need to
deform images with DIR for daily dose calculation and plan optimisation, and thereby eliminate it as a source of
overall uncertainty. To evaluate the total accumulated treatment dose, DIR will remain necessary.

8. Summary

DIR is a powerful and versatile tool for RT. It has many applications, but is also associated with considerable
uncertainties. Many clinical DIR solutions have been implemented, but they generally lack tools for uncertainty
quantification. In the community, there are no agreed thresholds to distinguish between a good or bad DIR
result when using a combination of geometric and dosimetric measures. Multiple quantification metrics, mostly
using geometrical measures, and tolerances have been proposed. The reporting of dosimetric measures and
uncertainties caused by DIR uncertainty is less standardised and highly application dependent. It is important to
reach an agreement and standardisation in the evaluation of DIR uncertainties for different RT applications. In
this review we summarised DIR-facilitated uncertainties for different applications and gave recommendations
on the quantification of DIR uncertainties. We then outlined a potential path towards definition of tolerances. It
should be emphasised that the presented recommendations are only a starting point, they should be challenged
and refined by the community.
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