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Commentary article to: ‘Challenges in developing and valid
ating machine learning models for transcatheter aortic valve 
implantation mortality risk prediction’, by S. Kazemian 
et al., https://doi.org/10.1093/ehjdh/ztad059.

We welcome a discussion of our article1 and thank Kazemian et al.2 for 
their constructive comments on how to expand the analyses and in par
ticular the reporting. At the same time, we are relieved that no points 
were brought forward that would potentially draw our investigations 
into question. Therefore, we stand by our conclusions and recommend 
the transcatheter aortic valve implantation (TAVI) risk machine (TRIM) 
scores for application. In the following, we address all comments by 
Kazemian et al. in order.

Model selection
We agree that giving details also on the process on how researchers 
arrive at their final results is good practise and enhances transparency. 
Giving more details on the alternative machine learning (ML) models 
might be of interest in particular for the ML expert reader.

Listing the performance measures of the alternative ML models 
would, however, undoubtedly lead to the next questions on how exact
ly these other ML models were trained. The description of the exact 
training of all models would again take considerable space—especially 
for deep learning type models—and is out of scope for this article 
which has its focus on the application and is already quite demanding 
on the reader regarding methodology. We did not mean to compare 
various methods but rather to provide appropriate risk models.

In our view, more methodology focused types of publications, like 
systematic reviews3 or neutral comparison studies,4 are the place for 
more in-depth discussions and comparisons of ML models, and we 
urge the community for more research in these directions.

It is not surprising that different ML models show different perform
ance, as there is no ML model that performs best on all applications. 
This is well-known in the field and has been acknowledged in the review 
paper5 cited by Kazemian et al. 

As others have noted that there is no best approach for all data 
problems. The various techniques differ in their approaches as 
they aim to solve different data complexities. Therefore, the 
‘best’ algorithm will depend on the specific data problem at hand.
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Importantly, the inclusion of more performance measures for alterna
tive ML models would not enhance the reader’s ability to ‘assess the ro
bustness and generalizability of the selected model’ much. Instead, 
robustness and generalizability have to be assessed separately for 
each model via careful validation. This is exactly what we did for the se
lected random forest model.

Class imbalance
Kazemian et al. address the point in our article that the proposed ML 
score overestimates the probability of events and is, thus, not interpret
able as patient risk, i.e. not well calibrated. In the article, we describe the 
up-weighting of the minority class as one contributing factor and pre
sent a model trained without such up-weighting, which is better cali
brated but shows numerically lower performance. Kazemian et al. 
now suggest to use alternative methods such as oversampling or cost- 
sensitive ML models to deal with class imbalance.

While cost-sensitive modelling might improve calibration without nega
tive impact on performance, Kazemian et al. fail to consider that the up- 
weighting in random forest models is basically a form of random oversam
pling, as the weight simply corresponds to the probability of patients to be 
sampled within the bagging of the random forest. While there are more 
sophisticated oversampling techniques such as SMOTE and we do not 
know the impact on the classification of these data (no free lunch), there 
are papers that show that such more sophisticated methods often lead to 
inferior performance compared with simpler methods: 

One of the most important conclusions that can be drawn from 
these experiments is the inferior performance of the ‘intelligent’ 
sampling techniques, SM [SMOTE], BSM, WE, OSS, and CBOS.6

Kazemian et al. further state that ‘exploring alternative methods (such 
as oversampling) to address the class imbalance and discussing the 
trade-offs between calibration and classification performance would 
help readers understand the rationale behind them’.

As Kazemian et al. are aware, our paper already includes a discussion 
on the trade-off, see ‘The selection of patients with events with in
creased probability during training, which we implemented to address 
the class imbalance, leads to an overestimation of the prevalence of 
events. When we omitted the up-weighting of the minority and coun
teracted the expected time-effect by disregarding the first 100 TAVI in
terventions per hospital, a more favourable calibration was achieved’.

Any further or more in-depth discussion on dependencies between 
calibration and classification performance would be a technical discus
sion involving how and why random forests might be affected by class 
imbalance and to which extent the area under the curve (AUC) as a 
measure of performance might be affected by class imbalance. Such dis
cussion as well as the exploration of other methods to handle class im
balance is again not in the focus of the paper but would be much better 
suited for a more methodology-focused article.

Variable selection and feature 
importance
Kazemian et al. claim that the performance test results are not re
ported. Here, they fail to see that Supplementary material online, 
Figure S6 shows the performance results. Kazemian et al. also suggest 
that cutting at the top 15 variables would lead to a simpler model ‘main
taining similar performance using fewer predictors’. We see, however, 
that between using 20 and 25 variables, the performance (measured as 
AUC) increases from 0.716 to 0.74. As we write in our paper, ‘RF per
formance continued to improve with more features and reached its 
maximum with the entire 155 feature-set’. We can conclude that single 
feature importance might seem small, but they can still show cumulative 

effects on performance. Importantly, we present feature rich models 
(in addition to our presentation of models with only few variables) to 
address the possibility of automated data transfer from hospital infor
mation systems, not manual entry.

Furthermore, Kazemian et al. advocate for simpler models using few
er variables for enhanced applicability and to reduce the risk of overfit
ting, so that they ‘potentially become more robust when applied to 
unseen data’. This is true in principle, and we fully agree that simpler 
models are preferable for these reasons as well as for other reasons 
like easier interpretability. However, Kazemian et al. fail to see that if 
the larger models were less robust in this application, they would 
show lower performance on the external test data from SwissTAVI, 
but the opposite is the case. So, the non-abridged versions of the scores 
show higher robustness. We also dispute the claim that the larger 
amount of variables reduces applicability. While again this is true in prin
ciple, we show that the scores remain applicable even with large 
amounts of data missing. Again, the fraction of missing variables was lar
gest for the full score, and yet its performance stayed superior.

Kazemian et al. also state that variables with P-values of 1.0 are in
cluded in all models. We are not surprised that some variables do 
not show any association when tested univariably between the two 
groups of patients yet get high importance values from the random for
est models (and thus are selected also for the abridged versions of the 
scores). The ability of the models to unravel heterogeneous effects and 
non-linearities is one of the reasons why ML models are applied as is 
nicely summarized in5: 

This algorithm [classification and regression tree] is typically able 
to handle all three challenges of non-linearities, heterogeneous ef
fects, and many predictors.

An excellent example for the observation that P might not be relevant to 
assess feature importance is ‘peak to peak’ pressure, which shows a 
U-shaped curve describing its influence on the prediction in our model, 
which is something that is not easily seen in a univariable test.

Lastly, Kazemian et al. note a ‘striking’ lack of known predictors, such 
as baseline electrocardiogram and incidence of pacemaker implementa
tion. Notably, the literature is not in uniform support of pacemaker de
pendency or conduction abnormalities as independent predictors of 
outcomes (reviewed in Sammour et al.7). Moreover, conduction abnor
malities like left bundle branch block frequently resolve within days 
after TAVI and are certainly not ideal for a decision support model be
fore and directly after TAVI. The models were trained on registry data, 
and all data available at the decision time points were used to train the 
models.

Our models predict outcomes either before (TRIMpre) or directly 
after (TRIMpost) the procedure to reflect time of decision-making in 
clinical practice. (It is useless to provide decision support regarding early 
discharge based on data derived at late discharge.) New pacemaker de
pendency after TAVI is certainly not known pre-operatively and in 
many cases also not immediately after the intervention. (Note that if pa
tients had a pacemaker before TAVI, this was part of the training.) Thus, 
we deliberately did not include this variable in the set of potential pre
dictors, just as the post-interventional complications.

Importance of likelihood ratios 
in clinical practice
Kazemian et al. argue that the AUC primarily represents the concord
ance of the predicted risks with the observed outcome and is, thus, less 
useful than likelihood ratios.

We agree that likelihood ratios are an excellent addition to reporting 
sensitivities and specificities, as they are easy to interpret and largely in
dependent of the prevalence, so that they generalize more easily to new 
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data. In addition, likelihood ratios can also be used to compare the per
formance of different diagnostic tests (or different ML models).8,9

However, likelihood ratios in their basic form are based on binary 
classifiers. If an ML model predicts risk scores, one has to choose a cut- 
off for, say, high-risk vs. low-risk in order to calculate sensitivity, speci
ficity, and the likelihood ratios.

While in the end, a decision must be taken (e.g. discharge early or 
not) and this decision should be taken by the physician and not by 
the model and the model should merely serve as decision support.10

For such decision support, the confidence of the model is important, 
as a predicted risk merely above a threshold is a vastly different result 
than a predicted risk of 1. The model should, therefore, return the risk 
or risk score to be interpreted by the physician. Thus, we argue that 
performance measures that necessitate a binary decision of the model 
are not measuring the full picture.

The AUC as a measure of discrimination performance does not 
require the specification of cut-offs as it summarizes over all possible 
cut-offs. For likelihood ratios, there exists the concept of multi-level 
likelihood ratios that allow for more than a single cut-point. But then, 
multi-level likelihood ratios become unwieldy as they do not provide 
a single measure anymore, and comparisons between several classifiers 
based on multi-level likelihood ratios are not straight forward and typ
ically assume matching levels between the compared models.8,9

Furthermore, Kazemian et al. state: ‘One of the many obstacles slow
ing down the adoption of ML applications in medicine is poor perform
ance on unseen data.’ We fully agree with this statement. In our view, 
the lack of validation on unseen and at best external data is the main 
contributing factor here. In our article, we, thus, reported the perform
ance on external test data providing an unbiased assessment of the pro
posed risk scores—despite many missing values.

Variable collinearity
Kazemian et al. express concerns about including correlated variables as 
that can bias feature importance metrics and reduce model stability.

It is true that the variable importance measures can be biased by 
correlated variables depending on the degree of correlation, the 
size of the groups of correlated variables, and then the number of 
previously selected splitting variables (the mtry parameter) used in 

the training (see Gregorutti et al.11 and Strobl et al.12 for discussions 
on permutation importance). As we have not specifically dealt with 
correlated variables (removing any correlated variables from the 
models, using principle component analysis on clusters, or similar) 
and are also not reporting conditional importances suggested in,12

the variable importance estimates for correlated variables might, in
deed, be inflated.

The predictive performance of the random forest, however, should 
not be affected by the inclusion of correlated variables.
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