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A B S T R A C T   

Background and purpose: Many 4D particle therapy research concepts have been recently translated into clinics, 
however, remaining substantial differences depend on the indication and institute-related aspects. This work 
aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future 
research and developments. 
Material and methods: This review focused on the clinical implementation of 4D approaches for imaging, treat
ment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy 
as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. 
Results: Available technological capabilities for motion surveillance and compensation determined the course of 
each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were 
diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as 
accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X- 
ray based image processing and MRI for real-time tumour tracking and motion management were shown to have 
a large potential for online and offline adaptation schemes compensating for potential anatomical changes over 
the treatment course. The latest research developments were dominated by particle imaging, artificial intelli
gence methods and FLASH adding another level of complexity but also opportunities in the context of 4D 
treatments. 
Conclusion: This review showed that the rapid technological advances in radiation oncology together with the 
available intrafractional motion management and adaptive strategies paved the way towards clinical 
implementation.  
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1. Introduction 

Proton and carbon ion therapy offer advantages when compared to 
conventional photon therapy concerning tumour coverage and sparing 
of adjacent organs at risk (OARs). However, due to the steep dose fall-off 
and the interplay effect between the delivery of the scanned beam and 
the target motion, particle treatments are much more sensitive to organ 
and tumour motion and associated range uncertainties than photon 
therapy. Therefore, the management of interfractional changes and 
intrafractional motion remain some of the most challenging aspects of 
particle therapy (PT), especially when pencil beam scanning (PBS) is 
employed. 

Looking back 15 years, leading scientists in the field of PT set 
ambitious aims for four-dimensional (4D) particle therapy with real- 
time respiratory motion management that included major de
velopments (e.g., implementation of spot scanning technology for 
moving targets, clinical use of rescanning, development of beam gating 
and beam tracking and motion-dependent patient selection guidelines) 
[1]. Regardless of the exceptionally fast developments in this field, these 
ambitions have only been partly met today [2–9]. 

Modern, individualised radiotherapeutic concepts consider the ef
fects of motion in different ways, depending on the time scale of motion 
and its impact on the dose delivered to the target and normal tissues. For 
example, swallowing movements occur infrequently on the time scale of 
dose delivery, only moderately affecting the treatment of head and neck 
cancer patients. Conversely, respiratory as well as cardiac motion and 
peristalsis are constantly present and can have a large impact on the 
treatment of, e.g., lung, liver, pancreas and oesophagus cancer [10,11]. 
In lung cancer patients, the amplitude and pattern of tumour motion are 
influenced by diaphragm motion, the tumour location as well as the 
tumour volume and disease stage [12,13]. Day-to-day changes in bowel 
position and shape mainly affect the pelvic area (prostate, gynaeco
logical and rectal cancers). Classification of motion patterns into 
different types (cyclical, continuous drift, erratic and unpredictable) and 
time scales (from inter- to intrafraction) automatically raises the ques
tion of which movements can and should be compensated for in 4D 
radiotherapy. In addition to the motion-induced uncertainties, setup and 
range uncertainties, anatomy and tumour changes must also be 
considered when developing 4D PT treatment concepts [14,15]. 

To account for the impact of motion on the dose distribution, many 
concepts have been developed and implemented over the last few years. 
In conventionally fractionated radiotherapy, the treatment is spread out 
over several weeks allowing for an averaging of the impact of motion on 
the dose distribution. In hypofractionated treatments the averaging 
becomes less effective due to the limited number of fractions. Moreover, 
systematic errors can still occur independent of the fractionation scheme 
but are potentially compensated by robust optimisation or adaptation. 
Robust optimisation and evaluation have been commonly used in PT to 
ensure adequate dose to the tumour region and sparing adjacent organs 
at risk while simultaneously accounting for inter- and intrafractional 
movements [16]. In clinical practice, the three-dimensional (3D) robust 
optimisation is well established for static tumour regions prone to 
interfractional variations. Also, it has been shown that the intrafrac
tional motion might be sufficiently compensated by the internal target 
volume (ITV) concept, overcoming the necessity of 4D robust optimi
sation [17,18]. However, the final decision depends on the individual 
case and the centres’ technical capabilities. 

In the adaptation concepts, changes in the patient’s anatomy over 
time are mainly accounted for by replanning. It has also been shown that 
adaptation better preserves target coverage and organs at risk sparing 
than robust optimisation [19]. From a workflow perspective, offline 
(within days) and online (within minutes during the treatment fraction) 
adaptation approaches can be differentiated. However, the feasibility of 
adaptation depends not only on the time but also on the indication, 
treatment modality and strategy [20–22] as well as online imaging ca
pabilities. Especially in particle therapy shortcomings in automatic re- 

planning and auto-contouring have resulted in a lack of online adap
tive strategies [16–18,23]. 

In terms of PT with ultra-high FLASH dose rates even more attention 
should be paid to the timing of motion and beam delivery potentially 
changing the complexity of intrafractional motion compensation [24]. 
In cases when motion compensation is not feasible during initial or 
adaptive treatment planning, the adequate classification of breathing 
motion and evaluation of the interplay effect becomes crucial in PT 
[25–33]. While organ movements can be predicted theoretically, the 
timing of data extraction, processing, synchronisation and correlation 
modelling needs consideration for a time-efficient treatment planning 
process. Alternatively, the impact of motion can also be reduced by 
optimizing the spot weight, spot delivery patterns and incident beam 
directions for fast, time-efficient and robust dose deposition [34–36]. 

The goal of this review was to summarise the most relevant and 
current research findings as well as dynamic developments related to the 
clinical implementation of 4D PT that are not reflected in traditional 
long-lasting surveys. Its scope focused on the latest technological im
provements, imaging, workflow design, artificial intelligence (AI) and 
FLASH in the context of the transition of 4D PT from research to clinical 
application. 

2. Material and methods 

The structure of this review article followed the scientific contribu
tions of the 4D Treatment Workshops for Particle Therapy held in 2021 and 
2022 (Suppl. A1; Table A1) and previous reports of those workshops 
[2–7]. The content of these meetings, surveys and guidelines 
[8,9,37–43] and relevant articles in the field of 4D PT, mainly published 
within the last 3 years, built the scientific basis for identifying the way 
towards clinical implementation of selected motion management and 4D 
treatment strategies. The literature review was based on a PubMed 
search (status September 2023). 

As a basis we provided an overview of the state-of-the-art techno
logical capabilities for intrafractional motion management. Challenges 
of computed tomography (CT)-based imaging were addressed, high
lighting the possible employment of magnetic resonance imaging (MRI) 
imaging in the future. The aspects of treatment planning, motion miti
gation, dose delivery and reconstruction were summarised in light of the 
currently clinically used techniques. Moreover, as a reflection of the 
growing community’s interest, a dedicated subsection on adaptive ap
proaches was included. 

The current status of motion management and mitigation concepts in 
clinical practice was based on practice pattern surveys and 4D-treat
ment-related guidelines (Table 1), supplemented by the talks given 
during the 4D Treatment Workshops for Particle Therapy in 2021 and 2022 
focusing specifically on the local 4D PT procedures at five particle 
therapy centres (Table 2). 

Current 4D PT research and development topics included aspects of 
particle imaging, AI and FLASH. 

3. Technological capabilities for motion management 

3.1. Imaging 

Imaging is crucial at many steps of the 4D PT workflow. The most 
common and well-established modality for 4D treatment planning is 
respiratory-correlated 4DCT. However, X-ray-based imaging has the 
drawback that tissues with the same X-ray attenuation may have 
different relative proton stopping power ratios (SPR) leading to inac
curacies when converting X-ray attenuation coefficients measured in 
Hounsfield Units (HU) to SPR [44]. The CT or cone beam CT (CBCT) 
artefacts, especially in the presence of high-density objects, further limit 
imaging accuracy. However, the use of dual-energy CT for SPR deter
mination has recently presented an improvement [45–47]. For multi- 
energy CT applications, photon counting technology might be 
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available for isocentric in-room imaging in the future albeit the intrinsic 
limits of CBCT [48]. 

A second limitation of 4DCT is the simplified correlation of an 
external mono-dimensional surrogate with the 4DCT phases, which does 
not necessarily represent the daily breathing patterns and anatomy 
accurately. Moreover, it can cause artefacts in the reconstructed image 
[49–51] while promising improvements in mitigating sorting artefacts, 
predicting time-resolved information and deriving artefact-free CT and 
CBCTs were made [52–57]. For offline evaluations, also image-based 
motion models and dose-variations models showed encouraging re
sults for applications in PT [58–62]. 

X-ray imaging is also standard for daily monitoring and subsequent 
adjustment approaches. Two-dimensional (2D) X-ray imaging, in-room 
CT or CBCT (with fiducial markers and in combination with external 
motion monitoring) can be used to define the tumour position [63–65]. 
To detect and account for drifts of moving tumours and make adjust
ments during irradiation, fluoroscopy-based X-ray imaging and external- 
internal correlation models can be employed [66]. 

Another imaging modality used for image guidance is MRI, which 
allows for the acquisition of 4D and 2D time-resolved sequences [67] 
with improved soft-tissue contrast compared to X-ray-based imaging. 
Many groups integrated MRI acquisitions with motion modelling tech
niques to generate virtual 4DCTs and 3D time-resolved data to further 
investigate intra- and interfraction motion variability [61,68–70]. In 
this regard, the implementation of an in-beam MRI in PT could be a 
possible solution to overcome the lack of accurate 3D X-ray imaging 
during dose delivery [71]. While the integration of an MRI with a PBS 
proton beam [72–77] and real-time treatment adaptation have been 
demonstrated to be feasible [78], the conversion of MR greyscale vol
umes to HU or SPR scales for MRI-only particle beam workflows remains 
challenging [79–81]. 

3.2. Treatment planning, motion mitigation and dose reconstruction 

Motion management strategies in PT can be divided into passive and 
active techniques, depending on the patient’s breathing or whether the 
motion and beam delivery patterns are adjusted to each other or not. 
Passive motion management techniques encompass the ITV or margin- 
based approaches, (3D/4D) robust planning, rescanning and optimisa
tion of the delivery sequences [34,82–87] ideally followed by a robust 
evaluation which serves for clinical decision-making [88–90]. Active 
motion management adjusts the beam delivery to the motion pattern 
potentially combined with the regulation of the patient’s breathing. An 
important aspect is that each active strategy (e.g., tracking, abdominal 
compression, breath-hold or respiratory gating) raises different concerns 
and special considerations [2,11,91,92]. These include factors like 
treatment delivery time, staff requirements, commercial support and 
patient compliance. For most active motion mitigation techniques real- 
time monitoring of the patient’s motion is essential and can be facili
tated by motion surrogate tracking and optical or fluoroscopic imaging. 

Stopping the motion instead of compensating for it can be performed by 
voluntary or controlled breath-hold or using a high-frequency percus
sion ventilation technique with the potential to reduce the healthy lung 
tissue included in the high-dose volume [93–96]. 

The available accelerator technology is a key parameter in assessing 
the site-specific characteristics for 4D delivery and surveillance. 
Commonly used proton cyclotrons show a continuous beam extraction 
time structure and, despite the considerable energy switching times, 
relatively fast delivery. This is not the case for synchrotrons used in 
almost all centres treating with particles heavier than protons. Multiple 
synchrotron spills are needed to deliver the required number of particles 
per energy layer. The essential prolongation of the beam delivery time 
by synchrotrons places considerably different demands on the motion 
mitigation strategies [97]. 

The 4D dose reconstruction is essential to evaluate the interplay ef
fect and resulting dose deterioration [27–33,98]. CT-based analytical 
dose calculation algorithms might pose a challenge due to heterogene
ities causing Bragg peak degradation [99]. Especially in lung tumours 
Monte Carlo dose calculation accuracy is advantageous. While used in 
commercial systems for proton dose calculation, clinical carbon dose 
calculation is mainly performed with pencil beam algorithms. The dy
namic 4D dose calculation based on 4DCT phases, also called dose 
reconstruction, considers the spot distribution according to delivery 
parameters which includes the delivery time structure and the patient’s 
breathing traces. Such an approach ideally uses time-resolved delivery 
patterns from log files and breathing information from fluoroscopy or 
external motion surrogates. However, a simplification by employing a 
fixed time structure might be beneficial for prospective analysis [28]. 
For more complicated treatment regimens or research-oriented retro
spective analysis methods like spot-shift dose reconstruction [100], dose 
reconstruction using 4D MRI [69,101,102] or dose tracking with real- 
time input (e.g., combining optical and sparse monoscopic imaging 
with kV X-rays) [103,104] might be relevant. 

As for any new treatment dosimetric validation is essential and be
comes even more challenging when considering the additional temporal 
uncertainty. Most detectors used in traditional end-to-end tests or 
quality assurance (QA) procedures are one or two-dimensional. Ther
moluminescent dosimeters (TLDs), ionisation chambers or radiochromic 
films showed also to be suitable for validating 4D treatment delivery, 
especially when incorporated with moving phantoms and motion sur
rogates [31,32,97,98,105–110]. Regarding the use of 3D dosimetry 
systems, (commercial) detector arrays for 4D quality assurance, MRI 
gels, liquid scintillators or developments for prompt gamma detection 
can be included [98,111,112]. Overall, 4D dosimetry relies on moving 
3D dosimetry equipment or time-resolved read-out of the detector sig
nals [113,114]. 

3.3. Adaptive strategies 

Consideration of motion in radiation oncology must be performed 

Table.1 
Surveys and guidelines relating to online and offline adaptation addressing inter- and intrafractional anatomical changes; RRMM = real-time respiratory motion 
management.   

Surveys/Guidelines Content Modality Publication year Survey respondents 

Surveys 

POP-ART RT part I [39] Active RRMM photons 2020 200 
POP-ART RT part II [37] Offline and online replanning, plan libraries photons 2020 177 
Online MRIgRT [42] On-line adaptive radiotherapy using MRI guidance photons 2020 19 
ARPANSA [40] Active and passive RRMM 

and 4D imaging 
photons 2022 87 

AAPM TG324 [41] Active and passive RRMM and 4D imaging - related to TG76 photons 2022 651 
POP-ART PT part I [9] Active RRMM and rescanning particles 2023 68 
POP-ART PT part II [8] Offline and online replanning, plan libraries particles 2023 68  

Guidelines 
AAPM TG76 [43] Active and passive RRMM and 4D imaging photons 2006 – 
AAPM TG290 [38] Active and passive RRMM and 4D imaging particles 2022 –  
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including different time scales. While intrafractional changes occur in 
the timeframe of a single fraction, often requiring dedicated motion 
management strategies, other anatomical changes might occur over the 
whole course of treatment in the timeframe of several weeks. During 
such a long period many anatomical changes may lead to clinically 
relevant discrepancies between planned and delivered dose distribution 
independently of intrafractional motion. These changes can be tumour 
shrinkage/growth, patient’s weight gain/loss, or differences in the 
filling of the stomach, bowel, rectum, bladder and cavities [115]. Thus, 
adaptive strategies have gained a large interest in the radiotherapy 
community, not only as stand-alone concepts but also in combination 
with intrafractional motion management strategies [116,117]. Espe
cially in PT adaptive solutions are favourable to compensate for the 
sensitivity of particle range to density variations along the beam path 
[118]. To date, several surveys related to the topic have been published 
for photons and particles presenting the diversity of available and used 
solutions between centres (Table 1). 

Based on the timescale on which the adaptation process is performed 
adaptive approaches can be differentiated into offline and online. For 
both approaches the applied adaptation concept heavily depends on the 
available tools and systems at the facilities. 

For offline adaptation concepts implemented in many photon and PT 
centres [8,37], tailored institutional solutions for specific treatment sites 
have been developed. Mobile in-room CT was shown to provide 
adequate acquisition time, geometric accuracy and image quality as well 
as SPR conversion as a basis for offline replanning and contour propa
gation [119–121]. Individual PT offline adaptive procedures can also be 
triggered by 2D orthogonal X-ray or (synthetic) CBCT in combination 
with in-house and commercial software tools [122–124], which are both 
also relevant image modalities for 4D motion management. Most offline 
adaptive planning in photon and particle therapy occurs ad-hoc based 
on anatomical changes noted on control imaging (e.g., CBCT or diag
nostic CT scanner installed in or outside the treatment room) or clinical 
observations by medical doctors, radiation therapy technologists or the 
patient. If re-computation of the dose on a new CT shows a necessity for 
plan adaptation, much of the initial planning and QA procedure must be 
repeated with some semi-automated parts (e.g., transfer of the original 
contours onto the repeated image set or setup of the optimisation 
formulation in the TPS). 

Currently, online daily radiotherapy solutions are commercially 
available only for photon therapy with dedicated platforms using MR 
guidance [42] or AI-guided CBCT-based systems [125]. However, also 
the field of PT shows broad interest in implementing more online or 
hybrid approaches, especially including daily replanning and employing 
plan libraries [8,22,126–128]. Recently, several key players in the field 
of real-time adaptive PT joined forces [129] to tackle the remaining 
challenges and pave the way towards online adaptation in PT 
[130–136]. These challenges include aspects of dose accumulation, 
contour propagation, daily plan re-optimisation and approval as well as 
quality assurance of the online adaptive treatments [137,138]. 

4. Clinical implementations of 4D PT treatments based on 
international guidelines 

The clinical implementation of 4D PT was facilitated thanks to the 
growing availability and accessibility of particle systems together with 
specific technological developments. The transition from research to 
clinic also built on the experience gained from photon therapy and was 
supported by international guidelines for photons and particles (see 
Table 1). 

As an example, the ARPANSA and TG324 photon surveys showed 
that passive respiratory motion management with the ITV concept was 
more widely used than active methods [40,41]. Following the AAPM 
Task Groups TG76 and TG324 survey on motion management for photon 
therapy [41,43], the AAPM Task Group report 290 focused exclusively 
on 4D PT [38]. It summarised passive and active motion management 

techniques and considered their suitability concerning breathing motion 
amplitude and technical limitations. Moreover, it provided guidance for 
commissioning and QA procedures when implementing 4D treatments 
and related therapy risks. Other site-specific guidelines for 4D particle 
radiotherapy were published on behalf of the PTCOG thoracic sub
committee and were dedicated to non-small cell lung cancer (NSCLC) 
and thoracic malignancies in general [36,139]. While the first addressed 
the advantages and cost-effectiveness of PT, the second focused on 
practical aspects of 4D thoracic treatments and technical requirements. 
The clinical implementation of these recommendations and guidelines 
(Table 1) was summarised in the most recent surveys on pattern of 
practice approaching harmonisation of 4D treatment approaches 
[8,9,140]. It has been well understood that respiratory motion man
agement is essential for treatment sites located in the thorax and 
abdomen with breath-hold gating (for (left-sided) breast cancer) widely 
implemented in conventional photon therapy. Other active respiratory 
motion management strategies, like gating using a respiratory surrogate 
or surface imaging as the main trigger or the synchronisation by tumour 
tracking are less frequently used [39–41]. 

Clinical implementation of a treatment strategy should be supported 
by a motion management diagram classifying the actions according to 
the patient’s motion amplitude [38]. Usually, the lesions located in the 
lower lobe of the lung and liver are characterised by a motion greater 
than 10 mm, whereas the middle and upper lobe of the lung (5–10 mm) 
or pelvis and para-aortic nodes lesions exhibit motion typically below 5 
mm [13]. A special case is the oesophagus, which usually does not move 
more than 5 mm, but the motion of surrounding tissues can exceed 10 
mm. Even though the employment of a facility-specific motion diagram 
supports clinical decisions regarding the choice of 4D treatment ap
proaches, it does not automatically harmonise the 4D PT concepts 
among different centres. Used solutions are very diverse due to the va
riety of available tools and systems and there is no common solution 
valid for all centres. To give a better insight into the practical and 
envisaged clinical implementations, the following paragraph describes 
examples of the currently designed workflows at selected PT centres 
while centre-specific internal criteria and used motion management 
techniques are summarised in Table 2. 

In those centres the common imaging modality used to assess motion 
characteristics and support further imaging and treatment decisions was 
4DCT with additional motion management based on the assessed 
tumour amplitude and internally established criteria. For targets 
exhibiting relatively small motion extent (usually below 5 mm, see 
Table 2) no special motion management technique was applied. How
ever, 4DCT-based plan recalculation was still performed for evaluation 
purposes. If the amplitude exceeded the agreed thresholds, motion 
mitigation techniques became necessary although other parameters like 
tumour size, position and fractionation might influence that decision. 
The availability and application of motion management techniques 
varied among the centres and included, for example, abdominal 
compression systems, breath-hold techniques, the use of a breathing 
control system, spot size enlargement or repainting. These techniques 
were also implemented separately or in a combined way to obtain the 
most reproducible and comfortable treatment position. During the 
treatment planning stage, further decisions on, e.g., the number of 
beams or robust optimisation were made. Depending on the assessed 
motion amplitude, either free breathing, breath-hold or average CT 
scans were used for treatment planning. For breath-hold the scans were 
usually repeated three times to ensure reproducibility. Additionally, CT 
images for the end-inhale and the end-exhale breathing phase were used 
for dose evaluation purposes. To provide optimal gantry angles some of 
the centres performed motion evaluation based on water equivalent 
thickness statistics to minimise the deteriorating effect of target motion 
[8]. Either 3D or 4D robust optimisation was included at the planning 
stage to overcome the dose deterioration effects due to respiratory 
motion. Estimation of the plan quality and target dose degradation due 
to the interplay effect was further supported using the 4D interplay 
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Table 2 
Example of motion management and mitigation solutions clinically implemented at selected particle facilities (FB – free breathing, BH – breath-hold, AVG – average, MIP – maximum intensity projection); *threshold was 
not provided by the institute.  

Facility Imaging 
motion assessment 

Indication Motion threshold Additional motion 
mitigation used? 

Treatment planning/additional motion mitigation Repainting used? Interplay evaluation 

MD Anderson Cancer 
Center (MDCC) 

FB scan 

breast, partial breast 

heart outside the 
treatment field 

no FB scan used for planning 

no 

4D simulator [141] 

heart inside the 
treatment field 

yes BH scan (3x) 

upper lung, lower 
abdomen 

5–10 mm no MIP scan for contouring, AVG for planning, 0 and 
50 phases reconstructed 

yes 

oesophagus <5 mm (but 
surrounding tissues >
10 mm) 

no MIP scan for contouring, AVG for planning, 0 and 
50 phases reconstructed, overrides about the 
diaphragm 

yes 

4DCT + 3D patient’s model 
(including interior-exterior 
anatomy) 

lung, liver, 
oesophagus 

<10 mm no MIP scan for contouring, AVG for planning, 0 and 
50 phases reconstructed 

no 

>10 mm yes BH scan (3x) no (if motion < 5 mm) 
yes (if motion > 5 mm)  

Emory Proton Therapy 
Center (EPTC) 

4DCT thorax, abdomen 

≤5 mm (with or 
without abdominal 
compression) 

no – no Inh/Exh dose 
calculation 

>5 mm yes 

BH (3x) with SDX no BH (3x) dose 
calculation 

planning mitigations (4DRO, reduced beam 
modulation, repainting, increased number of 
beams, reduced energy layer spacing, degraded 
spot) 

depending on residual 
effects seen on 4DDD 
calculation 

4DDD  

New York Proton 
Center (NYPC) 

4DCT + WETSA (water 
equivalent thickness 
statistical analysis) [80] 

lung 

<5 mm 
no 

– no 

4D dose calculatio n  
[142–144] 

5–10 mm – 
no (If ≥ 3 beams) 
yes (if < 3 beams) 

10–20 mm yes abdominal compression (for low-lobe cases), spot 
size enlargement 

yes 

>20 mm – not considered for protons – 

liver 

<5 mm no – no 

5–10 mm yes abdominal compression or DIBH if tolerable 

no (If ≥ 3 beams & for 
10 or more fractions) 
yes (if < 3 beams & for 
10 or more fractions) 

10–20 mm yes abdominal compression + other mitigation strategy 
(e.g., DIBH if tolerable, SDX system) 

yes 

>20 mm – not considered for protons –  

Danish Center for 
Particle Therapy 
(DCPT) 

4DCT 
3–4 exhale BH 

liver, oesophagus, 
lung, lymphoma, 
breast 

<10 mm yes/no FB (but might be combined with abdominal 
compression and if gating not feasible) no 

Spot-shift dose 
reconstruction  
[66,100] >10 mm yes BH, gating  

Massachusetts General 
Hospital (MGH) 

4DCT liver, oesophagus, 
cardiac sarcoma 

internal* yes DIBH, gating (in development) yes 4D dose calculation  
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simulator [141], 4D dose calculation [142–144] or spot-shifting [100]. 

5. Current research and development themes 

5.1. Particle imaging for 4D particle therapy 

Proton CT was originally proposed by Alan Cormack in 1963 [145] 
followed by the first paper on proton radiography a few years later 
[146]. After taking many decades to mature, particle tracking technol
ogy has reached a stage where it could be implemented into clinical 
workflows in the next ten years [147]. In addition to the limitations of X- 
ray-based planning mentioned in section 3.1, simultaneous beam’s eye 
view imaging of the treatment area with X-rays while delivering proton 
therapy is currently infeasible. This additionally underlines the need and 
potential for proton or ion imaging for planning and in-room verifica
tion, particularly in 4D applications [148]. 

Proton and ion radiography involves a low-intensity proton or ion 
beam to create 2D images. By measuring the positions and energies of 
the protons or ions before and after passing through the object it is 
possible to infer the most likely path of individual particles and their 
water-equivalent path length (WEPL). Two-dimensional WEPL imaging 
provides the possibility to verify that the distribution of stopping power 
is correct from the beam’s eye-view perspective [147]. 

Proton CT could solve the HU conversion inaccuracy problem 
providing an accurate pre-treatment verification method operating at 
very low doses. It takes the principles of proton radiography a step 
further by reconstructing 3D or 4D images of the object’s SPR, which are 
practically artefact-free. As in proton radiography, protons are directed 
to the object from multiple angles. This allows for iterative data 
reconstruction of SPR from WEPL measurements and most likely path 
estimations for millions of protons traversing the object. Large efforts 
were invested in offering research groups access to fast and accurate 
open-source reconstruction possibilities [149,150]. 

Proton CT systems have been developed in research projects over the 
past two decades [151–153]. However, the current systems have faced 
challenges in their clinical implementation due to technical issues in 
delivering an ultra-low intensity beam consisting of a single proton or 
ion per radiofrequency bunch but also related to accuracy and resolution 
[154]. Ideally, if both imaging and treatment beams are used in the same 
session, they should be mixed or delivered in a rapid sequence. To 
address this limitation, a new approach has been proposed, which in
volves a dual ion source generating deuterium ions (d+) and helium ions 
(He2+) or multi-nucleon ions [155,156]. Also 4D-tracking detectors are 
very promising to simultaneously measure the particle position and time 
with a high spatial resolution [157]. These innovations aim to overcome 
the technical difficulties of delivering the ultra-low intensity imaging 
beam and improve the clinical application of particle CT systems but still 
lack experimental data on phantom or small animal models. 

5.2. AI-assisted 4D and real-time imaging 

Artificial intelligence (AI) has been playing an increasingly impor
tant role in the motion management of radiation therapy. Among other 
applications it could enable 4D real-time tumour localisation through 
fast 4D imaging. An example method uses a deformation-driven 
approach to deform a planning 4DCT to on-board 4D-CBCTs under the 
guidance of limited-angle on-board projections [158,159]. A motion 
model is built using principal component analysis to solve CT-to-CBCT 
deformation vector fields with free-form 2D-3D deformable registra
tion applied to correct residual errors. To compute 2D-3D deformable 
registration in seconds, compared to several hours of traditional itera
tive methods, a deep learning-based 2D-3D-ReNet framework was 
developed. The limited accuracy of a standard 2D-3D deformable 
registration for low-contrast regions, such as the liver, was introduced 
by biomechanical modelling to represent the low-contrast liver as a 
tetrahedral mesh and allows an increase in the tumour’s localisation 

accuracy [160]. Further imaging speed and accuracy improvement 
(below 250 ms latency time) can be achieved by introducing a graph 
neural network-based deep learning MeshRegNet-Bio framework thanks 
to which low-contrast liver tumour localisation via a single X-ray pro
jection is possible [161]. The model used motion features encoded in a 
single X-ray projection to solve the liver boundary motion and subse
quently fed it into biomechanical modelling for liver tumour localisation 
with an accuracy below 1.6 mm. 

As another example, the construction of dynamic CBCTs using spatial 
and temporal implicit neural representation (STINR) addressing the 
inter-scan anatomy and intensity variations (e.g., tumour shrinkage) 
was proposed [162]. STINR maps the unknown image and its motion 
into spatial and temporal multi-layer perceptrons and iteratively opti
mises the neuron weightings via acquired projections allowing the 
tracking of a lung target to an average centre-of-mass error of 1–2 mm. 

AI has made significant progress in 4D real-time imaging and model- 
based tumour localisation. Aided by the information provided by plan
ning 4DCTs, tissue biomechanics, 4D or dynamic CBCTs the real-time 
volumetric tumour localisation can be estimated and/or reconstructed 
within seconds or less. Studies presented at the 4D workshops and 
ongoing research show the indisputable potential of AI in the 4D im
aging and radiotherapy field and its potential to move from a pure 
research topic to an active area of translational research and 
development. 

5.3. FLASH particle therapy 

In recent years FLASH radiotherapy, characterised by delivery at 
ultra-high dose rate (>40 Gy/s), has been heavily investigated not only 
for photons but also for proton and carbon ions [163]. To observe that 
effect, a low-oxygen environment is required for photon, electron and 
proton beams [164]. For carbon beams it has been suggested that the 
FLASH effect may occur even in the absence of hypoxic conditions and 
several institutes have started experimental irradiations [165–167]. For 
PBS therapy additional considerations for defining the dose rate need to 
be included since the dose at each point of the field sums up from 
multiple spots [168,169]. In terms of 4D radiotherapy, ultra-fast de
livery of fields/fractions (<0.1 s) might potentially minimise the aspect 
of motion during treatment while considering manifold aspects related 
to dosimetric, temporal and spatial parameters [170]. However, due to 
the high sensitivity of the dynamic PBS delivery to moving targets [38], 
the impact of respiratory motion on the proton FLASH delivery and the 
corresponding motion management for FLASH radiotherapy is largely 
unclear. An initial investigation of the effects of respiratory motion on 
the transmission of proton FLASH dose was performed through simu
lation and moving phantom measurements [171]. The simulation study 
using clinical-relevant free-breathing respiratory motion and PBS de
livery parameters showed a clinically unacceptable degradation of the 
delivered dose when compared to the static delivery. However, the 
treatment quality could be restored by gated delivery at the maximal 
inhalation or exhalation phase. Phantom measurements quantitively 
confirmed that dose distortions are limited due to ultra-short beam-on 
time and relatively stable positions at peak phases [172]. Ultra-fast 
beam delivery would make breath-hold clinically feasible for most pa
tients [173] and with volumetric imaging guidance breath-hold can 
warrant a static target treatment condition for FLASH radiotherapy. 
Therefore, breath-hold and free-breathing gated [174] delivery at the 
extreme phases serve as the potential motion management strategies to 
ensure the high consistency of the proton FLASH delivery. 

6. Concluding remarks 

The field of 4D PT combines a diversity of research topics and has 
successfully advanced to be established in clinical practice. Together 
with the remarkable developments in radiation oncology over the last 
years the precision of 4D PT could be improved also incorporating a 
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higher level of personalisation during planning and delivery. Despite 
remaining heterogeneities in current practical applications, surveys and 
guidelines illustrate the will and need of the community to work towards 
harmonisation of clinical protocols. 

Topics like 4D treatment planning, motion management, dose 
reconstruction, imaging and adaptive strategies are progressing towards 
the state-of-the-art. New themes, such as particle imaging, AI-assisted 
real-time imaging and FLASH emerge as tomorrow’s translational 
research topics adding another level of complexity to the context of 4D 
PT. 
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How should we model and evaluate breathing interplay effects in IMPT? Phys 
Med Biol 2021;66:235003. https://doi.org/10.1088/1361-6560/ac383f. 
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[97] Lebbink F, Stock M, Georg D, Knäusl B. The influence of motion on the delivery 
accuracy when comparing actively scanned carbon ions versus protons at a 
synchrotron-based radiotherapy facility. Cancers 2022;14:1788. https://doi.org/ 
10.3390/cancers14071788. 

[98] Kostiukhina N, Palmans H, Stock M, Knopf A-C, Georg D, Knäusl B. Time-resolved 
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B. Knäusl et al.                                                                                                                                                                                                                                  

https://doi.org/10.1186/s13014-020-01571-x
https://doi.org/10.1186/s13014-020-01571-x
https://doi.org/10.1088/1361-6560/abe736
https://doi.org/10.1016/j.zemedi.2022.05.003
https://doi.org/10.1016/j.zemedi.2022.05.003
https://doi.org/10.1016/j.radonc.2021.01.014
https://doi.org/10.1088/1361-6560/aabb7b
https://doi.org/10.1016/j.radonc.2021.03.041
https://doi.org/10.1016/j.radonc.2021.03.041
https://doi.org/10.1002/mp.16420
https://doi.org/10.1002/mp.16420
https://doi.org/10.1016/j.radonc.2018.12.008
https://doi.org/10.1016/j.radonc.2016.04.038
https://doi.org/10.1016/j.radonc.2022.11.001
https://doi.org/10.1016/j.radonc.2022.01.043
https://doi.org/10.1016/j.radonc.2022.01.043
https://doi.org/10.1088/1361-6560/accc08
https://doi.org/10.1088/1361-6560/accc08
https://doi.org/10.1016/j.ijrobp.2015.11.049
https://doi.org/10.1016/j.ijrobp.2015.11.049
https://doi.org/10.1088/1361-6560/ab2ba8
https://doi.org/10.1016/j.radonc.2015.10.011
https://doi.org/10.1016/j.radonc.2015.10.011
https://doi.org/10.1016/j.radonc.2019.11.009
https://doi.org/10.1016/j.radonc.2019.11.009
https://doi.org/10.1371/journal.pone.0178807
https://doi.org/10.2967/jnumed.115.163386
https://doi.org/10.2967/jnumed.115.163386
https://doi.org/10.3390/cancers14071788
https://doi.org/10.3390/cancers14071788
https://doi.org/10.1088/1361-6560/ab8d79
https://doi.org/10.1088/1361-6560/abc938
https://doi.org/10.1088/1361-6560/aaeae9
https://doi.org/10.1088/1361-6560/aaeae9
https://doi.org/10.1016/j.ijrobp.2016.02.050
https://doi.org/10.1088/0031-9155/52/6/001
https://doi.org/10.1016/j.radonc.2019.07.007
https://doi.org/10.1016/j.radonc.2019.07.007
https://doi.org/10.1088/1361-6560/aaae8b
https://doi.org/10.1016/j.radmeas.2017.04.016
https://doi.org/10.1016/j.radmeas.2017.04.016
https://doi.org/10.1088/0031-9155/53/9/003
https://doi.org/10.1088/0031-9155/53/9/003
https://doi.org/10.1016/j.ejmp.2016.11.107
https://doi.org/10.1371/journal.pone.024674
https://doi.org/10.1371/journal.pone.024674
https://doi.org/10.1088/1361-6560/aaad1e
https://doi.org/10.1088/1361-6560/ab5132
https://doi.org/10.1088/1361-6560/abb9f7
https://doi.org/10.1038/s41598-021-93612-y
https://doi.org/10.1088/1361-6560/ac9fa2
https://doi.org/10.1016/j.phro.2020.11.004
https://doi.org/10.1016/j.phro.2020.11.004
https://doi.org/10.1016/j.semradonc.2019.02.007
https://doi.org/10.1016/j.semradonc.2019.02.007
https://doi.org/10.1088/1361-6560/ac344f
https://doi.org/10.1016/j.radonc.2023.109970
https://doi.org/10.1016/j.radonc.2023.109970
https://doi.org/10.1259/bjr.20190582
https://doi.org/10.14338/IJPT-21-00033.1
https://doi.org/10.14338/IJPT-21-00033.1
https://doi.org/10.1002/acm2.12319
https://doi.org/10.1002/acm2.12084
https://doi.org/10.1002/acm2.12084
https://doi.org/10.3390/cancers15153881
https://doi.org/10.3390/cancers15153881
https://doi.org/10.1016/j.phro.2023.100459
https://doi.org/10.1088/1361-6560/acd433
https://doi.org/10.1088/1361-6560/acd433


Physics and Imaging in Radiation Oncology 29 (2024) 100535

10

initial first year experiences. J Appl Clin Med Phys 2023;24:e13961. https://doi. 
org/10.1002/acm2.13961. 
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