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Abstract
Understanding disease transmission in the workplace is essential for protecting work-
ers. To model disease outbreaks, the small populations in many workplaces require
that stochastic effects are considered, which results in higher uncertainty. The aim
of this study was to quantify and interpret the uncertainty inherent in such circum-
stances. We assessed how uncertainty of an outbreak in workplaces depends on i) the
infection dynamics in the community, ii) the workforce size, iii) spatial structure in
the workplace, iv) heterogeneity in susceptibility of workers, and v) heterogeneity
in infectiousness of workers. To address these questions, we developed a multiscale
model: A deterministic model to predict community transmission, and a stochastic
model to predict workplace transmission. We extended this basic workplace model to
allow for spatial structure, and heterogeneity in susceptibility and infectiousness in
workers. We found a non-monotonic relationship between the workplace transmission
rate and the coefficient of variation (CV), which we use as a measure of uncertainty.
Increasing community transmission,workforce size andheterogeneity in susceptibility
decreased the CV. Conversely, increasing the level of spatial structure and heterogene-
ity in infectiousness increased the CV. However, when the model predicts bimodal
distributions, for example when community transmission is low and workplace trans-
mission is high, the CV fails to capture this uncertainty. Overall, our work informs
modellers and policy makers on how model complexity impacts outbreak uncertainty.
In particular: workforce size, community and workplace transmission, spatial struc-
ture and individual heterogeneity contribute in a specific and individual manner to the
predicted workplace outbreak size distribution.
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1 Introduction

Predicting infections in aworkforce is essential for tailoring preventative interventions,
maintaining productivity, and prioritising vaccinations. This has led to many mathe-
matical models for workplace transmission (Lloyd-Smith et al. 2003; Hill et al. 2021;
Evans et al. 2021; Jarvis and Kelley 2021; Sánchez-Taltavull et al. 2021; Sanchez-
Taltavull et al. 2021). The strength of workplace disease transmission for respiratory
infections, such as influenza and SARS-CoV-2 differs between occupations (Lietz
et al. 2016; Eisen 2020; Mutambudzi et al. 2021; Murti et al. 2021; Chen et al. 2021).
Two common characteristics of workplace transmission models are i) they simultane-
ously consider the epidemiological dynamics in the wider community, i.e. outside the
workplace, and those within the workplace, and ii) they account for the small popula-
tion sizes typically found in workplaces. For small population sizes, stochastic effects
are more pronounced than in larger ones, making deterministic models inappropriate.

In stochastic models there are two outputs of interest. The first is the average of
the stochastic runs of the model, and the second is the distribution of these stochastic
runs. In some areas of a model’s parameter space, the average outbreak size is not
an accurate representation of the stochastic realisations, which can lead to different
outbreak size distributions (Bailey 1950, 1964; Keeling and Ross 2008). For example,
epidemiological SIR models can predict bimodal distributions for some population
sizes and transmission rates (Bailey 1953). A bimodal distribution of outbreak sizes
indicates particularly high uncertainty, since it predicts an equal probability of a large
and small outbreak.The shapeof the outbreak size distributionpredicted by a stochastic
model can be summarised by the coefficient of variation (Drake 2006), which is a
measure of uncertainty of the predicted outbreak size and is defined as the mean
divided by the standard deviation. For example, when the outbreak size distribution
is highly overdispersed (i.e. it has a long tail), the coefficient of variation is large.
However, the coefficient of variation does not give information on the exact shape of
the distribution.

Increasing the complexity of epidemiological models can change their behaviour,
such as the addition of individual- or population-level heterogeneity. Spatial structure
is an example of population-level heterogeneity and has been studied in Ball and Lyne
(2001), Ball and Neal (2002). Individual-level heterogeneity can be accounted for
by adding variation in infectiousness (Lloyd-Smith et al. 2005; Garske and Rhodes
2008; Hartfield and Alizon 2013) or by adding variation in susceptibility (Gomes
et al. 2021, 2022). Additional model complexity can increase the accuracy of the
model, and the number of scenarios it can be applied to. However, reducing complexity
allows increased tractability of the models and reduces the number of parameters to
be estimated from data.

In deterministicmodels, there are clears costs and benefits of increasingmodel com-
plexity (Bussell et al. 2019). In stochasticmodels, increasing complexitymay influence
not only the average model behaviour, but also the variation across individual realisa-
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tions of the model. Investigating the complexity of stochastic epidemiological models
is important in the context of outbreak size uncertainty. Changes in the complexity of
the models can influence how representative the average behaviour is of the stochas-
tic dynamics. Thus, our understanding of how complexity determines predictions of
deterministic models is not always applicable to stochastic models. Models for public
health-related questions are becoming increasingly complex. Therefore, it is essential
to understand when increasing model complexity is necessary (Pellis et al. 2020).

The predictions of workplace models depend on community and workplace trans-
mission. For example, it has been observed that when community transmission is low
and workplace transmission is high, there is a low probability of a large workplace
outbreak (Sánchez-Taltavull et al. 2021). This could lead to a bimodal outbreak size
distribution, and therefore high uncertainty. Our goal, is to investigate for what levels
of model complexity stochastic effects are dominant, and therefore when additional
model complexity needs to be included for predicting outbreak uncertainty in work-
places.

Our aim is to understand how predicted uncertainty in workplace disease outbreaks
depends on model complexity. To this end, we develop a stochastic individual-based
epidemiological model for workplace transmission and combine it with a community
transmission model. We determine how workplace outbreak uncertainty depends on
the strength of workplace transmission and (i) the dynamics in the wider community,
(ii) the workforce size, (iii) spatial structure in the workplace, (iv) heterogeneity in
susceptibility between workers, (v) heterogeneity in infectiousness between workers.
We use the coefficient of variation as a measure of outbreak uncertainty, and identify
when this measure does not match the information from the entire outbreak size
distribution. The intended impact of this work is that it will inform future model
development for workplace disease dynamics by identifying when increasing model
complexity influences uncertainty due to stochastic effects.

2 Methods andModels

2.1 Mathematical Models

To simulate infections in the community outside of the workplace, we used a
population-based deterministic model, as the population is assumed to be sufficiently
large that stochastic effects can be ignored. Community variables are denoted with
subscriptC . To simulateworkplace transmissionwe developed a stochastic individual-
based model in which variables are denoted with subscript W .

2.1.1 Community Transmission Model

A system of ordinary differential equations based on a widely used framework for
representing epidemiological dynamics (Anderson and May 1992) accounts for the
number of susceptible (SC ), exposed (EC ), infected (IC ), hospitalised (HC ), recovered
(RC ) and dead (DC ) individuals at time t :
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dSC
dt

= −α(t)SC IC , (1)

dEC

dt
= α(t)SC IC − l EC , (2)

d IC
dt

= l EC − r IC (1 − ε1) − hε1 IC , (3)

dHC

dt
= hε1 IC − wHC (1 − ε2) − dHCε2, (4)

dRC

dt
= r IC (1 − ε1) + wHC (1 − ε2), (5)

dDC

dt
= dHCε2 (6)

where α(t) is the infection rate, 1/l is the mean latency period, 1/r is the mean infec-
tion duration, h is the hospitalisation rate, ε1 is probability of hospitalisation, w is the
recovery rate of hospitalised patients and ε2 is the probability of death for hospitalised
patients. The parameter descriptions are shown in Table 1. Although we do not use
them in our study, we account for hospitalisations and deaths since these can allow
calibration of themodel to data if required. At t = 0,we assume SC = NC−1, IC = 1 and
all other variables are 0. Following Althaus et al. (2020) we represented the decline in
community transmission due to government implemented non-pharmaceutical inter-
ventions to reduce community transmission using:

α(t) = π

NC

(
1 − 1 − κ

1 + e−ν(t−τ)

)
(7)

where α(t) is the infection rate in the community at time t and NC is the community
size. The values for κ , ν and τ remain fixed andwe varyπ to study different community
infection dynamics.

2.1.2 Basic Workplace Transmission Model

Transitions Between Classes To model transmission within the workplace we devel-
oped a stochastic individual-based model [based on the stochastic model used in
Sanchez-Taltavull et al. (2021)] which tracks the infection status of each individual,
which is denoted by subscript i . At t = 0, we assume there are no infections in the
workplace. The probabilities used for the transition events were converted from the
rates described in Table 1, using p = 1 − e−adt , where p is the probability, a is
the rate and dt is the time step. Changes in the infection status of an individual are
defined by stochastic transition events, whether a change in status occurs or not is
drawn from a binomial distribution. Each individual, i , can be in one of 5 states at
time t : SW (i) (susceptible), EW (i) (exposed), IW (i) (infected, symptomatic), AW (i)
(infected, asymptomatic) or RW (i) (recovered). When referring to the total number
of individuals in a class we omit subscript i . The total population size is represented
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as NW . Here we describe the transitions between the classes, an algorithm for imple-
menting the model computationally can be found in the supplementary information.

SW (i)(t) → SW (i)(t + dt) − 1 (8)

EW (i)(t) → EW (i)(t + dt) + 1 (9)

with probability 1 − e
−SW (i)(β

AW
NW

+α IC )dt

Note that the transition from susceptible to exposed in the work place depends
on the number of infections in the workplace as well as those in the community.
The equations above assume that transmission depends on the frequency of infected
individuals in the workplace. Alternatively, we can assume that individuals interact
more as the workforce size increases, giving density-dependent transmission:

SW (i)(t) → SW (i)(t + dt) − 1 (10)

EW (i)(t) → EW (i)(t + dt) + 1 (11)

with probability 1 − e−SW (i)(βAW+α IC )dt

Note that we assume frequency-dependent transmission throughout unless oth-
erwise stated. We assume that when a worker develops symptoms (they are in class
IW ) they quarantine. Latent individuals become symptomatic (IW (i)) or asymptomatic
(AW (i)) following:

EW (i)(t) → EW (i)(t + dt) − 1 (12)

with probability 1 − e−EW (i)(t)ldt

IW (i)(t) → IW (i)(t + dt) + 1 (13)

with probability ε3(1 − e−EW (i)(t)ldt )

AW (i)(t) → AW (i)(t + dt) + 1 (14)

with probability (1 − ε3)(1 − e−EW (i)(t)ldt )

Both symptomatic and asymptomatic individuals recover at rate r

IW (i)(t) → IW (i)(t + dt) − 1 (15)

RW (i)(t) → RW (i)(t + dt) + 1 (16)

with probability 1 − e−IW (i)(t)rdt
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AW (i)(t) → AW (i)(t + dt) − 1 (17)

RW (i)(t) → RW (i)(t + dt) + 1 (18)

with probability 1 − e−AW (i)(t)rdt

The mean-field dynamics are shown in the supplementary information.

2.2 Scenarios andModel Extensions

Using the basic model formulation described in equations 1 to 18, we perform a sen-
sitivity analysis of various parameters to study their impact on the epidemiological
dynamics and outbreak size distributions.We alsomake extensions to our basic frame-
work and investigate their impact on the outbreak size distribution (described in the
sections below). For each parameter variation or model extension we vary β between 0
and 2.5 to study the impact of workplace transmission on the epidemiological dynam-
ics in the workplace. We define the outbreak size as the proportion of recovered
individuals at the final time step (t = 110 days). We calculated the mean outbreak size
(over repeat simulations) for each parameter set, as well as the coefficient of variation
(CV = standard deviation

mean ) as a measure of outbreak uncertainty. For transmission in
the community, we fixed all parameters at values applicable to the early stages of the
SARS-CoV-2 outbreak (Table 1), apart from π , which was varied to alter commu-
nity transmission dynamics. Note although we use some parameter values specific to
SARS-CoV-2 (mean latency period (1/l), mean infection duration (1/r ), hospitalisa-
tion rate (h), probability of hospitalisation (ε1), recovery rate of infected individuals
(w), probability of death for hospitalised patients (ε2)) (see Sanchez-Taltavull et al.
2021), our objective is to demonstrate the qualitative behaviour of the models rather
than to produce predictions for a specific respiratory virus.

To solve the ordinary differential equations for city transmission (Eqs. 1–5) we used
the ‘deSolve’ package (Soetaert et al. 2010) in R version 4 (R Core Team 2020), using
dt = 4/24 days. The algorithm for simulating the stochastic, individual-based, work-
place transmission model can be found in supplementary information. To calculate
transitions between states (i.e. a susceptible individual moving to the exposed class)
we used the rbinom function (R Core Team 2020). We conducted 5000 stochas-
tic model runs for each parameter set with the exception of the spatial simulations
(described below, 1000 stochastic model runs).

2.2.1 Assessment of How Community Transmission Determines the Outbreak Size
Distribution

To study the impact of community transmission on the epidemiological dynamics in
theworkplace, we vary parameterπ between 0.48 and 1.12, which is found in equation
7. Increasing π results in a higher number of individuals being infected during the
outbreak.
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2.2.2 Assessment of How theWorkforce Size Determines the Outbreak Size
Distribution

To study the impact of workforce size on the epidemiological dynamics in the work-
place, we varied the workforce size (NW ) between 20 and 1000 workers.

2.2.3 Assessment of How Spatial Structure in the Workplace Determines the
Outbreak Size Distribution

We account for spatial structure by assuming the workplace is divided into G sub-
groups,where thewithin-group transmission rate is given byβg and the between-group
transmission rate is given by β. Subscript g denotes the group an individual belongs to
(e.g SW (g,i) denotes individual i who is susceptible and in group g) or a group within
a class (e.g AW (g) denotes all the individuals in class AW ). The workforce is divided
into equally sized groups, but variations of this assumption are shown in the Supple-
mentary Information. We assume that transmission within a group is a function of the
proportion of infected individuals in that group, whereas transmission from outside an
individual’s groups is a function of the proportion of infected individuals in all other
groups.

SW (g,i)(t) → SW (g,i)(t + dt) − 1 (19)

EW (g,i)(t) → EW (g,i)(t + dt) + 1 (20)

with probability 1 − e
−SW (g,i)

(
βg

AW (g)
NW (g)

+α IC+β
AW −AW (g)
NW −NW (g)

)
dt

2.2.4 Assessment of How Individual-Level Heterogeneity in Infectiousness and
Susceptibility Determines the Outbreak Size Distribution

We consider two types of individual heterogeneity; infectiousness per unit time and
susceptibility. To investigate the impact of different levels of overdispersion in infec-
tiousness and susceptibility on the predicted outbreak size distribution, we assumed a
gamma distribution for each trait. We use the form of the gamma distribution param-
eterised by the shape (k) and rate (ω):

f (x) = ωk


(k)
xk−1e−ωx (21)

The impact of varying k and ω is shown in the Supplementary Information (Fig.
S1). We assume always that k = ω, such that the mean of the distribution is 1. By
doing this, the distribution can then be multiplied by the epidemiological parameter
of interest to make the mean of the distribution take this value. We use subscripts to
distinguish between k and ω for the different epidemiological parameters:

βi = gamma(kρ, ωρ)β (22)
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φi = gamma(kz, ωz) (23)

whereβi is the infectiousness andφi is the susceptibility. Subscriptsρ and z indicate the
parameters used for the infectiousness and susceptibility distributions, respectively.
Note that the mean susceptibility in the population is assumed to be unity, and we
allow heterogeneity in either susceptibility, infectiousness or both. We calculate the
probability of the transition of individual i , from SW (i) to EW (i) accounting for the

mean infectiousness in the population (β̄ =
∑NW

i=1 βi
AW

, assumingβi =0 for all individuals
not in the asymptomatic class), and the individual’s level of susceptibility (φi ):

SW (i)(t) → SW (i)(t + dt) − 1 (24)

EW (i)(t) → EW (i)(t + dt) + 1 (25)

with probability 1 − e
−SW (i)φi (β̄

AW
NW

+α IC )dt

We used the rgamma function (R Core Team 2020) to draw values for individual-
level infectiousness and susceptibility. Note that since all individuals mix homoge-
neously, the term that appears as the transmission rate is the mean of the individual
levels of infectiousness. When assuming there is no heterogeneity in infectiousness
or susceptibility, β and φ take the following constant values:

βi = β (26)

φi = 1 (27)

3 Results

3.1 Levels of Transmission in the City and theWorkplace Influence Uncertainty

We first investigated the interaction between community and workplace transmission
on the outbreak size distribution (Fig. 1 depicts the approach). When assuming no
individual or spatial heterogeneity, increasing workplace and community transmis-
sion increased the mean outbreak size (Fig. 2). However, outbreak size distributions
strongly depend on the combination of workplace and community transmission. Low
community and workplace transmission led to a right skewed distribution (Fig. 2a)
whereas high community transmission with high workplace transmission led to left
skewed distribution (Fig. 2b). Lowworkplace and high community transmission led to
a Gaussian distribution (Fig. 2c). Low community transmission combined with high
workplace transmission produce a bimodal distribution of outbreak size (Fig. 2d).
Therefore, we see that different combinations of community and workplace transmis-
sion produce different outbreak size distributions.

Increasing the level of community transmission increased the mean workplace
outbreak size (Fig. 2e and f). We found non-monotonic changes in the coefficient of
variation as workplace transmission (β) increased. Namely, the coefficient of variation
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Table 1 Parameter descriptions for both the community and workplace models

Parameter Value Description

β 0–2.5 days−1 Workplace transmission

β̄ 0–1.5 days−1 Mean workplace transmission rate when assuming heterogeneity in
infectiousness

βg 0.5–0.9 days−1 Within-group transmission rate

1/l 5.2 days Mean latency period

r 1/6 days−1 Recovery rate

w 1/10 days−1 Recovery rate for hospitalised individuals

h 1/6 days−1 Hospitalisation rate

d 1/10 days−1 Death rate

π 0.48–1.12 days−1 Infection rate in the community

κ 0.016 Relative transmission in the community after NPIs

ν 0.3 Slope of the sigmoid function

τ 50 Midpoint of transmission reduction

NC 1000000 Community population size

NW 20–1000 Workplace population size

ωρ 0–3 Gamma rate, infectiousness

kρ 0–3 Gamma shape, infectiousness

ωz 0–3 Gamma rate, susceptibility

kz 0–3 Gamma shape, susceptibility

ε1 0.025 Probability of being hospitalised

ε2 0.37 Probability of death

ε3 0.3 Probability of being symptomatic

increases for low values of β, until it peaks and then decreasesmonotonically for larger
values of β. This was most pronounced for lower levels of community transmission
(Fig. 2g).

3.2 The Impact ofWorkforce Size on Uncertainty Depends on Community and
Workplace Transmission

Larger work forces were generally associated with larger mean outbreak sizes (Fig. 3a
i-iii). As community transmission increases, the mean outbreak size increases. The
assumptions for the community dynamics are shown in Fig. 3b. The coefficient of
variation shows a non-monotonous dependence on β (Fig. 3c i-iii). For large work-
force sizes, the coefficient of variation decreases, and the non-monotonous behaviour
becomes less pronounced. The coefficient of variation decreases as community trans-
mission increases in a similar way to increasing workforce size (e.g compare Fig. 3c
i with Fig. 3c iii). For low community transmission (Fig. 3d i) and low workplace
transmission (β = 0.4), most of the simulations remain at 0 for a small workforce
size (Nw = 20). For a high workforce size (NW = 1000), all the simulations fluctuate
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Fig. 1 Uncertainty in the number of infected workers depends on stochastic effects, which are dependent on
the strength of both community and within-workplace transmission. Different combinations of workplace
and community transmission can lead to different workplace outbreak size distributions. Created with
BioRender.com

around a low mean (Fig. 3d i). However, for large values of workplace transmis-
sion (β = 1.5) we observe a bimodal distribution for a small workforce size, which
becomes more pronounced as community transmission increases (Fig. 3d i-iii). This
uncertainty is not reflected in the coefficient of variation which is predicted to be lower
for the bimodal case (compare Fig 3d ii, the top left panel with the bottom left panel,
and Fig 3d iii, the top left panel with the bottom left panel). Increasing the strength
of community transmission (Fig. 3d i-iii) does not qualitatively change the impact of
workforce size and workplace transmission on the outbreak size distributions.

For frequency-dependent transmission, a similar value of workplace transmission
gave the highest coefficient of variation for each workforce size for a given level of
community transmission (Fig. 3). We found that switching from frequency-dependent
to density-dependent transmission in the workplace influenced which value of work-
place transmission produced the highest coefficient of variation across the different
workforce sizes (Supplementary Information, Fig. S2).

3.3 Increasing Spatial Heterogeneity can Increase Uncertainty Depending on
Community Transmission

In addition to the effects of smaller workforce sizes that we characterised in Sect. 3.2,
we aimed to understand the impact of spatial structure on the mean outbreak size and
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Fig. 2 a–d The temporal dynamics given by the mean (red) and individual stochastic runs (black) for
recovered individuals and the distribution of final outbreak sizes for various strengths of within-workplace
(β) and community transmission assuming no individual or spatial heterogeneity. Each panel, comprising of
the time series (left) and outbreak size distribution (right), corresponds to one combination of the strengths
of transmission in the workplace and wider community shown in Fig. 1e The community dynamics for the
simulations shown in panels f & g,π is varied between 0.48 and 1.12. f Themean outbreak size (prevalence)
for different levels of workplace and community transmission. g The coefficient of variation for different
levels of workplace and community transmission (Color figure online)

on the coefficient of variation. Decreasing the number of closely interacting groups in
the workplace increases the mean outbreak size for high and low levels of community
transmission (Fig. 4a i-ii and b). Similarly, increasing the within-group transmission
rate increases the mean outbreak size (Fig. 4a i-ii, compare the purple, green and
yellow bars). The strength of community transmission regulates the impact of spatial
structure on outbreak size uncertainty. Namely, when community transmission is high,
decreasing the number of workplace subgroups decreases the coefficient of variation
(Fig. 4c i). When community transmission is low, decreasing the number of workplace
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Fig. 3 a The outbreak size (the mean proportion of recovered individuals at the end of the outbreak) for
different workforce sizes and strengths of community (i-iii) and workplace transmission. b The community
infection dynamics assumed in panels a, c & d. c The coefficient of variation of the outbreak size in the
workplace. d The temporal trajectories of the proportion of recovered individuals for different combinations
of workforce size (NW ) and workplace transmission (β) for three strengths of community transmission
(Color figure online)

groups has no impact on the coefficient of variation when the within-group transmis-
sion rate = 0.5. When considering the outbreak size distributions for high community
transmission (Fig. 4d i), we observe that uncertainty behaves as described by the
coefficient of variation. However for low community transmission, the coefficient of
variation does not capture the differences in the outbreak size distributions (Fig 4d
ii). The distribution is bimodal when there are 2 subgroups and overdispersed when
there are 15, but the coefficient of variation does not increase in the bimodal case. A
description of the impact of varying group sizes can be found in the supplementary
information (Figs. S3–5).

3.4 Heterogeneity in Infectiousness and Susceptibility Differ in their Impact on
Outbreak Uncertainty

Our next step is to identify how heterogeneity in susceptibility and infectiousness
influences the mean outbreak size and the coefficient of variation. For both infectious-
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Fig. 4 a The mean outbreak sizes for different numbers of within-workplace subgroups and strengths of
within-subgroup and community transmission (i-ii) for between group transmission (β) = 0.02. b The
assumed community transmission dynamics in panels a and c. c The coefficient of variation for outbreak
size for different numbers of within-workplace subgroups and strengths of within-subgroup and community
transmission (i-ii). d The individual stochastic (black) and mean (red) trajectories for two levels of spatial
heterogeneity(2 and 15 subgroups). Workforce size (NW ) = 300, transmission within groups (βg) = 0.9
(Color figure online)

ness and susceptibility, increasing heterogeneity (i.e. lower values of k) reduced the
mean outbreak size. Additionally, increasing the workforce size increased the mean
outbreak size for both assumptions (Fig. 5a).

As the workforce size increases, the coefficient of variation decreases for both
cases. However, we observe qualitatively different behaviour between susceptibility
and infectiousness. Namely, for susceptibility, high values of k, and low values of
workplace transmission can result in a high coefficient of variation (Fig. 5b, top row).
While, for infectiousness low values of k (corresponding to high heterogeneity) result
in a high coefficient of variation (Fig. 5b, bottom row). The coefficient of variation
decreased with the strength of community transmission for both infectiousness and
susceptibility (Fig. 6a and b). However, the qualitative behavior of the coefficient of
variation, as a function of heterogeneity and workplace transmission, did not change
as community transmission increased. This is similar to the impact of increasing the
workforce size (Figs. 5b and 6a). The coefficient of variation does not capture the
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Fig. 5 aMean outbreak sizes for different levels of heterogeneity (k) in susceptibility and infectiousness for
various workforce sizes (NW = 50, 100, 1000). b The coefficient of variation for outbreak size for different
levels of heterogeneity (k) in susceptibility and infectiousness for various workforce sizes (NW = 50, 100,
1000). Note, there are two scales in panel b. Higher values of k give lower heterogeneity (Color figure
online)

behaviour shown in the the individual stochastic trajectories (Fig. 6c). For example,
the parameter combinations at point C produce a higher coefficient of variation than
those at point B, but the individual trajectories indicated by points B show bimodal
outbreak size distributions. When assuming heterogeneity in both infectiousness and
susceptibility and low transmission in theworkplace, increasing levels of heterogeneity
had a similar impact on the coefficient of variation to when each assumptionwas tested
separately (Supplementary Information, Fig. S6). For a given level of heterogeneity in
infectiousness, increasing heterogeneity in susceptibility decreased the coefficient or
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Fig. 6 a The coefficient of variation for outbreak size for different levels of heterogeneity in susceptibility
(top row) and infectiousness (bottom row) for different values ofworkplace transmission (β).bThe assumed
community infection dynamics in panels a and c. c The individual stochastic (black) andmean (red) temporal
trajectories of the prevalence of recovered individuals for different combinations of workplace transmission
(β) and heterogeneity (k) in susceptibility (top row) and infectiousness (bottom row), for high community
transmission (line iii in panel b) (Color figure online)

variation. For a given level of heterogeneity in susceptibility, increasing heterogeneity
increased the coefficient of variation.Whenworkplace transmissionwas high, increas-
ing heterogeneity in infectiousness, but not susceptibility, impacted the coefficient of
variation. A summary of the main findings of this paper is shown in Table 2.

4 Discussion

An underlying goal of theoretical epidemiology is to account for sufficient biological
detail to provide accurate predictions whilst maintaining model tractability. In small
populations (e.g., workplaces) stochastic effects determine uncertainty in model pre-
dictions. We have studied how varying the level of complexity in stochastic models
determines uncertainty in outbreak size in a workplace. The utility of this work is two-
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Table 2 Summary of the main findings

↑ in parameter Impact on the workplace outbreak size distribution Figure reference

Community transmission ↑ mean ↓ CV 2, 3

Workplace transmission ↑ mean, non-monotonic changes in CV 2, 3

Workforce size ↑ mean ↓ CV 3

Number of workplace groups ↓ mean ↑ CV 4

Heterogeneity in infectiousness ↓ mean ↑ CV 5, 6

Heterogeneity in susceptibility ↓ mean ↓ CV 5, 6

fold; First, it identifies biological aspects (e.g., heterogeneity in infectiousness) which
might influence the shape of the outbreak size distribution. Second, it demonstrates
which levels of model complexity are required to predict stochastic uncertainty for
different transmission conditions. Previous work has used the coefficient of variation
as a measure of outbreak uncertainty (Drake 2006) and examined outbreak size dis-
tributions (Bailey 1953). Other work has considered the impact of infection duration
distributions of outbreak probabilities (Britton and Lindenstrand 2009). We extend
their work by assessing the performance of the coefficient of variation as a measure
of uncertainty for various levels of model complexity. Additionally, we compare the
impact of different model assumption on the coefficient of variation. Our findings have
the potential to inform the development of future models for workplace (or school and
nursing home) disease transmission by informing what level of biological detail is
required.

4.1 The Coefficient of Variation can be aMisleadingMeasure of Uncertainty when
Community Transmission is Low or theWorkforce is Small

For all the assumptions tested, a straight forward finding was that increasing biological
detail is more important when community transmission is low. When there is strong
transmission in the wider community, workers become infected even when workplace
transmission is low, and therefore any stochastic effects associated with workplace
transmission have little impact on model behaviour. Thus, as community transmission
increases, adding additional biological details to workplace models does not neces-
sarily increase the accuracy of predicted uncertainty. For low levels of community
transmission, increasing workplace transmission led to a decrease in the coefficient of
variation. However, in this scenario, the coefficient of variation can be a misleading
measure, because the outbreak size distribution becomes a zero-inflated bimodal (these
outbreak size distributions in the workplace were previously reported in Sánchez-
Taltavull et al. (2021)). Note, it is possible for a bimodal and unimodal distribution to
have the same coefficient of variation (Supplementary Information, Fig. S7).

Therefore the coefficient of variation should be used with caution when commu-
nity transmission is low. However, even when community transmission is low, the
coefficient of variation is a reliable measure of uncertainty for large work forces.
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4.2 How Spatial Heterogeneity Determines Uncertainty Depends on Community
Transmission

It has been shown previously that outbreak size depends on the level of spatial het-
erogeneity (Ball and Lyne 2001; Ball and Neal 2002). Additionally, spatial structure
can be an effective protective measure for healthcare workers (Sánchez-Taltavull et al.
2021). We observed that how uncertainty changed with the number of groups depends
on community transmission. For low community transmission, the coefficient of vari-
ation should not be used as a measure of uncertainty because it did not capture the
changes observed in the outbreak size distributions. When community transmission is
high the predicted uncertainty increasedwith the number of groups. Therefore, models
accounting for spatial structure should consider uncertaintywhen spatial heterogeneity
is high.

4.3 Heterogeneity in Infectiousness and Susceptibility Qualitatively Differed in
their Impact on Uncertainty

Previous work on how individual-level variation determines disease emergence and
outbreak dynamics showed a dependence on the level of heterogeneity, but susceptibil-
ity and infectiousness are not compared in the same context (Lloyd-Smith et al. 2005;
Garske and Rhodes 2008; Gomes et al. 2021, 2022). Pathogens that show hetero-
geneity in susceptibility can lead to similar epidemiological predictions to pathogens
that show heterogeneity in infectiousness. However, we found that changing the level
of overdispersion in susceptibility and infectiousness produced qualitatively differ-
ent predictions for the coefficient of variation. Therefore the conclusions regarding
one type of heterogeneity should not be extrapolated to the other. It should also be
noted that in our study, we were interested specifically in how these types of hetero-
geneity influence the stochastic effects inherent in small populations. To explicitly
model some susceptible individuals disproportionately interacting with asymptomatic
individuals would require inclusion of explicit spatial structure, such as in a network
model. Another approach would be to simulate a birth-death process in which there is
overdispersion in the so-called offspring distribution of an infected individual.

4.4 Model Limitations and FutureWork

A primary limitation of this work is that we do not identify areas of the parameter
space which are relevant for specific occupations (within-workplace transmission and
spatial structure) or pathogens (heterogeneity in infectiousness and susceptibility).
This process would allow consideration of both stochastic and parametric uncertainty.
Subsequently, the model could be validated with empirical observations for various
occupations. Predictions for workplace transmission of SARS-CoV-2 might be pos-
sible in this regard, as data are available on community transmission (Elson et al.
2021; Chen et al. 2021), workplace cases (Southall et al. 2021; Stringhini et al. 2021;
Appleby 2021), susceptibility (Gomes et al. 2021, 2022) and infectiousness (Illing-
worth et al. 2021). We based our analyses around the coefficient of variation of the
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cumulative number of recovered individuals at the final time step. How uncertainty in
transmission dynamics changes through time is also likely to be of interest (i.e. when
should testing be implemented?), particularly for scenarios where a bimodal outbreak
size distribution is predicted. However, although the coefficient of variation can be
calculated for each time step, it does not give any information regarding the shape of
the epidemic curve, only the variation across individual simulations.

5 Conclusion

The detail required to accurately capture uncertainty depends on the strength of
community and workplace transmission, workforce size, spatial heterogeneity and
individual heterogeneity.Additionally,wehave identified areas of the parameter spaces
where the coefficient of variation is not a reliable measure of outbreak size uncertainty.
Future mathematical models intended to inform workplace policies should carefully
consider the transmission conditions and biological details of the pathogen before
communicating predicted uncertainty to policy makers.
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org/10.1007/s11538-023-01249-x.
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