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Abstract
This article proposes an alternative to the Hosmer-Lemeshow (HL) test for evaluating the calibration of probability

forecasts for binary events. The approach is based on e-values, a new tool for hypothesis testing. An e-value is a random
variable with expected value less or equal to one under a null hypothesis. Large e-values give evidence against the null
hypothesis, and the multiplicative inverse of an e-value is a p-value. Our test uses online isotonic regression to estimate the
calibration curve as a ‘betting strategy’ against the null hypothesis. We show that the test has power against essentially
all alternatives, which makes it theoretically superior to the HL test and at the same time resolves the well-known
instability problem of the latter. A simulation study shows that a feasible version of the proposed eHL test can detect
slight miscalibrations in practically relevant sample sizes, but trades its universal validity and power guarantees against
a reduced empirical power compared to the HL test in a classical simulation setup. We illustrate our test on recalibrated
predictions for credit card defaults during the Taiwan credit card crisis, where the classical HL test delivers equivocal
results.
keywords and phrases: E-value, Probability forecast, Calibration validation, Goodness-of-fit, Isotonic regression.

1. INTRODUCTION
Suppose that we have observations (pi, yi)

n
i=1 of inde-

pendent and identically distributed (iid) random variables
(Pi, Yi)

n
i=1 with (Pi, Yi) ∈ [0, 1]×{0, 1}, i = 1, . . . , n. The in-

terpretation is that Pi is a prediction for the probability that
Yi = 1. The random variables are defined on some underly-
ing probability space (Ω,F) and P denotes all probability
measures on (Ω,F). Hosmer and Lemeshow [18] propose a
test for the null hypothesis of perfect calibration

HHL,n = {P ∈ P | EP(Yi|Pi) = Pi

P-almost surely, i = 1, . . . , n}.
(1.1)

The Hosmer-Lemeshow (henceforth HL) test is based on
partitioning the interval [0, 1] in g ∈ N bins and counting the
observed numbers of events, o1g, and no event occurrences,
o0g, in each bin. Based on that binning and counting proce-
dure, the HL test statistic to test for perfect calibration of
the probability predictions is

Ĉ =

g∑
k=1

[
(o1k − ê1k)

2

ê1k
+

(o0k − ê0k)
2

ê0k

]
, (1.2)

where ê1k and ê0k are the expected event and no event occur-
rences in bin k, respectively [19]. Under the null hypothesis,
Ĉ asymptotically follows a χ2-distribution with g degrees of
freedom given that the sample (Pi, Yi)

n
i=1 was not used for

model estimation (and g − 2 degrees of freedom otherwise).
∗Corresponding author.
1The first two authors contributed equally to this work.

Technically, the choice of the binning procedure is up the
user of the HL test and is conventionally implemented via
quantile based binning strategies with g = 10, resulting in
equally populated bins (decile-of-risk). Less commonly, the
test is based on equidistantly spaced bins, where the unit
interval (or the range of prediction values) is divided into
g equidistant bins. While little attention is devoted to the
binning procedure in practical applications, it implicitly de-
termines the set of alternatives the test has power against
[8, Section 5], such that the test result is often highly sen-
sitive to the exact implementation of the binning; see e.g.,
[17, 3, 22] and our empirical application in Section 4. Never-
theless, the HL test is still the literature’s favorite for check-
ing the calibration of binary prediction models and com-
monly used in current and highly influential medical and epi-
demiological studies; see amongst many others [26, 28, 23].

In this article, we suggest a safe and stable HL test based
on e-values (that we describe below) and isotonic regression
[2, 5]. The test is henceforth called eHL test. Dimitriadis et
al. [9] recently propose the use of isotonic regression to re-
solve the closely related instability issue stemming from bin-
ning approaches in so-called reliability diagrams in forecast
evaluation. While feasible inference on the isotonic regres-
sion for classical testing procedures is hampered by com-
plicated asymptotic distributions and an inconsistency of
the bootstrap, the e-values adopted here prove to be an ap-
pealing alternative in this setting. Based on online isotonic
regression studied by [20], we show that (an ideal version
of) our eHL test has power against essentially all deviations
from calibration, which makes it theoretically superior to
the classical HL test.
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E-values, where ‘e’ abbreviates the word ‘expectation’,
were proposed recently as an alternative to p-values in test-
ing problems. In a nutshell, an e-value is a realization of
a non-negative random variable whose expected value is at
most one under a given null hypothesis. This already signals
that an e-value itself allows for meaningful interpretations
since an e-value greater than one provides evidence against
the null hypothesis. Additionally, the multiplicative inverse
of an e-value is a conservative p-value by Markov’s inequal-
ity. From a game-theoretic perspective, the e-value has a
simple financial meaning in the sense that the e-value can
be seen as the factor by which a skeptic multiplies her money
when betting against the null hypothesis; see [32, 31].

An important advantage of e-values over p-values is their
uncomplicated behavior in combinations: the arithmetic av-
erage of e-values also is an e-value, likewise the product of
independent or successive e-values; see [31, 13, 39]. In prac-
tice, this appeals because more evidence can be added later,
i.e. evidence across studies can easily be combined.

The proposed eHL test offers a safe alternative to a frag-
ile state-of-the-art approach by avoiding ad-hoc choices and
software instabilities. It can be regarded as an application of
the Universal Inference approach of [40]. While this method
allows to construct valid tests under only weak assump-
tions, it has been observed that this validity often comes
at the price of a diminished power [34, 35]. In Section 2,
we show that an ideal – but computationally infeasible –
variant of the eHL test does have guaranteed power to de-
tect essentially all violations of calibration. Our proof relies
on connections between the proposed e-value and the regret
in random permutation online isotonic regression, which is
studied by [20]. It has been observed that power guaran-
tees for anytime-valid tests can be obtained by means of
regret bounds of online prediction methods, see for example
the discussion in [7]. Previously, [27] and [33] exploit that
connection in the cases of sequential mean and two sam-
ple testing, respectively. Our result demonstrates that such
a connection also exists in the batch case of e-values for a
fixed sample size n due to connections with the online ran-
dom permutation setting.

In Section 3, we compare a feasible version of the eHL test
to the classical HL test in a simulation study. As expected,
we find that the eHL test has conservative rejection rates
under the null hypothesis and quickly develops power un-
der model misspecification. While its empirical test power
is lower than the one of the classical HL test, we do not
consider this to be problematic as HL tests are often car-
ried out in cases of vast data sets and are even criticized
as being “too powerful” in that they reject essentially all,
even acceptably well calibrated models [29, 25]. See [8] for
an alternative solution to this problem based on confidence
bands.

We apply the eHL test in Section 4 to predictions of a
logistic regression model for the binary event of credit card
defaults in Taiwan in 2005, where over-issuing of credit cards

lead to many default payments and a subsequent credit card
crisis [43]. The eHL test provides clear evidence against cal-
ibration of the logistic model predictions, and further illus-
trates that recalibration methods work well. In contrast, the
classical HL test based on different natural binning choices
delivers equivocal results with p-values ranging from 0 to
0.91 for a single prediction method, implying that a re-
searcher could have cherry-picked the binning specification
and hence the test result to her will.

2. CONSTRUCTION OF HL E-VALUES
2.1 Preliminaries

An e-variable for HHL,n is a non-negative random vari-
able E (that is allowed to take the value +∞) such that
EP(E) ≤ 1 for all P ∈ HHL,n. An e-value is a realization
of an e-variable. An e-variable E always yields a valid p-
variable 1/E (a p-value is a realized p-variable) by Markov’s
inequality, since

P

( 1

E
≤ α

)
≤ αEP(E) ≤ α, P ∈ HHL,n. (2.1)

We reject the null hypothesis HHL,n if we observe a large
value of E. If we want to ensure a classical p-guarantee then
we have to determine the rejection region for a given α by
(2.1). Vovk and Wang [38] show that this is essentially the
only way to transform an e-variable into a p-variable. We say
that an e-variable has the alternative hypothesis H′ ⊂ P if
EQ(E) > 1 for all Q ∈ H′.

2.2 Sample Size One
We first construct e-variables for the sample size one

Hosmer-Lemeshow null hypothesis

HHL,1 = {P ∈ P | EP(Y |P ) = P}.

In the special case here, e-variables are likelihood ratios con-
ditional on P . Indeed, if q ∈ [0, 1], an e-variable for HHL,1
is given by

Eq(P, Y )=
qY (1− q)1−Y

PY (1− P )1−Y
=

{
q/P, if Y = 1,
(1− q)/(1− P ), if Y = 0.

The variable Eq(P, Y ) is clearly non-negative, and for P ∈
HHL,1,

EP(Eq(P, Y )) = EP

(
EP(Y | P )

q

P
+ EP(1− Y | P )

1− q

1− P

)
= EP

(
P

q

P
+ (1− P )

1− q

1− P

)
= 1.

To find alternative hypotheses for the e-variable Eq, let π̄ =
EQ(Y | P ). Then,

EQ(Eq(P, Y ) | P ) = π̄
q

P
+ (1− π̄)

1− q

1− P
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is strictly larger one if and only if, π̄ > P and q > P , or,
π̄ < P and q < P , i.e., if π and q are to the same side of P .
This shows that if q < P , Eq has the alternative

H′ = {Q ∈ P | EQ(Y | P ) < P}, (2.2)

and if q > P , Eq has the alternative

H′ = {Q ∈ P | EQ(Y | P ) > P}. (2.3)

It is possible to show that basically any e-variable for
HHL,1 is of the form E = Eq(P, Y ) for some q (depending
on P ) but this requires some more arguments; it follows
by the construction in [15], see also [41]. The connection
of Eq(P, Y ) to the e-variables in [15] of type E = 1 + λD
with D ≥ −1 such that EP(D) = 0 for P ∈ HHL,1, follows
from the fact that λ in this representation can be bijectively
mapped to q. In this context,

E = 1 + λ(P − Y ) (2.4)

is an e-variable for HHL,1 for any λ that is σ(P )-measurable
with −(1/P ) ≤ λ ≤ 1/(1− P ). If P = 1, there is no restric-
tion on λ from above, and analogously if P = 0, there is no
restriction from below. By choosing λ = (P −q)/(P (1−P )),
we obtain that E = Eq(P, Y ).

Clearly, the e-variable Eq(P, Y ) may take the value infin-
ity if either P = 0 and Y = 1 or P = 1 and Y = 0 occurs;
a single observation Y = 1 or Y = 0 is sufficient to reject
the hypothesis of calibration with certainty if the predicted
probabilities are in {0, 1}. For the remainder of the theoret-
ical part of this paper, we will always make the assumption
P(P ∈ {0, 1}) = 0 to exclude these special but uninteresting
cases.

2.3 Combining e-Values in the iid Case
For testing HHL,n, we suggest the e-variable

Eid
HL,n =

n∏
i=1

Eqi(Pi, Yi), (2.5)

where qi is σ(P1, . . . , Pi, Y1, . . . , Yi−1)-measurable. For P ∈
HHL,n, the expectation EPE

id
HL,n equals

EP

(
EP

( n∏
i=1

Eqi(Pi, Yi)|P1, . . . , Pn, Y1, . . . , Yn−1

))
= EP

( n−1∏
i=1

Eqi(Pi, Yi)

× EP

(
Eqn(Pn, Yn)|P1, . . . , Pn, Y1, . . . , Yn−1

))
= EP

( n−1∏
i=1

Eqi(Pi, Yi)
(
1+

Pn − qn
Pn(1− Pn)

EP(Pn − Yn|P1, . . . , Pn, Y1, . . . , Yn−1)
))

= EP

( n−1∏
i=1

Eqi(Pi, Yi)
(
1 +

Pn − qn
Pn(1− Pn)

EP(Pn − Yn|Pn)
))

= EP

( n−1∏
i=1

Eqi(Pi, Yi)
)
= EPE

id
HL,n−1 = · · · = 1,

where we used the equivalent representation of Eq(P, Y ) in
(2.4). In particular, from the above derivation it is easy to
see that (Eid

HL,n)n∈N is a test martingale.
The e-variable Eid

HL,n depends on the ordering of
(Pi, Yi)

n
i=1 through the choice of qi. Let Sn denote all per-

mutations of {1, . . . , n}, and for σ ∈ Sn define Eσ
HL,n as

Eid
HL,n for the random variables (Pσ(i), Yσ(i))

n
i=1 instead of

(Pi, Yi)
n
i=1. Generally,

sup
σ∈Sn

Eσ
HL,n

is not an e-variable for HHL,n, so one would guess that
there are opportunities to fish for (spurious) significance
by choosing some specific ordering of a sample of obser-
vations (pi, yi)

n
i=1. In constructing a ‘safe’ HL test, we are

particularly focused on avoiding such instabilities through
order-dependencies. Nevertheless, order-dependent strate-
gies might be considered if they preclude possibilities to fish
for significance.

In contrast, if there is a natural ordering of the observa-
tions such as a time stamp then the problem usually does
not occur in applications since a different ordering of the ob-
servations is hard to justify. Indeed, when the observations
are sequential (and possibly dependent), the e-variable de-
fined at (2.5) is also an e-variable for the hypothesis

HHL,n,seq = {P ∈ P | EP(Yi|P1, . . . , Pi, Y1, . . . , Yi−1) = Pi

P-almost surely, i = 1, . . . , n}.

Contrary to classical theory, the sequential case is easier to
treat than the iid case and has been the focus of many works
employing e-values including for example [41, 15].

Coming back to our situation with iid data, an alternative
to (2.5) could be

EHL,n,sym =
1

n!

∑
σ∈Sn

Eσ
HL,n.

This strategy is essentially the merging technique for in-
dependent e-values in Section 4 of [38], and the object of
interest in this article.

2.4 An Ideal Test with Power Guarantees
The statistic EHL,n,sym is an e-variable solely under the

requirement that for i = 1, . . . , n and all permutations σ,
the probabilities qσ(i) in Eσ

HL,n are a measurable function of
(Pσ(j), Yσ(j)), j = 1, . . . , i− 1, and of Pσ(i). In the following,
we write

qσ,σ(i) = fi(Pσ(1), . . . , Pσ(i), Yσ(1), . . . , Yσ(i−1)),
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using the same algorithm fi for constructing qσ,σ(i) based
on Pσ(1), . . . , Pσ(i), Yσ(1), . . . , Yσ(i−1) for all permutations σ.
The challenge is then how to choose the functions f1, . . . , fn
such that the test has power. As argued by [13, 31], a suitable
measure of power for e-values is the growth rate EQ[log(E)]
under an alternative distribution Q, so that ideally, E grows
exponentially fast in the sample size if the null hypothesis
is violated.

Our algorithm for choosing f1, . . . , fn is inspired by per-
mutation online isotonic regression, studied extensively by
[20]. In machine learning applications, isotonic regression is
an established method for the recalibration of binary clas-
sifiers; see e.g. [44] or [12]. Recently, [9] related the isotonic
regression approach to reliability diagrams, which are a key
diagnostic tool in evaluating probability forecast for binary
events, especially in meteorology. Our results demonstrate
that isotonic regression is also suitable for constructing uni-
versal tests of calibration.

To introduce the algorithm for constructing our e-
variable, let p1, . . . , pi ∈ [0, 1] be probability predictions and
y1, . . . , yi ∈ {0, 1} be the corresponding outcomes. Then the
isotonic regression of y1, . . . , yi on p1, . . . , pi can be described
as the maximizer of

R̂n(g1, . . . , gi) = R̂(g1, . . . , gi; p1, . . . , pi, y1, . . . , yi)

=

i∑
j=1

log

((
gj
pj

)yj
(
1− gj
1− pj

)1−yj
)
,

(2.6)

over all g1, . . . , gi such that gk ≤ gl if pk ≤ pl. Notice that
the quantity in (2.6) is simply a normalized version of the
logarithmic score, and the maximizer does not depend on the
fact that we normalize by p

yj

j (1− pj)
1−yj . Moreover notice

that up to rescaling by 1/i, this criterion also equals the sam-
ple version of EQ[log(E)] when the e-variable E is the like-
lihood ratio between the probabilities gj and pj . A unique
maximizer exists — unique since we exclude the cases pj = 0
and yj = 1 or pj = 1 and yj = 0 for some j — and can be
computed efficiently with the PAV-Algorithm [2]. This esti-
mator only defines a recalibrated version of p1, . . . , pi, and a
method is required to define the regression at a pi+1 ∈ [0, 1]
not contained in the sample. To obtain out-of-sample pre-
dictions with small regret in terms of log-loss, we rely on a
strategy of [30] that was adapted to isotonic regression by
[37], and applied by [20] to derive regret bounds for isotonic
regression in an online setting. The out-of-sample value at
pj+1 is defined as follows,

fi+1(p1, . . . , pi, pi+1, y1, . . . , yi) =
gi+1,1

gi+1,1 + 1− gi+1,0
,

(2.7)
where gi+1,1 and gi+1,0 are the (i + 1)-th component
the isotonic regression of pi, . . . , pi, pi+1 with observations
y1, . . . , yi, 1 or y1, . . . , yi, 0, respectively. That is, to define
the isotonic regression at the unseen pi+1, we fit two iso-
tonic regression in which we include pi+1 in the sample with

artificial observations of 1 and of 0 respectively, and take the
ratio (2.7) as recalibrated probability. The definition (2.7)
is extended to the case i = 0 by setting g1,1 = g1,0 = 0.5.
The workflow to construct EHL,n,sym is then described in
Algorithm 1.

Algorithm 1 Construction of EHL,n,sym.
1: EHL,n,sym ← 0
2: for all permutations σ of {1, . . . , n} do
3: Eσ

HL,n ← (0.5/Pσ(1))
Yσ(1)(0.5/(1− Pσ(1)))

1−Yσ(1)

4: for i = 1, . . . , n− 1 do
5: qσ,σ(i+1) ← fi(Pσ(1), . . . , Pσ(i+1), Yσ(1), . . . , Yσ(i)) as

defined in (2.7)
6: Eσ

HL,n ← Eσ
HL,n · (qσ,σ,σ(i+1)/Pσ(i+1))

Yσ(i+1)((1 −
qσ,σ(i+1))/(1− Pσ(i+1)))

1−Yσ(i+1)

7: end for
8: EHL,n,sym ← EHL,n,sym + Eσ

HL,n/n!
9: end for

10: return EHL,n,sym

To state a result about the power of EHL,n,sym, we need a
population version of the isotonic regression estimator. For
a function π : [0, 1] → [0, 1], let

RQ(π) = EQ

[
log

(
(π(P )/P )Y ((1− π(P ))/(1− P ))1−Y

)]
if this expectation exists. Let F↑,[0,1] be the set of nonde-
creasing functions π : [0, 1] → [0, 1]. If Q is the empirical
distribution of (P1, Y1), . . . , (Pn, Yn), then it is easy to see
that RQ coincides with the target function R̂ of the usual iso-
tonic regression in finite samples. With these definitions, we
can state the following result about the power of EHL,n,sym.

Theorem 2.1. Let (P1, Y1), . . . , (Pn, Yn), (P, Y ) be iid with
distribution Q such that

EQ[log(P )2 + log(1− P )2] < ∞. (2.8)

Then,

(i) there exists a Q-almost-surely unique maximizer π∗ ∈
F↑,[0,1] of RQ;

(ii) for a version of π∗ from part (i), let

D(Q) = RQ(π
∗)

= EQ[log(π
∗(P )/P )Y ((1− π∗(P ))/(1− P ))1−Y ];

then D(Q) ≥ 0, with equality if and only if Q ∈ HHL,1;
(iii) the e-value EHL,n,sym from Algorithm 1 satisfies

EHL,n,sym

≥ exp

(
n∑

i=1

log

(
π∗(Pi)

Pi

)Yi
(
1− π∗(Pi)

1− Pi

)1−Yi

− C
√
n log(n)2

)
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for an universal constant C > 0, and hence

EQ[log(EHL,n,sym)] ≥ nD(Q)− C
√
n log(n)2.

The integrability assumption (2.8) is solely required to
prove parts (i) and (ii) of the theorem, and the lower bound
on EHL,n,sym and the expectation of its logarithm in fact
hold for any π ∈ F↑,[0,1]. However, part (iii) only becomes
useful in conjunction with (i) and (ii): the fact that D(Q) ≥
0 with equality if and only if Q ∈ HHL,1 implies that the
test has positive growth rate for all alternative distributions
Q if n is large enough. This is a surprising result, since
it might seem that restricting our estimator of EQ[Y |P ] to
isotonic functions in P implies some restriction on the class
of alternatives against which the test has power — which is
not the case. If p �→ EQ[Y |P = p] is non-decreasing, then
EQ[Y |P ] = π∗(P ) almost surely and D(Q) equals

max
π : [0,1]→[0,1]

EQ

[
log

(
(π(P )/P )Y ((1− π(P ))/(1− P ))1−Y

)]
,

which follows by applying, in the expression above, the tower
property of conditional expectations and strict concavity of
p �→ p log(p)+(1−p) log(1−p). Hence, in that case our test
is asymptotically growth rate optimal in the sense that

lim inf
n→∞

EQ[log(EHL,n,sym)]

n
≥ D(Q)

is maximal among the growth rates of all tests for the hy-
pothesis of calibration. In the case when p �→ EQ[Y |P = p] is
not increasing, our test is still optimal among all tests with
non-decreasing alternative probabilities π : [0, 1] → [0, 1], by
definition of the optimal isotonic approximation π∗. How
large the difference in growth rate to the optimal test is
depends on how strongly the isotonicity assumption is vio-
lated, and is difficult to quantify in general.

Apart from the asymptotic growth rate, the power of
the test also depends on the regret, which is of order
O(n1/2 log(n)) for the algorithm presented. With a more
complex exponential weights strategy given in Section 7.1
of [21], instead of the method in (2.7), one can achieve a
smaller regret of order O(n1/3 log(n)2/3), which matches the
optimal rate up to logarithmic factors. To see that this in-
deed yields a valid test, notice that the hypothesis HHL,n

is about the conditional expectations of Yi given Pi and,
hence, one can assume that P1, . . . , Pn are given in ad-
vance to the learner. In particular, the probabilities qσ,σ(i)
then also depend on Pσ(i+1), . . . , Pσ(n), but they do not de-
pend on Yσ(i+1), . . . , Yσ(n). This is not allowed in the online
permutation isotonic regression setting, where the learner
has to make the prediction for Yσ(i) without knowledge of
Pσ(i+1), . . . , Pσ(n).

Part (iii) of Theorem 2.1 only gives a diverging lower
bound on the expected value of log(EHL,n,sym). However,
under assumption (2.8) the average growth rate

1

n

n∑
i=1

log

(
π∗(Pi)

Pi

)Yi
(
1− π∗(Pi)

1− Pi

)1−Yi

satisfies the strong law of large numbers, and since D(Q) > 0
for Q 	∈ HHL,1, this implies that EHL,n,sym → ∞ almost
surely as n → ∞. In particular, for any Type-I error α and
desired power 1− β, there exists a sample size N such that
Q(EHL,N,sym ≥ 1/α) ≥ 1− β for N ≥ n.

Proof of Theorem 2.1. Part (i) is a consequence of the fol-
lowing facts. If (πn)n∈N is a sequence in F↑,[0,1] such that
limn→∞ RQ(πn) = supπ∈F↑,[0,1]

R(π), then by Helly’s selec-
tion theorem, there exists a subsequence (πnk

)k∈N converg-
ing pointwise to some π∗ ∈ F↑,[0,1]. The function π(P ) �→
log

(
(π(P )/P )Y ((1− π(P ))/(1− P ))1−Y

)
inside the expec-

tation in the definition of RQ is strictly concave, and the set
F↑,[0,1] is convex. Hence RQ(π

∗) ≥ RQ(π) for all π ∈ F↑,[0,1],
and equality holds if and only if π = π∗ Q-almost-surely,
provided that RQ(π

∗) is finite, which is shown below.
The nonnegativity in part (ii) holds because F↑,[0,1] con-

tains the identity function, and we only have to prove that
D(Q) > 0 if Q 	∈ HHL,1. For this, it is sufficient to show
that there exists some π with RQ(π) > 0. We start with
some results about the existence of certain expected values.
Since Y |P is Bernoulli with expectation π̄(P ), we have

EQ[log (π
∗(P )/P )Y ((1− π∗(P ))/(1− P ))1−Y | P ]

= π̄(P ) log(π∗(P )/P )+(1−π̄(P )) log((1−π∗(P ))/(1−P ))

and the nonnegativity of the Kullback-Leibler divergence
implies

π̄(P ) log(π∗(P )/P )+(1− π̄(P )) log((1−π∗(P ))/(1−P ))

≤ π̄(P ) log(π̄(P )/P ) + (1− π̄(P )) log((1−π̄(P ))/(1−P )),

hence we obtain

0 ≤ EQ[log (π
∗(P )/P )Y ((1− π∗(P ))/(1− P ))1−Y ]

≤ EQ[π̄(P ) log(π̄(P )/P )

+ (1− π̄(P )) log((1− π̄(P ))/(1− P ))]

≤ EQ[| log(P )|+ | log(1− P )|]

≤
√

EQ[log(P )2] +
√

EQ[log(1− P )2] < ∞. (2.9)

Let now π̃(P ) be a version of the conditional expectation
of π̄(P ) with respect to the sigma lattice generated by P ,
which π̃(P ) satisfies the following properties:

π̃ is increasing; (2.10)
EQ[(π̄(P )− π̃(P ))h(P )] ≤ 0 for all increasing h such that

EQ[h(P )2] < ∞; (2.11)
EQ[π̄(P )1B(P )] = EQ[π̃(P )1B(P )] for all B in the

σ-field generated by π̃. (2.12)

Equation (2.10) holds by definition of the conditional expec-
tation given a sigma lattice, and (2.11) and (2.12) are by [5,
Equations (3.9) and (3.11)]. By (2.12), we have π̄(P ) = P
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almost surely if and only if π̃(P ) = P almost surely. By
definition of π∗(P ), we know that

EQ[log (π̃(P )/P )Y ((1− π̃(P ))/(1− P ))1−Y ]

≤ EQ[log (π
∗(P )/P )Y ((1− π∗(P ))/(1− P ))1−Y ].

The goal is now to prove

EQ

[
log

(
(π̃(P )/P )Y ((1− π̃(P ))/(1− P ))1−Y

)]
≥ 0,

with equality if and only if π̃(P ) = P Q-almost-surely. No-
tice that π̃ is only defined on the support of P , but one
can assume without loss of generality that it is defined on
the whole interval [0, 1] by right-continuous constant ex-
trapolation in parts where it is not defined. Since π̃ is in-
creasing, there exist at most countably many disjoint in-
tervals Ai ⊆ [0, 1], i ∈ I, on which π̃ is constant with
some value ci ∈ [0, 1]. Furthermore, there are at most count-
ably many disjoint intervals Bj , j ∈ J , whose union equals
[0, 1] \

⋃
i∈I Ai. We now make a few case distinctions.

Fix i with ci > 0 and assume that Ai = [ai, bi]; the
following arguments can be easily modified for the case that
Ai is (half-)open. Define the function

hi(x) =

⎧⎪⎨⎪⎩
log(1/ai) + 1, if x < ai,

log(1/x), if x ∈ [ai, bi],

−1, if x > bi.

Then hi(P ) is square integrable due to (2.9), hi is decreas-
ing, and constant outside of [ai, bi], so that

0
(2.11)
≤ EQ[(π̄(P )− π̃(P ))hi(P )]

(2.12)
= EQ[(π̄(P )− π̃(P )) log(1/P )1Ai(P )]

(2.12)
= EQ[(π̄(P )− π̃(P )) log(ci/P )1Ai(P )]

= EQ[(π̄(P )− π̃(P )) log(π̃(P )/P )1Ai(P )],

where the last step is due to the fact that π̃(P ) = ci for
P ∈ Ai. Hence

EQ[π̄(P ) log(π̃(P )/P )1Ai(P )]

≥ EQ[π̃(P ) log(π̃(P )/P )1Ai(P )].

If ci = 0, the above inequality is still true because (2.12)
implies that π̃(P ) = π̄(P ) = 0 for P ∈ Ai in that case, and
we define 0 log(0) := 0.

Similarly, for ci < 1 we define

hi(x) =

⎧⎪⎨⎪⎩
log(1/(1− bi)) + 1, if x > bi,

log(1/(1− x)), if x ∈ [ai, bi],

−1, if x < ai,

which is square integrable and increasing. As before,

0
(2.11)
≤ EQ[(π̃(P )− π̄(P ))hi(P )]

(2.12)
= EQ[(π̃(P )− π̄(P )) log(1/(1− P ))1Ai(P )]

(2.12)
= EQ[(π̃(P )− π̄(P )) log((1− ci)/(1− P ))1Ai(P )]

= EQ[(1− π̄(P )− (1− π̃(P )))

× log((1− π̃(P ))/(1− P ))1Ai(P )],

so we obtain

EQ[(1− π̄(P )) log((1− π̃(P ))/(1− P ))1Ai(P )]

≥ EQ[(1− π̃(P )) log((1− π̃(P ))/(1− P ))1Ai(P )],

which also holds if π̃(P ) = 1 on Ai. Hence we have shown
that

0 ≤ EQ[1Ai(P )(π̃(P ) log(π̃(P )/P )

+ (1− π̃(P )) log((1− π̃(P ))/(1− P )))]

≤ EQ[1Ai(P )(π̄(P ) log(π̃(P )/P )

+ (1− π̄(P )) log((1− π̃(P ))/(1− P )))]

= EQ[1Ai(P ) log (π̃(P )/P )Y ((1− π̃(P ))/(1− P ))1−Y ],

and equality holds if and only if π̃(P ) = P Q-almost-surely
on Ai, since the Kullback-Leibler divergence is non-negative.

Consider now an interval Bj . Since π̃ is strictly increasing
on Bj , the sigma field generated by π̃ contains all Borel sets
which are subsets of Bj . Then (2.12) implies that π̃(P ) =
π̄(P ) Q-almost-surely on Bj , hence

EQ[1Bj (P )(π̄(P ) log(π̃(P )/P )

+ (1− π̄(P )) log((1− π̃(P ))/(1− P )))]

= EQ[1Bj (P )(π̃(P ) log(π̃(P )/P )

+ (1− π̃(P )) log((1− π̃(P ))/(1− P )))] ≥ 0

with equality if and only if π̃(P ) = P Q-almost-surely on Bj .
With the above derivations, we obtain that for any finite

number of indices i1, . . . , in ∈ I, j1, . . . , jn ∈ J and

Cn =

(
n⋃

k=1

Aik

)
∪
(

n⋃
l=1

Bjl

)
,

the following inequalities hold,

0 ≤ EQ[1Cn(P )(π̃(P ) log(π̃(P )/P )

+ (1− π̃(P )) log((1− π̃(P ))/(1− P )))] (2.13)
≤ EQ[1Cn(P )(π̄(P ) log(π̃(P )/P )

+ (1− π̄(P )) log((1− π̃(P ))/(1− P )))]. (2.14)

Since the integrand in (2.13) is non-negative and the inte-
grand in (2.14) dominated pointwise by

M(P )= π̄(P ) log(π̄(P )/P )+(1−π̄(P )) log((1−π̄(P ))/(1−P ))

with EQ[M(P )] < ∞, we can choose index sequences such
that

⋃N
n=1 Cn increases to [0, 1], and apply Fatou’s Lemma

and the dominated convergence theorem to obtain

0 ≤ EQ[π̃(P ) log(π̃(P )/P )
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+ (1− π̃(P )) log((1− π̃(P ))/(1− P ))] (2.15)
≤ EQ[π̄(P ) log(π̃(P )/P )

+ (1− π̄(P )) log((1− π̃(P ))/(1− P ))].

Equality in (2.15) holds if and only if π̃(P ) = P almost
surely.

For part (iii), the inequality of arithmetic and geometric
mean implies that

E ≥

⎛⎝ ∏
σ∈Sn

n∏
i=1

q
Yσ(i)

σ,σ(i)(1− qσ,σ(i))
1−Yσ(i)

P
Yσ(i)

σ(i) (1− Pσ(i))
1−Yσ(i)

⎞⎠1/n!

= exp

⎛⎝ 1

n!

∑
σ∈Sn

n∑
i=1

log
q
Yσ(i)

σ,σ(i)(1− qσ,σ(i))
1−Yσ(i)

P
Yσ(i)

σ(i) (1− Pσ(i))
1−Yσ(i)

⎞⎠ .

The term inside the exponential can be written as

L = Eσ

⎡⎣ n∑
i=1

log
q
Yσ(i)

σ,σ(i)(1− qσ,σ(i))
1−Yσ(i)

P
Yσ(i)

σ(i) (1− Pσ(i))
1−Yσ(i)

⎤⎦ ,

which is the negative of the entropic loss defined in Section
4.4 of [20], and the expectation Eσ[·] is with respect to the
uniform distribution over all permutations σ of {1, . . . , n}.
It follows from Lemma 2.1, Theorem 4.3 and the proof of
Theorem 4.1 of [20] that for all K ∈ N,

L−
n∑

i=1

log
π̂Yi

i (1− π̂i)
1−Yi

PYi
i (1− Pσ(i))1−Yi

≥ −
n∑

k=1

(
2

K
+

4K

k
log(1 + k)

)
,

where π̂1, . . . , π̂n is the isotonic regression of Y1, . . . , Yn on
P1, . . . , Pn, i.e. the maximizer of

(g1, . . . , gn) �→ R̂(g1, . . . , gn; P1, . . . , Pn, Y1, . . . , Yn),

as defined at (2.6). The result now follows because

R̂(π̂1, . . . , π̂n; P1, . . . , Pn, Y1, . . . , Yn)

≥ R̂(π∗(P1), . . . , π
∗(gn); P1, . . . , Pn, Y1, . . . , Yn)

and
∑n

k=1(2/K + 4K log(1 + k)/k) = O(
√
n(log(n))2) for

K of order
√
n/(log(n))2.

Remark. A alternative idea for constructing an e-value for
HHL,n could be a Bayesian approach inspired by the origi-
nal procedure of the HL-test. Conditional on P1, . . . , Pn, the
likelihood of Y1, . . . , Yn is fully specified. For the likelihood
under the alternative, one could put a meta-prior on the
number g of quantile based bins. Conditional on g, the bin
probabilities are then given by a Dirichlet prior. If the hyper-
parameters of the Dirichlet prior are chosen independently of
the data, then the resulting likelihood ratio (e-value) does

not depend on the ordering of the data. However, if one
desires to choose the hyper-parameters in a data-adaptive
manner, then a similar procedure with averaging over per-
mutations as in our proposed e-value, or a repeated sample
splitting approach seem necessary to avoid instabilities due
to data ordering in the iid case. We do not expect to obtain
universal power guarantees with this approach since it is
based on binning and at least some continuity assumptions
on the distribution under the alternative seem necessary.

2.5 A Feasible Version of the Test
The ideal test described in Algorithm 1 cannot be im-

plemented for practically relevant n, as it requires to com-
pute e-values over all n! permutations of {1, . . . , n}. Even
for a single permutation σ, the inner loop in Algorithm 1
has computational complexity of O(n2): it requires comput-
ing 2n isotonic regressions to generate out-of-sample predic-
tions. We suggest to address these problems above by the
simplified version in Algorithm 2, which can be regarded as
a version of the split likelihood ratio test by [40].

Algorithm 2 Split LRT version of the e-value.
1: Parameters: split fraction s ∈ (0, 1), number of splits

B ∈ N.
2: EHL,n ← 0
3: for b = 1, . . . , B do
4: randomly select �ns� pairs (Yi, Pi), j ∈ Sb =

{i1, . . . , i�ns�}, without replacement
5: estimate the isotonic of regression of (Yi, Pi), i ∈ Sb, by

maximizing (2.6)
6: generate predictions qi for E[Y |Pi], i ∈ {1, . . . , n} \ Sb,

from the isotonic regression
7: EHL,n ← EHL,n +

∏
i∈{1,...,n}\Sb

(qi/Pi)
Yi((1 − qi)/(1 −

Pi))
1−Yi/B

8: end for
9: return EHL,n

A delicate point in Algorithm 2 is Step 6, where one needs
to generate out-of-sample predictions from the isotonic re-
gression fit. Naive extrapolation approaches could lead to
predicted probabilities qi ∈ {0, 1} and hence an e-value of
zero if either qi = 0 and Yi = 1 or qi = 1 and Yi = 0.

Let p1 < · · · < pm denote the distinct values of Pi, i ∈ Sb,
and π̂1 ≤ · · · ≤ π̂m the corresponding values of the iso-
tonic regression. A well known result about isotonic regres-
sion states that there exists a partition of Sb into index sets
I1, . . . , Id such that π̂j is the empirical mean of the Yi with
indices in Ij ,

π̂j =
1

#Ij
∑
i∈Ij

Yi.

To remedy the problem of predictions in {0, 1}, we propose
to apply the smoothed Laplace predictor, equivalent to Jef-



8 A. Henzi et al.

freys’ prior in binomial proportion estimation,

π̌j =
1

#Ij + 1

⎛⎝0.5 +
∑
i∈Ij

Yi

⎞⎠ ∈ (0, 1).

For out-of-sample predictions at Pi 	∈ {p1, . . . , pm}, one can
then apply linear interpolation

qi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pl − Pi

pl − pk
π̌k +

Pi − pk
pl − pk

π̌l, if Pi ∈ [pk, pl],

π̌1, if Pi < p1,

π̌m, if Pi > pm,

where it is now guaranteed that qi ∈ (0, 1).

3. SIMULATIONS
This section evaluates the empirical performance of the

feasible version of the proposed test in Section 2.5 together
with sensible values of the splitting fraction s ∈ (0, 1).
We follow the simulation setup of [17] with a quadratic
misspecification in assessing HL-type tests, which is, if
at all, just slightly modified in more recent contributions
[16, 42, 1, 6, 25]. Replication material for the simulations
and the application in Section 4 in the statistical software R
is available under https://github.com/marius-cp/eHL.

For i = 1, . . . , 2n with n ∈ {1024, 2048, 4096, 8192}, we
simulate the iid covariate Xi

iid∼ U(−3, 3) and let the re-
sponse variables Yi ∼ Bernoulli(πi) be independent, where
the true conditional event probability π̄i follows a logistic
transformation of a quadratic model

π̄i = π̄(Xi) = P(Yi = 1 | Xi; β0, β1, β2)

=
exp(β0 + β1Xi + β2X

2
i )

1 + exp(β0 + β1Xi + β2X2
i )

.
(3.1)

We split the simulated data into an estimation set and
validation set, both of size n. Based on the data in the es-
timation set, we estimate the parameters of a linear, and
hence misspecified, logistic regression model by maximum
likelihood and denote the parameter estimates by

(
β̂0, β̂1

)
.

The probability of a positive outcome is then predicted by

Pi =
exp

(
β̂0 + β̂1Xi

)
1 + exp(β̂0 + β̂1Xi)

. (3.2)

We vary the severity of the misspecification, expressed
through the magnitude of β2. Following [17], we characterize
the “lack of linearity” through the conditions π̄(−3) = j −
0.00733745, π̄(−1.5) = 0.05 and π̄(3) = 0.95 such that the
value j = 0 results in the very accurate approximation β2 ≈
0, i.e., a linear effect of Xi on the log odds-ratio. We consider
a sequence of 51 equally spaced values of j in the interval
[0, 0.1]. Notice that for each choice of j, the values of β0 and
β1 are also determined by these conditions.

Table 1. Rejection rates in percentage points of the classical
HL test and our eHL test under the null hypothesis with

j = 0 and the true regression parameters (β0, β1) in (3.2) at
a significance level of 5%. We treat an e-value above 20 as a

rejection in the eHL test.

HL eHL

s 1/3 1/2 2/3

n = 1024 6.2 0.5 1.0 0.4
n = 2048 5.0 0.1 0.4 0.6
n = 4096 4.7 0.2 0.4 0.6
n = 8192 4.5 0.0 0.1 0.5

Table 1 reports rejection rates of the tests over 1000 simu-
lation replications, where we set β2 = 0 (i.e., j = 0), and use
the true regression parameters (β0, β1) in (3.2) to guarantee
that the null hypothesis HHL,n holds. For the classical HL
test, we use ten equally populated (quantile-spaced) bins,
where the exact procedure follows the method QR described
in Appendix A. For the feasible eHL test of Section 2.5, we
use the splitting fractions s ∈ {1/3, 1/2, 2/3}. To limit com-
putation time, we choose a relatively low amount of boot-
strap replications B = 10 in the eHL test as we are mainly
interested in rejection rates averaged across simulation repli-
cations, and hence, stability of the test is less of a concern
as e.g., in the subsequent empirical application. Here and in
the following, we treat e-values above 20 as a test rejection
at the 5% significance level. The table shows that all tests
are well sized, where all eHL versions exhibit rejection fre-
quencies much below the nominal value of 5%, which is not
unusual for tests based on e-values.

Figure 1 analyzes the tests’ behaviour under the alter-
native hypotheses induced by j > 0. Notice that we use
the true parameters (β0, β1) in (3.2) for j = 0 but esti-
mates

(
β̂0, β̂1

)
for any j > 0 as the pseudo-true parameters

are unknown under model misspecification. In this analysis,
we further include an oracle version of the eHL test, whose
e-values are optimal in the sense that they are based on
qi = π̄i, i.e., the practically unknown true conditional event
probabilities. The oracle eHL version with s = 1/2 facili-
tates a fair comparison with the feasible HL test based on
the same splitting factor. The left panel of the figure shows
classical test rejection rates for a nominal significance level
of 5%. Following the explanations in Section 2.4 together
with [13] and [31], a suitable measure of power for e-values
is the growth rate E

[
log(EHL,n)

]
, which is shown in the right

panel of Figure 1, where we approximate the expectation by
the average log e-value over the simulation replications. We
restrict attention to n ∈ {1024, 4096} as the other sample
sizes do not yield further insights.

We find that all tests develop power for increasing mis-
specification j. E.g., the feasible eHL versions already have
substantial power for both sample sizes against an alterna-
tive with j ≈ 0.043, which [17] interpret as a value inducing

https://github.com/marius-cp/eHL
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Figure 1: Rejection (left) and e-value growth (right) rates for the classical HL (cHL) test, the feasible eHL test and an
oracle eHL test for a range of splitting factors s. The oracle eHL test is based on the true πi. The x-axis contains the
severity of model misspecification, and the vertically aligned plots correspond to different sample sizes.

only ‘slight’ misspecification. (Notice that j ≈ 0.043 equals
0.05 in their parametrization.) There seems to be little dif-
ference among the feasible eHL tests when using different
splitting fractions s, and hence, we do not find arguments
to deviate from the natural choice of s = 1/2, which we
continue to use in the application.

The higher power of the classical HL test can be explained
by the required sample split in the eHL test, and the estima-
tion error in assigning suitable values for qi. The two oracle
eHL tests make these steps redundant and hence achieve
comparable power to the classical HL test. Perhaps surpris-
ingly, the difference between the two oracle eHL tests with
different s is smaller than the respective difference to the
feasible test versions based on estimated qi’s, which means
that tuning the test to a specific alternative through the qi’s
is the main empirical challenge of the eHL test.

Notice that the often overlooked bin specification in the
classical HL test implicitly determines the set of alternatives
the test has power against as e.g. illustrated in [8, Section 5].
As the sample split in the eHL test allows for estimating a
suitable alternative, Theorem 2.1 shows that the (ideal ver-
sion of the) eHL test has power against all alternatives. This
power guarantee together with the eHL test’s stability come
at the cost of a lower power compared to the classical HL
test in specific smooth forms of misspecifications as shown
in Figure 1.

Turning to the growth rates of the feasible eHL tests, we

find that larger choices of s perform better for slight model
misspecifications (small j) while the opposite is true for large
misspecifications. This can be explained since as discussed
around (2.2)–(2.3), π̄i must be on the ‘correct’ side of Pi

to gain power, which might be violated for small s (and n)
under slight misspecifications.

4. APPLICATION: CREDIT CARD
DEFAULTS IN TAIWAN

In this application, we analyze (re-)calibration of proba-
bility predictions for the binary event of credit card defaults
in Taiwan in the year 2005. In that time period, banks in
Taiwan over-issued credit cards, also to unqualified appli-
cants, who at the same time overused the cards for con-
sumption, resulting in severe credit card debts and damaged
consumer finance confidence [43, 24]. This crisis calls for im-
proved and in particular calibrated probability predictions
for credit card defaults that can be used for a thorough risk
management and improved financial regulations.

For our analysis, we use a data set of m = 30 000
credit card holders from Taiwan in 2005, that is pub-
licly available from the UCI Machine Learning Reposi-
tory [10, 43] under https://archive.ics.uci.edu/ml/datasets/
default+of+credit+card+clients. Specifically, the binary re-
sponse variable Yi ∈ {0, 1} contains information on whether
a default payment, Yi = 1, occurred for customer i =

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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Table 2. E-values of the eHL and the range of p-values of the classical HL test, the latter stemming from 80 reasonable
binning procedures as detailed in Table 3 and Appendix A.

Prediction method eHL e-values Range of HL p-values

Logistic model 7.0 · 1028 [0.00, 0.00]
Logistic model with increased estimation set 9.6 · 1022 [0.00, 0.00]
Isotonic recalibration 20.04 [0.00, 0.91]
Bagged isotonic recalibration 6.14 [0.00, 0.53]

1, . . . ,m. We observe a relatively high rate of 22.12% of de-
fault payments in the data set that reflects the above men-
tioned credit card crisis. The data set further includes 23 ex-
planatory variables, containing information on the amount
of given credit, gender, education, marital status, age, and
various historical payment records for the past six months.

We randomly split the data into an estimation and a Re-
calibration set R with M = 12000 observations each, and a
Validation set V containing the remaining n = 6000 obser-
vations. We use the estimation set to fit a standard logistic
regression model based on all predictor variables by maxi-
mum likelihood and compute the model predictions on the
recalibration and validation sets, respectively. We run all the
following tests on the validation set.

Table 2 reports the e-values of the feasible version of our
calibration test described in Section 2.5 based on B = 10000
bootstrap replication and with a splitting factor of s = 1/2
that is motivated by our simulation results. We further re-
port the range between the smallest and largest p-value of
the classical HL test, where the different p-values result
from five different, but natural binning procedures using
g = 5, . . . , 20 bins, respectively. We provide further details
on these implementation choices in Appendix A.

The predictions from the logistic model result in an e-
value far beyond the value of 20 in Table 2, hence implying
that these predictions are clearly miscalibrated. In this set-
ting, all implementation choices of the classical HL test agree
and deliver p-values very close to zero. The second row of the
table shows that even when using all observations in the “in-
creased estimation set” comprising the estimation and the
recalibration set, the situation barely changes and both the
eHL and HL tests agree (under all implementation choices).

As a consequence of these clear rejections, we now aim
at isotonically recalibrating the probability predictions, a
technique that proved valuable in other disciplines [14, 36],
where it is also called “post-processing”. For this, we esti-
mate an isotonic regression on the recalibration set R and
generate recalibrated predictions by transforming the logis-
tic predictions on V with the estimated isotonic regression
function. Table 2 shows that our calibration test has an e-
value just above 20, i.e., a weak rejection when interpreted
as a (conservative) test at the 5% level.

As a nonparametric method, the isotonic regression is
known to involve substantial estimation noise that might

Figure 2: Bagged isotonic recalibration curve of the logit
predictions. The blue curve shows the mean, and the red
band the range of the pointwise 1% and 99% quantiles, over
all bagging iterations.

adversely affect the recalibrated predictions. Hence, we sta-
bilize the estimation through the classical bagging (boot-
strap aggregation) method of [4]. In detail, we draw B̃ = 100

bootstrap samples Rb, b = 1, . . . , B̃ of size M from the recal-
ibration set R and estimate the isotonic regression on each
bootstrap sample Rb. The final predictions are obtained by
recalibrating with the average of the estimated isotonic re-
gression functions, displayed in Figure 2.

The last row of Table 2 shows an e-value of approximately
6 implying only very weak evidence against the null hy-
pothesis of calibration, once again illustrating the practical
strength of both, bagging and recalibration methods. The
estimated re-calibration function displayed in Figure 2 re-
inforces the importance of recalibrating the logistic model
predictions by showing that it substantially deviates from
the diagonal.

For these two recalibration methods, the various natural
implementation choices of the HL test, further described in
Appendix A, result in p-values ranging between essentially 0
and 0.91 (and 0.53 respectively). The corresponding p-value
histograms in Figure 3 (and the detailed results in Table 3)
show the continuum of p-values, where the null hypothesis
is rejected in approximately half of the cases at the 5% level,
implying that a researcher can essentially tailor the test de-
cision to her will. As already noted by [17, 3, 22], this is
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Figure 3: Histograms of p-values of the classical out-of-sample HL test based the five binning procedures given in Ap-
pendix A based on 5–20 bins, respectively, resulting in a total of 80 test results.

a disconcerting state of affairs for a commonly used testing
procedure and calls for more robust alternatives, such as the
eHL test proposed in this paper. Appendix A further shows
that the feasible eHL test version is affected less by such
instabilities arising from the repeated sample splits, at least
if B is chosen sufficiently large as in this application.

5. DISCUSSION
This article proposes an e-test for perfect calibration,

which is a safe testing counterpart to the widely used
Hosmer-Lemeshow test. The proposed eHL test follows a
simple betting interpretation (see [31]) where the e-value can
be seen as the factor by which we multiply the bet against
the hypothesis of perfect calibration. Intuitively, when ac-
cumulating money by the bet, we gain evidence against the
null. Here, the e-value depends on the probability prediction,
its corresponding realization, and an arbitrary value, which
we suggest estimating in a two-step approach by isotonic
regression. The ideal version of the test has power against
all alternatives. In order to achieve this power guarantee, it
is important that for any deviation from calibration, that is,
for any deviation of P �→ E(Y |P ) from the identity, there is
an isotonic function with strictly smaller loss. If this prop-
erty can be achieved with other function classes than iso-
tonic functions is an interesting open question.

We assess the empirical performance of the test to detect
quadratic model misspecifications. The simulations show
that in samples of more than 2000 observations, the eHL test
allows to reliably detect levels of quadratic misspecification,
which [17, p. 973] denote to be slight. The intrinsic flexibility
of the e-values allows the application of stable data-driven
methods (here isotonic regression) instead of the typical bin-
ning and counting technique in the HL test. However, this
flexibility comes at the cost of lower power in small samples
of less than 2000 observations.

The feasible version of our test is based on random splits
of the training data. Since the null hypothesis HHL,n re-
quires calibration conditional on the predictions P1, . . . , Pn,

one also obtains a valid test if the splits are performed sys-
tematically based on P1, . . . , Pn, for example, by choosing
two subsets with similar distribution of the Pi in order for
the isotonic regression estimator to extrapolate well. Sys-
tematic sampling approaches to increase the power have al-
ready been applied by [11] for testing treatment effects.

Our article focuses on the batch setting where a fixed
sample of size n is available, rather than the online setting
in which (Pi, Yi), i ∈ N, arrive sequentially. However, the
fact that powerful tests based on isotonic regression can be
constructed in the batch setting suggests that similar ap-
proaches may be fruitful for online testing. Kotłowski et al.
[21, Section 7.1] describe algorithms with sublinear regret for
online isotonic regression (without the random permutation
setting). We believe that in conjunction with parts (i) and
(ii) of our Theorem 2.1, it is possible to derive power guar-
antees for sequential calibration tests where E[Y |P ] is esti-
mated sequentially with isotonic regression. We leave such
extensions for future work.

APPENDIX A. (IN-)STABILITY RESULTS
FOR THE HL AND EHL

TESTS
The classical HL test given in (1.2) is based on a parti-

tion of the unit interval into g ∈ N bins. We use the subse-
quently described five partitioning methods in the applica-
tion in Section 4, starting with the equidistant variant:

• E: We partition the interval
[
min(pi; i = 1, . . . , n),

max(pi; i = 1, . . . , n)
]

into g equidistant bins that are,
apart from the first bin, open at left and closed at right.

We further use four natural implementations of “quantile-
based” binning, all using a nominal number of g bins. These
methods mainly differ for multiple occurrences of the same
forecast value, which is however not unusual in practice and
is e.g., an inherent feature of methods based on decision
trees or isotonic regressions.
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Table 3. p-values of the HL test based on various binning choices described in the text for the two recalibrated prediction
methods from Section 4.

Isotonic recalibration Bagged isotonic recalibration

Bins QL QR Q+ Q− E QL QR Q+ Q− E

5 0.34 0.46 0.09 0.00 0.24 0.08 0.05 0.09 0.00 0.11
6 0.16 0.60 0.22 0.00 0.31 0.10 0.21 0.18 0.26 0.33
7 0.24 0.56 0.01 0.00 0.00 0.02 0.16 0.01 0.00 0.37
8 0.59 0.55 0.17 0.00 0.38 0.11 0.20 0.17 0.02 0.15
9 0.20 0.53 0.06 0.00 0.02 0.08 0.20 0.07 0.00 0.26

10 0.26 0.67 0.19 0.00 0.36 0.20 0.11 0.22 0.00 0.10
11 0.27 0.33 0.08 0.00 0.77 0.06 0.09 0.10 0.00 0.08
12 0.15 0.91 0.19 0.00 0.02 0.10 0.18 0.21 0.01 0.11
13 0.57 0.58 0.27 0.00 0.60 0.16 0.17 0.31 0.00 0.00
14 0.22 0.87 0.01 0.00 0.09 0.03 0.07 0.01 0.00 0.03
15 0.60 0.68 0.04 0.00 0.64 0.04 0.09 0.06 0.00 0.00
16 0.80 0.28 0.17 0.00 0.11 0.29 0.37 0.20 0.00 0.01
17 0.86 0.45 0.11 0.00 0.02 0.25 0.07 0.14 0.00 0.00
18 0.36 0.63 0.14 0.00 0.10 0.19 0.19 0.17 0.00 0.00
19 0.48 0.73 0.38 0.00 0.01 0.40 0.53 0.42 0.00 0.10
20 0.59 0.83 0.35 0.00 0.61 0.42 0.30 0.39 0.00 0.02

• QL: We partition the interval [0, 1] into g left-open and
right-closed bins according to the sample quantiles (us-
ing the default quantile() function in R) at levels
1/g, . . . , (g − 1)/g. This method is denoted with the
superscript L as forecasts on the bin boundary are as-
signed to the Left bin. The first bin is also closed at left
and if the sample quantiles at different levels coincide,
they are ignored, resulting in possibly less than g bins.

• QR: As QL, but we use g right-open and left-closed bins
such as forecasts on the bin boundaries are assigned to
the Right bin.

• Q+: We sort the forecast-realization pairs (pi, yi)ni=1 by
their forecast values pi and in the case of tied forecast
values, by their realizations in ascending order. Based
on this order, we place the observations in g equally
populated bins. If the size of the data set is not a mul-
tiple of g, excess values are redistributed in such a way
that the bins with an additional observation are as far
apart from each other as possible.

• Q−: As variant Q+, except that we sort in descending
order of yi for tied forecast values.

A comparison of the methods QL and QR illustrates that
assigning predictions on the bin boundaries either to the
left or right bins can have consequential implications. The
methods Q+ and Q− circumvent this issue by selecting ap-
proximately equal amounts of observations into each bin,
but in turn are sensitive to a change in the simple ordering
of the (iid) observations in the underlying data, something
that is usually ignored in applications.

While the existing literature often simply refers to
“quantile-based” binning, this list shows that the HL test is
sensitive to subtleties that one might easily disregard, but

turn out to be consequential for the test result in some in-
stances. This is illustrated by Table 3, which reports p-values
for the classical HL test based on the five binning methods
discussed above using g = 5, . . . , 20 bins respectively for the
two recalibration methods used in the application in Sec-
tion 4. We find that the p-values vary substantially in both,
using different numbers of bins and different binning im-
plementations. Maybe surprisingly, even for a fixed g, the
subtleties in the four quantile-based binning choices lead to
widely varying p-values.

In contrast to the classical HL test, the theoretical version
of the eHL test described in Algorithm 1 is tuning parameter
free due to the use of the isotonic regression method. This is
unfortunately not true for the feasible eHL test described in
Algorithm 2 that might be sensitive to the chosen sampling
splits in the bootstrap-like replications. In particular, one
has to choose the number of replications B large enough such
that the resulting e-values are not sensitive to the random
numbers (i.e., the ‘random seed’) that determine the sample
split.

To analyse this effect in our practical data example, Fig-
ure 4 visualizes the empirical distribution of the e-values (for
tests based on different random splits), for varying boot-
strap replications B ∈ {100, 500, 1000, 10000}. While there
is indeed some variation in the test result for smaller values
of B, the e-values are relatively stable for B = 10000, the
choice we employ in the empirical application. E.g., for the
isotonic recalibration method, essentially all e-values are be-
tween 16 and 27, implying (conservative) p-values between
1/27 ≈ 0.037 and 1/16 = 0.0625. Similarly, the p-values
in the bagged isotonic recalibration implied by the respec-
tive e-values range between 1/8 = 0.125 and 1/4 = 0.25. In
contrast, the variation of the HL test p-values in Table 3 is
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Figure 4: Kernel density estimates of 500 e-values, obtained by starting the feasible test version from different random
seeds and hence implying different random splits, for the two recalibrated prediction methods in the application based on
B = {100, 500, 1000, 10000} bootstrap replications (in Algorithm 2). For the bagged recalibration model, we observe 17
e-values above 20 for B = 100, 5 for B = 500, and none for B ∈ {1000, 10000}.

much more substantial and includes clear test rejections as
well as many p-values above any commonly chosen signifi-
cance level.
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