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Abstract
Background  Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves 
constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to 
derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim 
of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system.
Methods  The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images 
were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation 
set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a 
transfer learning method on a pre-trained model.
Results  Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual 
shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models.
Conclusion  This technology has the potential to automatically detect different shunt valve models in a fast and precise way 
and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we 
developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.

Keywords  Deep learning · AI · Transfer learning · Hydrocephalus · Cerebrospinal fluid shunt · CSF shunt · 
Ventriculoperitoneal shunt · X-ray

Introduction

Placement of cerebrospinal fluid (CSF) shunt systems to 
treat hydrocephalus is a common neurosurgical procedure 
and a life-saving treatment for many patients. In the USA, 
the incidence of CSF shunt procedures is approximately 7 
per 100,000 individuals [1]. In Europe, the incidence var-
ies, with rates of 3.11 per 100,000 in Ireland and the UK 
[4], and up to 6.942 per 100,000 inhabitants annually in 

Germany [14]. These implants drain excess fluid from the 
brain to another part of the body to relieve intracranial pres-
sure. Current CSF shunts contain three main components: a 
brain catheter for inflow, a valve that regulates the passage 
of CSF, and an outflow catheter that drains CSF into the 
abdomen or the heart. Radiopaque markers give each shunt 
valve model a specific appearance on radiographs, revealing 
essential details such as pressure settings or susceptibility to 
magnetic field interference [3, 14, 15].

Therefore, correctly identifying the type of CSF shunt 
system is essential in clinical practice as it can directly 
impact patient safety. Insufficient image quality due to 
motion artifacts or insufficient image resolution as well as 
adjacent radiopaque structures can render classifying a CSF 
shunt system a tedious and challenging task. Furthermore, 
there has been an increase in the number of manufactur-
ers and models of CSF shunt systems in recent years, and 
new models are constantly being introduced [3]. Advances 
in computer vision with deep learning models have greatly 
improved image recognition capabilities. Deep learning is 
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a subfield of artificial intelligence that employs neural net-
works with multiple layers to analyze various forms of data. 
These networks are designed to automatically and adap-
tively learn from data patterns, thereby enabling increas-
ingly accurate interpretations of new data. In the medical 
imaging context, deep learning models can autonomously 
analyze images to identify particular structures or detect 
pathological abnormalities in some cases even surpassing 
humans in speed and accuracy [7, 8, 13, 18]. Deep learning 
models have recently been used successfully in a wide range 
of medical imaging tasks, including tissue segmentation and 
lesion detection [19]. This has shown promising potential for 
aiding diagnostic and treatment planning procedures as well 
as improving surgical safety [16]. Using such technology for 
automatic identification of CSF shunt systems could help 
clinicians with this tedious task in routine clinical practice.

We propose a mobile, low-cost approach that uses deep 
learning to accurately identify CSF shunt systems on plain 
radiographs. Our model was trained on 2070 images of ten 
commonly used CSF shunt valve models from two European 
neurosurgical centers.

Material and methods

The manuscript was prepared according to the checklist for 
evaluation of radiomics (CLEAR) and the checklist for artificial 
intelligence in medical imaging (CLAIM) guidelines [12, 17].

In our approach, the image classification task was 
accomplished exclusively through feature extraction using 
a convolutional neural network (CNN). This method capi-
talizes on the CNN’s ability to identify and learn relevant 
features from the entire image for accurate classification 

of shunt valves. We did not employ additional techniques 
such as image segmentation to isolate specific regions or 
objects within the images, as our model’s performance was 
predicated on analyzing the complete image context.

To accomplish this, a CNN with transfer learning tech-
nique from a pre-trained model on ImageNet [2] data was 
trained using 80% of the image data (Fig. 1). On the remain-
ing 20% of the images, the neural network’s performance 
was measured to determine accuracy, recall, and precision. 
In addition, we calculated the F1-score to account for the 
class imbalance in our dataset. The dataset consisted of 
2070 anonymized images of ten different commonly used 
shunt valve types, collected from two neurosurgical centers 
in Switzerland and Austria (Table 1). Notably, this dataset 
had not been used previously for training any AI models. 
The sole inclusion criterion was the presence of a CSF shunt 
valve that was visible and identifiable by the authors on an 
X-ray or CT scout image. The images were anonymized by 
removing metadata containing patient information and crop-
ping them to prevent any visible patient data from being 
included (Fig. 1). All images were acquired from skull 
X-rays or CT scout images, and confounding factors such 
as bony structures, catheters, craniotomy plates, and skin 
staples were included. The screenshots were acquired with 
SnagIt (version 2021.4.3) and saved as.png files. The.png 
files had an 8-bit depth with alpha RGB channels and no 
interlacing.

An implementation in Python with the FastAi library 
[10] was used to resize all 2070 CSF shunt valve images 
to 460 × 460 pixels.

Four different data augmentation methods were used to 
enhance the training set by artificially creating new train-
ing data from existing training data. Images were resized 

Fig. 1   A Schematic overview of the neural network model and its 
components (FC, fully connected layer). B Sample images of our 
dataset with three representative images for each shunt valve: (a) 
Codman Certas Plus, (b) Codman Hakim Precision Fixed Pressure, 

(c) Codman Hakim Programmable, (d) Integra DP, (e) Medtronic PS 
Medical Delta, (f) Medtronic PS Medical Strata, (g) Miethke proGAV 
1, (h) Miethke proGAV 2, (i) Sophysa Sophy Mini SM8, and (j) Cod-
man Certas Plus



Acta Neurochirurgica          (2024) 166:69 	 Page 3 of 6     69 

to 224 × 224 pixels by a squishing algorithm. The resulting 
images were flipped vertically or horizontally and randomly 
rotated up to 355°. The contrast of the images was adjusted 
by up to 5% with a probability of 75%.

The neural network model was built using Python with 
the FastAi framework version 2.5.3 based on PyTorch 
[10]. We used a pre-trained convolutional neural network 
(ResNet-101[9]) 101 layers deep, consisting of stacked 
ResNet building blocks, a pooling layer, and a fully connected 
layer. The pre-trained weights of the layers were from the 
PyTorch library, which was trained on data from ImageNet. 

The first layer had an image input size of 224 × 224, and the 
combined neural network consisted of 44,611,648 trainable 
parameters. The model was trained with Google Colab using 
an NVIDIA Tesla T4 GPU.

The dataset was uniformly and randomly split in 
accordance with the shunt valve model’s distribution, 
allocating 80% of the images for the training set and 20% 
for validation. Training images were set up with a batch 
size of 48. A flattened cross-entropy function was used 
as a loss function. The pre-trained backbone was frozen 
for the first training epoch, and a base learning rate of 

Table 1   Dataset composition Shunt valve Training set (n) Validation set 
(n)

Total images

Codman Certas Plus 129 26 155
Codman Hakim Precision Fixed Pressure 49 9 58
Codman Hakim Programmable 383 95 478
Integra DP 65 15 80
Medtronic PS Medical Delta 43 17 60
Medtronic PS Medical Strata 231 73 304
Miethke proGAV 1 323 76 399
Miethke proGAV 2 352 86 438
Sophysa Sophy Mini SM8 26 7 33
Integra Spitz-Holter 56 9 65
Combined dataset 1657 413 2070

Fig. 2   Confusion matrix for the actual and predicted shunt valve models in the validation dataset with its corresponding F1-score
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0.002 was used. The pre-trained backbone was unfrozen 
for the subsequent training epochs, and the learning rate 
was optimized with an Adam optimizer [11]. In total, the 
model was trained for 65 epochs.

Results

On 413 of the validation images, our model achieved an overall 
accuracy of 99% with a weighted average F1-score of 99%. 
Breaking down the performance metric for each of the ten 
CSF shunt valves (Fig. 2 and Table 2), we achieved the fol-
lowing F1-scores: Codman Certas Plus (98%), Codman Hakim 
Precision Fixed Pressure (100%), Codman Hakim Program-
mable (99%), Integra DP (97%), Medtronic PS Medical Delta 
(100%), Medtronic PS Medical Strata (99%), Miethke proGAV 

Table 2   Model performance metrics

Shunt valve Precision Recall F1-score

Codman Certas Plus 0.96 1.00 0.98
Codman Hakim Precision Fixed Pres-

sure
1.00 1.00 1.00

Codman Hakim Programmable 0.98 1.00 0.99
Integra DP 1.00 0.93 0.97
Medtronic PS Medical Delta 1.00 1.00 1.00
Medtronic PS Medical Strata 1.00 0.97 0.99
Miethke proGAV 1 0.99 0.99 0.99
Miethke proGAV 2 0.99 0.99 0.99
Sophysa Sophy Mini SM8 1.00 0.86 0.92
Integra Spitz-Holter 0.90 1.00 0.95

Fig. 3   Class activation map 
(CAM) of two shunt valve 
models of each shunt valve: 
(a) Integra Spitz-Holter, (b) 
Sophysa Sophy Mini SM8, (c) 
Miethke proGAV 2, (d) Miethke 
proGAV 1, (e) Medtronic PS 
Medical Strata, (f) Medtronic 
PS Medical Delta, (g) Integra 
DP, (h) Codman Hakim Pro-
grammable, (i) Codman Hakim 
Precision Fixed Pressure, and 
(j) Integra Spitz-Holter
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1 (99%), Miethke proGAV 2 (99%), Sophysa Sophy Mini SM8 
(92%), and Integra Spitz-Holter (95%).

To identify discriminative image regions, we calculated 
class activation maps (CAM) [21] on two sample images of 
each shunt valve. Our deep learning model accurately used 
the location of the shunt valve to make its decision. The 
predominant shunt valve models in our dataset yielded a 
more precise CAM in the valve area than the models with a 
smaller training dataset (Fig. 3).

The least reliable detection was observed with the 
Sophysa Sophy SM8 valve, which had an F1-score of 92% 
due to a recall rate of only 86%. Since the dataset contained 
only 33 Sophysa Sophy SM8 valve images, the weak per-
formance was probably due to the limited amount of train-
ing data available for this valve. However, the model did 
achieve excellent results for some other shunt valves in the 
lower range, namely the Codman Hakim Precision Fixed 
Pressure (n = 58), Medtronic PS Medical Delta (n = 60), 
Integra Spitz-Holter (n = 65), and Integra DP (n = 80).

Discussion

Our model’s validation results demonstrate its ability to 
accurately distinguish between ten different shunt valve 
types. In comparison, a previous study using a similar deep 
learning approach with transfer learning achieved a 96% 
accuracy in identifying five shunt valve types [6]. Another 
study reported a detection accuracy of 95% in identifying 
three shunt valve types using a model trained on smart-
phone images of X-rays [20]. Therefore, our study pre-
sents a more extensive and accurate deep learning model, 
both in terms of identification accuracy and the range of 
identifiable shunt valve types, surpassing the results of 
the previous studies. One major limitation of this study 
is the limited image dataset, which does not represent all 
the available shunt valve models. The transfer learning 
technique used in this study relied on a pre-trained model 
on ImageNet, which does not include any medical X-ray 
images. However, our model performed well, indicating 
the feasibility of using models pre-trained on non-medical 
datasets for medical imaging tasks. Similar results of using 
ImageNet pre-trained models on medical X-ray images 
have been reported previously [5]. This approach seems 
to be an effective way to train a neural network with only 
a limited amount of available training images. While our 
AI-based approach has shown promising results in iden-
tifying CSF shunt valves, its implementation in a clinical 
setting would require a larger dataset for comprehensive 
validation. Nevertheless, this technology could already be 
of use to clinicians who are familiar with its limitations 
and use it judiciously.

With the potential for a larger dataset containing more 
images, it may be possible to develop an automated system 
capable of reading CSF shunt valve pressure settings for a 
given valve. Although our study was limited by the amount 
of available training data, this presents an exciting opportu-
nity for future research and development.

Conclusion

Our data indicates that deep learning has the potential to 
automatically detect different shunt valve models with 
high accuracy and could facilitate the identification of an 
unknown shunt valve on X-ray and CT scout images. Such 
a deep learning model could be directly integrated into a 
PACS system or standalone application to facilitate clinical 
workflow. We are currently in the process of extending our 
dataset and making the deep learning model described here 
accessible to neurosurgeons and radiologists as an easy-to-
use smartphone application to simplify the daily clinical 
workflow.

Supplementary Information  The online version contains supplemen-
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