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A cost-effective sequencing method for genetic studies
combining high-depth whole exome and low-depth
whole genome
Claude Bhérer 1,2,3, Robert Eveleigh2,4, Katerina Trajanoska 1,2,3, Janick St-Cyr2, Antoine Paccard2, Praveen Nadukkalam Ravindran2,3,
Elizabeth Caron2, Nimara Bader Asbah1,2, Peyton McClelland 1,2,3, Clare Wei 2,3, Iris Baumgartner5,6, Marc Schindewolf5,6,
Yvonne Döring5,6,7, Danielle Perley2,4, François Lefebvre2,4, Pierre Lepage2, Mathieu Bourgey 8, Guillaume Bourque 1,2,4,
Jiannis Ragoussis 1,2, Vincent Mooser1,2,3 and Daniel Taliun1,2,3✉

Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA
regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth
WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we
propose a cost-effective method which we call “Whole Exome Genome Sequencing” (WEGS), that combines low-depth WGS and
high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We experimentally assess the
performance of WEGS with four different depth of coverage and sample multiplexing configurations. We show that the optimal
WEGS configurations are 1.7–2.0 times cheaper than standard WES (no-plexing), 1.8–2.1 times cheaper than high-depth WGS, reach
similar recall and precision rates in detecting coding variants as WES, and capture more population-specific variants in the rest of
the genome that are difficult to recover when using genotype imputation methods. We apply WEGS to 862 patients with peripheral
artery disease and show that it directly assesses more known disease-associated variants than a typical genotyping array and
thousands of non-imputable variants per disease-associated locus.
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INTRODUCTION
Accurate assessment of DNA sequence variation enables insights
into the genetic basis of diseases and other traits. Whole genome
sequencing (WGS) at high-depth of coverage (30X and above)
using next generation sequencing technologies is the current gold
standard method for the accurate discovery of single nucleotide
variants (SNVs) and short insertions/deletions (InDels) genome-
wide1,2. Sequencing offers several advantages over array-based
genotyping, notably that variant positions are not fixed, which
allows the discovery of novel population-specific variants. Yet,
despite the decreasing costs of high-depth WGS, sequencing a
large number of samples remains expensive. So far, the use of
whole exome sequencing (WES) has dominated large-scale
sequencing studies such as gnomAD3 and UK Biobank4, but
WES is limited to coding regions. As a result, there is still a need for
more cost-effective solutions to capture both coding and non-
coding variation.
The array-based genotyping coupled with genotype imputation

at untyped genomic positions from public haplotype reference
panels2,5,6 is a popular, cost-effective strategy for increasing
statistical power and genomic coverage in current genome-wide
association studies (GWAS)7. The largest TOPMed haplotype
reference panel allows for the imputation of variants down to
minor allele frequencies (MAF) of ~0.002–0.003% (imputation
quality r2 > 0.3) in individuals of European and African ancestries6.
However, rare variant imputation with TOPMed still has much

lower accuracy than common variant imputation, especially in
non-European or non-African ancestry groups6. At the same time,
the advantage of local sequencing-based imputation reference
panels was demonstrated for multiple populations, such as the
Estonian8, Finnish9 and Sardinian10.
Several cost-effective sequencing-and-imputation strategies

have been described to improve genomic coverage while allowing
better assessment of population-specific variants. Those include
(a) WGS in a subset of study participants (at a depth ranging from
5X to 30X) to create a customized reference panel7 for imputation
of the remaining participants who were genotyped using
genotyping arrays and (b) ultra-low depth WGS (depth of
coverage (DP) down to 0.1X-0.5X) or (c) low-depth (1X-4X) WGS
in all study participants followed by imputation using public
reference panels11–14. While ultra-low depth WGS can be
performed at the same cost as array-based genotyping11, it has
also been suggested that ultra-low depth and low-depth
sequencing plus imputation are good alternative technologies to
imputed genotyping arrays by doubling the number of true
association signals discovered14 and improving the accuracy of
polygenic risk prediction models12,13. The latter models have also
benefited from the inclusion of rare coding variants in their
prediction algorithms15–17. However, recent work suggested that
array-based imputation strategies may miss approximately half of
the rare coding variants with MAF < 0.05% detected by WES2.
Although cheaper than WGS, WES is still a more expensive option
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than imputation-based strategies, and it ignores the majority of
non-coding regions of the genome. Assessment of genetic
variation in non-coding regions, which contains the vast majority
of genetic variants2 and a majority (84%) of GWAS association
signals18, is critical for many genetic analyses, notably under-
standing regulatory genetic variation.
Here, we propose a cost-effective sequencing method, which

we call Whole Exome Genome Sequencing (WEGS), that combines
low-depth WGS (2–5X) and high-depth WES (100X) with up to
8 samples pooled and sequenced simultaneously (multiplexed) to
reduce reagents costs19. We experimentally demonstrate that
WEGS, while being 1.7–2.0 times cheaper than standard high-
depth WES (100X) due to multiplexing and 1.8–2.1 times cheaper
than 30X WGS, maintains similar precision and recall rates in the
discovery of rare coding variants and allows assessment of
population-specific variants in the rest of the genome. We
demonstrate the scalability and utility of WEGS by applying it to
862 patients with peripheral artery disease (PAD).

RESULTS
Sample multiplexing lowers depth of coverage due to
duplicate reads
Sample multiplexing allows multiple samples to be pooled and
sequenced simultaneously, resulting in lower per-sample sequen-
cing costs19. However, multiplexing may also increase the number
of false positive variant calls20. To assess sequencing quality, we
first compared the DP and variant calling when using WES without
and with multiplexing of 4 and 8 samples (no-plexing, 4-plexing
and 8-plexing, correspondingly). For this, we generated 37 exome
sequences at 100X WES and different levels of multiplexing using
DNA from Ashkenazi trio samples (Fig. 1, Supplementary Figure 1
and Methods).
We observed a strong negative correlation (Pearson’s r=−0.69,

P value= 2.31 × 10−6) between the average DP in targeted exome
regions and the number of multiplexed samples (Fig. 2). The

Fig. 1 WEGS experimental design overview. DNA samples from a GIAB family trio (HG002, HG003, HG004) were used to perform WES
experiments without and with multiplexing of 4 and 8 samples (no-plexing, 4-plexing and 8-plexing, correspondingly). For each sample in the
family trio, we performed library preparation and sequencing to a target coverage of 100X in triplicate for the no-plexing and 4-plexing WES
experiments, and in duplicate for the 8-plexing experiment, for a total of 37 samples. Sequencing library QC was performed before and after
exome capture. After libraries QC, three individual libraries – one from each sample in the family trio - were selected to perform low-depth
WGS on two lanes. Sequencing was performed using the Illumina NovaSeq S1 platform.

Fig. 2 Average depths of coverage across all targeted regions in
autosomal chromosomes in WES experiments without and with
multiplexing. The average depth of coverage (DP) was computed
across target regions in Agilent V7 capture using paired mapped
reads and counting only base-pairs with minimal Phred-scaled
mapping and base qualities of 20. The solid black line corresponds
to the linear regression line, and the dashed black lines correspond
to a 95% confidence interval. The box bounds the IQR, and Tukey-
style whiskers extend to a maximum of 1.5 × IQR beyond the box.
The horizontal line within the box indicates the median value. Open
circles are data points corresponding to the average DP across
individual exome.
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median values of average DP across individual exomes dropped
from 121.8 in no-plexing experiments to 98.6 and 82.6 in 4-plexing
and 8-plexing, respectively. The average DP ratio between no-
plexing and 4- and 8-plexing experiments was similar in all
targeted regions across the exome - showing no evidence that
differences in average DP were non-uniform or affected only a
subset of targeted regions (Supplementary Fig. 2). When
stratifying by library preparation batch, we observed statistically
significant differences (P value= 0.048) in average DP between
two batches only in experiments without multiplexing (Supple-
mentary Fig. 3A). Nevertheless, these differences did not influence
the overall trend - the strong negative correlations between the
number of multiplexed samples and DP remained in both library
preparation batches (Supplementary Figure 3B–C).
To better understand the cause of lower average DP in

multiplex sequencing, we assessed the total number of paired
reads, the number of reads flagged as PCR or optical duplicates,
the number of unmapped reads, and the average base qualities in
reads. There was no correlation (Pearson’s r=−0.08, P value=
0.631) between the total number of paired reads and the number
of samples pooled together for sequencing (Supplementary
Figure 4A). However, there was a strong positive correlation
(Pearson’s r= 0.92, P value= 2.13 × 10−15) between the percent of
reads flagged as PCR or optical duplicates and degrees of
multiplexing (Supplementary Figure 4B). Compared to the
multiplexing-free sequencing experiments, the 4-plexing and
8-plexing experiments showed a 1.7-fold (18.4% vs 31.2%) and
2.3-fold (18.4% vs 43.0%) increase in the median percent of
duplicated reads, respectively. The data also suggested a weak,
non-statistically significant correlation (Pearson’s r= 0.32,
P value= 0.06) between the percent of unmapped reads and
degrees of multiplexing (Supplementary Figure 4C). Also, the
percent of unmapped reads did not exceed 0.11 percent of the
total number of paired reads and, thus, did not contribute much
to the differences in average DP. There was a moderate correlation
(Pearson’s r=−0.52, P-value= 1.09 × 10−3) between the average
base qualities and the degree of multiplexing (Supplementary Fig.
4C). However, when stratified by the library preparation batch and
in contrast to the other metrics mentioned above, the first batch
did not show the same correlation pattern (Supplementary Figs.
5–8), suggesting that other factors may affect the base qualities.
We conclude that the main contributor to the lower average DP in
sample multiplexing experiments compared to the experiments
without sample multiplexing is the percent of reads flagged as
PCR or optical duplicates.

UMI does not recover losses in the depth of coverage
UMI - a unique barcode appended to each DNA fragment before
the PCR - helps to distinguish the truly duplicated fragments
originating from the same molecule from the very similar
fragments originating from a different molecule21,22. In addition,
UMI-aware software tools for duplicate read removal help to
identify and remove sequencing errors by grouping reads with the
same UMI and creating a consensus read23. We applied the duplex
UMI method in our sequencing experiments and evaluated the
utility of LocatIt and UmiAwareMarkDuplicatesWithMateCigar
(GATK+ UMI) UMI-aware read deduplication tools with multi-
plexing. LocatIt reduced the average DP in experiments without
and with multiplexing, compared to the UMI agnostic deduplica-
tion approach, while UMI+ GATK increased the average DP
(Supplementary Figure 9). We explain the different effects on
average DP by the difference in strategies between these two
tools. For example, in 8-plexing experiments, the GATK+ UMI
reduced the percent of duplicated reads on average by 0.4
(SE= 0.01), while LocatIt reduced it by 1.56 (SE= 0.03) (Supple-
mentary Table 2). However, LocatIt, on average, marked an
additional 4.38% of reads as QC failed, which included reads with

low base qualities in their UMIs and single consensus read pairs
without complementary pairs. This additional filtering in LocatIt
resulted in lower average DP, fewer unmapped reads, and higher
average base qualities. In summary, the UMI-aware read
deduplication showed that the vast majority of the duplicated
reads in multiplexing experiments are truly PCR/optical duplicates.
UMI-aware deduplication didn’t help recover the loss in average
DP in multiplexing experiments back to the levels of no-plexing
experiments.

Sample multiplexing decreases variant recall rates
We observed moderate-to-strong negative correlations between
the number of samples sequenced together and the recall rates
for SNVs (Pearson’s r=−0.60, P value= 7.79 × 10−5) and InDels
(Pearson’s r=−0.48, P value= 2.85 × 10−3) (Supplementary
Figure 10A, C). The average recall rates dropped from 0.983
(SE= 0.0004) and 0.939 (SE= 0.003) in no-plexing experiments to
0.980 (SE= 0.0004) and 0.926 (SE= 0.003) in 8-plexing experi-
ments for SNVs and InDels, respectively (Supplementary Table 3).
In many instances, the recall rates were lower in the second library
preparation batch, and some of these differences were statistically
significant (Supplementary Figure 11A, D). Despite these differ-
ences, the statistically significant negative correlations between
variant recall rates and the number of multiplexed samples were
present in both library preparation batches (Supplementary Figure
11B, C, E, F).
We also observed a drop in precision for both variant types with

the increased number of multiplexed samples, but unlike recall,
the negative correlations were weaker and not statistically
significant (Supplementary Figure 10B, D, Supplementary Table
3). The precision rates were similar between the library prepara-
tion batches (Supplementary Figure 12A, D), and they also did not
show statistically significant correlations with the number of
multiplexed samples when stratified by batch (Supplementary
Figure 12B, C, E, F). Only in the first batch we saw a weak positive
correlation (Pearson’s r= 0.27, P value= 0.26) between precision
and the number of multiplexed samples (Supplementary Figure
12B).
We looked into the number of true positive (TP), false positive

(FP), and false negative (FN) variant calls to explain the statistically
significant decrease in recall rates. We found the strongest
correlation in the degree of multiplexing and the number of FN
calls (Pearson’s r= 0.60, P value= 8.46 × 10−5 in SNVs and
Pearson’s r= 0.44, P value= 6.34 × 10−3 in InDels), representing
the true variants that are not detected (Supplementary Figure 13).
For example, the average number of undetected true SNVs
increased from 384 (SE= 8) in single-sample sequencing experi-
ments to 446 (SE= 9) in 8-plexing experiments (Supplementary
Table 3). On average, 65 (SE= 6) true SNVs missed in 8-plexing
experiments were correctly identified across all no-plexing
experiments for the corresponding sample, and 61 (SE= 6) of
those had a higher depth of coverage in no-plexing experiments
than in 8-plexing experiments (Supplementary Table 4). We
conclude that the main driver for the decrease in recall rates is
the drop in average DP in multiplexing experiments, which leads
to the increased number of missed true variants.

UMI improves variant calling insufficiently
We investigated how the recall and precision rates changed in
SNV calling after applying the UMI-aware duplicate read removal.
We wanted to test if a more accurate read deduplication could
partially compensate for the loss of variant recall rates in
multiplexing experiments. As previously, we considered two
UMI-aware deduplication tools: LocatIt and UmiAwareMarkDupli-
catesWithMateCigar (GATK+ UMI).
We observed small but statistically significant drops in the recall

rates when using LocatIt in all samples at all levels of plexing
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(Supplementary Figure 14A). For example, on average, the paired
difference in the same sample in the 8-plexing experiment
between two recall rates, one measured after LocatIt and another
measured after the UMI agnostic approach, was only −0.0008
(SE= 0.0001) (Supplementary Table 5). The paired differences
between the recall rates were consistently negative in all samples
in the 8-plexing experiment, and this relationship was statistically
significant (P value= 2 × 10−3) (Supplementary Figure 14A).
However, there was no consistent and statistically significant
change in the precision rates: precision slightly increased in some
samples but dropped in others (Supplementary Figure 14B). For
instance, while, on average, a paired difference in the 8-plexing
experiment between precision rates increased by 0.0002 (SE=
0.0002) (Supplementary Table 5), the paired differences between
precision rates were negative in 5 out of 16 samples and did not
support this average increase (P value= 0.85) (Supplementary
Figure 14B). The statistically significant decreases and increases
were also in the total number of called SNVs and the number of
missed true SNVs (i.e. FN calls), respectively (Supplementary Table
5). In samples in the 8-plexing experiments, the average paired
difference between the total numbers of called SNVs was −20
(SE= 4) and between the numbers of missed true SNVs was 17
(SE= 2). Although the average paired difference between the
numbers of FP calls was −2 (SE= 3) and suggested a decrease in
the numbers of FP calls when using LocatIt, this relationship was
not statistically significant (P-value ≥ 0.05). The reduced number of
called SNVs is consistent with our previous observation of reduced
average DP when using LocatIt due to additional read filtering.
When using GATK+ UMI, we observed slight but statistically

significant improvements in the SNV recall rates for samples in
multiplexing experiments (Supplementary Figure 14C). In samples
in the 8-plexing experiments, the average paired difference
between recall rates was 0.0003 (SE < 0.0001) (Supplementary
Table 5), and the increase in recall rates was observed in the
majority of samples and supported the statistical significance of
the relationship (P value= 3.1 × 10−5) (Supplementary Figure
14C). At the same time, there was also a slight statistically
significant drop in the precision rates at all levels of plexing
(Supplementary Figure 14D). In the same samples in the 8-plexing
experiments, the average paired difference between precision
rates was −0.0014 (SE= 0.0001) (Supplementary Table 5), and the
decrease was consistent across all samples leading to the
statistically significant relationship (P-value= 1.5 × 10−5) (Supple-
mentary Table 5). The observed increase in the number of called
SNVs (e.g. M= 39 [SE= 2] in 8-plexing) and the number of FP calls
(e.g. M= 33 [SE= 2] in 8-plexing) with a much smaller decrease in
the number of FN calls (e.g. M=−6 [SE= 1] in 8-plexing)
(Supplementary Table 5) can explain the increase in recall and
decrease in precision rates. The increase in the number of called
SNVs is consistent with our previous observation of increased DP
when using GATK+ UMI.
In summary, while UMI-aware read deduplication can improve

SNV recall or precision rates depending on the approach, this
improvement appears minimal in the present experiment. It does
not allow to recover these rates back to levels similar to no-
plexing experiments.

WEGS significantly improves variant calling in multiplexed
samples
To compensate for the losses in variant recall rates when
performing multiplexed WES, we introduced reads from low-
depth WGS before variant calling. We called this approach WEGS.
We evaluated four combinations in comparison to no-plexing
WES: (1) 4-plexing WES and WGS at 2X average DP (WEGS4P,2X), (2)
4-plexing WES and WGS at 5X average DP (WEGS4P,5X), (3)
8-plexing WES and WGS at 2X average DP (WEGS8P,2X), and (4)
8-plexing WES and WGS at 5X average DP (WEGS8P,5X). In each

combination, we looked at the paired difference in the same
sample between two recall rates, one measured after adding reads
from WGS and another before.
Additional reads from 2X and 5X WGS improved variant recall

rates in all multiplexing experiments, and the differences were
statistically significant (P value < 0.05) (Supplementary Figures 15
and 16). For instance, the average paired difference in SNV recall
rates in WEGS8P,2X was 0.0031 (SE= 0.0002) (Supplementary Table
6). This paired difference in recall rates was positive across all
samples and, thus, supported the statistical significance of the
observed increase in recall rates (P value= 1.5 × 10−5) (Supple-
mentary Figure 15A). The total number of discovered SNVs
increased on average by 76 (SE= 6), of which 70 (SE= 5) were
true positives, explaining the improved recall rates (Supplemen-
tary Table 6). Similarly, there were statistically significant
improvements in InDel recall rates (Supplementary Figures 15C
and 18C). As expected, adding reads from 5X WGS improved the
recall rates the most. The average paired difference in SNV recall
rates in WEGS8P,5X was 0.0044 (SE= 0.0003) compared to 0.0031
(SE= 0.0002) in WEGS8P,2X (Supplementary Table 6).
The change in variant precision rates after adding reads from

low-depth WGS differed for SNVs and InDels. We observed slight
drops in SNV precision rates in all combinations of multiplexing
levels in WES and read depths in WGS. However, the declines were
not systematic, i.e. they were present only in part of the samples,
in contrast to increases in SNV recall rates which were, on average,
much higher and present in all samples (Supplementary Figures
15B and 16B). For example, the lowest average paired difference
in SNV precision rates among all WES and WGS combinations was
−0.0003 (SE= 0.0001) in WEGS4P,2X (Supplementary Table 6). It
was the only combination where this paired difference in SNV
precision rates reached statistical significance
(P value= 0.026) (Supplementary Figure 15B). Thus, adding reads
from low-depth WGS increased the number of called SNVs by a
few dozen, but at the same time, some of these additionally called
SNVs were FP, which slightly changed the SNV precision rate in
either direction.
Differently from SNVs, all combinations of multiplexing levels in

WES and read depths in WGS showed statistically significant
improvements in InDel precision rates (P value < 0.05). In
WEGS8P,2X, the average paired difference in InDel precision rates
was 0.0055 (SE= 0.0009) (Supplementary Table 6), and only 1 out
of 16 pairs had a negative paired difference between InDel
precision rates after and before adding WGS reads (Supplemen-
tary Figure 15). In contrast to SNVs, additional reads from 2X WGS
raised the average number of called InDels by 10 (SE= 2) and, at
the same time, decreased the average number of FPs by 6 (SE= 1)
in 8-plexing WES.

WEGS enhances WES with millions of variants genome-wide
We compared the variant recall rates in standard no-plexing WES
to those in multiplexing WES combined with low-depth WGS (Fig.
3A, C). The average SNV and InDel recall rates exceeded the
corresponding rates in no-plexing WES for most WEGS configura-
tions, except for WEGS8P,2X. Both WEGS4P,2X and WEGS4P,5X
resulted in higher average SNV recall rates than no-plexing WES:
0.9842 (SE= 0.0002, P value= 6.4 × 10−3) and 0.9852 (SE= 0.0001,
P value= 7.1 × 10−5) against 0.9830 (SE= 0.0004), respectively
(Fig. 3A). Among 8-plexing experiments, only WEGS8P,5X resulted
in higher average SNV recall rates than no-plexing WES: 0.9847
(SE= 0.0001, P-value= 5.6 × 10−4). Similarly, only WEGS4P,2X,
WEGS4P,5X, and WEGS8P,5X statistically significantly increased
average InDel recall rates compared to no-plex WES (Fig. 3C).
The average InDel recall rate showed a statistically significant
increase from 0.9390 (SE= 0.0029) in no-plex WES to 0.9493
(SE= 0.0029, P value= 0.01), 0.9552 (SE= 0.0019,
P value= 2.8 × 10−4), and 0.9490 (SE= 0.0020,
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P value= 4.2 × 10−3) in WEGS4P,2X, WEGS4P,5X, and WEGS8P,5X,
respectively. When stratified by the library preparation batch, the
average variant recall rates across WEGS remained higher than
those in no-plexing WES, except for SNV recall rates in WEGS8P,2X
(Supplementary Figures 17E, F, 18E, F). The batch effect in SNV
recall rates in WES, described above, also affected WEGS
(Supplementary Figure 18D). Despite this, the WEGS4P,5X and
WEGS8P,5X had statistically significantly higher SNV recall rates
compared to no-plexing WES in both batches, and the increase in
WEGS4P,2X was close to statistical significance (Supplementary
Figure 17E, F). There were no statistically significant differences in
InDel recall rates between the two batches within the no-plexing
WES and each WEGS configuration (Supplementary Figure 18D).
But only for WEGS4P,5X the increase in InDel recall rates compared
to no-plexing WES was statistically significant in both batches.
WEGS4P,2X showed a statistically significant increase only in the
first batch. WEGS8P,2X showed a statistically significant increase
only in the second batch, and the increase in the first batch was
close to a statistical significance (P-value= 0.092).
The variant calling precision rates in no-plexing WES compared

to WEGS differed depending on the variant type. The average SNV
precision rates in every WEGS configuration were slightly lower
than in WES, while average InDel precision rates were higher than
in WES (Fig. 3B, D, Supplementary Table 7). Only drops in average

SNV precision rates in WEGS4P,2X and WEGS4P,5X, and an increase in
the average InDel precision rate in WEGS4P,5X were statistically
significant (Supplementary Table 7). Furthermore, when stratified
by the library preparation batch, the decreases in average SNV
precision rates in WEGS compared to no-plexing WES were
statistically significant only in the second batch (Supplementary
Figure 17A–C, Supplementary Table 8). In contrast, WEGS8P,2X and
WEGS8P,5X demonstrated an increase in average SNV precision
rates compared to no-plexing WES in the first batch. We explain
this by the initially lower precision rates in multiplexing WES
experiments in the second batch as described above. When
stratified the average InDel recall rates by the library preparation
batches, the average InDel precision rates in WEGS remained
higher than in no-plexing WES for all configurations except
WEGS8P,2X (Supplementary Figure 18A–C, Supplementary Table 8).
However, none of the increases remained statistically significant.
We also compared variant recall and precision rates in WES and

WEGS to the 30X WGS, which we generated by downsampling
reads from 300X WGS data (see Methods). Average variant recall
and precision rates inside regions targeted by WES were higher in
30X WGS compared to WES and WEGS. For SNVs, these differences
were below 0.7%, while for InDels, the maximal difference reached
6% (Supplementary Table 9). WEGS4P,2X, WEGS4P,5X, and WEGS8P,5X
were closer to 30X WGS than WES in targeted regions. 30X WGS

Fig. 3 Variant recall and precision rates in no-plexing WES and WEGS. The figure represents variant calls inside the target regions in Agilent
V7 capture and the GIAB high-confidence regions. The box bounds the IQR, and Tukey-style whiskers extend to 1.5 × IQR beyond the box. The
horizontal line within the box indicates the median value. Open circles are data points corresponding to the individual WES and WEGS. The
p-values above each sequencing method pair correspond to the one-tailed Wilcoxon rank-sum test. A Recall rates of the called SNVs.
B Precision rates of the called SNVs. C Recall rates of the called InDels D Precision rates of the called InDels. Supplementary Table 6 shows
average values and standard errors.
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had no rivals when comparing genome-wide recall and precision
rates. On average, it found 1.7–2.5 times more SNVs and 2.5–3.8
times more InDels genome-wide than WEGS (Supplementary
Table 10). The average genome-wide SNV and InDel precision
rates in WGS were up to 18% and 70% higher than in WEGS,
respectively. As expected, WEGS4P,5X and WEGS8P,5X were the
closest to the 30X WEGS.
In summary, these results confirm that our WEGS approach

eliminates the negative impact of sample multiplexing in WES on
variant recall rates in coding regions and brings variant recall rates
to the levels of a standard no-plexing WES or higher. Furthermore,
these results suggest that WEGS4P,2X, WEGS4P,5X and WEGS8P,5X are
the closest alternatives to no-plexing WES, as these sequencing
strategies demonstrated statistically significant increases in SNV
and InDel recall rates and, at the same time, showed increases in
InDel precision rates in targeted regions. WEGS has a clear
advantage over WES by allowing the assessment of additional
~2M SNVs and InDels per individual genome-wide.

WEGS correctly assesses variants which genotype
imputation misses
Next, we wanted to understand what other benefits low-depth
WGS data could bring to multiplexed WES besides removing the
negative effects of sample multiplexing. We compared WEGS to
array-based genotyping followed by genotype imputation. For
each of our three samples, HG002, HG003, and HG004, we
emulated the genotyping array data covering 654,013 genetic
positions and performed genotype imputation using the TOPMed
reference panel consisting of 97,256 diverse genomes. We
compared these imputation results to WEGS4P,2X and WEGS8P,5X,
the closest alternatives to no-plexing WES in targeted regions.
First, we investigated regions targeted by WEGS. SNVs imputed

from emulated genotyping array data showed high precision rates
( > 99%) for all three samples, but imputation missed between 824
to 1,028 SNVs per sample (among them, between 482 to 576 were
non-synonymous) compared to WEGS (Supplementary Table 11).
For example, in sample HG002, WEGS8P,5X correctly identified
22,390 SNVs on average, and the TOPMed reference panel
imputed only 21,458 SNVs, which is 938 SNVs less. The difference
in the number of correctly identified InDels was even larger:
imputation missed around 60% of true InDels (40% recall), while
WEGS only missed around 5% (95% recall).
Second, we investigated the number of imputed and

sequenced variants genome-wide (Supplementary Table 12). In
contrast to the WEGS targeted regions, the genotyping array-
based imputation approach outperformed WEGS by the number
of correctly identified SNVs: imputation missed 4–5% (95–96%
recall), WEGS4P,2X missed 54–65% (35–46% recall), and WEGS8P,5X
missed 36–50% (50–64% recall) of true SNVs. The differences in
correctly identified InDels were much lower: imputation missed
around 61% (39% recall), WEGS4P,2X missed 69–78% (22–31%
recall), and WEGS8P,5X missed 53–67% (33–47% recall) of true
InDels.
Third, we looked at how many variants missed or wrongly

imputed outside non-protein coding regions can be recovered by
WEGS. We grouped TOPMed-imputed variants outside WEGS-
targeted non-protein-coding regions into three categories: (1) the
number of imputed alleles matches the number of true alleles (i.e.
imputation is correct); (2) the number of imputed alleles is less
than the number of true alleles; (3) the number of imputed alleles
is higher than the number of true alleles. For each of these groups,
we looked at the median fold change in alternate AF between the
ASJ population and TOPMed. The median fold-change in AF was
higher (i.e. AF in ASJ was higher than in TOPMed) when
imputation was systematically missing alleles (group 2) and lower
when imputation was wrongly imputing extra allele(s) (group 3)
(Supplementary Table 13). This result is in line with previous

studies24,25, which showed that the imputation accuracy depends
on the genetic similarity between the study individual and the
reference panel. WEGS4P,2X correctly identified true alleles in
38–46% of variants in group 2 and 89–92% of variants in group 3,
while WEGS8P,5X correctly identified true alleles in 55–67% of
variants in group 2 and 91–94% in group 3.
Finally, to improve the variant recall in non-coding regions in

WEGS, we evaluated the applicability of the GLIMPSE method26,
developed to impute missing variants from low-depth WGS data.
After applying GLIMPSE to WEGS4P,2X and WEGS8P,5X with local
reference haplotypes from the 1000 Genomes Project and Human
Genome Diversity Project (see Methods), genome-wide SNV recall
rates and precision increased drastically. In imputed WEGS4P,2X,
the average genome-wide SNV recall rate and precision increased
from ~35–46% to ~69–81% and from ~80–82% to ~94–95%,
respectively (Supplementary Tables 12 and 14). In imputed
WEGS8P,5X, the average genome-wide SNV recall rate and precision
increased from ~50–65% to ~79–89% and from ~87–90% to
~95–96%, respectively. The genome-wide recall rate and precision
also increased for InDels. When considering the GLIMPSE-imputed
variants only, i.e. without merging them with variants called in
sequencing data only, the SNVs precision rate was very high and
greater than 99% across all sequencing experiments (Supplemen-
tary Table 15). The SNV recall rate in sequence-based imputation
was still lower than in genotyping array-based imputation. One of
the possible explanations is that the state-of-the-art TOPMed
reference panel contains >20 times more haplotypes than our
local reference panel. To confirm this, we run the genotyping
array-based imputation using our local reference panel and the
Minimac4 tool27. The Minimac4-imputed recall rates for SNVs were
only slightly higher than the GLIMPSE-imputed WEGS8P,5X and
much higher than the GLIMPSE-imputed WEGS8P,2X (Supplemen-
tary Table 16). However, the precision rates of GLIMPSE-imputed
SNVs were always much higher than those of the Minimac4-
imputed SNVs. When considering imputed variants only, the recall
rates for imputed InDels were similar in the sequence-based
imputation and genotyping array-based imputation using
TOPMed, but were lower compared to genotyping array-based
imputation using the local reference panel. The InDels recall rates
became closer to Minimac4-imputation results when combining
imputed and called InDels together, but at the expense of
precision.
In summary, these results showed that WEGS outperforms the

genotyping array and imputation approach in terms of the
number of identified variants, especially InDels, inside protein-
coding regions. Outside protein-coding regions, WEGS allows one
to discover genetic variants missed by genotyping array-based
imputation due to their population specificity. Sequencing-based
imputation methods can be applied to WEGS to recover variants
missed due to lower depth of coverage outside protein-coding
regions. WEGS8P,5X has a clear advantage over WEGS4P,2X outside
the protein-coding region due to the higher depth of coverage in
the WGS experiment.

WEGS is substantially cheaper than high-depth WES and WGS
We compared costs for WEGS scenarios relative to genotyping
arrays, low-depth WGS, 30X WGS and no-plexing 100X WES. Per
sample cost estimates for the genotyping array included DNA QC
and genotyping using Affymetrix Axiom UKBB array. Sequencing
costs per sample were based on current pricing and a scenario of
1,000 samples sequenced on the Illumina NovaSeq 6000, S4
platform. We note that sequencing costs can vary depending on
multiple factors, including reagents pricing, flow cell volume and
sequencing platform, while genotyping array prices are less
affected by sample size.
Our estimates show that the combinations of WEGS4P,2X and

WEGS8P,5X are half the price compared to standard 100X WES (no-
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plexing) and ~47% of the price of 30X WGS (Table 1). The
combination of 5X WGS with 4-plexing WES is slightly more
expensive but still 56% of the cost of 30X WGS and 60% of the
cost of no-plexing 100X WES. As such, the WEGS scenarios
representing the most economical strategies relative to WGS and
WES are again the combinations of 2X WGS with 4-plexing WES
and 5X WGS with 8-plexing WES. Yet, as shown above, while
WEGS4P,2X and WEGS8P,5X show comparable precision and recall in
targeted coding regions relative to standard WES, the latter
combination is more effective at capturing noncoding variation.
As such, we conclude that the most cost-effective WEGS strategy
to capture both coding and non-coding variants is 5X WGS with
8-plexing high-depth WES.

WEGS applied to the study of peripheral artery disease
We applied WEGS8P,4X to 862 patients diagnosed with PAD. Based
on the genetic ancestry analyses (see Methods), 780 (90.5%) PAD
patients were inferred as Europeans, 60 (7.9%) as Admixed
Americans, 7 (0.8%) as Africans, 4 (0.6%) as Asians and 3 (0.3%) as
middle Eastern (Supplementary Figure 19). The GIAB control
sample included in each of the 10 plates showed similar precision
and recall for SNVs and InDels as in the benchmark experiment
(Supplementary Figure 20). After variant level filtering (see
Methods), we identified 44,747,114 genetic variants (33,505,105
SNVs and 11,242,009 InDels) in PAD samples (Table 2). A total of
12,893,703 of these variants were novel (not described in dbSNP
v109.3), from which 63.8% were singletons (carried by one
individual). Inside the coding regions, we observed 35.4%
synonymous (11,053 per individual), 59.0% non-synonymous
(11,636 per individual), 1.1% stop/essential splice (490 per
individual), 2.1% frameshift (298 per individual), and 2.3% (371
per individual) inframe genetic variants.
We evaluated the WEGS ability to capture known loci associated

with PAD identified by large-scale GWAS28. All lead variants
mapping to these loci were present in the PAD WEGS data
(Supplementary Table 17). The majority of the lead variants are
intergenic, with an average read depth of 13.7. Only 6 out of the
19 lead variants are directly typed onto the Global Screening Array
(GSA) 24.v3; demonstrating the WEGS potentials to assess disease-
causing variants beyond the genotyping arrays. In addition, we
observed that WEGS captured, on average, 4056 (SE= 295)
genetic variants within the known PAD loci that are not present
in the TOPMed imputation reference panel and, thus, could not be

imputed (Supplementary Table 18). Although the majority of these
loci are intergenic, WEGS was able to identify additional missense
variants within these regions.

DISCUSSION
In this work, we propose and evaluate a new sequencing method
which we call WEGS, designed to be more economical than WES
and WGS. We considered WEGS based on WES (100X) with sample
multiplexing, i.e. pooling and sequencing up to 8 samples
simultaneously, combined with the low-depth WGS (2-5X). First,
we evaluated the effect of sample multiplexing in WES. We
demonstrated that an increased number of PCR/optical read
duplicates in multiplexing WES experiments leads to the loss of
depth of coverage and, consecutively, to a higher number of
missed true variants. Second, we showed that although the UMI-
aware read deduplication helps improve variant calling recall or
precision rates, the improvements are minimal and do not
compensate for the losses due to multiplexing. Third, we
demonstrated that combining reads from low-depth WGS and
reads from multiplexing WES brings variant calling recall and
precision rates in protein-coding regions to the levels of no-
plexing WES or above. Specifically, based on our experiments, we
recommend using combinations of 2X WGS with 4-plexing WES
and 5X WGS with 8-plexing WES as an alternative to standard WES.
When choosing between different WEGS configurations, it is

essential to also consider performance outside the protein-coding
regions. Specifically, we demonstrated that WEGS allows for the
identification of population-specific non-coding genetic variants,
which large genotype imputation panels impute less accurately
due to differences in allele frequencies between the study
population and reference. If there is no available imputation
reference panel closely matching the study population, then the
8-plex WES with 5X WGS would be the best option compared to
the 4-plex WES with 2X WGS. Also, our cost estimates suggest that
WEGS relying on 8-plexing WES and 5X WGS is the most cost-
effective configuration and is 2X cheaper than standard no-plex
WES and 2.1X cheaper than high-depth WGS. We used this WEGS
configuration on 862 samples with PAD to demonstrate the
scalability and applicability of the method in a practical setting,
assessing almost 3 M variations (24,000 in coding regions) per
individual genome on average. Most novel variants were rare and/
or present in only one PAD patient. Thus, we expect WEGS to have
a major contribution to the discovery of novel rare variants

Table 1. Relative genotyping and sequencing costs per sample given current pricing.

Cost relative to array Cost relative to 2X
WGS

Cost relative to 5X
WGS

Cost relative to 30X
WGS

Cost relative to 100X
WES

Axiom array 1.00 0.52 0.33 0.08 0.09

2X WGS 1.91 1.00 0.63 0.15 0.17

5X WGS 3.04 1.59 1.00 0.24 0.26

30X WGS 12.48 6.52 4.10 1.00 1.08

100X WES 11.50 6.01 3.78 0.92 1.00

100X WES 4plex 5.05 2.64 1.66 0.40 0.44

100X WES 8plex 3.95 2.07 1.30 0.32 0.34

100X WES 4plex+ 2X WGS 5.80 3.03 1.91 0.47 0.50

100X WES 4plex+ 5X WGS 6.93 3.63 2.28 0.56 0.60

100X WES 8plex+ 2X WGS 4.71 2.46 1.55 0.38 0.41

100X WES 8plex+ 5X WGS 5.84 3.05 1.92 0.47 0.51

Per sample cost estimates for the genotyping array include DNA QC and genotyping using Affymetrix Axiom UKBB array. Sequencing scenarios are based on
1000 samples sequenced on Illumina NovaSeq 6000, S4 platform. These cost estimates include sample preparation steps from DNA QC (QC, gDNA, high
throughput) to Illumina library preparation and capture for Agilent SureSelect XT HS2 V7, sequencing library QC, and Illumina sequencing.
Bold values represent the combinations which are considered possible alternatives to standard WES and 30X WGS
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implicated in the disease under investigation. We further show
that at a lower price than WES, WEGS captures variants in loci
known to be associated with PAD, including non-synonymous
variants to be investigated in future studies. Lastly, in intergenic
regions, WEGS captures a larger number of GWAS lead variants
compared to the common genotyping array.
The WEGS data processing pipelines are built on existing open-

source software tools and, thus, do not require time and financial
investments in tool development. This work demonstrated how
the industry-standard GATK toolset29 could be utilized for SNVs
and InDels calling and filtering from WEGS data (see Data and
Code Availability). Novel genotype imputation methods, such as
GLIMPSE26, are available for sequencing data and can be applied
to WEGS to further increase the number of identified non-coding
variants.
Our study has several limitations. First, benchmarking analyses

relied on high-confidence variant calls from a GIAB trio. As
benchmarking call sets will become available for regions difficult
for variant detection (i.e. outside high-confidence regions), it will
be interesting to investigate WEGS performance in these regions.
Second, our analysis focused on SNVs and InDels only, as WES and
low-depth WGS are known to have limited utility for structural
variant calling. Third, our experiments were based on DNA
extracted from cell lines and blood. It was shown previously that
WGS based on DNA extracted from blood yields better sequen-
cing data metrics compared to saliva and buccal swabs, but this
has negligible impact on the accuracy of short variant detection,
although some saliva and buccal swab samples can show higher
false positive rate30. As such, we expect that WEGS based on DNA
extracted from saliva or buccal cells to show similar performance
as in our experiment, as long as samples have sufficient DNA
concentration and are not contaminated. Fourth, while our
precision and recall estimates were broadly consistent across
replicates, we acknowledge that they are based on only 3

individual genomes from a single ancestry. Extension of this work
could include an investigation of WEGS performance in individuals
from other ancestries. Yet, based on our results and recent work
assessing the advantages of low-depth WGS11, we expect WEGS to
be of particular interest for populations currently underrepre-
sented in public reference panels, enabling the discovery of novel
population-specific variants. Fifth, our benchmark experiments
using GIAB samples aimed to identify the effects of sample
multiplexing and additional WGS reads in WES on raw variant calls.
However, in clinical and research settings, we suggest applying
recommended automated filtering (e.g. GATK’s Variant Quality
Score Recalibration [VQSR]31) or hard-filtering of variant calls32,
which can eliminate many technical artifacts. When we applied
GATK’s recommended hard filters to GIAB samples, the variant
calling precision increased, and for SNVs, it was 99% or above at
depths greater than 40X but never reached 100% (Supplementary
Figure 20). Thus, similarly to WES33, additional validation of
variants detected using WEGS, especially with lower depths34, may
be needed in clinical settings. InDels need more careful
interpretation since their precision reaches only 98%, even at
the highest depths and after filtering. Lastly, although our results
suggest that the precision of the variants after imputation can
reach 99% (depending on the imputation reference panel, variant
type, sample size, strategy used when merging imputed and
called variants, and whether variants were inside targeted
regions), the additional quality control of imputed variants is
required. For example, the GLIMPSE method, used in this work,
provides an IMPUTE information measure (INFO score)35, which is
widely used in GWAS to select well-imputed variants (e.g. INFO
score > 0.8). We note that the INFO score and other similar
imputation accuracy measures are less reliable for rare variants,
requiring more sophisticated measures such as those described by
Sun et al., 202236.

Table 2. The number of variants discovered in WEGS sequencing data from 862 patients with peripheral artery disease.

All Individuals (N= 862) Per Individual

Total Singletons Rare (MAF < 1%) Average

Depth at non-targeted regions (X) -- -- -- 4.5 ( ± 0.88)

Depth at targeted regions (X) -- -- -- 114.8 ( ± 4.47)

Total variants 44,747,114 14,542,812 32,497,956 2,964,080

SNVs 33,505,105 11,291,220 24,576,783 2,587,752

InDels 11,242,009 3,226,457 7,921,173 449,829

Novel variants 12,893,703 8,226,183 12,712,777 26,984

SNVs 9,363,157 5,739,615 9,233,592 18,922

InDels 3,530,546 2,481,974 3,529,310 8062

Coding variants 348,410 181,870 284,434 23,854

Synonymous 123,337 57,968 94,275 11,053

Non-synonymous 205,570 113,475 173,546 11,636

Stop/essential splice 3967 2325 3426 490

Frameshift 7375 4484 6520 298

Inframe 8069 3566 6589 371

Novel coding variants 31,821 28,448 31,713 66

Synonymous 7680 6920 7,675 11

Non-synonymous 19,761 17,884 19,731 31

Stop/essential splice 1071 865 1045 12

Frameshift 2166 1897 2159 8

Inframe 1106 872 1067 7

This table reports the total number of sequenced variants in the overall patient group and the average number of sequenced variants per individual across
different functional classifications. Novel variants were defined as variants not present in dbSNP (version 109.3).
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We anticipate that WEGS will become a method of choice for
studies of the molecular genetic basis of diseases and disease-
related traits. Such genetic association studies require many
sequenced individuals to reach sufficient statistical power and
capacity to detect rare variants. Today, it remains costly to use
high-depth WGS; for example, high-depth WGS for 1,000 samples
currently costs close to 1 million US dollars, and standard WES can
be up to 90% of this figure. As such, a 50% cost reduction when
using WEGS will enable high-depth sequencing of up to twice the
number of exomes while providing additional information
genome-wide. Our cost estimates are based on current pricing,
but these relative costs should hold as long as WES reagents costs
remain low compared to WGS costs. As such, WEGS should remain
competitive until WGS costs become substantially lower than
currently. The real impact on association studies will be shown in
future studies using WEGS or similar technologies.

METHODS
DNA samples for benchmarking experiments
To benchmark our new method, we used DNA samples derived
from cell lines obtained from the US National Institute of
Standards and Technology (NIST) RM 8392, a family trio of
Ashkenazi Jewish origin including a son (HG002), father (HG003)
and mother (HG004), consented by the Personal Genome Project
(PGP)37. These DNA samples were developed for the Genome in a
Bottle (GIAB) Consortium to generate reference datasets for
benchmarking genomic analyses38, and have broad, open consent
for all research uses under the terms of the PGP.

Benchmarking experimental study design
To assess the relative performance of different WEGS protocols,
we used DNA samples from the Ashkenazi trio to perform a series
of WES and low-depth WGS sequencing experiments. For WES, we
performed experiments without and with multiplexing of 4 and
8 samples (no-plexing, 4-plexing and 8-plexing, correspondingly).
For each sample in the family trio, we performed library
preparation and sequencing to a target DP of 100X in triplicate
for the 1-plex and 4-plex WES experiments, and in duplicate for
the 8-plex experiment, for a total of 37 samples (Fig. 1). For WGS,
using pre-capture libraries prepared for WES, we sequenced the
trio samples to a target DP of 5X on 2 separate lanes. This allowed
us to use a single lane to obtain a target DP of 2.5X. This gave us
the possibility to evaluate four WEGS combinations: WEGS4P,2X,
WEGS4P,5X, WEGS8P,2X, and WEGS8P,5X, where 4 P and 8 P denote 4-
and 8-plexing, respectively, and 2X and 5X correspond to target
DP of WGS.

Sequence data production
WES and WGS sequencing was performed at the McGill Genome
Centre in October 2021. Processing included sample quality
control (QC) using a QUBIT 1X DSDNA HS ASSAY KT from Life
Technologies Inc .to measure DNA concentration quality. An
aliquot of 200 ng input in 50 ul total was used to perform DNA
fragmentation (shearing) with Covaris LE220 (Covaris Inc.) method
to a target of 300 bp fragments. Sample library preparation was
carried out using Agilent SureSelect XT HS2. Subsequent captures
were performed using Agilent SureSelect XT HS2 V7 capture panel
with different plexing strategies: 4-plex (12 samples) and 8-plex
(16 samples) (Fig. 1). Unique dual sample indexing barcodes
(2x8bp) were added to multiplexed samples during library
preparation. Library QC was performed before and after capture
in 2 steps: quantification using qPCR (Kapa Biosystems, part
#KK4602) and QC using LabChip GX Touch HT Nucleic Acid
Analyzer. Exome captures were performed in 2 batches using
Agilent SureSelect Human All Exon V7 capture for a total 48.2-Mb

target. Sequencing was performed on 2 lanes of the Illumina
NovaSeq platform using S1 flowcells and 150-bp paired-end reads
to a target coverage of 100X. Sample pre-capture libraries were
used to perform WGS sequencing to a target coverage of 5X in
2 separate lanes on the Illumina NovaSeq platform using S1
flowcells to 150-bp paired-end reads.

Data processing and variant calling
As defined by Genome Analysis Tool Kit31 (GATK v4.2.0.0) best
practice recommendations, preprocessed reads trimmed by the
removal of adapters and low quality bases, were aligned to the
decoy version of GRCh37 human genome build (hs37d5) using
bwa-mem39 (v0.7.17) (Supplementary Figure 1). Mapped reads
were further refined using GATK InDel realignment31 (v3.8) to
improve the mapping of reads near InDels, marking of duplicated
reads using GATK mark duplicates, and improve base quality
scores using Base Quality Score Recalibration (BQSR). For WEGS
processing, WGS and WES were analyzed by applying the above
methods but using different trimming and mark duplication
procedures to take advantage of the UMIs present in the WES
data. The trimmer and locatIT programs from Agilent’s AGeNT tool
set (v2.0.5) were used to first identify and remove the adaptor
sequences, extract the molecular barcodes (MBC), and then merge
duplicated reads by leveraging the MBC information embedded in
the aligned BAM file. WGS data were processed using the read
trimmer skewer40 (v0.2.2), and duplicated reads were assessed
using GATK mark duplicates. Variant calling for all the experiments
was performed using the GATK’s HaplotypeCaller.

Benchmark variant calls and regions
Benchmark (or “high-confidence”) variant calls for SNVs and short
InDels from GIAB Consortium for each sample in the Ashkenazi
family trio were obtained for build GRCh37 (v.4.2.1)41 at URL:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/.
The family structure information was used by the GIAB consortium
when constructing high-confidence variant calls through Mende-
lian inheritance analyses and trio-based phasing42. We used
Illumina hap.py benchmarking tool (version v.0.3.10) to compare
our study variant calls and imputed variants to GIAB “high-
confidence” variant calls in previously described “high-confidence
regions”43,44. Variant calling recall rate was estimated as the total
number of true positive variant calls divided by the total number
of variant calls, and precision as the total number of true positive
variant calls over the sum of true positive and false positive variant
calls. We used imputed best-guess genotypes when estimating
recall and precision rates for imputed variants against GIAB “high-
confidence” variant calls. Before benchmarking, we did not apply
filters on our variant calls (e.g. using variant calling annotations or
information on Mendelian inheritance errors from the family
structure) or imputed genotypes (e.g. using imputation quality
scores) to limit the contribution of other factors when interpreting
differences between methods.

High-depth WGS data
To generate 30X WGS data for the Ashkenazi Jewish trio (HG002,
HG003, and HG004), we downloaded 300X WGS data from GIAB
produced using Illumina HiSeq 2500 in Rapid mode (v1) (PCR-free,
pair-end, mean read length 2 x 148 bp). The reads were aligned to
the GRCh37 genome build using Novoalign version 3.02.07. Then,
we randomly subset 10% of the reads using the samtools45 tool to
reach 30X coverage on average. For each individual, we generated
five 30X WGS datasets using different random seeds. Then, we
performed variant calling using GATK v4.2 in the same way as for
other experiments.
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Tests for statistical significance
We used Wilcoxon rank-sum test to test for statistical significance
(1) of differences between two library preparation batches and (2)
of variant recall and precision rates between no-plexing WES and
WEGS. We used Wilcoxon signed-rank test when comparing the
same WES experiments (1) before and after UMI-aware read
deduplication and (2) before and after adding WGS reads. We
used a one-sided version of the tests depending on the means of
two samples, i.e. the alternative hypothesis was that the
distribution underlying the sample with a larger mean is
stochastically greater than the distribution underlying the sample
with a smaller mean. We used the implementation of both tests
available in SciPy46. To assess the correlation strength between
levels of multiplexing and different sequence data metrics, we
used the Pearson correlation coefficient and the corresponding P
values for the two-sided alternative hypothesis that the correlation
is non-zero implemented in SciPy46. We used P value < 0.05 for the
statistical significance threshold.

Genotype imputation using genotyping arrays
To mimic genotyping array data for HG002, HG003, and
HG004 samples, we subset 654,013 GRCh37 positions on the
Infinium Global Screening Array 24 v3 (https://
support.illumina.com/array/array_kits/infinium-global-screening-
array/downloads.html) from the corresponding GIAB’s WGS data.
At subset positions from WGS data, each GIAB sample on average
carried 150,865 SNVs and 1,309 InDels (150,865 SNVs and 1382
InDels in HG002, 150,383 SNVs and 1228 InDels in HG003, 151,348
SNVs and 1,318 InDels in HG004). The median absolute length of
InDels was three base pairs in all samples, and the average
absolute length varied between 7 and 14 base pairs (14 in HG002
and HG003, 7 in HG004). 99% of all InDels were shorter than 39
base pairs in all samples, and only 4 InDels spanned more than
100 base pairs. Then, we imputed each sample individually using
the multi-ethnic TOPMed reference panel (N= 97,256) available at
NHLBI TOPMed Imputation Server. In addition to genotype
imputation, the server lifted positions from GRCh37 to GRCh38
genome build and performed reference-based statistical phasing.
There were 20,880,237 InDels out of 292,058,121 imputed variants
in the TOPMed reference panel with an average absolute length of
3 base pairs and a maximal length of 69 base pairs, and 99% of
them were shorter than 20 base pairs. The imputed genotypes
were on the GRCh38 genome build. To compare them to WEGS,
we used the GATK LiftoverVcf tool47 to lift imputed positions back
to GRCh37. We annotated the data after imputation with alternate
allele frequencies (AF) in the Ashkenazi Jewish (ASJ) population
from gnomAD v3.1.13 and overall AF in the BRAVO variant
browser, which includes all individuals in the TOPMed reference
panel. For both databases, we lifted the GRCh38 positions to
GRCh37 using GATK LiftoverVcf. We used only those variants,
which passed all quality filters described by gnomAD and
TOPMed, correspondingly. When comparing AF distributions in
ASJ vs BRAVO, we restricted our analyses to nonmonomorphic
genetic variants where at least 1000 ASJ individuals were
sequenced.

Genotype imputation using WEGS and local reference panel
We used the GLIMPSE method26 to impute variants from the local
reference panel using sequencing reads in WEGS. To build our
local reference panel, we used genotypes from the 1000 Genomes
Project (1000 G)6 and Human Genome Diversity Project (HGDP)48

(N= 4150) from gnomAD v33. We kept only variants, which passed
all quality filters defined by gnomAD v3, were missing in <1% of
individuals, and for which alternate allele count was ≥2. We
phased the genotypes using statistical phasing implemented in
SHAPEIT449 and lifted positions of phased genotypes from

GRCh38 to GRCh37 genome build using the GATK LiftoverVcf
tool. There were 5,781,236 InDels out of 59,158,489 variants in the
local reference panel with an average absolute length of 4 base
pairs and a maximal length of 307 base pairs, and 99% of them
were shorter than 32 base pairs. We merged the GLIMPSE-imputed
variants with variants directly called from WEGS by GATK. We kept
the imputed version when a variant was imputed and called at the
same time (i.e. had the same position and alleles).

WEGS application
A total of 862 patients diagnosed with PAD were recruited and
provided written consent to use their health-related data and
samples for research purposes between April 2, 2017, and
September 21, 2021, in the Division of Angiology at the Insel
University Hospital of Bern, Switzerland. The PAD study was
reviewed and approved by the cantonal ethics committee for
research of the Directorate of Health, Social Affairs and
Integration of the Canton of Bern Switzerland (Kantonale
Ethikkommission Bern) (Project-ID:2021-00055). The WEGS data
analyses in the PAD study were also approved by the Research
Ethics Office (IRB) (IRB Study Number: A07-M42-21B (21-07025))
of the Faculty of Medicine and Health Sciences at McGill
University, Canada. Recruited patients had whole blood
samples collected and stored in the Liquid Biobank Bern
(LBB). We applied the above WEGS method to each sample
using WGS at an average depth close to 5X and WES at 100X.
Exomes were captured in 8-plex using the Agilent SureSelect All
Exons Human V7 capture. The exome and whole genome
libraries were sequenced on MGI T7 sequencers. All sequence
reads were mapped to build GRCh38. We followed GATK best
practices pipelines for jointly calling SNVs and InDels. We used
only those variants, which passed all variant filters after GATK’s
VQSR and had less than 1% missing genotypes. To control for
possible batch effects and assess quality of the sequencing, we
included a control sample (HG002) on each of the 10 used
plates, resulting in 10 replicates. On average, in the control
sample, we obtained 96.85% precision and 97.88% recall for
SNVs and 84.90% precision and 89.55% recall for InDels in
target regions before applying variant filters (Supplementary
Figure 21, Supplementary Table 1). The precision was consis-
tently higher than 99% for SNVs and 90% for InDels at DP > 40X
after applying variant-level filtering (Supplementary Figure 22).
Genetic ancestry was estimated for PAD patient samples by
projecting sample sequenced data to publicly available
genotypes from the 1000 Genomes (1KG) and Human Genome
Diversity Project (HGDP) [HGDP+ 1KG] callset from gnomAD
v.3.13. Projected principal component (PC) scores were gener-
ated with LASER software50 and used to infer genetic ancestry
by a random forest model trained on the HGDP+ 1KG callset
using scikit-learn software51.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The GIAB family trio datasets, including the WES, WGS, and WEGS, are publicly
available for reproducibility purposes at the BioProject ID PRJNA1043666 on the NCBI
Sequence Read Archive (SRA), and at the Genetics and Genomics Analysis Platform
(GenAP) using the https://datahub-778-pbbb.p.genap.ca/ link. Access to the
generated genetic data for the PAD study is subject to approval and a data-
sharing agreement due to participants’ consent; requests to access the data should
be directed to Marc Schindewolf.
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CODE AVAILABILITY
The variant calling and analysis pipelines and source code are publicly available
through the following version control repositories: Source code for the tables and
figures (https://github.com/CERC-Genomic-Medicine/WEGS_paper); Scalable Next-
flow pipelines for variant calling in WGS, WES and WEGS using GATK (https://
github.com/CERC-Genomic-Medicine/WEGS_pipelines); A scalable Nextflow pipeline
for genotype imputation from low-depth sequencing data using GATK and GLIMPSE
(https://github.com/CERC-Genomic-Medicine/glimpse_pipeline); A scalable Nextflow
pipeline for statistical genotype phasing using SHAPEIT4 (https://github.com/CERC-
Genomic-Medicine/shapeit_pipeline).
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