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Abstract. Current changes in the world’s climate increasingly impact a wide variety of sectors globally, from
agriculture and ecosystems to water and energy supply or human health. Many impacts of climate on these
sectors happen at high spatio-temporal resolutions that are not covered by current global climate datasets. Here
we present CHELSA-W5E5 (https://doi.org/10.48364/ISIMIP.836809.3, Karger et al., 2022): a climate forcing
dataset at daily temporal resolution and 30 arcsec spatial resolution for air temperatures, precipitation rates,
and downwelling shortwave solar radiation. This dataset is a spatially downscaled version of the 0.5◦ W5E5
dataset using the CHELSA V2 topographic downscaling algorithm. We show that the downscaling generally
increases the accuracy of climate data by decreasing the bias and increasing the correlation with measurements
from meteorological stations. Bias reductions are largest in topographically complex terrain. Limitations arise
for minimum near-surface air temperatures in regions that are prone to cold-air pooling or at the upper extreme
end of surface downwelling shortwave radiation. We further show that our topographically downscaled climate
data compare well with the results of dynamical downscaling using the Weather Research and Forecasting (WRF)
regional climate model, as time series from both sources are similarly well correlated to station observations. This
is remarkable given the lower computational cost of the CHELSA V2 algorithm compared to WRF and similar
models. Overall, we conclude that the downscaling can provide higher-resolution climate data with increased
accuracy. Hence, the dataset will be of value for a wide range of climate change impact studies both at global
level and for applications that cover more than one region and benefit from using a consistent dataset across these
regions.

1 Introduction

With ongoing climate change, the assessment of climate
change impacts on natural and social systems requires in-
creasing attention (IPCC, 2022). Historically, a strong focus
has been on the scientific exploration of climate impacts on
agriculture, forestry, water management, human health, and

other sectors by using climate impact models driven by his-
torical or projected future climate data. Yet, with observed
climate change impacts emerging widely already at current
levels of warming (IPCC, 2022), a wide range of decision-
making processes as well as business activities increasingly
rely on actionable knowledge from impact models that is
useful beyond the scientific community which is developing
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them. For example, so-called climate services are designed to
support adaptation of stakeholders and their activities in re-
sponse to climate change (Brasseur and Gallardo, 2016; He-
witt et al., 2012; Lourenço et al., 2016), where the attribution
of climate impacts has become highly relevant for climate
litigation (Mengel et al., 2021). There is also an increasing
demand to quantify damage that cannot be avoided by cli-
mate mitigation or adaptation (Huber et al., 2022). These
activities require highly accurate climate impact datasets at
high spatio-temporal resolution. Daily temporal resolution
for example allows extreme events such as heavy precipi-
tation or heat waves to be captured that would not be visi-
ble at monthly resolution (Ban et al., 2021). Likewise, high
spatial resolution (e.g. 30 arcsec, i.e. ∼ 1 km at the Equator)
allows topographic effects in mountainous areas or patterns
of climate variables with small-scale spatial variability to be
captured (Gerlitz et al., 2015; Daly et al., 1994).

High-resolution climate data can typically be produced
using either regional climate models for dynamical down-
scaling (Giorgi et al., 2009), statistical downscaling methods
using large-scale predictors of the small-scale state of the
atmosphere (Maraun and Widmann, 2018), or topographic
downscaling methods that mainly use terrain-based predic-
tors to increase the spatial resolution of climate data (Karger
et al., 2017; Fiddes and Gruber, 2014). Regional climate
models have the advantage of representing the fundamen-
tal physical, chemical, and biological processes of the cli-
mate system. While this makes them powerful tools for
studying future climates, it also makes them computation-
ally expensive, as a result of which they cannot easily be
applied at the global level (Giorgi et al., 2009; Sørland et
al., 2021; Schär et al., 2019). Statistical downscaling meth-
ods are based on empirical relationships between large-scale
predictors and small-scale predictands (Wilby et al., 1998).
These relationships are typically derived from historical ob-
servations of predictors and predictands and then applied
to downscale large-scale climate projections. While this is
computationally less expensive, it implies out-of-sample ap-
plications of a statistical model, which may lead to phys-
ically implausible results (Maraun et al., 2017; Lanzante
et al., 2018). Lastly, topographic downscaling methods pri-
marily use terrain-based information to add small-scale de-
tails to large-scale inputs, such as the influence of moun-
tain ranges on precipitation patterns (Roe, 2005). Examples
of such methods include Climatologies at high resolution
for the Earth’s land surface areas (CHELSA) (Karger et al.,
2017, 2021, 2020) and the Parameter-elevation Regressions
on Independent Slopes Model (PRISM) (Daly et al., 1997,
1994). Considering the out-of-sample limitation of statisti-
cal downscaling, topographic downscaling of climate projec-
tions is less problematic in comparison, at similar compu-
tational cost. On the downside, topographic downscaling is
based on mechanistic equations which, due to their simplic-
ity, may still introduce biases in the climate data (Karger et
al., 2017, 2021). In addition, those equations are unable to

represent small-scale spatial patterns that are unrelated to to-
pography, such as small-scale convective precipitation over
flat terrain (Karger et al., 2021).

All approaches have historically been challenged by com-
putational and storage limitations if carried out at the global
level (Schär et al., 2019). For example, the latest global re-
analysis dataset based on the dynamic land surface model
“Hydrology in the Tiled ECMWF Scheme for Surface Ex-
changes over Land” (HTESSEL; Balsamo et al., 2009) is
only available at a resolution of ∼ 9 km, which still masks
important local climate variability (Muñoz-Sabater et al.,
2021). For these reasons, climate datasets at high spatial and
temporal solution usually only exist at local to regional lev-
els, which is adequate for analyses at these levels. However,
there are no global products representing temperature, solar
radiation, and precipitation at both high temporal (daily) and
high spatial (∼ 1 km) resolution, although these would offer
considerable benefits to climate impact modelling, for exam-
ple, a consistent global dataset that allows regional hydro-
logical models to be run at various locations using consis-
tent climate driving data so that impacts can be integrated
across regions (Huang et al., 2017; Krysanova and Hatter-
mann, 2017). Likewise, global analyses that are strongly de-
pendent on the resolution of the data could be carried out at
much finer resolution than is currently the case. For exam-
ple, Shi et al. (2021) calculated how aridity velocity affects
a wide range of species using climate data at 0.5◦ resolution,
yet this resolution neglects important topographic details that
are important as species might benefit from topographic di-
versity for surviving extreme climatic conditions (Barton et
al., 2019).

To address this gap in data availability and to enable
tests of how beneficial such global datasets would be,
the objective of this paper is to present a global climate
dataset at 30 arcsec and daily resolution: CHELSA-W5E5
v1.0 (https://doi.org/10.48364/ISIMIP.836809.3, Karger et
al., 2022). This dataset builds upon WFDE5 over land
merged with ERA5 over the ocean (W5E5) v1.0, an observa-
tional climate dataset that has been thoroughly evaluated and
intensively used in climate impact modelling (Lange, 2019;
Cucchi et al., 2020). CHELSA-W5E5 v1.0 is derived from
W5E5 via topographic downscaling using the CHELSA V2
algorithm (Karger et al., 2017, 2020, 2021). Through a de-
tailed evaluation of CHELSA-W5E5 v1.0, we aim to demon-
strate the added value of a kilometre-scale resolution down-
scaling compared to the coarse-resolution (0.5◦) W5E5 data.
We focus on a set of key climatic variables that are highly rel-
evant for climate impact modelling, namely daily minimum
(tasmin, in units of K), mean (tas, K), and maximum (tas-
max, K) near-surface (2 m) air temperature, which are, for
example, relevant for assessing heat extremes (Huber et al.,
2020); daily mean precipitation rate (pr, kg m−2 s−1), which
is a crucial variable for example for hydrological and veg-
etation models (Müller Schmied et al., 2014; Chang et al.,
2017); and daily mean surface downwelling shortwave radi-
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ation (rsds; W m−2), which is for example crucial for agri-
cultural modelling (Ruane et al., 2015, 2021). The analyses
and data build on earlier efforts to downscale precipitation
(Karger et al., 2017, 2020, 2021), and we focus on assess-
ing where the new dataset improves the estimate of a climate
variable by moving to a spatial resolution of 30 arcsec and
what caveats have to be kept in mind when applying the data
for climate impact analyses.

Here we describe the CHELSA downscaling procedure
applied to W5E5 and evaluate its performance in improv-
ing the accuracy of modelled air temperatures, precipitation
rates, and downwelling shortwave solar radiation. We give a
description on the input data as well as a detailed descrip-
tion of the downscaling procedure applied, which includes
the downscaling of near-surface air temperature (tas, tasmax,
tasmin), surface downwelling shortwave radiation (rsds), and
precipitation (pr). We evaluate our results using observations
at meteorological stations and analyse the performance of the
downscaling globally, regionally, and seasonally, as well as at
the extremes, and additionally compare our results with dy-
namically downscaled data.

2 Material and methods

To downscale the coarse-resolution W5E5 data, we used the
CHELSA V2 algorithm (Karger et al., 2017). This algo-
rithm is a topographically informed, mechanistic downscal-
ing method. It downscales 2 m air temperatures (tas, tasmax,
tasmin) based on air temperature lapse rates in the lower at-
mosphere, precipitation rates (pr) using orographic terrain ef-
fects, and surface downwelling shortwave radiation (rsds) us-
ing a mechanistic terrain-based downscaling. In the follow-
ing we describe the input data and downscaling procedure in
more detail which is shown in Fig. 1.

2.1 Input data

2.1.1 W5E5

WFDE5 over land merged with ERA5 over the ocean
(W5E5) v1.0 (Lange, 2019) is the observational refer-
ence climate input dataset used in the Inter-Sectoral Im-
pact Model Intercomparison Project phase 3 (ISIMIP3, http:
//www.isimip.org, 30 December 2021). It covers the years
1979–2016 for the entire globe. The data have daily tempo-
ral and 0.5◦ spatial resolution. W5E5 combines the Waterer
and global Change (WATCH) Forcing Data methodology ap-
plied to ERA5 reanalysis data (WFDE5) v1.0 (Cucchi et al.,
2020) over land with data from the latest version of the Eu-
ropean Reanalysis (ERA5) (Hersbach et al., 2020) over the
ocean. In the following we briefly describe ERA5, WFDE5,
and W5E5.

The ERA5 global reanalysis (Hersbach et al., 2020) is pro-
duced at the European Centre for Medium-Range Weather
Forecasts (ECMWF) as part of the EU-funded Copernicus

Climate Change Service (C3S). It is the successor of ERA In-
terim (Dee, 2011) and in comparison benefits from 10 years
of developments of the underlying weather forecast model
and data assimilation system. More observations are assimi-
lated in ERA5 than in its predecessor ERA Interim, including
stratospheric sulfate aerosols. In addition, ERA5 has higher
temporal and spatial resolution (hourly and 0.25◦ compared
to 3-hourly and 0.7◦).

The WFDE5 meteorological forcing dataset is a bias-
adjusted version of ERA5 that covers the global land sur-
face at hourly temporal and 0.5◦ spatial resolution for se-
lected near-surface atmospheric variables (air temperature,
shortwave and longwave downwelling radiation, rainfall and
snowfall, specific humidity, air pressure, and wind speed).
Bias adjustments were applied according to the WATCH
Forcing Data methodology (Weedon et al., 2014, 2011). That
means that (i) monthly mean values of daily mean tem-
perature and the diurnal temperature range were elevation-
adjusted and bias-adjusted using version 4.03 of the Climate
Research Unit gridded Time Series (CRU TS) (Harris et al.,
2020); (ii) pressure, humidity, and longwave radiation were
aligned with the adjusted temperature; (iii) monthly mean
shortwave radiation was bias-adjusted using aerosol correc-
tion factors (Cucchi et al., 2020) and CRU TS4.03 cloud
cover; and (iv) rainfall and snowfall rates were bias-adjusted
with respect to the monthly number of wet days using CRU
TS4.03 and monthly precipitation totals using observations
from either CRU TS4.03 or data from the Global Precipi-
tation Climatology Centre (GPCC) full data product version
2018 (Schneider et al., 2018), followed by a gauge-catch cor-
rection and a correction of the snowfall-to-rainfall ratio using
the adjusted temperature (Cucchi et al., 2020). Using either
CRU TS4.03 or GPCCv2018 precipitation totals, two differ-
ent WFDE5 precipitation datasets were produced. The vari-
ant based on GPCCv2018 was used for W5E5. Wind speed
is the only variable that was not adjusted.

Lastly, W5E5 combines WFDE5 data over land with
ERA5 data over the ocean to cover the whole globe at daily
temporal and 0.5◦ spatial resolution. Here we use daily to-
tal precipitation (pr) and daily mean downwelling shortwave
radiation (rsds) as well as daily mean, minimum, and max-
imum near-surface air temperature (tas, tasmin and tasmax,
respectively) from W5E5. The daily temperature values are
equal to the daily mean (for tas), minimum (for tasmin), and
maximum (for tasmax) of the hourly temperature values from
WFDE5 over land and ERA5 aggregated to 0.5◦ spatial res-
olution over the ocean. Similarly, W5E5 pr (rsds) is equal
to the daily sum (mean) of hourly total precipitation (short-
wave radiation) from WFDE5 over land and ERA5 aggre-
gated to 0.5◦ spatial resolution over the ocean, with the fol-
lowing exception: W5E5 pr over the ocean was bias-adjusted
using monthly precipitation totals from version 2.3 of the
Global Precipitation Climatology Project (Adler et al., 2003).
Monthly rescaling factors used for this purpose were com-
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puted following the scale-selective rescaling procedure de-
scribed by Balsamo et al. (2010).

2.1.2 Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010)

The Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) (Danielson and Gesch, 2011) dataset con-
tains elevation data for the globe collected from various
sources at resolutions from 7.5 to 30 arcsec. We use the
30 arcsec version of the data that represents the mean ele-
vation of all 7.5 arcsec grid cells.

2.1.3 Land–sea mask

The CHELSA downscaling algorithm only has an effect
where topography varies in space. Over the ocean, the out-
put of the downscaling is equivalent to a simple B-spline in-
terpolation of the input data. To reduce the size of the high-
resolution dataset, we therefore applied a land–sea mask that
is intended to cut out the parts over the ocean that are not af-
fected by topography. To make sure this mask actually covers
all land masses, a cell of the 30 arcsec CHELSA-W5E5 grid
is considered a land grid cell if it overlaps with any of the
land polygons provided by the global, self-consistent, hierar-
chical, high-resolution shoreline database (GSHHG) v2.3.7
(Wessel and Smith, 1996); the 30 m spatial resolution global
shoreline vector (GSV) (Sayre et al., 2019); and the MODIS-
based Mosaic of Antarctica data (MOA) (Scambos et al.,
2007). To ensure all land pixels are covered, we additionally
added a buffer of 60 arcsec width to the boundaries of each
land polygon.

2.2 Downscaling procedure

2.2.1 Downscaling of near-surface air temperature (tas,
tasmax, tasmin)

The CHELSA downscaling algorithm was applied day by
day. The downscaling of W5E5 air temperature (tas, tas-
max, tasmin) was done by using a daily mean near-
surface atmospheric temperature lapse rate, 0̄, derived from
ERA5, combined with differences in surface altitude be-
tween GMTED2010 and W5E5. Here, 0̄ is the daily mean
of hourly lapse rates, 0, with

0 = (t850− t950)/(z850− z950), (1)

where t850 and t950 are ERA5 hourly air temperatures at 850
and 950 hPa, respectively, and z850 and z950 are the geopoten-
tial heights of those pressure levels multiplied by the gravita-
tional constant (9.80665 m s−2). We then interpolated W5E5
tas, tasmax, and tasmin from their original resolution of 0.5◦

to the 30 arcsec resolution of GMTED2010 using a B-spline
interpolation (see Karger et al., 2021, for an example of how
the B-spline interpolation is implemented), resulting in an in-
terpolated high-resolution temperature surface, tc. To include

the high-resolution topography, we first interpolated the 0.5◦

orography from W5E5 to 30 arcsec using a B-spline inter-
polation, this way creating a reference elevation grid, zc, that
corresponds to tc. We then used 0̄ together with zc and zh, the
GMTED2010 orography at 30 arcsec, to do the topographic
downscaling of tc, according to

th = tc+ 0̄ · (zh− zc), (2)

where th is the downscaled near-surface air temperature at
30 arcsec resolution, either being tas, tasmax, or tasmin.

2.2.2 Downscaling of surface downwelling shortwave
radiation (rsds)

Surface downwelling shortwave radiation at 30 arcsec reso-
lution is strongly influenced by topographic features such as
aspect or terrain shadows that are less pronounced at 0.5◦

resolution. The CHELSA downscaling algorithm combines
such geometric effects with orographic effects on cloud cover
for a topographic downscaling of rsds.

Geometric effects are considered by computing 30 arcsec
clear-sky radiation estimates using the methods described
in Böhner and Antonic (2009) as well as Wilson and Gal-
lant (2000). This approach assumes that the net shortwave
radiation, Sn, can be expressed as

Sn = Ss+ Sh+ St − Sr = (Ss+ Sh+ St ) · (1− r), (3)

with Sn being the sum of all direct solar radiation received
from sun, Ss; diffuse solar radiation received from the sky’s
hemisphere, Sh; and radiation by reflection of surrounding
land surfaces, St ; minus the radiation which is reflected off
the surface, Sr. Alternatively, the reflected fraction of the in-
coming radiation can be expressed using the dimensionless
surface albedo, r . This formula for Sn is strictly only valid for
a horizontal, unobstructed surface. However, topography can
severely influence net shortwave solar radiation by, for ex-
ample, shading. A topographically corrected Sn, S∗n , is given
by

S∗n =
(
S∗s + S

∗

h + St
)
· (1− r), (4)

where S∗s and S∗h are direct and diffuse solar radiation modi-
fied by the surrounding topography of a given 30 arcsec grid
cell, and St gives the reflection from surrounding land sur-
faces.

2.2.3 Direct solar radiation under clear-sky conditions

Topographic direct solar radiation S∗s is calculated using

sin θ = cos λ cos δ cos$ + sin λ sin δ , (5)

cos ϕ =
cos δ cos$ − sin θ cos λ

sin λ cos θ
, (6)

δ = 23.45 · sin
(

360◦ · [284 + J ])
365

)
, (7)
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Figure 1. Schematic representation of the most important calculation steps (rhombi) and input and output data (rectangles) of the CHELSA-
W5E5 downscaling. Intermediate data that are not part of the published data (temperature lapse rate; 0 and clear-sky solar radiation; rsdscs).
Only the most important equations are indicated. Spline indicates that a B-spline interpolation is used to change the spatial resolution to
a higher target resolution. Mean indicates that the mean across grid cells is used. Proj. indicates that a reprojection to another geographic
projection is performed. For the respective abbreviations, see the equations in the main text.

$ = 15◦ · (12−h), (8)

where θ is the sun elevation angle, ϕ is sun azimuth, λ is
the latitude, δ is the solar declination angle, J is Julian day
number,$ is the hour angle in degrees, and the value 12 −h
is equal to the distance of the given mid-hour from the true
solar noon (0.5, 1.5, and 2.5 h, etc.).

The angle between a plane orthogonal to sun’s rays and
terrain (solar illumination angle, γ ) is calculated at time steps
of 15 min using

cosγ = cosβ · sinθ + sinβ · cosθ · cos(ϕ−α), (9)

where β and α are surface slope and aspect, respectively, cal-
culated from the high-resolution orography, zh, and θ and ϕ
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define the sun position on the sky. Shadowing from topogra-
phy is calculated using the horizon angle, ϕ, which is defined
as the maximum angle toward any other point in a given az-
imuth within 10 000 m horizontal distance,

ϕ = max
d ≤ 10 000 m

arctan
(
1z(d)
d

)
, (10)

where d is the distance to the point with higher elevation, and
1z(d) is the associated elevation difference. Topographic di-
rect radiation at hour h, S∗s (h), is then calculated using

S∗s (h)= ς (h)
Ss(h)
sin θ

cos γ , (11)

where ς (h) indicates if a terrain shadow is present (with
ς (h)= 0 representing shadow and ς (h)= 1 representing no
shadow), depending on h and the horizon angle; Ss(h) is the
direct solar radiation on an unobstructed horizontal surface
at hour h; and θ and γ also depend on h via their dependence
on $ . The inclusion of the effect of terrain angle is done by
the division using sin θ that tilts the horizontal surface to a
surface that is orthogonal to the sun’s rays. Multiplication by
cos γ accounts for terrain. Ss(h) also depends on the struc-
ture and the composition of the atmosphere. We assume a
homogenous atmosphere with a transmissivity τ of 80 % and
then calculate Ss(h) following Wilson and Gallant (2000) us-
ing

Ss (h)= sinθGSCτ
m, (12)

where GSC is the solar constant defined at 1367 kW m2, and
m is the optical air mass, i.e. the length of the atmospheric
path traversed by the sun’s rays (List, 1968). For a sun eleva-
tion angle θ > 30◦, m is calculated following Linacre (1992)
using

m=
1

cos(90− θ )
, (13)

and for θ ≤ 30◦ the optical air mass m is determined in 1◦

increments from a vector of known values after List (1968,
p. 422), by using increments of 1◦, where

M = {2.00,2.06,2.12,2.19,2.27,2.36,2.45,2.55,2.65,2.77,

2.90,3.05,3.21,3.39,3.59,3.82,4.07,4.37,4.72,5.12,
5.60,6.18,6.88,7.77,8.90,10.39,12.44,15.36,19.79,
26.96,26.96,26.96}.

Then m is calculated using element i in M , where i is the
position of θ in M , by

m=Mi + (θ − i) · (Mi+1−Mi). (14)

Daily mean topographic direct radiation, S∗s , is obtained via
integration over all 15 min time steps of the day,

S∗s =
1
n

∑n

h=1
S∗s (h)=

1
n

∑n

h=1
ς (h)

Ss(h)
sin θ

cos γ, (15)

where n denotes the number of 15 min intervals of the day.

2.2.4 Diffuse solar radiation under clear-sky conditions

Topographic corrected diffuse radiation S∗h is calculated by
quantifying how much of the sky is visible from a grid cell,
using

S∗h = Sh9s, (16)

where 9s is based on the horizon angles φi in different az-
imuth directions 8i of the full circle originating in a focal
grid cell, and Sh is the diffuse solar radiation calculated us-
ing

Sh = (0.271− 0.294τm)GSC ·9s, (17)

where GSC is the solar constant defined at 1367 kW m2, and
9s is the sky view factor defined as

9s =
1
N

∑N

i=1
[cosβ cosϕi + sinβ cos(8i −α)

· (90−ϕi − sinϕi cosϕi) ] , (18)

with N = 8 uniformly distributed directions used for an ap-
proximation of the topographic effect.

2.2.5 Shortwave downwelling solar radiation under
cloudy conditions

To calculate rsds under cloudy conditions, we calculated sur-
face cloud area fraction (clt) from atmospheric cloud frac-
tions cl at pressure levels z from ERA5. We first calcu-
lated the windward leeward index H using the u and v wind
components from ERA5 following the methods described in
Karger et al. (2021). To distinguish between clouds that are
influenced by orography from clouds in the free atmosphere,
we first adjusted the windward leeward index relative to the
number of pressure levels used, so that the windward leeward
index is stronger at lower pressure levels than on pressure
levels that are not influenced by the orography anymore. For
each pressure level i..nwe calculated the corrected windward
leeward index H cor1

i using

H cor1
i = Hi + (1−Hi) ·

i

n− 1
. (19)

This gives however the highest orographic effect directly at
the surface altitude z, where often cloud formation is not pos-
sible yet. We therefore additionally corrected the windward
leeward index by its distance to the cloud base height de-
rived from its altitude zi and then B-spline-interpolated to
the 30 arcsec resolution cloud base height (cbh) using

H cor2
i = H cor1

i − (1−H cor1
i ) ·

zi − cbh
cbh

, (20)

where the cloud area fraction on each pressure level i is then
given by a horizontal spline interpolation of the coarse grid
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cloud fraction to a 30 arcsec resolution clci with the corrected
windward leeward index:

clhi =H
cor2
i · S(clci ). (21)

Cloud area fraction at the ground level then follows the max-
imum overlap assumption so that

clt=max(clh1 . . .clhi ). (22)

To include surface cloud area fraction clt in rsds we used the
parametrization from Kasten and Czeplak (1980):

rsds= S∗n
(

1− 0.75 · clt3.4
)
. (23)

2.2.6 Downscaling of precipitation (pr)

The downscaling method for precipitation mostly follows
that of Karger et al. (2021) but does not include the cloud
cover correction based on satellite observations as those are
not available for all years. We used the zonal and merid-
ional wind components as well as the height of the planetary
boundary layer to calculate the windward leeward index H .
H , together with the height of the boundary layer following
Karger et al. (2021), was used for a first approximation of the
orographic precipitation intensity, H ≈ pi , for the 30 arcsec
resolution grid cell i. We then used a linear relationship be-
tween the input precipitation rate from W5E5, prW5E5, and
pi to compute the downscaled precipitation of grid cells I ,
pri , according to

pri =
pi

1
n

∑n
i=1 pi

· prW5E5, (24)

where n equals the number of 30 arcsec grid cells that fall
within a 0.5◦ grid cell. This equation ensures that the data
are to scale; i.e. the precipitation flux at 0.5◦ resolution is
preserved. More details on the exact parametrization of the
downscaling algorithm for precipitation are given in Karger
et al. (2021).

3 Evaluation

The evaluation of the downscaling from low (0.5◦) to high
(30 arcsec) resolution follows the evaluation approach out-
lined in Karger et al. (2021) and compares measurements
at meteorological stations with data from both the low and
the high spatial resolution. Since many observations at sta-
tions are already included in the W5E5 data due to the bias
correction applied, we do not only evaluate the actual mea-
surements at the stations but rather focus on the difference
between evaluation metrics achieved by the 0.5◦ data and the
downscaled data. This will directly evaluate the downscal-
ing but not the forcing of the downscaling (see Karger et al.,
2021). We use two observational datasets, GHCN-D (Global
Historical Climatology Network Daily) and GEBA (Global

Energy Balance Archive), as references for the evaluation.
The evaluation is performed at daily, seasonal, and long-term
climatological normals. The comparison to the station data
is global, whereas the comparison to the dynamically down-
scaled data is constrained to the United States, where model
output as well as a dense network of observational station
data is available.

3.1 Evaluation datasets

To evaluate the performance of the downscaling algorithm
we compute several test statistics at the original 0.5◦ res-
olution of the W5E5 data and the downscaled data at
30 arcsec from CHELSA-W5E5. We use observations at me-
teorological stations (Table 1) and compare those to W5E5
and CHELSA-W5E5 data from the corresponding 0.5◦ and
30 arcsec grid cells, respectively, to assess the value added
by the downscaling.

3.1.1 GHCN-D

For the evaluation of 2 m air temperatures and precipitation
rates, we used observations at meteorological stations from
the Global Historical Climatology Network Daily (GHCN-
D) network. This dataset contains meteorological-station-
based measurements from global land areas. About two-
thirds of the observations are precipitation measurements
only (Menne et al., 2018).

3.1.2 GEBA

The station data of the GHCN-D network do not include
energy flux variables. Thus, for the validation of shortwave
downwelling radiation, we used the Global Energy Balance
Archive (GEBA). This database is maintained by the Insti-
tute for Climate and Atmospheric Sciences (IAC) at ETH
Zurich and consists of globally measured energy fluxes at the
Earth’s surface (Wild et al., 2017). Its first version was imple-
mented in 1988; it has continuously been updated ever since
and mainly been improved in terms of data availability, data
access, and internet appearance (Wild et al., 2017). GEBA
provides observations for 15 surface energy flux components.
Shortwave radiation incident at the Earth’s surface (global
radiation) is the most widely measured quantity available
in GEBA. The various observations have been compiled to
monthly mean surface energy flux data from various sources.

3.2 Evaluation using observations at meteorological
stations

To show the improvement resulting from the downscaling
from 0.5◦ to 30 arcsec we compared each variable from both
CHELSA-W5E5 and W5E5 to observations from meteoro-
logical stations (Table 1). For each meteorological station,
the value of the grid cell that contains the location of the
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Table 1. Overview of the datasets used for evaluation, the variables contained, their temporal resolution, and the number of stations used for
the evaluation. tas is the daily mean 2 m air temperature, pr the daily mean precipitation, tasmax the daily maximum 2 m air temperature,
tasmin the daily minimum 2 m air temperature, and rsds the shortwave downwelling radiation.

Variable Dataset Number of Temporal Reference
stations used resolution

tas GHCN-D 9225 daily Menne et al. (2018)
tasmin GHCN-D 24 994 daily Menne et al. (2018)
tasmax GHCN-D 25 018 daily Menne et al. (2018)
pr GHCN-D 76 369 daily Menne et al. (2018)
rsds GEBA 1104 monthly Menne et al. (2018)

station was extracted and evaluated using several evaluation
metrics.

3.2.1 Evaluation metrics

Evaluation metrics include the bias, correlation coefficient,
root mean squared error, and mean absolute error. The cor-
relation is calculated based on Pearson’s correlation coeffi-
cient,

r =
cov(xsim,xobs)
σ (xsim)

σ (xobs), (25)

where xobs represents the observed time series at a meteo-
rological station xsim the downscaled time series, cov the
covariance, and σ the standard deviation. The root mean
squared error (RMSE) is defined as

RMSE =

√
1
n

(∑n

i=0

(
xsimi
− xobsi

)2)
, (26)

where n is the number of time steps of a time series. Further-
more, the mean absolute error (mae) was computed accord-
ing to

mae=
1
n

(∑n

i=0

∣∣xsimi
− xobsi

∣∣) . (27)

Finally, the relative bias was computed to investigate the av-
erage amount by which the observations are greater than the
estimates of the model output data based on different resolu-
tions by

bias= xobsi − xsimi
. (28)

3.2.2 Seasonal performance

To investigate if the downscaling has a similar performance
throughout the year, in a first step we aggregated the daily or,
in the case of rsds, the monthly data to seasonal values; for
example, winter is December, January, and February; spring
is March, April, and May; summer is June, July, and August;
and autumn is September, October, and November. Based
on the seasonally aggregated means, Taylor diagrams were

used to show the performance improvements based on corre-
lations, standard deviation, and root mean squared error. Ad-
ditionally, we calculated the Pearson correlation coefficient
and the absolute bias between daily modelled values of ei-
ther CHELSA-W5E5 or W5E5 and daily observations from
GHCN-D and aggregated them to monthly means to assess
possible trends in these two performance metrics over time.
In the case of rsds, monthly means instead of daily values
were used.

3.2.3 Global and regional performance

Further comparisons between observations from meteorolog-
ical stations, W5E5 and CHELSA-W5E5, were also done
at daily resolution (in the case of rsds a monthly resolu-
tion was used), as well as for long-term climatological nor-
mals. Additional analyses were carried out for North Amer-
ica (except for rsds), where both the density of meteorologi-
cal stations and their quality are high. Both globally and for
North America, several evaluation metrics were calculated
(see Sect. 3.2.1). The main focus was on the difference in
bias between CHELSA-W5E5 and W5E5 as this difference
is an indicator of the value added by the downscaling algo-
rithm.

To compare the performance spatially, we calculated
the Pearson correlation between either CHELSA-W5E5 or
W5E5 using daily values from either model in comparison to
GHCN-D values for all meteorological stations globally. We
then calculated the difference in the Pearson correlation co-
efficient and took the mean of all stations within a 0.5◦ grid
cell that overlapped with these stations.

3.2.4 Evaluation at the extremes

To evaluate the performance of the downscaling at the ex-
tremes of the temperatures and precipitation rates, we defined
extreme values based on quantiles over the entire time period
1979–2016. For extreme high temperatures we used the 95th
percentile of tasmax. Extreme precipitation rates were de-
fined as the 95th percentile precipitation rates on wet days
(days with pr greater than 0.1 kg m−2 d−1), and for extreme
cold days we used the 5th percentile of tasmin.
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3.2.5 Comparison with dynamically downscaled data

To compare the terrain-based downscaling to a more com-
plex and computationally demanding dynamical downscal-
ing, our evaluation includes a comparison with a sim-
ulation of the Weather Research and Forecasting model
(WRF) (Skamarock et al., 2019) for the historical climate
of North America (Rasmussen and Liu, 2017). The simula-
tion was performed over a 13-year period (October 2000–
September 2013) with boundary conditions from ERA In-
terim, at a spatial resolution of 4 km. The comparison be-
tween WRF and CHELSA-W5E5 was conducted for the
variables tas and pr.

4 Results

4.1 Evaluation using observations at meteorological
stations

4.1.1 Seasonal performance

The correlation of both datasets with observations at meteo-
rological stations is very high overall (r > 0.9) for all vari-
ables globally as well as for North America except for daily
pr. In general, the downscaling decreased the bias, RMSE,
and mae and increased the correlation for all variables ex-
pect rsds (Fig. 2, Table 2). There is no obvious deviation dur-
ing any of the four seasons for tas, tasmax, or tasmin, and
the downscaling seems to perform equally well (Fig. 2). For
pr the performance of both W5E5 and CHELSA-W5E5 is
slightly higher during the northern winter months, while for
rsds it is higher during northern spring and summer (Fig. 2).

4.1.2 Temporal performance

Both CHELSA-W5E5 and W5E5 do not show any signif-
icant trend in their performance when compared with ob-
servations at meteorological stations from GHCN-D (for tas,
tasmin, tasmax, pr) or GEBA (for rsds) globally (Fig. 3). In
general, the downscaled data show a slightly higher Pearson
correlation coefficient r with observations than the coarse-
resolution W5E5 data, except for rsds. The overall pattern
in the Pearson correlation coefficient r overall is also sim-
ilar between CHELSA-W5E5 and W5E5 for all variables.
The absolute bias is more variable compared to r , with a
generally lower bias but similar patterns for pr, tas, and rsds
(Fig. 3) and a mixed pattern of a higher absolute bias in the
1980s and after 2000 an otherwise lower absolute bias and
an higher absolute bias throughout for tasmin.

4.1.3 Global and regional performance

For tas, tasmax, and pr, all error metrics (bias, mae, RMSE)
decrease after downscaling, and the correlation coefficient
increases (Fig. 4, Table 2). For rsds the bias is substantially

Figure 2. Seasonal performance based on a comparison of global
long-term seasonal means normals (1979–2016) of the global to-
pographically downscaled high-resolution (30 arcsec, i.e. ∼ 1 km)
data (CHELSA-W5E5, orange) and the coarse (0.5◦) original data
(W5E5, violet) with GHCN-D for daily mean 2 m air tempera-
ture (tas), daily minimum 2 m air temperature (tasmin), daily max-
imum 2 m air temperature (tasmax), precipitation (pr), and short-
wave downwelling radiation (rsds), based on monthly aggregated
data. Values are shown separately for the four seasons: winter (DJF),
spring (MAM), summer (JJA), and autumn (SON). For the variables
tas, tasmin, tasmax, and pr, the observational dataset GHCN-D was
used for comparison. For rsds, the GEBA dataset was used.

reduced in the downscaled data, but the correlation coeffi-
cient is also slightly reduced (Fig. 4, Table 2). The lower cor-
relation with yet a smaller bias seems to be driven by a sys-
tematic deviation of the downscaled rsds in areas with high
rsds (Fig. 2). For tasmin, the pattern is opposite to rsds; i.e.
the correlation coefficient increases after downscaling, but
the bias increases (Table 2). This pattern for tasmin and rsds
is even more pronounced when only stations in North Amer-
ica are used (Table 3). The reduction in bias and increase
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Figure 3. Mean daily Pearson correlation r and absolute bias between GHCN-D stations and downscaled CHELSA-W5E5 (orange), as well
as W5E5 (purple) calculated for each month from 1979–2016 separately for daily mean 2 m air temperature (tas), daily minimum 2 m air
temperature (tasmin), daily maximum 2 m air temperature (tasmax), precipitation (pr), and shortwave downwelling radiation (rsds) globally.

in correlations of air temperatures due to the downscaling to
30 arcsec are highest in topographically heterogeneous ter-
rain (Fig. 4), such as the western parts of North America,
whereas the topographic downscaling hardly added value in
flat terrain (Fig. 5). Bias reduction and an increase in precip-
itation for precipitation are also highest in topographically
complex terrain globally (Fig. 4) but considerable in flat ter-
rain as well (Figs. 4, 5).

In regions with high-quality meteorological stations, such
as the continental United States, the strong reduction in bias
after downscaling in topographically complex terrain is also
visible for tas, tasmax, and tasmin (Fig. 6). For tasmin, in the
middle of the Rocky Mountains, the bias in the downscaled

data is significantly higher than for tas and tasmax, both of
which show less bias in the downscaled data in this region.
tasmax and tasmin both show higher bias in the downscaled
data over flat terrain. For pr, the patterns are similar to those
for air temperatures, except that the bias is often lower over
flat terrain (Fig. 6).

4.1.4 Extreme temperatures and precipitation

For extreme values such as the 95th percentile of daily max-
imum 2 m air temperature and the 5th percentile of daily
minimum 2 m air temperature, the bias reduction is again
strongest in topographically complex terrain (Fig. 7a, b). For
extreme precipitation, the bias reduction is spatially not as
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Figure 4. Mean differences in Pearson’s correlation coefficient r between daily observations at meteorological stations CHELSA-W5E5 and
W5E5 over the period 1979–2016. Negative values (violet) indicate areas in which a decrease in the correlation between observations after
downscaling is observed, while positive values (green) indicate areas with an increase in the correlation coefficient (green). Observations are
based on GHCN-D for daily mean 2 m air temperature (tas), daily minimum 2 m air temperature (tasmin), daily maximum 2 m air temperature
(tasmax), precipitation (pr), and GEBA for shortwave downwelling radiation (rsds).

coherent as for air temperature extremes, and the bias can
even increase with the downscaling. Generally, the downscal-
ing shows a higher bias reduction in topographically complex
terrain, while in flat terrain the downscaling actually intro-
duces a bias in the extremes (Fig. 4c).

4.2 Comparison with dynamically downscaled data

Both the downscaled air temperatures as well as precipita-
tion rates from CHELSA-W5E5 and WRF show relatively
high congruence with observations at meteorological sta-
tions (Fig. 8). Correlation rates are overall higher, and bi-
ases are lower for CHELSA-W5E5 than WRF when both
models are compared to observations at GHCN-D stations
over the same observational period (Table 5, Fig. 8). Cor-
relations are almost similar for air temperatures but slightly
higher for CHELSA-W5E5 for precipitation compared to
WRF (Fig. 8).

5 Discussion

This paper shows that the CHELSA downscaling procedure
generally increases the accuracy of the modelled air temper-
atures, precipitation rates, and downwelling shortwave so-
lar radiation. While correlations between simulated and ob-
served variables in the coarse 0.5◦ resolution W5E5 data are
already generally greater than 0.9, the downscaling increases
this correlation further and decreases the bias and errors of
the data in most cases. Notable exceptions are tasmin, where

the increase in correlation comes with an increase in the bias
of the downscaled data, and rsds, where the reduction in bias
comes with a decrease in the correlation with observations,
specifically for high values of rsds.

There are no significant temporal trends in these two per-
formance indicators (Pearson’s r , absolute bias) visible. For
the correlations between observations at meteorological sta-
tions, both the coarse and the downscaled data show similar
trends. This can be mainly attributed to the already good fit
between the coarse data and the observations. Additionally,
as the downscaling does not change the temporal pattern, a
similar correlation over time is expected. The absolute bias
however, shows deviations between the downscaled and the
coarse-resolution data. While the bias for pr, tas, and rsds
is generally lower in the downscaled data, tasmax shows a
varying difference in bias over time and tasmin a generally
higher bias in the downscaled data. This trend might be at-
tributed to the condition that mean daily temperature lapse
rates are applied for all air temperatures (tas, tasmax, and
tasmin) equally, but under extreme conditions (tasmax, and
tasmin), these lapse rates are not necessarily reflective of the
observed conditions.

5.1 Air temperatures

The downscaling of the different air temperatures (tas, tas-
max, tasmin) works best in topographically heterogeneous
terrain, while its effect in flat terrain is much lower. This
mainly comes from the relatively simple procedure applied
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Table 2. Statistical scores from the comparison between CHELSA-W5E5 and W5E5, with observations from meteorological stations for all
five variables (tas is the daily mean 2 m air temperature, pr the daily mean precipitation, tasmax the daily maximum 2 m air temperature,
tasmin the daily minimum 2 m air temperature, and rsds the shortwave downwelling radiation) globally. Temp. res. is the temporal resolution,
bias the bias between a modelled value and a measurement at a specific time step (temp. res.) at a specific station, sd_bias the standard
deviation in bias, bias_re the reduction in bias (positive values indicate an increased performance), sd_bias_re the standard deviation in
bias reduction, r the Pearson correlation coefficient, mae the mean absolute error, and RMSE the root mean squared error. Normals were
calculated by averaging values over the entire observation period of a station between 1979–2016. Bias, sd_bias, bias_re, sd_ bias_ re, r, mae,
and RMSE are based on comparisons of measurements between CHELSA-W5E5, W5E5, and observations at each station at each respective
time step (temp. res). Bold values in bias_re indicate an increase in performance due to the downscaling.

Model Variable Unit Temp. res. Bias sd_bias bias_re sd_bias_re r mae RMSE

CHELSA-W5E5 tas K daily 0.053 2.369 0.378 1.429 0.984 1.601 2.369
W5E5 tas K daily 0.660 2.755 – – 0.979 1.978 2.833
CHELSA-W5E5 tasmin K daily –0.548 2.996 0.080 1.404 0.966 2.197 3.046
W5E5 tasmin K daily 0.247 3.123 – – 0.963 2.276 3.132
CHELSA-W5E5 tasmax K daily −0.386 2.949 0.288 1.415 0.972 2.096 2.974
W5E5 tasmax K daily 0.334 3.283 – – 0.965 2.384 3.300
CHELSA-W5E5 pr kg m−2 d−1 daily 0.004 0.707 0.008 0.162 0.511 0.244 0.707
W5E5 pr kg m−2 d−1 daily −0.004 0.733 – – 0.499 0.252 0.733
CHELSA-W5E5 rsds W m−2 monthly 1.273 19.256 1.098 12.360 0.900 12.732 19.289
W5E5 rsds W m−2 monthly −10.329 18.731 – – 0.914 13.830 21.382
CHELSA-W5E5 tas K normals 0.086 1.217 0.510 1.235 0.990 0.830 1.220
W5E5 tas K normals 0.729 1.812 – – 0.980 1.340 1.953
CHELSA-W5E5 tasmin K normals −0.564 1.636 −0.015 1.192 0.980 1.282 1.731
W5E5 tasmin K normals 0.220 1.824 – – 0.970 1.268 1.837
CHELSA-W5E5 tasmax K normals −0.408 1.701 0.289 1.221 0.980 1.057 1.749
W5E5 tasmax K normals 0.298 2.192 – – 0.960 1.346 2.212
CHELSA-W5E5 pr kg m−2 d−1 normals 0.027 0.550 0.015 0.284 0.900 0.326 0.551
W5E5 pr kg m−2 d−1 normals −0.039 0.575 – – 0.900 0.342 0.576
CHELSA-W5E5 rsds W m−2 normals 0.696 23.628 −0.866 13.997 0.958 16.360 23.638
W5E5 rsds W m−2 normals −9.550 21.751 – – 0.963 15.494 23.755

that uses atmospheric temperature lapse rates, B-spline inter-
polations, and high-resolution orography alone to downscale
air temperatures without any incorporation of, for example,
radiation budgets or air movements. Downscaling addition-
ally improves the representation of temperature extremes,
with absolute bias reductions exceeding those for mean tem-
peratures.

The temperature downscaling does not use a full physical
scheme as usually used in dynamical downscaling routines.
Although the inclusion of additional effects other than the at-
mospheric lapse rate correction in a downscaling procedure
would give more physically realistic estimates of air tem-
peratures, the differences from such increase in complexity
at very high resolutions are minimal in this case, as shown
by the comparison with the numerically downscaled WRF
data over North America. Dynamical downscaling, however,
comes at a large computational cost that makes it infeasible
for global kilometre-scale application yet (Schär et al., 2019;
Ban et al., 2021).

While overall, the performance of W5E5 and CHELSA-
W5E5 is already high (r = 0.9), the W5E5 data show a lower
fit with observations from GHCN-D during the spring and
summer period. There are also limitations of the downscal-

ing using mean daily lapse rates, especially for minimum 2 m
daily air temperatures. The evaluation shows that downscal-
ing tasmin with a mean daily temperature lapse rate as ap-
plied here can actually also increase the bias. In North Amer-
ica, this seems to happen especially in the high plateaus of
the Rocky Mountains (Fig. 3), where minimum temperatures
are usually caused during conditions of nocturnal inversions
(Whiteman, 1982), causing positive temperature lapse rates
with elevation. In this case the use of a mean daily tempera-
ture lapse rate is not representative. Since the application of
a different lapse rate for minimum daily 2 m air temperature
and maximum daily 2 m air temperature could lead to higher
minimum than maximum temperatures, this problem cannot
be solved by running the CHELSA algorithm on a daily res-
olution but only by increasing the temporal resolution and
deriving daily maximum and minimum daily 2 m air temper-
atures from hourly downscaled air temperatures.

5.2 Precipitation

Downscaling also increases the correlation of precipitation
with observations, although not to such a large degree as in
the case of air temperatures. The coarse W5E5 data already
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Table 3. Statistical scores from the comparison between the two simulated datasets CHELSA-W5E5 and W5E5 and observations from
GHCN-D stations in North America for all five variables (tas is the daily mean 2 m air temperature, pr the daily mean precipitation, tasmax
the daily maximum 2 m air temperature, tasmin the daily minimum 2 m air temperature, and rsds the shortwave downwelling radiation)
globally. Temp. res. is the temporal resolution, bias the bias between a modelled value and a measurement at a specific time step (temp. res.)
at a specific station, sd_bias the standard deviation in bias, bias_re the reduction in bias (positive values indicate an increased performance),
sd_bias_ re the standard deviation in bias reduction, r the Pearson correlation coefficient, mae the mean absolute error, and RMSE the
root mean squared error. Normals were calculated by averaging values over the entire observation period of a station between 1979–2016.
Bias, sd_bias, bias_re, sd_bias_re, r , mae, and RMSE are based on comparisons of measurements between CHELSA-W5E5, W5E5, and
observations at each station at each respective time step (temp. res).

Model Variable Unit Temp. res. bias sd_bias bias_re sd_bias_re r mae RMSE

CHELSA_W5E5 tas K daily 0.062 2.992 0.562 1.585 0.964 2.071 2.993
W5E5 tas K daily 0.176 3.411 – – 0.952 2.459 3.415
CHELSA_W5E5 tasmax K daily −0.741 3.234 0.163 1.464 0.965 2.393 3.318
W5E5 tasmax K daily −0.005 3.566 – – 0.957 2.618 3.566
CHELSA_W5E5 tasmin K daily −0.691 3.125 −0.134 1.428 0.959 2.319 3.200
W5E5 tasmin K daily 0.089 3.206 – – 0.957 2.334 3.207
CHELSA_W5E5 pr kg m−2 d−1 daily −0.077 6.902 0.016 1.625 0.583 2.564 6.903
W5E5 pr kg m−2 d−1 daily −0.128 7.186 – – 0.569 2.643 7.187
CHELSA_W5E5 tas K normals 0.108 1.277 0.562 1.249 0.979 0.883 1.281
W5E5 tas K normals 0.520 1.947 – – 0.950 1.445 2.015
CHELSA_W5E5 tasmax K normals −0.749 1.661 0.163 1.246 0.970 1.138 1.822
W5E5 tasmax K normals −0.031 2.199 – – 0.948 1.301 2.200
CHELSA_W5E5 tasmin K normals −0.668 1.744 −0.134 1.182 0.960 1.415 1.867
W5E5 tasmin K normals 0.098 1.844 – – 0.955 1.281 1.847
CHELSA_W5E5 pr kg m−2 d−1 normals 0.137 1.443 0.016 0.320 0.871 0.550 1.449
W5E5 pr kg m−2 d−1 normals 0.087 1.433 – – 0.867 0.566 1.436

Table 4. Statistical scores from the comparison of CHELSA-W5E5 and WRF with observations from GHCN-D stations in North America
daily mean 2 m air temperature (tas) and daily mean precipitation (pr). Temp. res. is the temporal resolution, bias the bias between a modelled
value and a measurement at a specific time step (temp. res.) at a specific station, sd_bias the standard deviation in bias, r the Pearson corre-
lation coefficient, mae the mean absolute error, and RMSE the root mean squared error. Normals were calculated by averaging values over
the entire observation period of a station between 1979–2016. Bias, sd_bias, r, mae, and RMSE are based on comparisons of measurements
between CHELSA-W5E5, WRF, and observations at each station at each respective time step (temp. res).

Model Variable Temp. res. Bias sd_bias r mae RMSE

CHELSA_W5E5 tas daily 0.169 2.734 0.966 1.940 2.739
WRF tas daily 0.242 2.897 0.967 2.030 2.907
CHELSA_W5E5 pr daily −0.862 68.840 0.584 25.526 68.845
WRF pr daily 23.247 78.295 0.452 24.557 81.673
CHELSA_W5E5 tas normals 0.133 1.590 0.988 1.104 1.595
WRF tas normals −0.297 3.736 0.939 2.243 3.748
CHELSA_W5E5 pr normals 1.369 22.099 0.813 8.392 22.141
WRF pr normals 29.101 35.356 0.710 29.129 45.792

have a high (r > 0.9) correlation with observations, which
is globally not much improved by the downscaling. How-
ever, the global comparison might be misleading here as the
downscaling mainly affects precipitation rates at a very lo-
cal scale, where it has been shown to lead to large improve-
ments (Karger et al., 2021). Topographic downscaling us-
ing the CHELSA v2.1 algorithm for precipitation rates has
been shown to create long-term mean spatial patterns of pre-
cipitation rates that are extremely similar to those produced
with dynamical downscaling using WRF over topographi-

cally complex terrain (Karger et al., 2021). A disadvantage
of the presented precipitation downscaling is clearly that it
cannot resolve convective precipitation, as only orographic
effects are accounted for. While the mean bias in precipita-
tion rates is generally decreased by the downscaling, the bias
is larger during extreme precipitation events in topographi-
cally homogeneous terrain. These events are better captured
by dynamical data using a dynamic model such as WRF at
convection permitting resolutions.
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Figure 5. Scatter plots comparing long-term mean observations
from GHCN-D with values from W5E5 (left column, before down-
scaling) and CHELSA-W5E5 (right column, after downscaling).
Each point represents the mean of all observations at a specific
GHCN-D station in the period 1979–2016, except for downwelling
shortwave solar radiation, where each point represents a specific
month.

5.3 Surface downwelling shortwave solar radiation

Surface downwelling shortwave solar radiation under clear-
sky conditions is the only variable that is not directly down-
scaled but is fully mechanistically derived from terrain at-
tributes. The algorithm for clear-sky solar radiation applied
here captures terrain effects on solar radiation at very high
spatial resolutions and has been shown to be effective in to-
pographically complex terrain (Böhner and Antonic, 2009).
Interpolations and direct downscaling are done on atmo-
spheric cloud cover that is used to account for the amount
of radiation which is absorbed and reflected by clouds. The
high-resolution total cloud cover estimated by the algorithm
has been shown to have monthly normals which correlate
well with observations from GHCN-D (r = 0.84; Brun et al.,
2022), even though the algorithm does not include convec-
tive cloud formation at kilometre-scale resolutions. While the
bias is substantially reduced in the mid-range of rsds values,
extreme high solar radiation shows stronger deviations from
observations. This might be due to the relatively simple cor-
rection applied for rsds using cloud cover or overestimates in
the atmospheric scatter estimated with a bulk value of 80 %.
While it is unclear which part of the downscaling is respon-
sible for the deviation at high rsds values, it shows where
future developments of the downscaling should focus on and
where clear limitations are visible.

5.4 Implications for applications

While the topographic downscaling increases the accuracy
of the data, it most likely violates certain physical relation-
ships, due to both the simplicity of the downscaling algo-
rithm and the fact that the five variables are downscaled in-
dependent from each other. These limitations are often en-
countered in univariate downscaling or bias correction proce-
dures (Zscheischler et al., 2019) and should be kept in mind
when applying the output data of the downscaling in further
analysis. Additionally, extreme values of rsds should be used
with care, and tasmin can show large deviations in areas with
cold-air pooling.

The data provided are additionally cropped by a land–sea
mask that has been designed to include all 30 arcsec grid cells
that overlap with a land mask, plus a buffer to account for
potential spatial inaccuracies. This practically excludes all
ocean surface areas. However, the algorithms applied here
are solely forced by topography, and if no topography is
present, the downscaling is only done by a B-spline inter-
polation. Since this does not add information, we excluded
all areas without topography to decrease the amount of data
that needs to be stored.

6 Applications for impact modelling within ISIMIP

To test whether the improvements achieved by the downscal-
ing, here shown as improved correlations and reduced bi-
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Figure 6. Mean bias of daily 2 m air temperatures and daily mean precipitation rates (from top to bottom) in North America averaged over
the entire observational period of each station between 1979–2016. Left: bias between W5E5 and observations at GHCN-D meteorological
stations. Middle: bias between the downscaled CHELSA-W5E5 and observations at GHCN-D meteorological observations. Right: bias
reduction at each of the stations as a result of the downscaling, i.e. the changes in absolute bias between the 0.5◦ W5E5 and 30 arcsec
CHELSA-W5E5, with negative values indicating a bias reduction and positive values indicating an increase in bias. The diameter of each
dot scales with the absolute bias.
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Figure 7. Mean bias of the extremes in maximum and minimum daily 2 m air temperatures and precipitation rates (from top to bottom)
in North America averaged over the entire observational period of each station between 1979–2016. Left: mean bias between W5E5 and
observations from GHCN-D meteorological stations for extreme values in air temperature and precipitation. Middle: bias between CHELSA-
W5E5 and observations from GHCN-D meteorological stations for extreme values in air temperature and precipitation. Right: absolute bias
reduction after downscaling from 0.5◦ to 30 arcsec for extreme values in air temperature and precipitation, defined as the difference between
the absolute bias of W5E5 and the absolute bias of CHELSA-W5E5.

ases compared to observed climate, also matter for impact
modelling, the data will be further tested within the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP).
To this end, a range of impact models from different sec-
tors (e.g. hydrological models, forest model or agricultural
models) will be used to run at 1 km and 0.5◦ resolution (and
essentially a range of resolutions in between produced us-
ing the same approach as presented here for 1 km) and com-
pared to typical observational evaluation data for these im-
pact models such as with ecosystem productivity data from
eddy-covariance towers (Reyer et al., 2020) for forest mod-
els or discharge data for hydrological models (Huang et al.,

2017; Liersch et al., 2020). Moreover, the CHELSA-W5E5
dataset will be employed to bias-adjust future climate projec-
tions in the upcoming ISIMIP phase 3 at high resolution to
also allow for regional applications at high spatial resolution
that are still consistent with the wider ISIMIP framework.

7 Data availability

The output of the CHELSA-W5E5 model is freely available
under a CC0 1.0 Universal Public Domain Dedication (CC0
1.0) license at https://doi.org/10.48364/ISIMIP.836809.3
(Karger et al., 2022).
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Figure 8. Performance based on a comparison of global long-term
monthly means of the topographically downscaled high-resolution
(∼ 1 km) data (CHELSA-W5E5, orange) with dynamically down-
scaled high-resolution (4 km) data (WRF, green) over North Amer-
ica, for the climatic variables daily mean 2 m air temperature and
daily mean precipitation. The long-term means are shown sepa-
rately for the four seasons: winter (DJF), spring (MAM), summer
(JJA), and autumn (SON).

8 Code availability

Source codes of the CHELSA model used for the downscal-
ing are available at https://doi.org/10.5281/zenodo.8010301
(Karger et al., 2023a).

Source codes of the evaluation are available at
https://doi.org/10.5281/zenodo.8010710 (Karger et al.,
2023b).

9 Conclusions

In conclusion, we show that the evaluation of the effec-
tiveness of the CHELSA downscaling procedure applied to
W5E5 improves the accuracy of modelled air temperatures,
precipitation rates, and downwelling shortwave solar radia-
tion. The downscaling generally increased the correlation be-
tween simulated and observed variables and decreased bias
and errors in most cases. However, exceptions were noted
in the case of tasmin and rsds. The downscaling of air tem-
peratures was found to work best in topographically hetero-
geneous terrain, with improvements in the representation of
temperature extremes. The downscaling of precipitation rates
was found to lead to large improvements at a very local scale,

but it could not resolve convective precipitation. Addition-
ally, the downscaling of surface downwelling shortwave so-
lar radiation was found to be also effective in topographically
complex terrain. Despite these improvements, there are still
limitations connected to the downscaling procedure, includ-
ing the use of mean daily lapse rates to downscale tasmin,
which can actually increase the bias in the data, and the in-
ability of the downscaling to capture convective precipita-
tion, that should be taken into account when applying the
data in climate impact studies.
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