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1  |  INTRODUC TION

Most population genetics analyses assume that sampled individ-
uals come from discrete and homogeneous populations without 
any subdivision or genetic structure (Loog, 2021). However, this 
is rarely the case with genomic data, as individuals are often sam-
pled from populations that were structured in the past (Mazet 
et al., 2015) or from a relatively broad geographic region including 
differentiated populations (Chikhi et al., 2010; Peter et al., 2010), 
like for human samples where several small population samples 
were collected over a wide area (Mallick et al., 2016). On the other 

hand, when analysing ancient genomes, due to the scarcity of an-
cient remains from a particular location, one also often faces a 
potential temporal heterogeneity as fossils from a given archaeo-
logical site rarely have the same age, that is, are often separated 
by hundreds or thousands of years. The analysis of such heteroge-
neous samples is therefore equivalent to the analysis of samples 
drawn from a structured population.

Whereas such temporal and spatial heterogeneities are not 
impacting inferences of the genetic affinities between individuals 
such as principal component analysis, multidimensional scaling ap-
proaches or admixture analyses (Alexander et al., 2009; Patterson 
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pecially useful when handling scattered and ancient DNA samples, as in conservation 
genetics or archaeogenetics.
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et al., 2006), they can be more of an issue when studying popula-
tions' past history (Harding & McVean, 2004). Indeed, demographic 
inferences based on genomic data might be especially sensitive to 
such heterogeneities, which can lead to an underestimation of re-
cent coalescent rates, an overestimation of population size or a sig-
nal of recent population growth if not properly considered (Heller 
et al., 2013; Orozco- terWengel, 2016; Peter et al., 2010; Rodríguez 
et al., 2021).

In	 the	 context	 of	 site	 frequency	 spectrum	 (SFS)-	based	 de-
mographic inferences (Excoffier et al., 2013; Gutenkunst 
et al., 2009; Kamm et al., 2020), one way to deal with this issue 
would be to consider each individual as belonging to a separate 
population and to estimate the past demography of each popula-
tion separately. However, this approach would not only require 
the estimation of an overly large number of parameters (Bhaskar 
et al., 2015),	but	it	would	also	lead	to	a	very	high-	dimensional	SFS,	
where the number of entries could be of the order of, or even 
exceed,	 the	 number	 of	 available	 SNPs	 (Bhaskar	 &	 Song,	 2014; 
Terhorst	 &	 Song,	 2015).	 For	 instance,	 the	 unfolded	 SFS	 of	 15	
samples of one diploid individual each would have 14,348,907 
entries, since the derived allele can have frequencies of 0, 1 or 
2 in each sample, such that there are 315 possible combinations 
of allele frequencies among the 15 samples. In such a case, the 
observed	SFS	under	a	given	scenario	could	greatly	depart	from	its	
expectation under the correct model by chance, making it impos-
sible to recover the true demography of the populations (Lapierre 
et al., 2017; Rosen et al., 2018;	 Terhorst	&	Song,	2015). It thus 
seems	 more	 reasonable	 to	 work	 on	 a	 SFS	 of	 lower	 dimension	
and on a simpler model with fewer parameters, which could be 
achieved by pooling individuals from different locations or dif-
ferent ages in the same population sample. However, this pool-
ing should lead to a Wahlund effect, that is, an apparent excess 
of homozygotes (De Meeûs, 2018), which has been previously 
dealt	with	in	SFS	inference	by	allowing	for	some	inbreeding	in	the	
pooled samples (Marchi et al., 2022). This approach introduces a 
specific inbreeding coefficient (FIS) for each pooled sample, which 
corresponds to the probability that the two homologous alleles 
of an individual have a very recent common ancestor. This simple 
solution does not seem optimal if the pooled sample contains sev-
eral individuals from the same panmictic population mixed with 
individuals from other panmictic units, as the various levels of 
relatedness among individuals might not be properly considered. 
Furthermore,	 this	 procedure	 requires	 assigning	 some	 unique	
parameters for the population despite its heterogeneity, like an 
average sampling age or population size, which can affect the es-
timation of other parameters (e.g. divergence times).

Here, we propose an alternative solution to this problem, which 
consists in pooling individuals into samples while explicitly consid-
ering their geographic or temporal structure, that is, by modelling 
their genetic structure and taking into account the exact sampling 
age of each sample. This explicit structure modelling seems relevant 
when one is interested in the demography of ancestral populations 

or of metapopulations in which the sampled are embedded (e.g. the 
divergence between cultural or continental groups).

In order to evaluate the relevance and efficiency of this latter 
approach, implemented into a new version of the fastsimcoal2 pro-
gram (Excoffier et al., 2021; Figure S1), we have simulated a series 
of population samples presenting various extent of spatial and/or 
temporal heterogeneity (Figure 1) and we tested the ability of dif-
ferent modelling strategies (i.e. an absence of structure, an implicit 
structure or an explicit structure; Figure 2) to best recover the pa-
rameters of the simulated models. Note that the first two recovery 
strategies (absence of structure and implicit structure) were already 
implemented in fastsimcoal2, whereas the explicit structure ap-
proach	associated	with	a	pooling	of	the	SFS	of	specified	populations	
is new to this paper.

2  |  MATERIAL S AND METHODS

2.1  |  fastsimcoal2 input file extension

The pooling of samples is made possible for fastsimcoal2 users by an 
extension of the input files (.par or .tpl files; see Figure S1) where a 
new keyword ‘sfspool’	allows	one	to	assign	samples	to	specific	SFS	
pools. Assigning the same pool number to different samples indi-
cates	that	the	SFS	should	be	computed	by	estimating	allele	frequen-
cies on all members of the same pool. Note that one can still use 
old fastsimcoal2 files that do not mention any sfspool, as in that case 
each	sample	 is	assigned	automatically	to	a	different	SFS	pool,	and	
the new strategy is thus transparent to the user.

2.2  |  Simulated models

We assessed the effect of the new strategy under four sim-
ple evolutionary scenarios showing various types and various 
amounts of heterogeneities between samples: a spatial structure 
(Figure 1a,b) and a temporal structure (Figure 1c,d). In these sce-
narios, we modelled the divergence of two continents of 1000 
diploid individuals 1000 generations ago from an ancestral popu-
lation of 10,000 diploid individuals. These continents exchanged 
200 generations ago a single pulse of migrants at rate admPROP 
from Continent 2 to Continent 1 (looking forward in time). The 
simulated models differ by the number of populations sampled 
from each metapopulation (2 or 5, each population including 50 
diploid individuals), the divergence time (TDivPop) of these popu-
lations, the admixture rate (admPROP) and the age (Age) of the 
samples, as reported in Table 1.

For	 each	 model,	 we	 performed	 10	 independent	 simulations	
(replicates):	each	time	500,000	unlinked	DNA	segments	of	100 bp	
(i.e.	50 Mb)	were	simulated	under	an	infinite	site	mutation	model	
with	 a	 mutation	 rate	 of	 1.25e−8	 per	 bp	 per	 generation	 (Tian	
et al., 2022).	 For	 each	 replicate,	 we	 sampled	 1,	 2	 or	 5	 diploid	
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individuals per population, from which we computed an unfolded 
SFS	(the	SFS	recording	the	derived	allele	frequencies	in	each	pop-
ulation).	This	simulated	SFS	was	then	considered	as	the	‘observed’	
or ‘true’ data, and it was used in the next step to estimate model 
parameters and compute likelihoods. All input files and fastsim-
coal2 command lines used for the simulations and computations 
are available in our GitHub repository (https://github.com/CMPG/
sfspool).

2.3  |  Recovering simulated models

2.3.1  |  Estimation	strategies

To evaluate whether the pooling approach was efficient, we esti-
mated our ability to recover some key parameter estimates (ages of the 
events, ancestral population and continent sizes, admixture rate) of the 
‘true’ (simulated) models with different estimation strategies (Figure 2):

F I G U R E  1 Simulated	model	implementing	a	spatial	heterogeneity	between	a	pair	of	populations	(a)	or	among	five	populations	(b),	or	
a temporal heterogeneity between individuals sampled from separate populations (c) or from the same population at different times (d), 
the latter case corresponding to a population continuity scenario. Numbers along the branches of the population tree indicate the diploid 
population sizes, n to the diploid sample size, TDivPop refers to the divergence time of the sampled populations from the continent, Age to 
the sampling time of the individuals and admPROP	to	the	admixture	rate	from	the	second	to	the	first	continent	200	generations	ago.	See	
Table 1 for simulation conditions.
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No structure: We considered that the sampled individuals come 
from panmictic populations called Continent 1 and 2; that is, 
there is no hidden substructure (Figure 2a).	For	individuals	sam-
pled at different times (Figure 2b), we used the mean age of the 
individuals as the sampling time.
Implicit structure: We used a population ‘inbreeding coefficient’ 
(FIS in Figure 2) to account for a potential hidden substructure 
within the continents (Wahlund effect), a strategy that was 
used previously to account for potential deviation from Hardy– 
Weinberg due to population structure (de Manuel et al., 2016; 
Marchi et al., 2022).
Explicit structure: We considered here that the sampled individuals 
belonged to different populations that split TDivPop generations 
ago from the panmictic continents (2 or 5 populations per con-
tinent	in	the	different	Explicit	Structure	scenarios).	However,	we	
computed	the	SFS	at	 the	 level	of	 the	continents	as	 in	 the	other	
strategies; that is, the different populations within the same conti-
nent are considered altogether to calculate the allelic frequencies 
of	the	SFS	entries.	Thus,	with	this	pooling	strategy,	we	explicitly	al-
lowed for some sample heterogeneity and modelled the potentially 
different ages of each sample in case of temporal heterogeneity.
Temporal sampling: We considered a model where the individuals 
sampled at different epochs originate from the same population, 
which is like assuming a genetic continuity of the populations 
from which the samples were drawn.

Note that for each strategy, we tested scenarios without and 
with admixture from Continent 2 to Continent 1 (TADM generations 
ago, at rate AdmPROP), even for conditions where no admixture was 
simulated in the true model.

2.3.2  |  Parameter	estimation

The (multinomial) likelihood is estimated by approximating the 
estimated	 SFS	 via	 coalescent	 simulations	 (Excoffier	 et	 al.,	 2021) 
performed under a given set of parameter values. An expectation 
conditional maximization (ECM) algorithm (Meng & Rubin, 1993) is 
then used to iteratively find parameters maximizing the likelihood. 
In this approach, each parameter of the model is maximized in turn, 
keeping the other parameters at their last estimated value, and this 
procedure	 is	 repeated	 for	a	predefined	number	of	 cycles.	See	our	
GitHub repository (https://github.com/CMPG/sfspool) for the input 
files and command lines that were used.

2.3.3  | Model	comparison

We evaluate the performance of the different strategies to recover 
the true model by comparing their estimated parameter values 
and their likelihood. We computed the difference (Delta Lhood) 

F I G U R E  2 Schematic	representation	of	the	various	models	(‘estimation	strategies’)	used	to	recover	the	parameters	of	the	simulated	
models shown in Figure 1 for a spatial (a) or a temporal (b) heterogeneity. n	is	the	diploid	sample	size	(except	for	Explicit	Structure	2,	we	
sampled a total of 2n diploid individuals in Continent 1, which could then be allocated to different sampled populations in the explicit 
structure strategies), and NAnc refers to the ancestral population size and NCont1 and NCont2 to the size of the continents; TDivCont is the 
time of divergence between the continents, and TDivPop is the divergence time of populations within continents; the ages of the samples are 
written in red. In some scenarios, we also modelled a single pulse of admixture at rate admPROP some TAdm generations ago.
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between the likelihood of the strategy estimated by fastsimcoal2 
from simulated data and the maximal possible value of the likeli-
hood	computed	by	equating	estimated	SFS	entries	to	observed	SFS	
entries.	Furthermore,	as	the	simulated	data	consist	mostly	of	inde-
pendent	 SNPs,	 our	 likelihoods	 are	 not	 composite	 likelihoods	 and	
we can use Akaike criterion (AIC; Akaike, 1974) to compare models 
with different numbers of parameters. We first computed AIC as 
AICi = 2ki − 2ln(10)log10

(

L̂i

)

, where ki is the number of degrees of 
freedom of the i- th model and log10

(

L̂i

)

 is the log10 likelihood re-
ported by fastsimcoal2. The relative likelihood of different models 
was then estimated as exp

((

AICmin − AICi

)

∕2
)

, where AICmin is the 
minimum AIC value obtained for the best model for each replicate. 
The best model has thus a relative likelihood of 1, and other models 
have lower relative likelihoods. We consider that other models are 
significantly less good if their relative likelihood is smaller than 5%.

2.4  |  Application to human data

2.4.1  |  Genomic	data

To illustrate the validity of this approach for demographic infer-
ences, we have applied our new pooling strategy to genomic data 
from modern samples. We investigated the relationships between 
populations from Africa, Europe and Asia. To do so, we selected 
from	 the	SGDP	panel	 (Mallick	et	 al.,	2016) 24 individuals from 12 
populations: the Esan, Mandenka, Mende and Yoruba populations 
from	Western	Africa;	the	Bulgarian,	Sardinian,	Spanish	and	Tuscan	
populations from Europe; the Cambodian, Han, Kinh and Thai popu-
lations	from	Southeast	Asia.	We	filtered	the	individual	vcf	files	based	
on	their	sequencing	depth	(DP ≥ 8	and	DP < min(200,	Q99%),	where	
Q99%	is	the	99th	percentile	of	the	depth	distribution).	Furthermore,	
we	filtered	out	 low-	quality	variants	 (QUAL < 20).	Following	the	fil-
tering step, we merged all individual files in a single vcf file and we 
polarized it to the EPO ancestral allele (human_ancestor_GRCh37_
e59	 from	 ensembl_compara_59@ens-	livemirror:3306).	 From	 these	
genomic data and using the same approach as in Marchi et al. (2022), 
we	obtained	a	SFS	on	the	neutral	portion	of	the	genome	(with	local	

recombination	rate >1 cM/Mb	and	no	mutations	potentially	affected	
by	biased	gene	conversion	(BGS),	see	(Pouyet	et	al.,	2018)) including 
141,504,530 sites for which we estimated a neutral mutation rate 
of 6.13e- 09 per bp per generation using a procedure described in 
Marchi et al. (2022).	We	performed	a	multidimensional	scaling	(MDS)	
analysis from a matrix of pairwise nucleotide divergences πXY (Nei & 
Li, 1979) computed between all pairs of genomes, only considering 
the	sites	used	for	the	computation	of	the	observed	SFS,	using	the	R	
cmdscale function from the stats package (Figure S2).

2.4.2  |  Demogenomic	modelling

We then built demographic scenarios inspired from previous work 
(Malaspinas et al., 2016; Massilani et al., 2020) enabling us to es-
timate the divergence times between and within continents, the 
size of the different ancestral and sampled populations and other 
parameters, as described in Figure S3. We tested two scenarios: 
(i) an explicit structure within continent that is based on the new 
pooling approach, where the sampled populations are assumed to 
have simultaneously diverged from each other some time ago (a pa-
rameter to be estimated); (ii) an implicit structure considering that 
all samples from a given continent belong to a unique population, 
where the hidden underlying genetic structure potentially leading 
to a Wahlund effect is dealt with by modelling an inbreeding FIS co-
efficient.	Furthermore,	we	tested	these	two	scenarios	 in	the	pres-
ence or absence of an admixture from a ghost population into the 
Western African metapopulation.

For	 each	 scenario,	 we	 performed	 200,000	 coalescent	 simula-
tions per likelihood estimation and 30 expectation conditional max-
imization (ECM) cycles to find parameters maximizing the likelihood. 
This procedure was repeated from 100 different initial conditions, 
and the parameters with the overall maximum likelihood were kept.

Note that as the polymorphic sites of the real human data are 
not all independent (contrary to those generated by simulations), the 
computed likelihoods are here composite likelihoods. We neverthe-
less computed the model AIC, but we are aware that the inferred 
relative likelihood of the least fit model might be underestimated.

TA B L E  1 Parameter	combinations	of	the	simulated	models.

Simulated models TDivPop Age admPROP

Spatial	heterogeneity	(two	populations	per	
continent)

No heterogeneity 0 0 0

Weak heterogeneity 10 0 0

Medium heterogeneity 50 0 0

Strong	heterogeneity 100 0 0

Spatial	heterogeneity	with	admixture	(two	or	
five populations per continent)

No admixture 50 0 0

Small	admixture 50 0 0.15

Large admixture 50 0 0.30

Temporal Heterogeneity (one or two 
populations per continent)

Recent heterogeneoty; strong admixture 50 10 0.30
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2.4.3  |  Parametric	bootstraps

Confidence intervals for the parameters estimated under the two 
best models were obtained using a parametric bootstrap approach 
described previously (Excoffier et al., 2013) and summarized hereaf-
ter.	In	brief,	we	first	generated	100	SFS	computed	from	the	simula-
tion	of	100	chromosomes	of	141 Mb	(corresponding	approximately	
to the neutral part of the genome that was used for the original 
parameter estimation) using the maximum- likelihood estimated pa-
rameter	values.	For	each	of	the	100	SFS,	we	re-	estimated	the	param-
eters of the model for 20 independent runs. The parameters of the 
run having overall largest likelihood were kept for each of the 100 
simulated data sets. These 100 sets of parameters were then used 
to compute the 2.5% and 97.5% quantiles of the distribution of each 
parameter, approximately delimiting a 95% CI around the initially es-
timated ML values.

3  |  RESULTS

3.1  |  Spatial heterogeneity without admixture

We assessed the performance of various estimation strategies by 
computing the difference (Delta Lhood) between the estimated 
likelihood	and	 the	maximum	 likelihood	given	 the	observed	SFS.	 In	
addition, we also computed the relative likelihoods of the different 
models	 from	 their	AIC	 (see	Section	2.3.3). When there is medium 
to strong spatial heterogeneity between the populations (Figure 1a, 
Table 1), the estimations based on an explicit structure outperformed 
the other estimation strategies (Figure 3). Globally, the estimation 
strategy that does not assume any structure at all is not performing 
well in that case, for any sample size (Figure 3), as it has consistently 
very low relative likelihood (Figure S4). When a single diploid indi-
vidual is sampled per population, the implicit structure strategy (es-
timating FIS within pooled populations) leads to Delta (Figure 3) and 
relative likelihoods (Figure S4) that are very close or even better than 
those obtained under the explicit structure strategy. The recovered 
parameters are also well estimated, except perhaps the continent 
sizes that are overestimated (Figure S5A). However, when more than 
one diploid individual is sampled from each population, the explicit 
structure strategy leads to Delta and relative likelihoods that are 
much better than the two strategies not explicitly considering the 
genetic structure of the samples (Figure 3, Figure S4). Regarding the 
ability of the different strategies to estimate parameter values, we 
find that the explicit strategy allows one to correctly recover true 
parameter values, while the implicit strategy leads to a clear overes-
timation of the ancestral population size and an underestimation of 
the continent sizes and divergence time (Figure S5A).

Differences in performance between estimation strategies thus 
depend on the actual number of individuals sampled per population, 
but even more on the level of genetic heterogeneity among popula-
tion samples. The advantage of the explicit strategy is indeed more 
visible when a strong heterogeneity is simulated (TDivPop = 100,	

i.e. FST ≃ 0.63)	 than	 for	 a	 medium	 heterogeneity	 (TdivPop = 50,	
FST ≃ 0.4;	Figure 3), or for a weak spatial heterogeneity (TdivPop = 10,	
FST ≃ 0.1),	 but	 it	 is	 present	 in	 all	 cases	 for	n ≥ 2	 (Figure S4: the ex-
plicit structure strategy shows the best relative likelihood for all 10 
replicates when there is a strong and medium heterogeneity, and 
for the majority of the replicates when there is a weak heteroge-
neity). Importantly, if the true model does not include any spatial 
heterogeneity (TDivPop = 0),	 the	 use	 of	 an	 explicit	 structure	 as	 an	
estimation strategy is not penalizing as the likelihood of this type of 
model is similar to that obtained under the true model without any 
structure (Figure 3, bottom row). This strategy also leads in that case 
to relative likelihoods that are often very close or equal to those of 
the best model (Figure S4). In other words, the estimation of addi-
tional parameters under this more complex model does not prevent 
us to correctly estimate parameters as our more complex model can 
still recognize that there is no genetic structure among the samples. 
Finally,	note	that	the	relative	performances	of	the	three	estimation	
strategies are similar to those described above when more than two 
populations are simulated per continent (Figure 2a, Figure S6).

3.2  |  Spatial heterogeneity with admixture

In the simulations and analyses presented above, the two continents 
were isolated since their divergence. We relaxed this assumption by 
examining cases where there is a single pulse of gene flow (an ad-
mixture event) from Continent 2 to Continent 1, that is, by adding 
two additional parameters in the estimations: the admixture time and 
the admixture proportion. We find that the estimation of these two 
additional parameters is not a burden when there is no admixture, as 
the likelihood of the explicit structure strategy with admixture is very 
similar to that without admixture (Figure S7A–	D). However, when we 
analysed data sets with simulated admixture (Figure 2a, Table 1), the 
estimation strategies with admixture clearly outperform strategies 
without admixture (Figure S7B,C) with best relative likelihoods exclu-
sively found for the strategy with admixture (Figure S7E,F).

3.3  |  Temporal heterogeneity

Like in the case of a simple spatial sampling heterogeneity, when there 
is both a spatial and a temporal sampling heterogeneity (Figure 2b, 
Table 1), we find that a model with an explicit structure is working 
well for any number of sampled individuals (Figure 4, Figure S8— top 
row). In this case as well, when only one diploid individual is sampled 
from each population, the explicit and implicit structure strategies are 
equally good (no significant differences between their relative like-
lihood in Figure S8). However, when the sampled individuals come 
from the same population without spatial structure (Figure 2d), the 
temporal strategy has a significantly higher relative likelihood than 
the other strategies (for 9 of the 10 replicates, Figure S8— bottom 
row), showing that the best recovery strategy is indeed in both cases 
the one exactly matching the simulation framework. It implies that 
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it should be possible to distinguish models where individuals sam-
pled at different times from a given archaeological site come from 
the same population (genetic continuity) or if they come from distinct 
populations suggesting a population replacement.

3.4  |  Analysis of modern human data

In order to illustrate the interest of the new strategy for de-
mogenomic inferences in the presence of spatial heterogeneity, 

we	 analysed	 a	 small	 subset	 of	 SGDP	 human	 individuals	 (Mallick	
et al., 2016) sampled in three continents (Figures S2 and S3) with 
some degree of spatial heterogeneity. Using our new approach, 
we analysed the eight individuals sampled from four populations 
in each continent as a pooled sample. With this explicit structure 
modelling, we obtained a much better likelihood (71 log10 likeli-
hood units improvement) than for a scenario where we used an 
implicit structure (Wahlund effect estimated by an FIS coeffi-
cient), and the relative likelihood is vastly inferior (10−70) for the 
implicit model (Table S1), suggesting that the explicit model is very 

F I G U R E  3 Model	likelihoods	of	three	estimation	strategies	for	different	sample	sizes	(n) and different levels of spatial heterogeneity 
among samples. Note that no admixture between continents was allowed for these strategies. Each estimation strategy was attempted on 
10	data	sets.	Simulation	conditions	are	defined	in	Table 1.
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significantly better supported, even though this relative likelihood 
might	be	underestimated	as	the	SNPs	from	our	human	data	set	are	
not fully independent.

As expected, continental population sizes differ between the 
explicit and implicit structure modelling, but a few other parame-
ters are substantially different between the two approaches, like 
those related to the bottleneck out of Africa and later drift in the 
ancestral Eurasian population, as well as the amount of migra-
tion between Asia and Europe. Interestingly, but unrelated to the 

difference between the explicit and implicit structure model, we 
find evidence for a relatively strong input (8– 9%) from a very dif-
ferentiated ghost population into the Western African metapop-
ulation. Indeed, this ghost population would have diverged from 
the	modern	 humans	 640–	700 kya,	 at	 about	 the	 same	 time	 than	
the population ancestral to both Neandertals and Denisovans. 
Without this admixture, we indeed found a relatively large ex-
cess of almost fixed derived mutations in Africans compared 
with our predictions (Figure S9), a signal that we had shown to be 

F I G U R E  4 Performance	of	the	estimation	strategies	at	fitting	the	data	simulated	under	some	temporal	and	spatial	heterogeneity	due	to	
sampling from different populations (top row) or under temporal sampling from the same population (bottom row). Different sample sizes 
(n = 1	and	5)	have	been	tested.	Each	estimation	strategy	was	run	on	10	data	sets.	For	each	simulated	condition,	we	attempted	to	fit	the	data	
under the four models defined in Figure 2b.	Simulation	conditions	are	defined	in	Table 1.
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potentially due to unaccounted gene flow from a distinct popula-
tion (Marchi & Excoffier, 2020), which motivated us to model this 
ghost admixture in Africans.

4  |  DISCUSSION

Sequencing	 costs	 have	 been	 dramatically	 reduced,	 but	 full	 ge-
nomes are rarely sequenced on many individuals from the same 
population and most studies will sequence one or a few individuals 
from several populations. Whereas powerful methods have been 
developed to infer the past demography from single or a very few 
individuals from the same population (Li & Durbin, 2011;	Schiffels	
& Durbin, 2014;	Sheehan	et	al.,	2013), it remains difficult to infer 
the demography of several populations from a set of individuals 
sampled at different geographical locations or at different times. 
To alleviate this problem, we have introduced here a new way to 
deal with potential spatial and temporal heterogeneities when 
inferring the past demography from the site frequency spectrum 
computed on a set of genome samples. Our approach allows for 
a detailed modelling of sample locations and times while keeping 
the	 dimensionality	 of	 the	 SFS	 low.	Our	 simulations	 suggest	 that	
it is a more appropriate way to account for heterogeneity than to 
simulate a simple Wahlund effect when we sample more than one 
individual per subdivision, and that allowing for the inference of 
population subdivision when there is none has no negative impact 
on our fitting of the data (Figure 3). Note, however, that the implicit 
structure (FIS) approach might be simpler and appropriate when 
dealing with a set of ancient DNA samples, which are often widely 
temporally and spatially spaced. While we have implemented a 
simple scenario of populations splitting from a common source to 
model population subdivision in our simulations and estimations 
(Figures 1 and 2), alternative and potentially more complex models 
can easily be implemented, like in our application to human data 
where we simulated continent- island models (Figure S3).

The exact way to model sample heterogeneity will indeed de-
pend on the model system that is studied, and it may be wise to 
test alternative models of population structure and designate the 
best fitting model based on the AIC (e.g. in Figures S4 and S8).	For	
a nonmodel organism, where one has no predefined idea of the 
history of populations and how to group individuals, geography is 
often providing a natural first hint. However, simple descriptive 
statistics	 computed	 from	 the	 raw	 genetic	 data	 (e.g.	 PCA,	MDS	
and	 F-	statistics;	Marchi	 et	 al.,	2021) should be helpful to com-
plement this information and more firmly decide how individu-
als might be grouped for further analyses. Then, it is clear that 
more realistic models will require more parameters to be esti-
mated, which might make them more difficult to explore (Bhaskar 
&	Song,	2014;	 Terhorst	&	Song,	2015), such that a compromise 
needs to be found between realism and tractability. However, 
one might not be necessarily interested in the exact way pop-
ulations within groups are related, but by other parameters re-
lated to ancestral populations such as divergence times between 

groups, and in this case a more exact, if not perfect, modelling of 
sample heterogeneity might be helpful. In this respect, our appli-
cation to human data is interesting, as some ancestral parameters 
are indeed markedly different between an implicit and an explicit 
modelling	of	heterogeneity.	For	instance,	we	find	3–	6	times	more	
gene flow between Europe and Asia (Nm_EUtoAS) and a smaller 
ancestral size of the Eurasian ancestral population (NEura, ~1900 
vs. ~5560 individuals). Also, the bottleneck out of Africa (iBot-
OOA) is found 3.5 times less strong and have occurred slightly 
earlier (TOOA,	67.8 kya	vs.	56.8 kya),	and	the	African	metapopula-
tion size (NaAF) before the last glacial maximum was found larger 
(23,418 diploid individuals) than just after the exit out of Africa 
(17,783), whereas it was found smaller with the implicit model, 
which would lead us to conclude that the African ancestral popu-
lation would have decreased rather than increased since the exit 
out	of	Africa.	Finally,	the	ancestral	European	size	(NaEU) is found 
to be smaller with an explicit structure modelling (8160 diploids) 
than without (11,901 diploids). We note, however, that most pa-
rameters have relatively wide confidence intervals and that these 
differences might not always be significant (Table S1). Because 
the explicit heterogeneity approach allows for a better modelling 
of intracontinental diversity, we believe that it naturally leads to 
a better estimation of the older part of the population history, as 
these parameters do not need to be tweaked to compensate the 
misspecification of the recent intracontinental history. Of course, 
our current modelling has room for improvement as we can see 
that for instance Asian or African diversity is not partitioned into 
exactly four equidistant population groups (Figure S2) as is done 
in our modelling.

Lastly, the detection that 8– 9% of the genome of Western 
Africans could come from an archaic human population having di-
verged ~639 kya	from	the	human	lineage	is	in	line	with	previous	stud-
ies	reporting	evidence	of	specific	archaic	admixture	in	sub-	Saharan	
Africans (Chen et al., 2020; Wall et al., 2019) and in very good agree-
ment with a previous study of the conditional frequency spectrum 
of	Western	African	populations	(Durvasula	&	Sankararaman,	2020), 
which suggested that these populations had received 2– 19% of their 
genome	from	a	population	having	diverged	about	625 kya	from	mod-
ern humans. Note that we did not attempt at estimating the time of 
admixture, since we imposed it to be occurring at the time of the di-
versification of West African population, here estimated at ~33 kya.	
Some	more	specific	modelling	of	Western	African	populations	would	
be necessary to refine the exact scenario of this African- specific ar-
chaic admixture, but it suggests that this African archaic population 
had diverged from the human lineage approximately at the same 
time as the ancestors of Neandertals and Denisovans.

AUTHOR CONTRIBUTIONS
L.E. and N.M. designed the simulation framework. L.E. pro-
grammed the new version of fastsimcoal2 and simulated test data 
sets. N.M. analysed the simulated data and performed the param-
eter estimation and likelihood analyses. A.K. curated the human 
genomic data set and performed their bioinformatic analysis. L.E. 

 17550998, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13877 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 11  |     MARCHI et al.

and N.M. analysed the results. All authors contributed to writing 
the manuscript.

ACKNO WLE DG E MENTS
This	work	was	supported	by	a	Swiss	NSF	grant	310030_188883	to	
LE.	We	are	grateful	 to	Sandra	Da	Silva	Oliveira	 for	helpful	discus-
sions on the subject and to other CMPG lab members for their com-
ments when presenting this work at lab meetings.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y AND BENEFIT- SHARING 
S TATEMENT
Input files for the simulation– estimation framework as well as the 
data used for the applications are available on a dedicated GitHub: 
https://github.com/CMPG/sfspool.

ORCID
Laurent Excoffier  https://orcid.org/0000-0002-7507-6494 

R E FE R E N C E S
Akaike, H. (1974). A new look at the statistical model identification. IEEE 

Transactions on Automatic Control, 19(6), 716–723.
Alexander,	D.	H.,	Novembre,	 J.,	&	 Lange,	K.	 (2009).	 Fast	model-	based	

estimation of ancestry in unrelated individuals. Genome Research, 
19(9), 1655–1664.

Bhaskar,	A.,	&	Song,	Y.	S.	(2014).	Descartes'	rule	of	signs	and	the	identi-
fiability of population demographic models from genomic variation 
data. Annals of Statistics, 42(6), 2469–2493.

Bhaskar,	A.,	Wang,	Y.	X.	R.,	&	Song,	Y.	S.	 (2015).	Efficient	 inference	of	
population size histories and locus- specific mutation rates from 
large- sample genomic variation data. Genome Research, 25(2), 
268–279.

Chen,	L.,	Wolf,	A.	B.,	Fu,	W.,	Li,	L.,	&	Akey,	J.	M.	(2020).	Identifying	and	
interpreting apparent Neanderthal ancestry in African individuals. 
Cell, 180(4), 677–687.

Chikhi,	L.,	Sousa,	V.	C.,	Luisi,	P.,	Goossens,	B.,	&	Beaumont,	M.	A.	(2010).	
The confounding effects of population structure, genetic diversity 
and the sampling scheme on the detection and quantification of 
population size changes. Genetics, 186(3), 983–995.

de	Manuel,	M.,	Kuhlwilm,	M.,	Frandsen,	P.,	Sousa,	V.	C.,	Desai,	T.,	Prado-	
Martinez, J., Hernandez- Rodriguez, J., Dupanloup, I., Lao, O., 
Hallast,	 P.,	 Schmidt,	 J.	M.,	 Heredia-	Genestar,	 J.	M.,	 Benazzo,	 A.,	
Barbujani,	G.,	Peter,	B.	M.,	Kuderna,	L.	F.	K.,	Casals,	F.,	Angedakin,	
S.,	Arandjelovic,	M.,	…	Marques-	Bonet,	T.	(2016).	Chimpanzee	ge-
nomic diversity reveals ancient admixture with bonobos. Science, 
354(6311), 477–481.

De	Meeûs,	T.	 (2018).	Revisiting	FIS,	FST,	Wahlund	effects,	and	null	al-
leles. The Journal of Heredity, 109(4), 446–456.

Durvasula,	A.,	&	Sankararaman,	 S.	 (2020).	Recovering	 signals	 of	 ghost	
archaic introgression in African populations. Science Advances, 6(7), 
eaax5097.

Excoffier,	L.,	Dupanloup,	I.,	Huerta-	Sánchez,	E.,	Sousa,	V.	C.,	&	Foll,	M.	
(2013).	Robust	demographic	inference	from	genomic	and	SNP	data.	
PLoS Genetics, 9(10), e1003905.

Excoffier, L., Marchi, N., Marques, D. A., Matthey- Doret, R., Gouy, A., 
&	Sousa,	V.	C.	(2021).	fastsimcoal2:	Demographic	inference	under	
complex evolutionary scenarios. Bioinformatics, 37, 4882–4885. 
https://doi.org/10.1093/bioin forma tics/btab468

Gutenkunst,	R.	N.,	Hernandez,	R.	D.,	Williamson,	S.	H.,	&	Bustamante,	C.	
D. (2009). Inferring the joint demographic history of multiple pop-
ulations	from	multidimensional	SNP	frequency	data.	PLoS Genetics, 
5(10), e1000695.

Haber, M., Mezzavilla, M., Bergström, A., Prado- Martinez, J., Hallast, P., 
Saif-	Ali,	 R.,	 Al-	Habori,	M.,	Dedoussis,	 G.,	 Zeggini,	 E.,	 Blue-	Smith,	
J.,	 Wells,	 R.	 S.,	 Xue,	 Y.,	 Zalloua,	 P.	 A.,	 &	 Tyler-	Smith,	 C.	 (2016).	
Chad genetic diversity reveals an African history marked by mul-
tiple Holocene Eurasian migrations. The American Journal of Human 
Genetics, 99(6), 1316–1324.

Harding, R. M., & McVean, G. (2004). A structured ancestral population 
for the evolution of modern humans. Current Opinion in Genetics & 
Development, 14(6), 667–674.

Heller,	 R.,	 Chikhi,	 L.,	&	 Siegismund,	H.	 R.	 (2013).	 The	 confounding	 ef-
fect of population structure on Bayesian skyline plot inferences 
of demographic history. PLoS One, 8(5), e62992. https://doi.
org/10.1371/journ al.pone.0062992

Kamm,	 J.,	 Terhorst,	 J.,	 Durbin,	 R.,	 &	 Song,	 Y.	 S.	 (2020).	 Efficiently	 in-
ferring the demographic history of many populations with allele 
count data. Journal of the American Statistical Association, 115(531), 
1472–1487.

Lapierre, M., Lambert, A., & Achaz, G. (2017). Accuracy of demographic 
inferences from the site frequency spectrum: The case of the 
Yoruba population. Genetics, 206(1), 139–449.

Li, H., & Durbin, R. (2011). Inference of human population history from 
individual whole- genome sequences. Nature, 475(7357), 493–496.

Loog,	 L.	 (2021).	 Sometimes	 hidden	 but	 always	 there:	 The	 assump-
tions underlying genetic inference of demographic histories. 
Philosophical Transactions of the Royal Society of London. Series B, 
Biological Sciences, 376(1816), 20190719.

Malaspinas,	 A.-	S.,	 Westaway,	 M.	 C.,	 Muller,	 C.,	 Sousa,	 V.	 C.,	 Lao,	 O.,	
Alves, I., Bergström, A., Athanasiadis, G., Cheng, J. Y., Crawford, J. 
E.,	Heupink,	T.	H.,	Macholdt,	E.,	Peischl,	S.,	Rasmussen,	S.,	Schiffels,	
S.,	 Subramanian,	 S.,	Wright,	 J.	 L.,	 Albrechtsen,	A.,	 Barbieri,	 C.,	…	
Willerslev, E. (2016). A genomic history of aboriginal Australia. 
Nature, 538(7624), 207–214.

Mallick,	 S.,	 Li,	 H.,	 Lipson,	 M.,	 Mathieson,	 I.,	 Gymrek,	 M.,	 Racimo,	 F.,	
Zhao,	 M.,	 Chennagiri,	 N.,	 Nordenfelt,	 S.,	 Tandon,	 A.,	 Skoglund,	
P.,	Lazaridis,	 I.,	Sankararaman,	S.,	Fu,	Q.,	Rohland,	N.,	Renaud,	G.,	
Erlich,	 Y.,	Willems,	 T.,	 Gallo,	 C.,	 …	 Reich,	 D.	 (2016).	 The	 Simons	
genome diversity project: 300 genomes from 142 diverse popula-
tions. Nature, 538(7624), 201–206.

Marchi, N., & Excoffier, L. (2020). Gene flow as a simple cause for an 
excess of high- frequency- derived alleles. Evolutionary Applications, 
20, 1–10.

Marchi,	N.,	Schlichta,	F.,	&	Excoffier,	L.	(2021).	Demographic	inference.	
Current Biology, 31(6), R276–R279.

Marchi,	N.,	Winkelbach,	L.,	Schulz,	I.,	Brami,	M.,	Hofmanová,	Z.,	Blöcher,	
J.,	Reyna-	Blanco,	C.	S.,	Diekmann,	Y.,	Thiéry,	A.,	Kapopoulou,	A.,	
Link,	V.,	Piuz,	V.,	Kreutzer,	S.,	Figarska,	S.	M.,	Ganiatsou,	E.,	Pukaj,	
A.,	Struck,	T.	J.,	Gutenkunst,	R.	N.,	Karul,	N.,	…	Excoffier,	L.	(2022).	
The genomic origins of the world's first farmers. Cell, 185(11), 
1842–1859.

Massilani,	D.,	Skov,	L.,	Hajdinjak,	M.,	Gunchinsuren,	B.,	Tseveendorj,	D.,	
Yi,	S.,	Lee,	J.,	Nagel,	S.,	Nickel,	B.,	Devièse,	T.,	Higham,	T.,	Meyer,	
M.,	Kelso,	J.,	Peter,	B.	M.,	&	Pääbo,	S.	(2020).	Denisovan	ancestry	
and population history of early east Asians. Science, 370(6516), 
579–583.

Mazet, O., Rodríguez, W., & Chikhi, L. (2015). Demographic inference 
using	genetic	data	from	a	single	 individual:	Separating	population	
size variation from population structure. Theoretical Population 
Biology, 104, 46–58.

Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the 
ECM algorithm: A general framework. Biometrika, 80(2), 267–278.

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic 
variation in terms of restriction endonucleases. Proceedings of the 

 17550998, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13877 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/CMPG/sfspool
https://orcid.org/0000-0002-7507-6494
https://orcid.org/0000-0002-7507-6494
https://doi.org/10.1093/bioinformatics/btab468
https://doi.org/10.1371/journal.pone.0062992
https://doi.org/10.1371/journal.pone.0062992


    |  11 of 11MARCHI et al.

National Academy of Sciences of the United States of America, 76(10), 
5269–5273.

Orozco- terWengel, P. (2016). The devil is in the details: The effect of 
population structure on demographic inference [review of the devil 
is in the details: The effect of population structure on demographic in-
ference]. Heredity, 116(4), 349–350.

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and 
Eigenanalysis. PLoS Genetics, 2(12), 2074–2093.

Peter, B. M., Wegmann, D., & Excoffier, L. (2010). Distinguishing between 
population bottleneck and population subdivision by a Bayesian 
model choice procedure. Molecular Ecology, 19(21), 4648–4660.

Pouyet,	F.,	Aeschbacher,	S.,	Thiéry,	A.,	&	Excoffier,	L.	(2018).	Background	
selection and biased gene conversion affect more than 95% of the 
human genome and bias demographic inferences. eLife, 7, e36317. 
https://doi.org/10.7554/eLife.36317

Rodríguez,	 W.,	 Mazet,	 O.,	 Grusea,	 S.,	 Arredondo,	 A.,	 Corujo,	 J.	 M.,	
Boitard,	S.,	&	Chikhi,	L.	(2021).	Correction	to:	The	IICR	and	the	non-	
stationary structured coalescent: Towards demographic inference 
with arbitrary changes in population structure. Heredity, 126(4), 
706.

Rosen,	Z.,	Bhaskar,	A.,	Roch,	S.,	&	Song,	Y.	S.	 (2018).	Geometry	of	 the	
sample frequency spectrum and the perils of demographic infer-
ence. Genetics, 210(2), 665–682.

Schiffels,	 S.,	&	Durbin,	 R.	 (2014).	 Inferring	 human	population	 size	 and	
separation history from multiple genome sequences. Nature 
Genetics, 46(8), 919–925.

Sheehan,	S.,	Harris,	K.,	&	Song,	Y.	S.	 (2013).	Estimating	variable	effec-
tive population sizes from multiple genomes: A sequentially mar-
kov conditional sampling distribution approach. Genetics, 194(3), 
647–662.

Terhorst,	 J.,	 &	 Song,	 Y.	 S.	 (2015).	 Fundamental	 limits	 on	 the	 accuracy	
of demographic inference based on the sample frequency spec-
trum. Proceedings of the National Academy of Sciences, 112(25), 
7677–7682.

Tian,	 X.,	 Cai,	 R.,	 &	 Browning,	 S.	 R.	 (2022).	 Estimating	 the	 genome-	
wide mutation rate from thousands of unrelated individuals. The 
American Journal of Human Genetics, 109(12), 2178–2184.

Wall,	 J.	 D.,	 Ratan,	 A.,	 Stawiski,	 E.,	 &	 GenomeAsia	 100K	 Consortium.	
(2019). Identification of African- specific admixture between mod-
ern and archaic humans. The American Journal of Human Genetics, 
105(6), 1254–1261.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Marchi, N., Kapopoulou, A., & 
Excoffier, L. (2024). Demogenomic inference from spatially 
and temporally heterogeneous samples. Molecular Ecology 
Resources, 24, e13877. https://doi.org/10.1111/1755-
0998.13877

 17550998, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13877 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.7554/eLife.36317
https://doi.org/10.1111/1755-0998.13877
https://doi.org/10.1111/1755-0998.13877

	Demogenomic inference from spatially and temporally heterogeneous samples
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|fastsimcoal2 input file extension
	2.2|Simulated models
	2.3|Recovering simulated models
	2.3.1|Estimation strategies
	2.3.2|Parameter estimation
	2.3.3|Model comparison

	2.4|Application to human data
	2.4.1|Genomic data
	2.4.2|Demogenomic modelling
	2.4.3|Parametric bootstraps


	3|RESULTS
	3.1|Spatial heterogeneity without admixture
	3.2|Spatial heterogeneity with admixture
	3.3|Temporal heterogeneity
	3.4|Analysis of modern human data

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY AND BENEFIT-SHARING STATEMENT

	REFERENCES


