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Predicting mutational effects is essential for the control of antibiotic resistance
(ABR). Predictions are difficult when there are strong genotype-by-
environment (G × E), gene-by-gene (G×G or epistatic) or gene-by-gene-
by-environment (G ×G×E) interactions. We quantified G×G×E effects in
Escherichia coli across environmental gradients. We created intergenic fitness
landscapes using gene knock-outs and single-nucleotide ABR mutations
previously identified to vary in the extent of G × E effects in our environments
of interest. Then,wemeasured competitive fitness across a complete combinator-
ial set of temperature and antibiotic dosage gradients. In this way, we assessed
the predictability of 15 fitness landscapes across 12 different but related environ-
ments. We found G×G interactions and rugged fitness landscapes in the
absence of antibiotic, but as antibiotic concentration increased, the fitness effects
of ABR genotypes quickly overshadowed those of gene knock-outs, and the
landscapes became smoother. Our work reiterates that some single mutants,
like those conferring resistance or susceptibility to antibiotics, have consistent
effects across genetic backgrounds in stressful environments. Thus, although
epistasis may reduce the predictability of evolution in benign environments,
evolution may be more predictable in adverse environments.

This article is part of the theme issue ‘Interdisciplinary approaches to
predicting evolutionary biology’.
1. Introduction
It has been debated for decades whether gene-by-gene interactions (G ×G
or epistasis) influence evolutionary processes (reviewed in [1,2]). Compelling
evidence for the successive fixation of epistatic substitutions comes from
studies of amino acid replacements over phylogenetic time scales (e.g. [3–5]).
Moreover, experimental evolution has demonstrated that adaptive paths can
be constrained by epistasis (e.g. [6]). Also, the environment can modulate
mutational effects through gene-by-environment (G × E) interactions. Whereas
multiple studies have demonstrated the existence of G × E interactions (e.g.
[7–9]), our knowledge of the extent and the consequences of G ×G × E inter-
actions, i.e. those in which epistasis interacts with the environment, are
limited ([10–13], reviewed in [2]).

G ×G, G × E and G ×G × E interactions complicate evolutionary predictions
because they alter expected phenotypes or fitness of individuals [2,14]. Study-
ing their extent and incorporating their effect into evolutionary predictions is
daunted by the complexity of the genotype space and the myriad of environ-
ments that could be tested [15]. However, our lack of quantitative knowledge
of G ×G and G × E effects poses dangers to fields in which genetic and evol-
utionary models are applied: they could lead to the failed genetic rescue of
endangered species, or the unexpected spread or maintenance of antibiotic
resistance (ABR).
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At the same time, the existence of G × E interactions is a
crucial assumption in ABR evolution. By definition, the orig-
inal genotype grows well in the antibiotic-free environment
and poorly in the antibiotic environment. Conversely, a resist-
ant genotype grows well in the antibiotic environment and
is usually assumed to have low fitness in the antibiotic-free
environment, resulting in so-called costs of ABR (reviewed
in [16], but see [17]). In addition, G × E interactions with
other environmental variables, such as high temperature or
minimal media, can facilitate the evolution of resistant geno-
types in the absence of antibiotics [6,18]. Although G × E
interactions are central in ABR evolution, many questions
about the role of G × E remain unexplored (but see [19–21]);
for example, how does the G × E relationship between suscep-
tible and resistant genotypes change across non-antimicrobial
environmental axes, and how frequently is ABR modulated
by the genetic background (i.e. through G ×G effects).

ABR was first identified as a problem shortly after the
introduction of antibiotics for clinical use [22], and it con-
tinues to be a leading cause of death worldwide [23]. For
this reason, inferring potential resistances, cross-resistances,
compensatory mutations and, ultimately, predicting the evol-
utionary trajectories of bacterial genomes in the presence of
antibiotics is an application of evolutionary biology that is
important for the health of humans and the planet [24,25].
Critically, G ×G and G × E effects influencing ABR can
complicate the identification of new resistances. For example,
with G ×G effects, resistance may depend on more than one
easily identifiable allele. In addition, with G × E effects,
laboratory evolution settings may not be informative of the
fitness of genotypes in the wild.

Including G ×G effects in the study of ABR requires the
consideration of many potentially interacting genotypes.
With epistasis, interactions can be specific between particular
mutations due to mechanistic interactions of residues or
proteins, for example (reviewed in [26]), or global, where
any combination of mutations ultimately shows a pattern of
G ×G [27,28]. In contrast to increasing numbers of reports
of ubiquitous epistasis [12,29,30], much existing work to
date has considered single ABR genotypes at a time under
the assumptions of additive effects (but see [31,32]). The
theoretical concept of a fitness landscape, which maps
every possible genotype to its fitness, captures G ×G inter-
actions and enables the study of how such interactions
affect evolutionary trajectories (reviewed in [2,33]). Unless
there is a known underlying pattern of interactions, epistasis
makes evolution on the fitness landscape less predictable.
Moreover, with added G × E interactions, the fitness land-
scape may change across environmental gradients, leading
to changes in both single genotypes and epistasis [8,12] and
to different possible evolutionary trajectories [13,34].

We here take a step towards quantifying G ×G× E inter-
actions by studying 15 small (i.e. two mutational-step) fitness
landscapes across two environmental gradients and their com-
bination, antibiotic concentration and temperature. In our
fitness landscapes, we combine three known ABR mutations
in the rpoB gene with five gene knock-outs, resulting in 24
genotypes that are screened for competitive fitness in 12 abiotic
environments. Unlike previous studies, we study interactions
of two different mutation types, single amino acid substi-
tutions (more specifically, single-nucleotide polymorphisms,
or SNPs) and whole gene deletions. By screening the fitness
landscapes across a grid of environments, we quantify their
change across environmental gradients, which is related to
the robustness of fitness predictions under environmental
change. Since the ABR mutations and gene knock-outs were
selected based on their not exhibiting any direct, mechanistic
interactions, one might a priori expect few G×G interactions
and that the fitness of the double mutants would be additive
as compared to the single mutants. On the other hand, non-
specific epistasis (epistasis between mutations that do not
directly interact mechanistically) has been observed ubiqui-
tously [26]. Our fitness landscapes feature moderate epistasis
in the benign environments, which decreases at higher anti-
biotic concentrations. Altogether, we conclude that our fitness
landscapes are very predictable across environments.
2. Results
(a) Choice of genotypes
We selected rifampicin-resistant single-nucleotide mutations
that were a priori known to differ in their performance between
different temperature environments in M9 minimal medium.
The ABRmutations modify single amino acids at the antibiotic
target site in the gene RNA polymerase B (rpoB). Prior to our
study, it was unknown how the mutants would perform in
different combinations of antibiotic and high-temperature
environments (i.e. we only knew about the effect of one
environmental axis on its own). RpoB H526Y was established
to show a trade-off between environment types: it confers
high rifampicin resistance at 37°C but grows poorly as com-
pared to the wild type at higher temperatures in the absence
of antibiotic [7,35]. Conversely, rpoB S512F was established to
have a synergy between environment types: it grows well
both at high rifampicin concentrations and higher tempera-
tures [7], separately. Finally, rpoB I572N is a weak rifampicin
resistance mutation that was first identified during evolution
to high temperature [6,36].

We initially tried to select knock-out mutations similarly as
we had done for rpoB mutants: we used data from a large
phenotypic screen of Escherichia coli (E. coli; accessed from
https://ecoliwiki.org/tools/chemgen/) to select knock-out
mutations that were known to differ in their performance
between environment types. However, neither the bacterial
colony size s-scores [37] nor the bacterial colony opacity and
density s-scores [38] were able to predict the growth effects of
Keio collection [39] knock-out mutants in batch culture
environments (data not shown).

Ultimately, we selected knock-out mutations based on their
a priori functional effects and the presence of segregating knock-
out polymorphism in natural populations (accessed from the
panX database at https://pangenome.org/; [40]). We selected
four knock-outs of functional genes, all involved in how the
cell interacts with its environment as follows: marR (multiple
ABR regulator) detects and responds to chemical stressors,
and its knock-out is sensitive to heat shock [41], conferring
either resistance [42] or susceptibility [43] to some antibiotics
but not rifampicin [37]; nuoC and yidK are both located on
the plasma membrane and involved in transport [44,45]; and
waaP impacts outer membrane stability through lipo-
polysaccharide biosynthesis [46]. The fifth gene, ybfG, is a
pseudogene and was selected as a control since its knock-
out should perform similarly to the wild-type genotype.
None of the knock-outs interact directly with rpoB or other
genes involved in transcription, protein synthesis or DNA

https://ecoliwiki.org/tools/chemgen/
https://pangenome.org/


transect side viewtop view

(c) sign epistasis (d) roughness-to-slope

no epistasis
pairwise epistasis = 0 
gamma = 1

reciprocal sign epistasis
pairwise epistasis > 0
–1 < gamma < 0

simple sign epistasis
pairwise epistasis > 0
0 < gamma < 1 

number of mutations
from WT

fi
tn

es
s

0 1 2

(b) masking epistasis

pairwise epistasis < 0
0 < gamma < 1 

pairwise epistasis > 0
0 < gamma < 1 

no epistasis
pairwise epistasis = 0
gamma = 1

number of mutations
from WT

fi
tn

es
s

0 1 2

large roughness-to-slope

small roughness-to-slope

fi
tn

es
s

locus A
a A

b

lo
cu

s 
B

B

linear model

RpoB

KO

(a) topology of the fitness landscapes

WT

WT

S512F

S512F

H526Y

H526Y

I572S

I572S

KO WT H526Y S512F H526Y I572S

K
O

RpoB
RpoB RpoB

none

none

ybfG
ybfG

waaP

waaP

marR

marR

nuoC

nuoC

yidK

yidK

K
O

none

ybfG

waaP

marR

nuoC

yidK

Figure 1. (a) Three-dimensional schematics depicting the topology of the studied fitness landscapes. The schematics show the same topology from different per-
spectives. All mutations are at unique, di-allelic loci. There are 15 fitness landscapes each composed of the wild type (WT), a rpoB single mutant, a knock-out (KO)
single mutant, and the resultant double mutant. Lines connect genotypes that are one mutational-step apart. Depiction of ‘classical’ pairwise epistasis and gamma
epistasis metrics for (b) masking and (c) sign epistasis. Masking epistasis is when the fitness effect of a beneficial or deleterious mutation on the wild-type back-
ground is zero on a different background. Sign epistasis occurs when the beneficial or deleterious effect of a mutation reverses in the presence of another mutation
to become deleterious or beneficial, respectively. Reciprocal sign epistasis is a special case of sign epistasis where both mutations change sign on the other’s
background. The gamma statistic measures the correlation of fitness effects among the different genetic backgrounds where a mutation appears. The white-
filled shape shows the expected fitness value without epistasis. For (a–c), the shape indicates the rpoB point mutation and the colour indicates which gene
has been knocked-out; the black circle indicates the wild-type genotype without any mutations on rpoB and without any knock-outs. (d ) Fitness landscapes exhi-
biting large (teal points) and small (orange points) roughness-to-slope ratios. The roughness-to-slope statistic measures how different the fitness landscape is from
an additive, linear model (a purely additive landscape has a ratio of zero). The plane shows the fit of the multidimensional linear model to the fitness landscapes for
two di-allelic loci. The vertical distance between the genotype (i.e. point) and the plane shows its residual. Epistasis is quantified as the ratio of the standard
deviation of the residuals to the mean of the slopes of the plane. Note that (d ) does not follow the colour and shape scheme of the other panels.
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supercoiling. Therefore, any epistasis that will be observed
should be an instance of ‘non-specific epistasis’ [26]. Non-
specific epistasis is attributable to factors other thanmechanistic
interactions: for example, nonlinearities in the genotype-to-
phenotype map. Figure 1a shows a schematic of the resulting
topology of the fitness landscape when combining the ABR
and knock-out mutations.

Illumina whole-genome re-sequencing was used to con-
firm the constructed mutants and identify any de novo
mutations compared to the wild-type genotype (electro-
nic supplementary material, table S3). See results in
electronic supplementary material for details.

(b) Choice of environments
Since the wild type and knock-out single mutants are sensi-
tive to rifampicin, the screened antibiotic concentrations
were selected based on the wild-type dose response (elec-
tronic supplementary material, figure S14). The screened
temperature environments were selected based on their
physiological relevance for E. coli and its human host: 37°C
is the temperature of a healthy human host, 40°C is the temp-
erature of high fever and 42°C is near the maximum
temperature that E. coli can withstand. Antibiotic-susceptible
genotypes (i.e. genotypes that carry the wild-type allele at
the rpoB locus) can be considered as ‘specialists’ of anti-
biotic-free environments because their growth deteriorates
in the presence of the antibiotic, i.e. they show strong G × E
interactions. Based on previous results, we expected that
the rpoB S512F single mutant that grows well in the presence
of antibiotic and at high temperature, separately, would
exhibit ‘generalist’ growth in all environments with little
G × E interaction.

(c) Measure of competitive fitness
The wild type, labelled by Green Fluorescent Protein (GFP),
single and double mutants were competed against the same
reference genotype, mCherry-labelled rpoB H526Y, in all
environments by starting at approximately equal ratios and
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(μg ml−1) and the y-axis shows the mean estimated competitive index with error-bars for standard errors (n = 3–4). Colours show the three temperature environ-
ments. Knock-out genotypes are shown in each column (with ‘none’ indicating the wild-type-like state of having no knock-outs) and rpoB antibiotic resistant
mutants are shown in each row (with ‘WT’ indicating the susceptible wild-type rpoB sequence); therefore, the plot on the top left shows the wild type without
any mutations and, similarly, the left column shows all rpoB single mutants while the top row shows all knock-out single mutants. Finally, the grey box indicates
the rpoB H526Y genotype used as the reference for all competitions. All experiments were performed in M9 liquid minimal media with 0.4% glucose. The minimum
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a fixed inoculum size. The competitive index (ŵ), a proxy for
fitness, was estimated after 20 h of batch culture growth as
follows:

ŵ ¼ ln
Df

comp=D
f
ref

Di
comp=D

i
ref

 !
,

whereDi represents the initial density andDf represents the final
density as measured by flow cytometry. We found nearly iden-
tical ŵ estimates when the fluorophores of the reference and
competitor genotypes were swapped (ŵGFP ¼ b � ŵmCherry þ b;
adjusted R2 = 0.95; β = 0.96, p< 10−15; electronic supplementary
material, figure S15 and table S4); including the effect of environ-
ment in the regressionwas not significant (F11,127 = 1.27, p= 0.25;
electronic supplementary material, table S5 and figure S16),
but adding the effect of genotype was significant (F11,127 =
4.00, p< 10−4; electronic supplementary material, figure S17
and table S6), although genotype explains only about 1%
more of the variation in the data (adjusted R2 = 0.96 for overall
regression) as compared to not including this effect. Therefore,
we concluded that fluorescence is a neutral marker.

The mean ŵ for all genotypes and environments is shown
in figure 2. As expected, genotypes that did not have an ABR
mutation (figure 2a) performed worse than the ABR reference
competitor (ŵ , 0) when antibiotic was present. The ΔwaaP
single mutant (figure 2 top right facet) was the most suscep-
tible to the antibiotic of all the investigated genotypes.

For all knock-out backgrounds, we compared the
competitive fitness of the ABR mutations against the rpoB
wild-type sequence in the absence of antibiotic to ascertain
whether there was a cost of resistance. We observed no
consistent cost of resistance across all backgrounds (electronic
supplementary material, figure S18) and (in contrast to pre-
vious studies [7,36]) all three ABR mutations grew similarly
to the wild type at higher temperatures.
(d) Multiple summary statistics found few gene-by-
gene interactions

Several measures exist to determine the extent of G ×G inter-
actions (also termed epistasis). ‘Classical’ pairwise epistasis
compares the observed mutational effect of the double
mutant against the additive expectation from each of the two
single mutants (figure 1b,c). We inferred pairwise epistasis by
using the fitness of the wild-type genotype as a baseline and
subtracting the fitness effects of both ABR and knock-out
single mutants from the fitness effect of the double mutant
(electronic supplementary material, figures S19 and S20 show
examples without and with pairwise epistasis, respectively).
We estimated pairwise epistasis for each of the 15 sets of
double mutations in each of the 12 environments (electronic
supplementary material, figure S21). We found significant
pairwise epistasis only for the ΔwaaP mutant. Across all ABR
backgrounds, the ΔwaaP mutant achieved a maximum value
of positive pairwise epistasis at the lowantibiotic concentration
(4 μg ml−1). In the absence of antibiotic and at higher antibiotic
concentrations (8− 10 μg ml−1), the ΔwaaPmutant exhibited no
significant pairwise epistasis on most of the ABR backgrounds
(small negative pairwise epistasis was observed with some
ABR backgrounds). This dose-dependent peak of the pairwise
epistasis arises because the ΔwaaP single mutant has a large
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deleterious fitness effect at 4 μg ml−1 and, when this knock-
out is found in combination with an ABR mutation, the
ABR mutation rescues bacterial growth (e.g. electronic
supplementary material, figure S20 second column). We
detected almost no pairwise interactions of the ΔwaaP
mutant at higher antibiotic concentrations because the relative
fitness effect of the ΔwaaP mutation becomes much smaller as
compared to the fitness effect of the ABR mutations (e.g.
electronic supplementary material, figure S20 third and
fourth columns).

Second, we inferred epistasis over the whole landscape
using the gamma statistic [49], which measures the correlation
of fitness effects among the different genetic backgrounds
where a mutation appears (figure 1b,c). Mutations that
exhibit little G ×G interaction have similar effects on different
backgrounds; consequently, their effects will be strongly
correlated across backgrounds (gamma near one). On the
other hand, a weak or negative correlation of the effects of a
mutation in different backgrounds (gamma near zero or nega-
tive, respectively) indicates that a mutation exhibits G ×G
interactions. Overall, we observed gamma epistasis values
near one, which are indicative of very little G ×G interaction.
Antibiotic concentration was positively correlated with
gamma epistasis (figure 3a; F1,10 = 52.7, p < 10−4, adjusted
R2 = 0.825) regardless of temperature. This means that the
strength of G ×G interactions decreased as antibiotic concen-
tration increased and that it was independent of temperature.
Focusing solely on the gamma epistasis of ABR mutants or
knock-outs, respectively (electronic supplementary material,
figure S22), we observed different qualitative but non-signifi-
cant trends between the mutational classes and between the
different temperatures. ABR mutations exhibited the strongest
epistasis (i.e. gamma near zero) at the intermediate antibiotic
concentration and increased with temperature. Conversely,
knock-out mutations exhibited the strongest epistasis (again,
gamma near zero) at the two highest antibiotic concentrations
and decreased with temperature. Independent of the focal
mutational class, there was less gamma epistasis at 42°C than
at 37°C.

Third, we inferred the presence of simple sign and reci-
procal sign epistasis (figure 1c). We identified simple sign
epistasis as instances where the sign of the fitness effect of
a mutation changed depending on its background in over
five per cent of bootstrap samples. Then we identified reci-
procal sign epistasis as instances where two mutations
show sign epistasis on each other’s background. Importantly,
the presence of reciprocal sign epistasis is a prerequisite for
multiple peaks in the fitness landscape [50]. In our study,
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significant reciprocal sign epistasis occurred only in anti-
biotic-free environments but across all temperatures. This
trend can be summarized as a negative correlation between
antibiotic concentration and the mean fraction of reciprocal
sign epistasis (figure 3b; F1,10 = 20.3, p < 0.005, adjusted R2 =
0.637). Reciprocal sign epistasis was observed between the
weak ABR mutation rpoB I572S and most of the knock-out
mutations (electronic supplementary material, table S7).
Apart from that, the fraction of simple sign epistasis was
significant in all environments and showed no trend across
environments (F1,10 = 2.15, p = 0.17; electronic supplementary
material, figure S23).

Next, we computed the roughness-to-slope ratio. The
roughness-to-slope ratio fits a linear model to the fitness land-
scape and then quantifies epistasis as the ratio of the standard
deviation of the residuals to the linear component of the fit
(figure 1d ). Thus, completely additive landscapes exhibit a
roughness-to-slope ratio of zero [50]. In our data, the mean
estimated roughness-to-slope ratio was negatively correla-
ted with antibiotic concentration (figure 3c; F1,178 = 206.9,
p < 10−15, adjusted R2 = 0.535). Roughness-to-slope ratios
were very small for all genotypes in the presence of the anti-
biotic; nevertheless the 95% bootstrap confidence intervals
were significantly different from zero for all values.

Finally, we inferred whether the studied fitness land-
scapes exhibited diminishing-returns epistasis. Diminishing-
returns epistasis measures whether the effect size of a ben-
eficial mutation decreases as the fitness of the genetic
background increases and is one of the most frequently
observed patterns of epistasis in fitness landscapes [2]. We
observed that the fitness effects of the knock-out mutations
were not correlated with the overall fitness of the back-
ground, regardless of the environment (figure 4a,c). By
contrast, for most environments, the ABR mutations exhib-
ited a negative correlation with the fitness of the
background that the mutation is on, indicating a pattern of
diminishing-returns epistasis (figure 4b,c). The observed
trend of diminishing returns for the knock-out and ABR
mutants did not depend on the low fitness of the ΔwaaP
mutants. Indeed, when the ΔwaaP backgrounds were
removed from the analysis, the trend became more pro-
nounced as significant diminishing-returns epistasis was
observed in all but one of the 12 environments (electronic
supplementary material, figure S25).
(e) Competitive fitness is predicted by antibiotic
concentration

We used multiple linear regression to study the quantitative
effects of antibiotic concentration and temperature environ-
ments on the competitive index, ŵ. We found that the ‘null
model’ regression with ŵ as the dependent variable and
only additive effects of genotype and environment variables
was able to explain a considerable amount of the variation
observed in the data (adjusted R2 = 0.68, F13,982 = 162.5, p <
10−15; electronic supplementary material, table S8). Most of
the residual variation was attributable to the wild-type rpoB
genotypes (electronic supplementary material, figure S26).
Contrary to resistant genotypes, the antibiotic-susceptible
genotypes interacted with the rifampicin environments by
having higher fitness in the absence of rifampicin but very
low fitness at higher rifampicin concentrations.
Next, we quantified the interaction between the rpoB anti-
biotic susceptible and resistant genotypes with the antibiotic
concentration by fitting a model with the additive effects and
the GrpoB × EAB interaction. This model fitted the data better
than the additive null model, explaining almost all of the
variation (adjusted R2 = 0.881, F9,973 = 186.0, p < 10−15; elec-
tronic supplementary material, figure S27). Polynomial
contrasts indicated that higher temperature was correlated
with increased ŵ (t = 15.0, p < 10−15; electronic supplementary
material, figures S28 and S29). The fixed effect of antibiotic
concentration alone on ŵ was not significant (electronic sup-
plementary material, figure S28). Instead, the effect of
antibiotic concentration was only significant as an interaction
term with the susceptible rpoB wild-type genotype or the
weak ABR genotype I572S.

Then, we compared the above model with a slightly more
complex model that included an additional GrpoB ×GKO inter-
action between genotypes (i.e. ‘classical’ pairwise epistasis
between rpoB and knock-out mutations),

ŵ � GrpoB þ GKO þ EAB þ ET|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additive effects

þGrpoB � EAB þ GrpoB � GKO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st order interactions

,

Although this model with G × E and G×G effects was
significantly different from the model with only G × E
effects (F15,958 = 2.60, p < 0.001; electronic supplementary
material, figure S30), none of the additional coefficients were
significant (electronic supplementary material, figure S31),
and the model predictions were very similar to those of the
model with only G × E. Indeed, the amount of variation
explained by the more complex model (adjusted R2 = 0.883)
showed only a 0.2%-point improvement in the total variation
explained as compared to the simpler model with only G × E
effects. This finding confirms our previous results of small
but statistically significant pairwise epistasis in our data.

Despite our relatively large dataset (n = 996), we did
not have sufficient data to systematically study second-order
interactions without overfitting. We fitted models with
second-order interactions for descriptive purposes (see elec-
tronic supplementary material, results 8.6.3). In brief, we
found that there may be a higher-order interaction between
epistasis and temperature that our data has insufficient
power to reveal statistically.

( f ) Environmental quality is less important for
predicting gene-by-gene interactions than
antibiotic concentration alone

To study the interactions between epistasis and environment
(G ×G×E) without the problem of overfitting, we summarized
the temperature and antibiotic environments as a single, con-
tinuous environmental quality metric that we used to regress
the different epistasis measures [51]. We compared three metrics
of environmental quality (mean growth of the reference strain,
mean growth of all competitor strains, and mean combined
growth of reference and competitor strains) and found that
the mean growth of all competitor strains in each environment
was the best metric of environmental quality (electronic
supplementary material, results 8.7.1). This metric of environ-
mental quality was able to distinguish environments from
each other (electronic supplementary material, figure S32) and
correctly distinguish specialist from generalist genotypes
(electronic supplementary material, figure S33). As expected,
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the environmental quality metric was correlated with antibiotic
concentration (adjusted R2 = 0.559) and somewhat correlated
with temperature (adjusted R2 = 0.325).
We computed the correlation of environmental quality with
all of the above measures of G ×G by fitting the environmental
quality metric as a linear predictor of pairwise epistasis



Figure 4. (Overleaf.) ABR rpoB mutations exhibit diminishing-returns epistasis in most environments whereas knock-out mutations never exhibit diminishing-returns
epistasis. In each panel, the columns show different rifampicin antibiotic concentrations (in units of μg ml−1) and the rows show different temperature environ-
ments (in °C). (a) ABR rpoB mutations exhibit diminishing-returns epistasis in eight of the 12 environments. The x-axis shows the fitness ŵ of the background
(either the wild type or one of the five knock-out mutations) and the y-axis shows the effect size of the ABR mutation on that background. (b) Knock-out mutations
do not exhibit diminishing-returns epistasis in any of the environments. The x-axis shows the fitness ŵ of the background (either the wild type or one of the three
ABR rpoB mutations) and the y-axis shows the effect size of the knock-out mutation on that background. For (a,b), the points show mean values and are coloured
corresponding to the mutation; the error bars show 95% parametric bootstrap confidence intervals for each value. The black lines show the means of the regressions
across all bootstrap samples. (c) Quantification of the mean slope effect sizes (±95% confidence intervals) of the diminishing-returns epistasis for the rpoB mutations
(ABR) and the knock-out mutations (KO). The mean slopes are shown as black trend lines in (a) and (b). Confidence intervals are determined from linear regressions
of each of the parametric bootstrap samples. The confidence intervals that overlap with zero indicate slopes that are not significantly different from zero.
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(electronic supplementary material, figures S37 and S38),
gamma epistasis (electronic supplementary material, figure
S39), the fraction of sign epistasis (electronic supplementary
material, figure S40), and the roughness-to-slope ratio (electronic
supplementary material, figure S41). Most of the regressions
were either not significant to α= 0.01 (gamma epistasis for
ABR mutations, simple sign epistasis, reciprocal sign epistasis
and pairwise epistasis excluding ΔwaaP) or explained very
little of the variation in the data (pairwise epistasis including
ΔwaaP: adjusted R2 = 0.036). For metrics that exhibited a signifi-
cant effect of environmental quality on G×G (total gamma
epistasis, electronic supplementary material, figure S39; and
roughness-to-slope ratio, figure S41), antibiotic concentration
alone regressed as a dependent variable explained more of the
variation in the G ×G metric than was explained by environ-
mental quality. Moreover, the results of the regression on
environmental quality were broadly in agreement with our
above findings that G ×G decreases as antibiotic concentration
increases and environmental quality deteriorates (i.e. positive
correlations were found between the environmental quality
metric and the G ×G summary statistics). The only exception
was the gamma epistasis for knock-out mutations (electronic
supplementary material, figure S39, middle facet), which exhib-
ited the opposite trend to other G ×G metrics (i.e. G ×G was
found to increase as environmental quality deteriorated).
3. Discussion
Whether mutational effects and epistasis vary across environ-
ments, and how this matters for evolution, has been debated
for decades (reviewed in [1,2]). Here, we created 15 small
(i.e. two mutational-step) fitness landscapes composed of
three single amino acid substitutions at a gene involved in
ABR and whole-gene knock-out mutations of five different
genes. We screened these fitness landscapes at increasing
gradients of temperature and an antibiotic.We found relatively
little epistasis for four of the five different epistasis metrics. The
benign environments exhibited the most epistasis, and adding
antibiotic decreased epistasis (figure 3). ABR mutations, but
not gene knock-outs, exhibited diminishing-returns epistasis
in most environments (figure 4). These results suggest that,
while epistatic interactions may confound predictions in the
absence of an antibiotic, the effects of ABR mutations are
predictable in the presence of an antibiotic.

(a) Biological significance of our experiment
We combined ABR mutations with gene knock-out mutations
because the presence or absence of accessory genes is the most
common standing genetic variation in natural populations ofE.
coli [52]. To our knowledge, this is the first study to
systematically investigate how G×G interactions between
SNPs and gene deletions change across different environ-
ments. We selected the gene knock-outs especially to avoid
direct, mechanistic interactions with rpoB or other genes
involved in transcription, protein synthesis or DNA supercoil-
ing. Therefore, our null expectationwas that therewould not be
any G ×G interactions and that fitness would be additive
throughout. If there was specific epistasis as a result of direct,
mechanistic interactions between the ABR mutations and
gene knock-outs, we expected to observe masking epistasis
where the effect of the complete gene deletion is dominant
over all of the ABRmutations. We did observe masking epista-
sis, but in the opposite direction than expected under specific
epistasis: the ABR mutations dominated over the knock-outs.
This demonstrates that the effects of single amino acid
substitutions at the rpoB locus are robust to non-core gene
knock-out mutations. This result is an example of non-specific
epistasis. Given its large population sizes and diverse pangen-
ome composition, the core genes of E. coli, like rpoB, may have
evolved to tolerate commonpolymorphisms like gene gain and
loss events. We hypothesize that low pairwise epistasis
between single amino acid substitutions in core genes and
knock-out mutations of non-core genes may generally
be expected for E. coli and other prokaryotes with large
pangenomes [53].

We studied ABR mutations at the rpoB locus because this
locus is clinically important and was shown to exhibit G ×G
interactions. Amino acid mutations at the rpoB locus (e.g. at
site H526 included in our study) are the main, evolutionarily
conserved mechanism of rifampicin resistance relevant for
many bacterial pathogens [54,55]. This includes the clinically
relevant Mycobacterium tuberculosis, against which rifampicin
treatment remains an important first-line antibiotic [54]. Pre-
vious studies have found that the fitness of rpoB mutants
depends on the presence of mutations in other mechanisti-
cally interacting proteins, like other subunits of the RNA
polymerase complex [56] and other protein complexes
involved in protein synthesis and DNA stability [31,57].
This type of ‘specific epistasis’ is easily explained by the
close physical and functional proximity of these proteins to
rpoB. ‘Non-specific epistasis’, however, has been observed
between genes and proteins that do not interact directly
[26]. RpoB is an excellent candidate to investigate non-specific
epistasis as it was already shown to be highly pleiotropic:
rpoB mutations impact the expression of hundreds of genes
and many cell phenotypes [36,58–60]. The demonstrated
functional effect of rpoB upon many other genes implies
that mutations at other loci could impact the fitness of ABR
rpoB mutations. Therefore, the quantification of G ×G inter-
actions at the rpoB locus is important to know how the
danger of ABR depends on the genetic background.
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Wedetected a signal of pairwise epistasis in only one of five
gene knock-outs, ΔwaaP (electronic supplementary material,
figure S21). We had expected ΔmarR to be the most likely
knock-out mutation to exhibit pairwise epistasis, given its
functional role in responding to chemical stressors and
antibiotics [42,43,61] and its previously observed epistatic
interactions with ABR mutations at genes involved in DNA
stability [62]. ΔmarR did not display significant pairwise
epistasis in any environment; only ΔwaaP did. The ΔwaaP
genotype on the susceptible rpoB wild-type background was
more sensitive to low antibiotic concentration than the
wild type and other knock-out single mutants, but this sensi-
tivity was masked in combination with any of the three ABR
mutations. Gene deletions of other lipopolysaccharide biosyn-
thesis genes were shown to exhibit negative pairwise epistasis
with ABR mutations [63]. ΔwaaP could make cells more sensi-
tive to rifampicin by increasing the permeability of the outer
membrane [64,65]. Among the four functional genes studied,
the waaP gene has the highest gene diversity (πwaaP = 0.034
versus πnuoC = 0.015, πmarR = 0.014, πyidK = 0.013) and is most
frequently found knocked out (waaP is present in 78.5% of
strains as compared to 99.5%, 99.3% and 90.8% for nuoC,
marR and yidK, respectively) in natural populations, according
to the panX database. Moreover, waaP impacts bacterial viru-
lence and, so, is relevant in host–pathogen interactions [66].
E. coli strains fromwhich waaP is absent may be more sensitive
to low doses of rifampicin and other antibiotics than waaP-car-
rying genotypes. Our observed pattern of epistasis implies that
this sensitivity is masked when the genotype carries a resist-
ance mutation. Thus, the G ×G interaction of waaP and rpoB
erases selection against ΔwaaP mutations that would occur at
low doses of rifampicin.

(b) Measurement challenges of gene-by-gene
interactions

One methodological challenge for detecting G ×G interactions
in our study was that, in the presence of antibiotics, the fitness
effects of the ABR mutants quickly overshadowed those of the
knock-outs. In this case, methods that involve a relative com-
parison of direct fitness effects to epistatic effects are bound
to infer less epistasis when there are stronger direct effects.
The negative correlation of the roughness-to-slope ratio as a
function of antibiotic concentration could be explained by
this phenomenon: we observed mostly neutral fitness effects
and moderate epistasis in the absence of the antibiotic but
large beneficial fitness effects and no epistasis in the presence
of the antibiotic. However, the negative correlation between
antibiotic concentration and epistasis was also exhibited by
other epistasis summary statistics that are independent of the
size of direct fitness effects (i.e. gamma epistasis and the
mean fraction of reciprocal sign epistasis, figure 3). Therefore,
the observed decrease of epistasis with antibiotic concentration
is likely a real biological phenomenon.

Our estimates of gamma epistasis for different gene classes
suggest that the fitness landscape as a whole was less epistatic
than when only ABR mutations or knock-out mutations were
considered. This could reflect a biological pattern (as sup-
ported by the low pairwise epistasis results) where the
epistatic interactions between amino acid mutations and gene
knock-outs are smaller than within those mutational classes,
perhaps due to evolved mutational robustness for gene
knock-outs in E. coli. Nevertheless, the different trends
observed between the gamma epistasis of the different muta-
tional classes are possibly impacted by the differences in
sample size. The gamma statistic relies on averaging over
multiplemutational effects, which leads to a dilution of the epi-
static signal for larger fitness landscapes. The total dataset has a
larger sample size than subsets of the data, and the knock-out
mutational class has a larger sample size than the ABR class.
Futurework should explore how the gamma epistasis measure
can be used more appropriately for comparing epistasis
between gene classes and differently sized fitness landscapes,
for example, by randomly subsampling the data to an equal
size for all categories.
(c) Environmental interactions and their importance
It has long been established that there is a G × E interaction
between rifampicin resistance mutations at the rpoB locus
and temperature [67], among other environmental factors
[18,68,69]. In a previous experiment, Rodríguez-Verdugo
et al. [36] observed that E. coli adapted to high temperature
evolved rifampicin resistance despite no rifampicin treat-
ment. Therefore, we hypothesized that there would be an
E × E interaction between high-temperature environments
and rifampicin environments, which, if mediated by ABR
mutations at the rpoB locus, could result in GrpoB × EAB × ET

interactions as well. Overall we observed no cost of rifampi-
cin resistance in minimal media, which is consistent
with Lin et al. [70] and could be attributed to ABR rpoB
mutations mimicking the stringent response [56]. There was
a modest positive effect of high temperatures on the competi-
tive fitness of all genotypes and a weak E × E interaction
between temperature and antibiotic. However, contrary to
previous studies that also used batch cultures with glucose
and minimal medium [7,36], the rpoB mutations S512F and
I572S did not grow better and H526Y did not grow worse
than the wild type at higher temperatures. (In fact, H526Y
was observed to grow better than the wild type at 42°C.)
The discrepancy for I572S could be attributed to G ×G × E
with the genetic background: Rodríguez-Verdugo et al. [36]
found a strong effect of E. coli genetic background on the fit-
ness at site I572. On the other hand, the discrepancies for
S512F and H526Y could be that, unlike in Trindade et al.
[7], our batch cultures were not acclimatized to the environ-
ment in which the competitions occurred. This underscores
the sensitivity of organisms to their environments and the
importance of complete reporting of experimental methods.

We used the overall environmental quality as a regressor to
quantify the interaction between epistasis and environment,
G ×G × E. We found that the antibiotic concentration alone
was a better regressor of epistasis than the environmental
quality, implying that temperature did not have an effect on
epistasis.We had expected that the overall environmental qual-
ity would be a better regressor because it is highly correlated
with antibiotic concentration while also taking into account
the effects of temperature. On the other hand, fitting of linear
models with higher-order interactions suggested that tempera-
ture exhibited a stronger interaction with GrpoB ×GKO than
antibiotic concentration. Unfortunately, we have limited confi-
dence in the linear regression results due to the low sample
size and the high order of the investigated interactions.
However, this apparent contradiction raises new questions
about G ×G× E interactions: for example, is it possible that
one environmental variable affects direct G × E interactions,
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whereas the other acts on the G ×G× E level?We are not aware
of any previous work that has extracted such systematic pat-
terns empirically, inferred their functional underpinnings, or
developed models to account for such interaction. Certainly,
the consequences of different interaction levels will be impor-
tant to study in the future to predict potential evolutionary
trajectories in varying environments.

(d) Why is there so little epistasis in the studied
antibiotic resistance fitness landscapes?

Overall, we found little G ×G and G ×G × E interaction in our
data. This result is in stark contrast to various recent exper-
imental studies, which have presented strong evidence that
both fitness effects of single mutations and their epistatic fit-
ness interactions may vary greatly between environments
([9,10,19], reviewed in [2]). One reason for this discrepancy
may be the choice of mutations for the fitness landscapes.
Previous studies focused on SNPs between or within
genes that had been found in an adaptive walk [4,5,11],
indirectly inferred strong G ×G(×E) by observing that adap-
tations were unique to the genetic background [21,30,71], or
measured epistasis as the different effect of ABR mutations
across vastly different genetic backgrounds [72,73]. We here
quantified epistatic interactions between ABR SNPs
and (non-ABR) gene knock-out mutations that occur in
natural populations of E. coli. The studied combinations of
mutations thus had no immediate relationship except the
rpoB mutations’ previously characterized G × E interaction
for fitness under higher temperature or antibiotic. However,
multiple studies in systems or molecular biology have
shown that epistasis is common (reviewed in [26]). In particu-
lar, when two or more beneficial mutations are combined,
negative epistasis in the shape of diminishing returns (i.e.
where the fitness effect of a mutation is less beneficial when
it occurs on a fitter background) has been observed ubiqui-
tously [28,29,63,74], including for rpoB mutations conferring
ABR to rifampicin [75]. In our study, we observed diminish-
ing-returns epistasis only for the rpoB ABR mutations but no
diminishing-returns epistasis for the knock-out mutations.
Moreover, we did not observe any qualitative environmental
trend in the strength of the diminishing-returns epistasis for
the ABR mutations. However, the mutations shifted from
neutral to beneficial as a function of antibiotic. Although
there have been studies that derived null expectations of epis-
tasis between random mutations of the same type [76],
between mutations characterized by their fitness effect [77],
or between SNPs in a pair of genes in a metabolic pathway
[78], we are not aware of any general models or empirical
studies that have proposed or quantified a null distribution
of epistatic effects between SNPs and different structural
mutation types (except for the assumption of no epistasis).
Therefore, it is not clear whether the low G ×G and G ×
G × E interactions observed in our data are to be expected.

Despite a lack of general epistatic null models, theoretical
and empirical works have proposed a few hypotheses on
how much epistasis to expect between mutations that confer
ABR. For example, Mira et al. [34] found ubiquitous sign epis-
tasis, in all 30 environments assayed, for a fitness landscape
with all possible combinations of four ABR mutations.
Knopp&Andersson [31] found that epistasis was rare between
combinations of ABR mutations. Our finding that �20% of
randomly selected combinations of mutations exhibit pairwise
epistasis is in good quantitative agreement with the results of
Knopp & Andersson [31]. A critical difference between
our work and most previous work on ABR epistasis is that
the knock-out mutations we investigated neither interacted
directly with rpoB (as required for specific epistasis) nor,
except ΔwaaP, displayed any significant effects on fitness (elec-
tronic supplementary material, figure S28). Epistasis expressed
by seemingly neutral mutations is termed ‘cryptic epistasis’,
and has been previously observed between mutations that
were fixed during an adaptive walk [3,5]. We have uncovered
new instances of cryptic epistasis that depend on the environ-
ment. Using a theoretical model, Engelstädter [79] related the
expected epistasis to the extent of G × E interactions of the
involved mutations: they proposed that when there is no cost
to the ABR mutations, there should be no epistasis between
them. Moreover, a study by Das et al. [13], considering
only ABR mutations with a cost of resistance predicted
using mathematical models and empirically, observed the
strongest epistasis at intermediate antibiotic concentrations.
Our experiment screened a range of intermediate antibiotic
concentrations, with 4 μg ml−1 below and 10 μg ml−1 near the
minimum inhibitory concentration (MIC) of the wild-type
rpoB (electronic supplementary material, figure S14), and
ABR mutations without a cost of resistance (although a cost
had been expected according to previous studies, see above)
in combination with non-ABR mutations. Our finding of
very little epistasis in the presence of antibiotic is thus more
consistent with the prediction of Engelstädter [79].
(e) Do fitness landscapes become smoother as the
concentration of an environmental stressor
increases?

How generalizable are our findings that fitness landscapes
become smoother in more stressful environments? To discuss
this question, we compare our findings with those of Gorter
et al. [8], who measured fitness under different cadmium con-
centrations for all combinations of knock-out mutations that
had evolved in response to those toxic environments. Con-
trary to our results, their co-selected mutations conferring
resistance to increasing cadmium exhibited increasingly
strong selective effects and positive pairwise epistatic effects
as the heavy-metal concentration increased [8]. Interestingly,
both our results and those of Gorter et al. [8] contradict theor-
etical predictions. According to Fisher’s geometric model
[80], the average pairwise epistasis should be unchanged
with environmental stress for random mutations, like the
combinations of mutations used in our study, whereas it
should decrease for co-selected mutations, like those studied
in Gorter et al. [8]. Also, our results and those of Gorter et al.
[8] differ from the predicted and empirical results of Das et al.
[13] that epistasis should be strongest at an intermediate con-
centration of an antibiotic stressor. However, the model of
Das et al. [13] was specific to increasing antibiotic (and not
cadmium) stress and assumed a cost of resistance which
was not observed in our study or in Gorter et al. [8]. These
conflicting results and predictions call for the study of
additional empirical fitness landscapes under increasing con-
centrations of an environmental stressor, and new theoretical
fitness landscape models that incorporate mechanistic details
of biological phenomena.
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Our main conclusion is that epistasis decreases with
increasing antibiotic concentration. Only in the absence of the
antibiotic, we observed several instances of reciprocal sign
epistasis for all three ABR mutations and at all temperature
environments (figure 3b; electronic supplementary material,
table S7). The presence of reciprocal sign epistasis implies
that the fitness landscape has multiple peaks and that evol-
ution may be less predictable in the absence of antibiotic.
Overall, our results are consistent with the conclusion that
the underlying fitness landscapes of ABR mutations and
gene knock-outs are more rugged in the absence of antibiotic
than in the presence of higher concentrations of antibiotic.
Extrapolated to the larger sequence space, our results would
imply that evolution is more predictable in the presence than
in the absence of antibiotic, because ABR mutations have
such strong beneficial effects in the presence of high antibiotic
concentrations. Here, the strong effect of the ABR mutations
potentially overrides any effects of the genetic background.

Data accessibility. All flow cytometry data, competitive fitness estimates
and the annotated code used to generate the analyses are publicly
available at the following Git repository: https://gitlab.com/evol
dynamics/epistasis-decreases-with-increasing-antibiotic-pressure and
is archived on Zenodo with the following doi:10.5281/zenodo.
7661199. The whole-genome sequencing is archived on NCBI with
the BioProject accession: PRJNA910115. The data are provided in
electronic supplementary material [81].
Authors’ contributions. A.-H.G.: conceptualization, funding acquisition,
investigation, methodology, validation, visualization, writing—orig-
inal draft, writing—review and editing; A.A.: methodology,
visualization, writing—review and editing; I.G.: conceptualization,
funding acquisition, investigation, methodology, resources, supervi-
sion, writing—review and editing; C.B.: conceptualization, funding
acquisition, investigation, methodology, supervision, writing—orig-
inal draft, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.

Funding. A.-H.G. acknowledges funding from FCT PhD funding grant
no. PD/BD/138215/2018. C.B. acknowledges funding from ERC
Starting grant no. 804569 (FIT2GO), HFSP Young Investigator grant
no. RGY0081/2020 and SNSF Project grant no. 315230_204838/1
(MiCo4Sys). I.G. and C.B. acknowledge funding from FCT PREPARE
project (JPIAMR/0001/2016-ERA-NET).

Acknowledgements. We thank the Flow Cytometry Facility of Instituto
Gulbenkian de Ciência and the Next Generation Sequencing (NGS)
Platform of UBern for their services and assistance. We are grateful
to the members of the Evolutionary Biology group for E. coli strains
(R. Balbontín and P. Durão), training in microbiology (D. Guleresi)
and consultation on methods, and to the members of the Evolution-
ary Dynamics/Theoretical Ecology and Evolution group for help
with preliminary environmental screenings (C. Diwo), genetic engin-
eering (M. Schmitz), consultation on WGS (A. Kapopoulou) and
discussions. We thank T. Batallion, S. Yeaman, F. Blanquart and
A. Wagner for feedback on results; and the PREPARE consortium
for ideas and help with experimental design.
References
1. Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ.
1995 Multiple fitness peaks and epistasis. Annu.
Rev. Ecol. Syst. 26, 601–629. (doi:10.1146/annurev.
es.26.110195.003125)

2. Bank C. 2022 Epistasis and adaptation on fitness
landscapes. Annu. Rev. Ecol. Evol. Syst. 53,
457–479. (doi:10.1146/annurev-ecolsys-102320-
112153)

3. Lunzer M, Golding GB, Dean AM. 2010 Pervasive
cryptic epistasis in molecular evolution. PLOS
Genet. 6, e1001162. (doi:10.1371/journal.pgen.
1001162)

4. Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton
JW. 2018 Pervasive contingency and entrenchment
in a billion years of Hsp90 evolution. Proc. Natl
Acad. Sci. USA 115, 4453–4458. (doi:10.1073/pnas.
1718133115)

5. Park Y, Metzger BPH, Thornton JW. 2022 Epistatic
drift causes gradual decay of predictability in
protein evolution. Science 376, 823–830. (doi:10.
1126/science.abn6895)

6. Tenaillon O, Rodríguez-Verdugo A, Gaut RL,
McDonald P, Bennett AF, Long AD, Gaut BS. 2012
The molecular diversity of adaptive convergence.
Science 335, 457–461. (doi:10.1126/science.
1212986)

7. Trindade S, Sousa A, Gordo I. 2012 Antibiotic
resistance and stress in the light of Fisher’s model.
Evolution 66, 3815–3824. (doi:10.1111/j.1558-5646.
2012.01722.x)

8. Gorter FA, Aarts MGM, Zwaan BJ, de Visser JAGM.
2018 Local fitness landscapes predict yeast
evolutionary dynamics in directionally changing
environments. Genetics 208, 307–322. (doi:10.
1534/genetics.117.300519)

9. Flynn JM, Rossouw A, Cote-Hammarlof P, Fragata I,
Mavor D, Hollins III C, Bank C, Bolon DNA. 2020
Comprehensive fitness maps of Hsp90 show
widespread environmental dependence. eLife 9,
e53810. (doi:10.7554/eLife.53810)

10. Flynn KM, Cooper TF, Moore FBG, Cooper VS. 2013
The environment affects epistatic interactions to
alter the topology of an empirical fitness landscape.
PLoS Genet. 9, e1003426. (doi:10.1371/journal.
pgen.1003426)

11. Hall AE, Karkare K, Cooper VS, Bank C, Cooper TF,
Moore FBG. 2019 Environment changes epistasis to
alter trade-offs along alternative evolutionary paths.
Evolution 73, 2094–2105. (doi:10.1111/evo.13825)

12. Ono J, Gerstein AC, Otto SP. 2017 Widespread
genetic incompatibilities between first-step
mutations during parallel adaptation of
Saccharomyces cerevisiae to a common environment.
PLoS Biol. 15, e1002591. (doi:10.1371/journal.pbio.
1002591)

13. Das SG, Direito SOL, Waclaw B, Allen RJ, Krug J.
2020 Predictable properties of fitness landscapes
induced by adaptational tradeoffs. eLife 9, e55155.
(doi:10.7554/eLife.55155)

14. Lässig M, Mustonen V, Walczak AM. 2017 Predicting
evolution. Nat. Ecol. Evol. 1, 0077. (doi:10.1038/
s41559-017-0077)

15. de Visser JAGM, Krug J. 2014 Empirical
fitness landscapes and the predictability of
evolution. Nat. Rev. Genet. 15, 480–490. (doi:10.
1038/nrg3744)
16. Melnyk AH, Wong A, Kassen R. 2015 The fitness
costs of antibiotic resistance mutations. Evol. Appl.
8, 273–283. (doi:10.1111/eva.12196)

17. Lenormand T, Harmand N. 2018 Cost of resistance:
an unreasonably expensive concept. Rethinking Ecol.
3, 51–70. (doi:10.3897/rethinkingecology.3.31992)

18. Knöppel A, Näsvall J, Andersson DI. 2017 Evolution
of antibiotic resistance without antibiotic exposure.
Antimicrob. Agents Chemother. 61, e01495-17.
(doi:10.1128/AAC.01495-17)

19. Guerrero RF, Scarpino SV, Rodrigues JV, Hartl DL,
Ogbunugafor CB. 2019 Proteostasis environment
shapes higher-order epistasis operating on antibiotic
resistance. Genetics 212, 565–575. (doi:10.1534/
genetics.119.302138)

20. Pinheiro F, Warsi O, Andersson DI, Lässig M. 2021
Metabolic fitness landscapes predict the evolution
of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687.
(doi:10.1038/s41559-021-01397-0)

21. Hernando-Amado S, Laborda P, Valverde JR,
Martínez JL. 2022 Mutational background influences
P. aeruginosa ciprofloxacin resistance evolution but
preserves collateral sensitivity robustness. Proc. Natl
Acad. Sci. USA 119, e2109370119. (doi:10.1073/
pnas.2109370119)

22. Aminov RI. 2010 A brief history of the antibiotic
era: lessons learned and challenges for the
future. Front. Microbiol. 1, 134. (doi:10.3389/fmicb.
2010.00134)

23. Murray CJL et al. 2022 Global burden of bacterial
antimicrobial resistance in 2019: a systematic
analysis. Lancet 399, 629–655. (doi:10.1016/S0140-
6736(21)02724-0)

https://gitlab.com/evoldynamics/epistasis-decreases-with-increasing-antibiotic-pressure
https://gitlab.com/evoldynamics/epistasis-decreases-with-increasing-antibiotic-pressure
http://dx.doi.org/10.5281/zenodo.7661199
http://dx.doi.org/10.5281/zenodo.7661199
http://dx.doi.org/10.1146/annurev.es.26.110195.003125
http://dx.doi.org/10.1146/annurev.es.26.110195.003125
https://doi.org/10.1146/annurev-ecolsys-102320-112153
https://doi.org/10.1146/annurev-ecolsys-102320-112153
http://dx.doi.org/10.1371/journal.pgen.1001162
http://dx.doi.org/10.1371/journal.pgen.1001162
http://dx.doi.org/10.1073/pnas.1718133115
http://dx.doi.org/10.1073/pnas.1718133115
http://dx.doi.org/10.1126/science.abn6895
http://dx.doi.org/10.1126/science.abn6895
http://dx.doi.org/10.1126/science.1212986
http://dx.doi.org/10.1126/science.1212986
http://dx.doi.org/10.1111/j.1558-5646.2012.01722.x
http://dx.doi.org/10.1111/j.1558-5646.2012.01722.x
http://dx.doi.org/10.1534/genetics.117.300519
http://dx.doi.org/10.1534/genetics.117.300519
http://dx.doi.org/10.7554/eLife.53810
https://doi.org/10.1371/journal.pgen.1003426
https://doi.org/10.1371/journal.pgen.1003426
http://dx.doi.org/10.1111/evo.13825
https://doi.org/10.1371/journal.pbio.1002591
https://doi.org/10.1371/journal.pbio.1002591
http://dx.doi.org/10.7554/eLife.55155
http://dx.doi.org/10.1038/s41559-017-0077
http://dx.doi.org/10.1038/s41559-017-0077
http://dx.doi.org/10.1038/nrg3744
http://dx.doi.org/10.1038/nrg3744
http://dx.doi.org/10.1111/eva.12196
http://dx.doi.org/10.3897/rethinkingecology.3.31992
http://dx.doi.org/10.1128/AAC.01495-17
http://dx.doi.org/10.1534/genetics.119.302138
http://dx.doi.org/10.1534/genetics.119.302138
http://dx.doi.org/10.1038/s41559-021-01397-0
http://dx.doi.org/10.1073/pnas.2109370119
http://dx.doi.org/10.1073/pnas.2109370119
http://dx.doi.org/10.3389/fmicb.2010.00134
http://dx.doi.org/10.3389/fmicb.2010.00134
http://dx.doi.org/10.1016/S0140-6736(21)02724-0
http://dx.doi.org/10.1016/S0140-6736(21)02724-0


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220058

12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 F

eb
ru

ar
y 

20
24

 

24. Lukačišinová M, Bollenbach T. 2017 Toward a
quantitative understanding of antibiotic resistance
evolution. Curr. Opin. Biotechnol. 46, 90–97.
(doi:10.1016/j.copbio.2017.02.013)

25. McEwen SA, Collignon PJ. 2018 Antimicrobial
resistance: a one health perspective. Microbiol.
Spectr. 6, 10. (doi:10.1128/microbiolspec.ARBA-
0009-2017)

26. Domingo J, Baeza-Centurion P, Lehner B. 2019 The
causes and consequences of genetic interactions
(epistasis). Annu. Rev. Genom. Hum. Genet. 20,
17.1–17.28. (doi:10.1146/annurev-genom-083118-
014857)

27. Li C, Zhang J. 2018 Multi-environment fitness
landscapes of a tRNA gene. Nat. Ecol. Evol. 2,
1025–1032. (doi:10.1038/s41559-018-0549-8)

28. Reddy G, Desai MM. 2021 Global epistasis emerges
from a generic model of a complex trait. eLife 10,
e64740. (doi:10.7554/eLife.64740)

29. Perfeito L, Sousa A, Bataillon T, Gordo I. 2014 Rates
of fitness decline and rebound suggest pervasive
epistasis. Evolution 68, 150–162. (doi:10.1111/evo.
12234)

30. Nyerges Á et al. 2018 Directed evolution of
multiple genomic loci allows the prediction
of antibiotic resistance. Proc. Natl Acad. Sci.
USA 115, E5726–E5735. (doi:10.1073/pnas.
1801646115)

31. Knopp M, Andersson DI. 2018 Predictable
phenotypes of antibiotic resistance mutations. mBio
9, e00770-18. (doi:10.1128/mBio.00770-18)

32. Mira PM, Østman B, Guzman-Cole C, Sindi S, Barlow
M. 2021 Adaptive processes change as multiple
functions evolve. Antimicrob. Agents Chemother. 65,
e01990-20. (doi:10.1128/AAC.01990-20)

33. Fragata I, Blanckaert A, Louro MAD, Liberles DA,
Bank C. 2019 Evolution in the light of fitness
landscape theory. Trends Ecol. Evol. 34, 69–82.
(doi:10.1016/j.tree.2018.10.009)

34. Mira PM, Meza JC, Nandipati A, Barlow M. 2015
Adaptive landscapes of resistance genes change as
antibiotic concentrations change. Mol. Biol. Evol. 32,
2707–2715. (doi:10.1093/molbev/msv146)

35. Durão P, Trindade S, Sousa A, Gordo I. 2015
Multiple resistance at no cost: rifampicin and
streptomycin a dangerous liaison in the spread of
antibiotic resistance. Mol. Biol. Evol. 32, 2675–2680.
(doi:10.1093/molbev/msv143)

36. Rodríguez-Verdugo A, Gaut BS, Tenaillon O. 2013
Evolution of Escherichia coli rifampicin resistance in
an antibiotic-free environment during thermal
stress. BMC Evol. Biol. 13, 50. (doi:10.1186/1471-
2148-13-50)

37. Nichols RJ et al. 2011 Phenotypic landscape of a
bacterial cell. Cell 144, 143–156. (doi:10.1016/j.cell.
2010.11.052)

38. Kritikos G, Banzhaf M, Herrera-Dominguez L,
Koumoutsi A, Wartel M, Zietek M, Typas A. 2017 A
tool named Iris for versatile high-throughput
phenotyping in microorganisms. Nat. Microbiol. 2,
17014. (doi:10.1038/nmicrobiol.2017.14)

39. Baba T et al. 2006 Construction of Escherichia coli K-
12 in-frame, single-gene knockout mutants: the
Keio collection. Mol. Syst. Biol. 2, 20060.008.
(doi:10.1038/msb4100050)

40. Ding W, Baumdicker F, Neher RA. 2018 panX: pan-
genome analysis and exploration. Nucleic Acids Res.
46, e5. (doi:10.1093/nar/gkx977)

41. Krisko A, Copic T, Gabaldón T, Lehner B,
Supek F. 2014 Inferring gene function from
evolutionary change in signatures of translation
efficiency. Genome Biol. 15, R44. (doi:10.1186/gb-
2014-15-3-r44)

42. Praski Alzrigat L, Huseby DL, Brandis G, Hughes D.
2021 Resistance/fitness trade-off is a barrier to the
evolution of MarR inactivation mutants in
Escherichia coli. J. Antimicrob. Chemother. 76,
77–83. (doi:10.1093/jac/dkaa417)

43. Reyes-Fernández EZ, Schuldiner S. 2020 Acidification
of cytoplasm in Escherichia coli provides a strategy
to cope with stress and facilitates development of
antibiotic resistance. Sci. Rep. 10, 9954. (doi:10.
1038/s41598-020-66890-1)

44. Friedrich T. 1998 The NADH:ubiquinone
oxidoreductase (complex I) from Escherichia coli.
Biochim. Biophys. Acta 1364, 134–146. (doi:10.
1016/S0005-2728(98)00024-3)

45. Daley DO, Rapp M, Granseth E, Melén K, Drew D,
von Heijne G. 2005 Global topology analysis
of the Escherichia coli inner membrane
proteome. Science 308, 1321–1323. (doi:10.1126/
science.1109730)

46. Yethon JA, Whitfield C. 2001 Purification and
characterization of WaaP from Escherichia coli, a
lipopolysaccharide kinase essential for outer
membrane stability. J. Biol. Chem. 276,
P5498–5504. (doi:10.1074/jbc.M008255200)

47. Moura de Sousa J, Balbontín R, Durão P, Gordo I.
2017 Multidrug-resistant bacteria compensate for
the epistasis between resistances. PLoS Biol. 15,
e2001741. (doi:10.1371/journal.pbio.2001741)

48. Trindade S, Sousa A, Xavier KB, Dionisio F, Godinho
Ferreira M, Gordo I. 2009 Positive epistasis drives
the acquisition of multidrug resistance. PLoS Genet.
5, e1000578. (doi:10.1371/journal.pgen.1000578)

49. Ferretti L, Schmiegelt B, Weinreich D, Yamauchi A,
Kobayashi Y, Tajima F, Achaz G. 2016 Measuring
epistasis in fitness landscapes: the correlation of
fitness effects of mutations. J. Theor. Biol. 396,
132–143. (doi:10.1016/j.jtbi.2016.01.037)

50. Szendro IG, Schenk MF, Franke J, Krug J, de
Visser JAGM. 2013 Quantitative analyses of
empirical fitness landscapes. J. Stat. Mech. Theory
Exp. 2013, P01005. (doi:10.1088/1742-5468/2013/
01/P01005)

51. Malosetti M, Ribaut JM, van Eeuwijk FA. 2013 The
statistical analysis of multi-environment data:
modeling genotype-by-environment interaction and
its genetic basis. Front. Physiol. 4, 44. (doi:10.3389/
fphys.2013.00044)

52. Touchon M et al. 2009 Organised genome dynamics
in the Escherichia coli species results in highly
diverse adaptive paths. PLoS Genet. 5, e1000344.
(doi:10.1371/journal.pgen.1000344)

53. Brockhurst MA, Harrison E, Hall JPJ, Richards T,
McNally A, MacLean C. 2019 The ecology and
evolution of pangenomes. Curr. Biol. 29,
R1094–R1103. (doi:10.1016/j.cub.2019.08.012)

54. Goldstein BP. 2014 Resistance to rifampicin: a
review. J. Antibiot. 67, 625–630. (doi:10.1038/ja.
2014.107)

55. Cutugno L, Mc Cafferty J, Pané-Farré J, O’Byrne C,
Boyd A. 2020 rpoB mutations conferring rifampicin-
resistance affect growth, stress response and
motility in Vibrio vulnificus. Microbiology 166,
1160–1170. (doi:10.1099/mic.0.000991)

56. Koch A, Mizrahi V, Warner DF. 2014 The impact of
drug resistance on Mycobacterium tuberculosis
physiology: what can we learn from rifampicin?.
Emerg. Microbes Infect. 3, e17. (doi:10.1038/emi.
2014.17)

57. Balbontín R, Frazão N, Gordo I. 2021 DNA breaks-
mediated fitness cost reveals RNase HI as a new
target for selectively eliminating antibiotic-resistant
bacteria. Mol. Biol. Evol. 38, 3220–3234. (doi:10.
1093/molbev/msab093)

58. Hug SM, Gaut BS. 2015 The phenotypic signature
of adaptation to thermal stress in Escherichia coli.
BMC Evol. Biol. 15, 177. (doi:10.1186/s12862-015-
0457-3)

59. Pietsch F, Bergman JM, Brandis G, Marcusson LL,
Zorzet A, Huseby DL, Hughes D. 2016 Ciprofloxacin
selects for RNA polymerase mutations with
pleiotropic antibiotic resistance effects.
J. Antimicrob. Chemother. 72, 75–84. (doi:10.1093/
jac/dkw364)

60. Rodríguez-Verdugo A, Tenaillon O, Gaut BS. 2016
First-step mutations during adaptation restore the
expression of hundreds of genes. Mol. Biol. Evol. 33,
25–39. (doi:10.1093/molbev/msv228)

61. Deochand DK, Grove A. 2017 MarR family
transcription factors: dynamic variations on a
common scaffold. Crit. Rev. Biochem. Mol. Biol. 52,
595–613. (doi:10.1080/10409238.2017.1344612)

62. Marcusson LL, Frimodt-Møller N, Hughes D. 2009
Interplay in the selection of fluoroquinolone
resistance and bacterial fitness. PLoS Pathog. 5,
e1000541. (doi:10.1371/journal.ppat.1000541)

63. Lukačišinová M, Fernando B, Bollenbach T. 2020
Highly parallel lab evolution reveals that epistasis
can curb the evolution of antibiotic resistance. Nat.
Commun. 11, 3105. (doi:10.1038/s41467-020-
16932-z)

64. Wang Z, Wang J, Ren G, Li Y, Wang X. 2015
Influence of core oligosaccharide of
lipopolysaccharide to outer membrane behavior of
Escherichia coli. Mar. Drugs 13, 3325–3339. (doi:10.
3390/md13063325)

65. Xu G, Liu H, Jia X, Wang X, Xu P. 2021 Mechanisms
and detection methods of Mycobacterium
tuberculosis rifampicin resistance: the phenomenon
of drug resistance is complex. Tuberculosis 128,
102083. (doi:10.1016/j.tube.2021.102083)

66. Yethon JA, Gunn JS, Ernst RK, Miller SI, Laroche L,
Malo D, Whitfield C. 2000 Salmonella enterica
serovar typhimurium waaP mutants show increased
susceptibility to polymyxin and loss of virulence in
vivo. Infect. Immun. 68, 4485–4491. (doi:10.1128/
IAI.68.8.4485-4491.2000)

http://dx.doi.org/10.1016/j.copbio.2017.02.013
http://dx.doi.org/10.1128/microbiolspec.ARBA-0009-2017
http://dx.doi.org/10.1128/microbiolspec.ARBA-0009-2017
http://dx.doi.org/10.1146/annurev-genom-083118-014857
http://dx.doi.org/10.1146/annurev-genom-083118-014857
http://dx.doi.org/10.1038/s41559-018-0549-8
http://dx.doi.org/10.7554/eLife.64740
http://dx.doi.org/10.1111/evo.12234
http://dx.doi.org/10.1111/evo.12234
http://dx.doi.org/10.1073/pnas.1801646115
http://dx.doi.org/10.1073/pnas.1801646115
http://dx.doi.org/10.1128/mBio.00770-18
http://dx.doi.org/10.1128/AAC.01990-20
http://dx.doi.org/10.1016/j.tree.2018.10.009
http://dx.doi.org/10.1093/molbev/msv146
https://doi.org/10.1093/molbev/msv143
http://dx.doi.org/10.1186/1471-2148-13-50
http://dx.doi.org/10.1186/1471-2148-13-50
http://dx.doi.org/10.1016/j.cell.2010.11.052
http://dx.doi.org/10.1016/j.cell.2010.11.052
http://dx.doi.org/10.1038/nmicrobiol.2017.14
http://dx.doi.org/10.1038/msb4100050
http://dx.doi.org/10.1093/nar/gkx977
http://dx.doi.org/10.1186/gb-2014-15-3-r44
http://dx.doi.org/10.1186/gb-2014-15-3-r44
http://dx.doi.org/10.1093/jac/dkaa417
http://dx.doi.org/10.1038/s41598-020-66890-1
http://dx.doi.org/10.1038/s41598-020-66890-1
http://dx.doi.org/10.1016/S0005-2728(98)00024-3
http://dx.doi.org/10.1016/S0005-2728(98)00024-3
http://dx.doi.org/10.1126/science.1109730
http://dx.doi.org/10.1126/science.1109730
http://dx.doi.org/10.1074/jbc.M008255200
https://doi.org/10.1371/journal.pbio.2001741
https://doi.org/10.1371/journal.pgen.1000578
http://dx.doi.org/10.1016/j.jtbi.2016.01.037
http://dx.doi.org/10.1088/1742-5468/2013/01/P01005
http://dx.doi.org/10.1088/1742-5468/2013/01/P01005
http://dx.doi.org/10.3389/fphys.2013.00044
http://dx.doi.org/10.3389/fphys.2013.00044
https://doi.org/10.1371/journal.pgen.1000344
http://dx.doi.org/10.1016/j.cub.2019.08.012
http://dx.doi.org/10.1038/ja.2014.107
http://dx.doi.org/10.1038/ja.2014.107
http://dx.doi.org/10.1099/mic.0.000991
http://dx.doi.org/10.1038/emi.2014.17
http://dx.doi.org/10.1038/emi.2014.17
http://dx.doi.org/10.1093/molbev/msab093
http://dx.doi.org/10.1093/molbev/msab093
http://dx.doi.org/10.1186/s12862-015-0457-3
http://dx.doi.org/10.1186/s12862-015-0457-3
http://dx.doi.org/10.1093/jac/dkw364
http://dx.doi.org/10.1093/jac/dkw364
http://dx.doi.org/10.1093/molbev/msv228
http://dx.doi.org/10.1080/10409238.2017.1344612
https://doi.org/10.1371/journal.ppat.1000541
http://dx.doi.org/10.1038/s41467-020-16932-z
http://dx.doi.org/10.1038/s41467-020-16932-z
http://dx.doi.org/10.3390/md13063325
http://dx.doi.org/10.3390/md13063325
https://doi.org/10.1016/j.tube.2021.102083
http://dx.doi.org/10.1128/IAI.68.8.4485-4491.2000
http://dx.doi.org/10.1128/IAI.68.8.4485-4491.2000


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220058

13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 F

eb
ru

ar
y 

20
24

 

67. Jin DJ, Gross CA. 1989 Characterization of the
pleiotropic phenotypes of rifampin-resistant rpoB
mutants of Escherichia coli. J. Bacteriol. 171,
5229–5231. (doi:10.1128/jb.171.9.5229-5231.1989)

68. Hall AR. 2013 Genotype-by-environment
interactions due to antibiotic resistance and
adaptation in Escherichia coli. J. Evol. Biol. 26,
1655–1664. (doi:10.1111/jeb.12172)

69. Zorraquino V, Kim M, Rai N, Tagkopoulos I. 2017
The genetic and transcriptional basis of short and
long term adaptation across multiple stresses in
Escherichia coli. Mol. Biol. Evol. 34, 707–717.
(doi:10.1093/molbev/msw269)

70. Lin W, Zeng J, Wan K, Lv L, Guo L, Li X, Yu X. 2018
Reduction of the fitness cost of antibiotic resistance
caused by chromosomal mutations under poor
nutrient conditions. Environ. Int. 120, 63–71.
(doi:10.1016/j.envint.2018.07.035)

71. Hoeksema M, Jonker MJ, Brul S, Ter Kuile BH.
2019 Effects of a previously selected antibiotic
resistance on mutations acquired during
development of a second resistance in Escherichia
coli. BMC Genom. 20, 284. (doi:10.1186/s12864-
019-5648-7)
72. Vogwill T, Kojadinovic M, MacLean RC. 2016
Epistasis between antibiotic resistance mutations
and genetic background shape the fitness effect of
resistance across species of Pseudomonas.
Proc. R. Soc. B 283, 20160151. (doi:10.1098/rspb.
2016.0151)

73. Apjok G, Boross G, Lázár V, Papp B, Pál C, Csörgö B.
2019 Limited evolutionary conservation of the
phenotypic effects of antibiotic resistance
mutations. Mol. Biol. Evol. 36, 1601–1611. (doi:10.
1093/molbev/msz109)

74. Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper
TF. 2011 Negative epistasis between beneficial
mutations in an evolving bacterial population.
Science 332, 1193–1196. (doi:10.1126/science.
1203801)

75. MacLean RC, Perron GG, Gardner A. 2010
Diminishing returns from beneficial mutations and
pervasive epistasis shape the fitness landscape for
rifampicin resistance in Pseudomonas aeruginosa.
Genetics 186, 1345–1354. (doi:10.1534/genetics.
110.123083)

76. Martin G, Elena SF, Lenormand T. 2007 Distributions
of epistasis in microbes fit predictions from a fitness
landscape model. Nat. Genet. 39, 555–560. (doi:10.
1038/ng1998)

77. Martin G, Lenormand T. 2015 The fitness effect of
mutations across environments: Fisher’s geometrical
model with multiple optima. Evolution 69,
1433–1447. (doi:10.1111/evo.12671)

78. Kemble H, Eisenhauer C, Couce A, Chapron A,
Magnan M, Gautier G, Le Nagard H, Nghe P,
Tenaillon O. 2020 Flux, toxicity, and expression costs
generate complex genetic interactions in a
metabolic pathway. Sci. Adv. 6, eabb2236. (doi:10.
1126/sciadv.abb2236)

79. Engelstädter J. 2014 Fitness landscapes emerging
from pharmacodynamic functions in the
evolution of multidrug resistance. J. Evol. Biol.
27, 840–853. (doi:10.1111/jeb.12355)

80. Blanquart F, Achaz G, Bataillon T, Tenaillon O.
2014 Properties of selected mutations and genotypic
landscapes under Fisher’s geometric model. Evolution
68, 3537–3554. (doi:10.1111/evo.12545)

81. Ghenu AH, Amado A, Gordo I, Bank C. 2023
Epistasis decreases with increasing antibiotic
pressure but not temperature. Figshare. (doi:10.
6084/m9.figshare.c.6440214)

http://dx.doi.org/10.1128/jb.171.9.5229-5231.1989
http://dx.doi.org/10.1111/jeb.12172
http://dx.doi.org/10.1093/molbev/msw269
http://dx.doi.org/10.1016/j.envint.2018.07.035
http://dx.doi.org/10.1186/s12864-019-5648-7
http://dx.doi.org/10.1186/s12864-019-5648-7
http://dx.doi.org/10.1098/rspb.2016.0151
http://dx.doi.org/10.1098/rspb.2016.0151
http://dx.doi.org/10.1093/molbev/msz109
http://dx.doi.org/10.1093/molbev/msz109
http://dx.doi.org/10.1126/science.1203801
http://dx.doi.org/10.1126/science.1203801
http://dx.doi.org/10.1534/genetics.110.123083
http://dx.doi.org/10.1534/genetics.110.123083
http://dx.doi.org/10.1038/ng1998
http://dx.doi.org/10.1038/ng1998
http://dx.doi.org/10.1111/evo.12671
http://dx.doi.org/10.1126/sciadv.abb2236
http://dx.doi.org/10.1126/sciadv.abb2236
http://dx.doi.org/10.1111/jeb.12355
http://dx.doi.org/10.1111/evo.12545
http://dx.doi.org/10.6084/m9.figshare.c.6440214
http://dx.doi.org/10.6084/m9.figshare.c.6440214

	Epistasis decreases with increasing antibiotic pressure but not temperature
	Introduction
	Results
	Choice of genotypes
	Choice of environments
	Measure of competitive fitness
	Multiple summary statistics found few gene-by-gene interactions
	Competitive fitness is predicted by antibiotic concentration
	Environmental quality is less important for predicting gene-by-gene interactions than antibiotic concentration alone

	Discussion
	Biological significance of our experiment
	Measurement challenges of gene-by-gene interactions
	Environmental interactions and their importance
	Why is there so little epistasis in the studied antibiotic resistance fitness landscapes?
	Do fitness landscapes become smoother as the concentration of an environmental stressor increases?
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding

	Acknowledgements
	References


