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Challenges and pitfalls of
inferring microbial growth
rates from lab cultures
Ana-Hermina Ghenu1,2,3*†, Loïc Marrec2,3*† and Claudia Bank1,2,3

1Instituto Gulbenkian de Ciência, Oeiras, Portugal, 2Institut für Ökologie und Evolution, Universität
Bern, Bern, Switzerland, 3Swiss Institute of Bioinformatics, Lausanne, Switzerland
Introduction: After more than 100 years of generating monoculture batch

culture growth curves, microbial ecologists and evolutionary biologists still lack

a reference method for inferring growth rates. Our work highlights the

challenges of estimating the growth rate from growth curve data. It shows that

inaccurate estimates of growth rates significantly impact the estimated relative

fitness, a principal quantity in evolution and ecology.

Methods and results: First, we conducted a literature review and found which

methods are currently used to estimate growth rates. These methods differ in the

meaning of the estimated growth rate parameter. Mechanistic models estimate

the intrinsic growth rate µ, whereas phenomenological methods – both model-

based and model-free – estimate the maximum per capita growth rate µmax.

Using math and simulations, we show the conditions in which µmax is not a good

estimator of µ. Then, we demonstrate that inaccurate absolute estimates of µ are

not overcome by calculating relative values. Importantly, we find that poor

approximations for µ sometimes lead to wrongly classifying a beneficial mutant

as deleterious. Finally, we re-analyzed four published data sets, using most of the

methods found in our literature review. We detected no single best-fitting model

across all experiments within a data set and found that the Gompertz models,

which were among the most commonly used, were often among the

worst-fitting.

Discussion: Our study suggests how experimenters can improve their growth

rate and associated relative fitness estimates and highlights a neglected but

fundamental problem for nearly everyone who studies microbial populations in

the lab.
KEYWORDS

growth curve, statistical inference, lab culture, mathematical model, fitness, microbial

population, optical density, batch culture
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1 Introduction

Measuring batch culture growth curves is a standard method

used by nearly all who work with single-celled organisms in the

laboratory. Growth curves allow experimenters to readily measure

population phenotypes, like the dynamics and efficiency of growth

in particular environments, for microscopic organisms whose

individual cell phenotypes are often laborious or expensive to

quantify. The growth rate is an essential trait for evolutionary

microbiologists and microbial ecologists. The growth rate is

crucial because it is related to fitness in population biology. It is

used to estimate the number of generations a microbial culture has

been growing for (e.g., Wein and Dagan, 2019), it is more

responsive to selection than other traits in microbial evolution

experiments (Wahl and Zhu, 2015), and it is central in describing

competition for limited resources (Miller et al., 2005; Bernhardt

et al., 2020). Overall, growth curves are commonly used because

they are easy to obtain, have been used for a long time, and usually

give consistent results within an experiment. The importance of

growth curves is increasing in the age of high-throughput

experimental screens of microbial populations, from which

conclusions are drawn about responses to ecological challenges,

antimicrobial drugs, and optimal strains for biotechnology

applications. Nevertheless, despite the popularity of gathering

growth curve data and the proliferation of software for extracting

growth parameters (e.g., Delaney et al., 2013; Hall et al., 2014; Jung

et al., 2015; Sprouffske and Wagner, 2016; Krishnamurthi et al.,

2021; Midani et al., 2021), it is not clear what is the best method for

estimating values of interest from this data.

The idea behind the batch culture growth curve is simple:

inoculate a sterile culture medium with a small number of

individuals N0 and track the increase in population size over time

using any available method to estimate population size (e.g., colony

forming units, optical density, microscopy cells counts, flow

cytometry). Figure 1 shows an idealized growth curve, in which

each panel shows the same simulated data but with a different y-axis.

When an experimenter assesses a growth curve, they may first

observe a “lag phase” with little growth (or growth at too low
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concentrations to be detectable by the measuring instrument).

Then, a phase of rapid growth will occur, alternately called the “log

phase” or “linear phase” by different researchers (hereafter referred to

as the “log phase”), where growth is linear when shown with the y-

axis on a log-scale (Figure 1B). Figure 1C shows the first derivative of

Figure 1B: in other words, the instantaneous per capita growth rate.

The fastest growth rate is usually reached during the “log phase”

(Figure 1C; Monod, 1949). As the population reaches high density,

the growth rate slows down. The shape of the growth curve as the

population approaches its maximum size depends on biological

factors of the strain and the media environment. Some strains and

media exhibit biphasic/diauxic growth (not further detailed herein),

where population growth decelerates or plateaus and then accelerates

again. Even in the absence of biphasic growth, the trend of the per

capita growth rate as it approaches the stationary phase can depend

on changes in the media environment (e.g., depletion of resources or

accumulation of waste products) and/or on some types of

intraspecific density-dependent effects (i.e., Allee effects) caused by

cell interactions (e.g., facilitation, competition/interference, or

quorum sensing; but see Mallet, 2012). For optical density data, the

shape of the growth curve is usually impacted by changes in average

cell size (Stevenson et al., 2016). Population growth slows to a halt at

the “stationary phase”, reaching the final carrying capacity (denoted

K in linear-scale, Figure 1A, or A in log-scale, Figure 1B) when all the

usable resources are depleted from the batch culture. Eventually, after

a much longer time, the population size will decrease as cell death

intensifies. This late phase of the batch culture yields less consistent

data, so growth curve data is usually gathered only until the

stationary phase.

Growth curves are often used to estimate the per capita growth

rate and fitness. The per capita growth rate is important in

population biology because it is used to calculate the growth of a

mutant strain compared to a wild-type strain: the relative growth

rate or the relative fitness (w). The relative fitness is particularly

important in evolutionary biology since it classifies a mutant as

deleterious (w< 1), neutral (w = 1), or beneficial (w > 1) with respect

to natural selection. Indeed, when the relative fitness is greater than

1, the mutant reproduces faster than the wild-type, and conversely,
B CA

FIGURE 1

A schematic illustration of the same simulated batch culture population growth curve, plotted in three different ways. (A) Population size N versus
time t. The quantity K corresponds to the carrying capacity and N0 to the initial population size. The initial population fraction is given by N0/K. (B)
Logarithm of the population size divided by the initial population size y = ln(N/N0) versus time t. Note that in other publications, the quantity ln(N/N0)
is sometimes denoted as y. The quantity A = ln(K/N0) is the logarithm of the fold increase over the initial population size at carrying capacity. (C) First
derivative of the logarithm of the population size divided by the initial population size dy/dt = d ln(N/N0)/dt versus time t. The function dy/dt may be
interpreted as the per capita growth rate. The quantity µmax is the per capita maximum growth rate and l the lag phase duration.
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when w is less than 1. Although there is still discussion in the field

about whether the relative growth rates measured from

monoculture growth curves are predictive of competitive fitness

(Concepción-Acevedo et al., 2015; Ram et al., 2019), many

biologists use the growth rate as a measure of fitness (e.g., Knopp

and Andersson, 2018).

Microbial batch culture protocols have been used for over 100

years in microbiology (e.g., Slator, 1916) and population ecology

(e.g., Carlson, 1913) and remain a mainstay of experimental

evolution and ecology. During this time, many experimental

protocols (Delaney et al., 2013; Hall et al., 2014; Stevenson et al.,

2016; Kurokawa and Ying, 2017) and estimation methods

(Zwietering et al., 1990; Baranyi and Roberts, 1994; Jung et al.,

2015) have been developed for this type of data. Since the early

1990s, automated plate readers that incubate and periodically scan

the opacity of the cultures growing in the microwells have simplified

the process of gathering data for hundreds of bacterial populations

simultaneously growing in (relatively) homogeneous batch culture

environments. Sources of inconsistency, like the batch effect

(Blomberg, 2011), can be mitigated, for example, by growing all

cultures of interest on the same day(s) to arrive at consistent data.

Nevertheless, despite the long tradition and good recommendations

for setting up experiments, programs and papers detailing methods

for estimating growth rates (and other growth parameters) from

this data continue to be published and highly sought after. Many of

these estimation methods implement classical models (e.g.,

Sprouffske and Wagner, 2016; Petzoldt, 2020). This shows that

after 100+ years of generating growth curve data, microbial

ecologists and evolutionary biologists are still struggling to find

the best way of estimating the growth rate from their data.

The main goal of our paper is to demonstrate that there are

significant limitations to existing methods for using batch culture

growth curve data to estimate the intrinsic growth rate µ, which is

the fastest per capita number of divisions per time unit theoretically

possible when the cell’s resources are infinite or otherwise optimal.

These limitations impact the calculation of quantities of interest,

such as the selection coefficient and the relative fitness. We first take

stock of how the community analyzes growth curve data by semi-

quantitatively reviewing the literature to survey which methods are

used in evolution and ecology. After explaining different approaches

for modeling growth curves, we use math and simulations to show

that many currently used approaches are inappropriate for

accurately estimating the intrinsic growth rate µ. We quantify the

errors for the intrinsic growth rate µ when the maximum observed

growth rate µmax is used as an estimator and the generating model is

known. Next, we present the limited set of conditions in which an

exponential approximation can be used for estimating µ.

Importantly, we demonstrate that using inaccurate estimates of µ

to estimate the relative fitness often leads to inaccurate fitness

estimates and sometimes even wrongly classifying a beneficial

mutation as deleterious. Finally, we apply our theoretical insights

to previously published data and show that absolute and relative

growth rate estimates may vary greatly depending on the method.

Overall, we present a systematic evaluation of different methods,

with recommendations for best practices.
Frontiers in Ecology and Evolution 03
2 Results & discussion

2.1 Literature review: How does the
community analyze the data?

We reviewed 50 papers from evolution and ecology that

estimated growth curves for all types of microbial data (see Table

S1 and Methods section).

Most of the data (90%) were acquired by an automated

microplate reader tracking optical density (OD) over time. Other

data types included cell counts or fluorescent yields over time.

Several papers (6%) did not report the starting inoculum size. Of

those papers that reported the inoculum size, 52% used a fixed

absolute initial population size ( cN0) for inoculation, whereas 44%

had a variable absolute initial population size because the

inoculating-culture was diluted by some fixed dilution factor (i.e.,cN0 = bK � dilution factor). For the latter type of experiments, the

absolute population size of the inoculum, N0, differed between

strains/treatments when the carrying capacities, K, were different.

The reported dilution factor varied between 10−4 to 10−1 with a

geometric mean value of 10−2.37.

We found that the growth rate was by far the most commonly

estimated growth parameter (94% of all papers reviewed). The other

estimated growth parameters were the carrying capacity (44%), the

lag time (34%), and the area under the curve (AUC; 12%). The

growth rate was usually reported as an absolute value for each

strain/treatment. Moreover, 24% of papers estimated the relative

growth rate, or relative fitness, of different strains as compared to

the wild-type.

Methods that explicitly fit a model of population growth were

used about as often as “model-free” or “nonparametric” approaches

(i.e., methods that do not require a model; Figure 2A). One

particular model-free approach, the “Easy Linear” method, was

especially popular (right doughnut chart of Figure 2A): it was used

in about a third of all papers. When models were used, only one

model was usually reported to have been fit (left doughnut chart

of Figure 2A).

We classified the growth curve analysis methods as either

mechanistic or phenomenological (Figure 2B). A mechanistic

model estimates the intrinsic growth rate, µ, and allows

researchers to simulate the underlying process. In contrast, a

phenomenological approach enables researchers to estimate the

maximum growth rate, µmax, and describe/quantify the pattern of

interest but without simulating the underlying process (see next

section). We found that phenomenological approaches were used

more often than mechanistic models (Figure 2B). The most popular

methods within the phenomenological approach were the various

model-free methods (right doughnut of Figure 2B). The logistic

model was by far the most popular mechanistic model used (left

doughnut of Figure 2B). Depending on its equation, the Gompertz

model is either a phenomenological or a mechanistic model

(Table 1); however, we found that the mechanistic Gompertz

model was never fitted, whereas the phenomenological Gompertz

model was popular (18% of all papers and 28% of all

phenomenological methods used).
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FIGURE 2

Pie and doughnut charts of literature review results. (A) Model-free methods were used about as often as model-based methods across all 50
papers reviewed. “Both” refers to when both a model-free and a model-based method were used in the same paper. The doughnut charts
surrounding the central pie chart illustrate how frequently different models, including both phenomenological and mechanistic models, were used
(left, shades of green) and how frequently different phenomenological model-free methods were used (right, shades of purple). (B)
Phenomenological approaches (Phe) were used more often than mechanistic models (Mech). “Both” refers to when both a mechanistic model(s) and
a phenomenological approach(es) were used in the same paper. The doughnut charts surrounding the central pie chart illustrate how frequently
different mechanistic models were used (left, shades of blue) and how frequently different phenomenological approaches were used (right, shades of
red-orange). The Gompertz model is listed twice because it is either a mechanistic model or a phenomenological model, depending on the
equation; however, no paper was found to use a mechanistic Gompertz model. Both of the phenomenological Gompertz models listed in Table 1,
Gompertz and modified Gompertz, are grouped together. For more details on the methods and equations used by each paper, see Table S1. Slices
within each pie and doughnut chart show the counts of papers included.
TABLE 1 Different population growth models: The population growth models considered in this paper with their equation and parameters.

Model Equation Parameters & Biological Interpretation Reference

Logistic
(Mech)

dN
dt

= m 1 −
N
K

� �
N Inoculum size (N0), Intrinsic growth rate (µ), Carrying

capacity (K)

Tsoularis and
Wallace
(2002)

Gompertz
(Mech)

dN
dt

= m log  
K
N

� �
N Inoculum size (N0), Intrinsic growth rate (µ), Carrying

capacity (K)

Tsoularis and
Wallace
(2002)

Richards
(Mech)

dN
dt

= m 1 −
N
K

� �b
" #

N Inoculum size (N0), Intrinsic growth rate (µ), Slow down of cell
division as carrying capacity is reached (b), Carrying capacity (K)

Tsoularis and
Wallace
(2002)

Baranyi
(Mech)

dN
dt

= m
emt

eh0 − 1 + emt
1 −

N
K

� �
N

Lag time expressed as the physiological state or adjustment
function of the inoculum (h0), Inoculum size (N0), Intrinsic
growth rate (µ), Carrying capacity (K)

Baranyi and
Roberts (1994)

Huang
(Mech)

dN
dt

= m
1

1 + e−a(t−t)
1 −

N
K

� �
N

Lag time expressed as waiting time until growth (t), Inoculum
size (N0), Speed up of cell division from lag to “log” phase (a),
Intrinsic growth rate (µ), Carrying capacity (K)

Huang (2011)

Logistic
(Phe)

y(t) =
A

1 + exp   (4mmax(t)=A + 2)
Max. growth rate (µmax), Carrying capacity (A)

Zwietering
et al. (1990)

Logistic
(with lag)
(Phe)

y(t) =
A

1 + exp   (4mmax(l − t)=A + 2)
Lag time shifts curve rightwards (l), Max. growth rate (µmax),
Carrying capacity (A)

Zwietering
et al. (1990)

Gompertz
(Phe)

y(t)  = A exp ( − exp ( μmax exp (1)(l − t)=A +  1))
Lag time shifts curve rightwards (l), Max. growth rate (µmax),
Carrying capacity (A)

Zwietering
et al. (1990)

modified
Gompertz
(Phe)

y(t)  = A exp ( − exp ( μmax exp (1)(l − t)=A + 1)) + A exp (a(t − tshift ))
Lag time shifts curve rightwards (l), Max. growth rate (µmax),
Biphasic growth where the second “log” phase occurs at time tshift
with slope a, Carrying capacity (A)

Zwietering
et al. (1990)

Richards
(Phe)

y(t) = A(1  + n exp (1  + n + μmax (1  + n)1 + 1=n (l − t)=A))−1=v
Lag time shifts curve rightwards (l), Max. growth rate (µmax),
Asymmetry of growth curve around its max. growth rate (n),
Carrying capacity (A)

Zwietering
et al. (1990)
F
rontiers in Ec
ology and Evolution 04
Mechanistic models are indicated by (Mech) and describe the population size N as a function of time t. Phenomenological models are indicated by (Phe) and describe y = ln(N/N0) on a
logarithmic scale as a function of time t. The inoculum size does not appear as a parameter for these models because it appears implicitly through y. The Logistic (with lag) phenomenological
model is referred to below simply as the Logistic (Phe) model.
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We found that many growth curve experimental methods, data,

and analyses do not yet conform with recommendations for

reproducible research (e.g., Wilkinson et al., 2016; Munafò et al.,

2017). Over 10% of the papers reviewed reported insufficient

information about how growth curves were analyzed and

therefore could not be classified for Figure 2. Some highly-cited

papers (e.g., Gullberg et al., 2011; Trindade et al., 2012) neither cited

an established method nor included a sufficient description of their

ad hoc methods for estimating growth rates (see Table S1). Beyond

reporting of experimental methods, the data set itself was often not

shared: about half (46%) of all papers do not show any figures of nor

provide any of the growth curve data (see Table S1). 40% of papers

provided plots of at least a subset of the growth curves, and 14% of

all papers published their raw growth curve data.

Our finding from Figure 2 that ∼13% of articles provide

insufficient information regarding their growth curve analysis

methods likely underestimates the magnitude of the problem.

This is because we found articles for inclusion in the review by

searching among the citations to previously published growth curve

analysis methods papers (see Methods). Therefore, most of the

papers we included cited an established method for analyzing

growth curve data. Hopefully, these issues of methods under-

reporting will improve as scientists become more knowledgeable

about recommendations for open science and data management

(Wilkinson et al., 2016; Munafò et al., 2017).

Our finding of insufficiently reported information regarding the

analysis of growth curves corroborates previous concerns about the

lack of a standard method for growth curve analysis (Fernandez-

Ricaud et al., 2016). The remainder of our article discusses different

methods for analyzing growth curves and, thus, will hopefully

contribute to an increased appreciation of why it is important to

provide sufficiently detailed methodological information on

data analyses.
2.2 Exposition of existing models
and methods

2.2.1 Conceptual distinctions between parametric
vs non-parametric methods and
phenomenological vs mechanistic models

A variety of approaches have been developed over the years to

describe and quantify growth curves, as shown in Figure 2. Below,

we explain the main differences between the most commonly used

approaches and models. Then, we compare the advantages of each.

2.2.1.1 Model-free vs model-based methods

One way to classify the different methods is to distinguish

between model-free (or non-parametric) methods and model-based

(or parametric) methods. Model-free methods use an algorithm to

find an estimate of the growth rate that is relatively robust to any

noise error in the data. For example, in the classical exponential

approximation from Monod (1949) that is featured in many

introductory microbiology textbooks, the growth rate is estimated

by measuring cell concentrations (N1 and N2) at two time points (t1
and t2) during the “log phase” of growth, then calculating R = (log2
Frontiers in Ecology and Evolution 05
N2 − log2 N1)/(t2 − t1). This is an algorithm that can easily be used

by hand or performed by a computer. The Easy Linear method

(Hall et al., 2014; Mira et al., 2017) is a more complex algorithm that

uses a sliding window of five successive data points to calculate the

maximum slope among many linear regressions fitted to the log-

scale growth curve data. Another example is the Spline method that

calculates the maximum value of the first derivative of the log-scale

growth curve data by either using the mean of three successive pairs

of points (e.g., Ashino et al., 2019) or kernel smoothing of the

growth curve (e.g., Kahm et al., 2010; Petzoldt, 2020) to remove

experimental noise. The parameters of these algorithms are usually

tunable, for example, the size of the sliding window used by the Easy

Linear method. Although no explicit assumptions are made about

the shape of the growth curves, all of the examples cited above rely

on the implicit assumption that the data is in the exponential

growth phase. Also methods that ostensibly make no assumptions

(e.g., Midani et al., 2021) extract particular summary statistics of

interest from the data (e.g., the maximum observed per capita

growth rate).

On the other hand, model-based methods use equations to

describe the relationship between time explicitly, the independent

variable, and population size (or a proxy of population size, like

OD), the dependent variable. A model-fitting algorithm is then used

to find the model parameters that best fit the observed data, usually

by minimizing the residual sum of squares. Model-based methods

tend to be preferred by theoretical and statistical biologists because

models specifically define the assumptions that are being made,

model-based methods have defined protocols for assessing

goodness of fit, and model-fitting allows quantification of the

(frequentist or Bayesian) error of the estimates (Bolker, 2008;

Otto and Day, 2011). Nevertheless, methods with explicit models

can still hide their assumptions and, worse still, may introduce a

level of abstraction that prohibits productive discussions between

theoreticians and empiricists.

Empiricists tend to prefer to apply model-free approaches to

biological growth curve data both because it is technically more

difficult to fit and compare models and because of the inflexibility of

existing models to fit the data (source: personal communication). In

other words, the main advantage of model-free approaches is that

they do not require a model. Model-free approaches have

drawbacks, however: since there is no model, it is not clear how

to compare the likelihood or goodness-of-fit between different

methods, and bootstrapping is necessary to quantify the error

around estimates (for example, to generate confidence intervals).

2.2.1.2 Mechanistic vs phenomenological models

Within the class model-based methods, there is a difference

between mechanistic and phenomenological models. Mechanistic

models may also be called process models, and phenomenological

models can be called statistical/pattern models (Bolker, 2008;

Liberles et al., 2013). We define mechanistic models as

representations that simulate or at least bear some resemblance to

the underlying process(es) that produced the data. Therefore, the

parameters estimated from mechanistic models are interpretable

with respect to the underlying process. For population growth curve

models in particular, the per capita growth rate of a mechanistic
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model is, by definition, the intrinsic growth rate µ when the cell’s

resources are limitless or otherwise optimal.

Phenomenological models can be thought of as ‘black-box

empirical models’ (Chezeau and Vial, 2019). They are created by

selecting functions that have a similar shape as the pattern of

interest. Then, the parameters of those functions are given a

biologically relevant meaning. For growth curves in particular,

phenomenological population growth models are defined such

that the point on the curve with the fastest rate of per capita

growth (i.e., the inflection point of y = ln(N/N0)) corresponds to the

maximum growth rate µmax (Zwietering et al., 1990, equations 4 &

5). Model-free (non-parameteric) methods all belong to the

phenomenological category, as shown in Figure 2B, as they

quantify specific parameters of interest without simulating the

underlying process.

Although the distinction between mechanistic models and

phenomenological methods may seem arcane, it is crucial because

parameters estimated from phenomenological methods cannot be

treated as unbiased estimators of parameters for mechanistic

models (Rodrigue and Philippe, 2010). We explain below how

serious pitfalls in estimating growth rates are a direct result of the

differences between growth rates estimated by mechanistic models

(i.e., the intrinsic growth rate µ) and phenomenological methods

(i.e., the maximum growth rate µmax).

2.2.2 Biological interpretation of commonly used
models and their parameters

We summarized the equations and parameters of the most

prevalent models found by our literature review in Table 1,

distinguishing mechanistic models (Mech) from phenomenological

models (Phe). As mentioned above and further explained in the next

section, a main difference to note is that mechanistic models are

defined in terms of the intrinsic growth rate µ. In contrast,

phenomenological models are defined in terms of the maximum

growth rate µmax.

The common feature of all models listed in Table 1, whether

mechanistic or phenomenological, is that they assume an

exponential phase of growth eventually followed by a cessation of

growth as the carrying capacity is reached. In other words, the

models assume that the data has a sigmoid or “S” shape (Zwietering

et al., 1990). All models consider single-strain, well-mixed bacterial

populations starting with an inoculum (i.e., initial population) size

of N0 microbes. Every individual in the population is assumed to

divide at the same per capita rate, although the division rate varies

over time.

The models differ in important ways. Most of the models are

based on the logistic model but seek to add additional features

(Tsoularis and Wallace, 2002). For example, a lag phase can be

added to the phenomenological Logistic model by adding a

parameter (l) that shifts the curve towards the right (Table 1). In
contrast, the Baranyi model adds a mechanistic lag phase to the

model by including a parameter (h0) that describes the physiological

state of the inoculum (Baranyi and Roberts, 1994, Baranyi and

Roberts, 1995). When cells go from a saturated culture to a fresh

culture or otherwise change their environment, this adjustment
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function describes the build-up of a critical cellular substance to a

threshold necessary for cell growth. The Huang model, another

mechanistic model with a lag phase, describes a similar lag phase as

the Baranyi model but uses a less detailed process.

Similarly, there are different ways to model population growth

at high densities. For example, the Richards model (mechanistic or

phenomenological) includes a parameter (b or n, respectively) that
changes how the per capita growth rate slows down from its

maximum value to the stationary phase. Therefore, the

mechanistic b parameter in the Richards model incorporates

processes that occur at high cell density (i.e., due to changes in

the media environment or other intra-specific density-dependent

effects). Finally, Gompertz models differ from Logistic models by

assuming a different process for how the population approaches its

carrying capacity. Namely, Gompertz models have a higher per

capita growth rate but approach the carrying capacity more slowly

than Logistic models for the same set of parameters. We stress that

during experiments, violation of the Beer-Lambert law and changes

in cell size at high density can lead to spurious inference of complex

phenomena like those listed above when optical density data has not

been calibrated appropriately to cell counts (Stevenson et al., 2016).

2.2.3 What is the difference between µ and µmax?
It is important to distinguish between three growth rate

estimators: the maximum population growth rate (max (dN/dt)),

the per capita maximum growth rate (µmax), and the per capita

intrinsic growth rate (µ). The maximum population growth rate

(max (dN/dt)) is the fastest increase in size achieved by the entire

population. We are not interested in the maximum population

growth rate parameter since it is not estimated by any of the

methods or models we discuss here; we only mention it so that

the reader does not mistake it for the maximum growth rate (µmax).

The maximum growth rate µmax is the fastest per capita number of

divisions per unit of time actually achieved in the observed growth

curve. In more quantitative terms, µmax is the maximum value of the

curve d ln(N/N0)/dt (Figures 1B, C). As mentioned above, the

maximum growth rate µmax is a value estimated using

phenomenological approaches. Finally, the intrinsic growth rate µ

(sometimes denoted as r (Sprouffske and Wagner, 2016), called the

Malthusian parameter of population growth, or the intrinsic rate of

increase) is the fastest per capita number of divisions per unit of

time theoretically possible and, because it is a mechanistic model

parameter, it is used for simulating population growth processes.

We here focus on the intrinsic growth rate µ and the maximum

growth rate µmax because these are the two quantities estimated by

the most used methods.

An important conceptual difference exists between the intrinsic

growth rate µ and the maximum growth rate µmax. The intrinsic

growth rate µ is the theoretical maximum number of cell divisions

per time unit, assuming population dynamics that follow an

exponential law. Importantly, µ is an idealized parameter. No real

population achieves an infinite size because the division process is

limited by space and/or nutrients, for instance. Thus, the number of

divisions per time unit is not constant over time, so the maximum

division rate µmax is the largest per capita value observed during the
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population growth. Therefore, the intrinsic growth rate µ can

quantify the strain-specific division rate theoretical ly

independently of the environment or experimental conditions.

On the other hand, the maximum growth rate µmax (like other

values estimated by phenomenological methods) is always specific

to the experiment itself and cannot be generalized as a strain-

specific value that applies to different environments or conditions.

As will be shown below, in the best case scenario, µmax approximates

µ, but in other scenarios, µmax is a composite parameter that

depends on other values like the inoculum size and lag time.

Previous work has pointed out confusions between different

growth rate estimators (Perni et al., 2005). The confusion between

these terms is so prevalent that some papers mistook µ for µmax

(Yang et al., 2006), vice versa (Wu et al., 2017), or distinguished

between the two but swapped the names (Khan et al., 2017).

Furthermore, some authors wrote the mechanistic logistic

equation as dN/dt = µmax(1 − N/K)N (Petzoldt, 2020), whereas

other authors preferred dN/dt = µ(1 − N/K)N and µmax = max(d ln

(N(t)/N0)/dt) (Sprouffske and Wagner, 2016). Different naming

conventions become even more misleading for models in which

the intrinsic growth rate is a function of the resource concentration,

such as the Monod class of models that have their own specific,

mechanistic definition for µmax (Monod, 1949; Chezeau and Vial,

2019). We will not discuss substrate-use models herein. Having

explained the conceptual differences between the µmax maximum

growth and µ intrinsic growth rates above, we now expand on the

mathematical differences.

2.2.3.1 Deriving the difference between µmax vs µ

In the following, we mathematically explain why µmax is not

always a good proxy for µ, especially at large initial population

fractions, N0/K. Analytical math is combined with simulations to

show for which initial population fractions an experimenter can

estimate the intrinsic growth rate µ from the maximum growth

rate µmax.

We assumed that the population dynamics follow one of the

mechanistic growth models from Table 1 and mathematically
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derived µmax for the five mechanistic models. As reported in

Table 2, µmax depends on the system parameters, namely the

initial population fraction N0/K as well as the parameters b and

h0 for the Richards and the Baranyi models, respectively.

The results of Table 2 are illustrated by the points in Figure 3A.

The estimated maximum growth rate (µmax) values differ between

models with the same parameter values (intrinsic growth rate µ = 1

and carrying capacity K = 105). In general, the maximum growth

rate is approximately equal to the intrinsic growth rate when the

initial population fraction satisfies N0=K ≪  1  and (N0=K)
b ≪  1

in the Logistic and Richards models, respectively. Indeed, these

conditions lead to µmax = µ(1 −N0/K) ≈ µ and µmax = µ(1 − (N0/K)
b)

≈ µ for the Logistic and Richards models, respectively (see Table 2).

The Gompertz model is a special case since the maximum division

rate is a good proxy for the intrinsic division rate when the initial

population fraction is large, roughly equal to exp(−1) ≈ 0.37 (i.e., an

inoculum size corresponding to a dilution factor for the stationary

phase batch culture of between one-third and two-fifths).

In order to test the analytical predictions from Table 2, we

evaluated the growth rates as estimated by model-free methods

using data simulated under each of the five population growth

models. Unlike experimental data, for which the true µ value that

generated the data is never known, estimating the growth rate from

simulated data allowed us to check the accuracy of the estimates as

compared to the known µ parameter that the data was

simulated under.

We focus on two model-free methods, the popular Easy Linear

(Hall et al., 2014) and the Spline (e.g., Adkar et al., 2017; Ashino

et al., 2019) methods, to determine the maximum growth rate µmax.

Both methods assume that only the exponential stage of growth is

useful to estimate the maximum growth rate. We generated data

using individual-based stochastic simulations for the Gompertz,

Richards, Logistic, Huang, and Baranyi models. Then, we used the

two different model-free methods, Spline and Easy Linear, to

compute the maximum growth rate µmax for different parameter

values. In practice, both model-free methods provided us with the

same results. That is because our simulated data, averaged over
TABLE 2 Maximum growth rates: The maximum growth rate µmax for the population growth models considered in this paper.

Model Derived maximum growth rate µmax

Logistic (Mech) µ(1 −N0/K)

Gompertz (Mech) −µ ln(N0/K)

Richards (Mech) µ(1 − (N0/K)
b)

Baranyi (Mech)
me−h0 ( − 2(1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( − 1 + eh0 )(eh0 (K=N0) − 1)

p
)(N0=K) + eh0 (1 + N0=K))

1 − N0=K

Huang (Mech) Numerical solution

Logistic (Phe) µmax

Gompertz (Phe) µmax

modified Gompertz (Phe) µmax

Richards (Phe) µmax
Mechanistic models are indicated by (Mech), whereas the phenomenological models are indicated by (Phe). The maximum growth rate was derived for the mechanistic models by analytically
determining max(dy/dt) = max(dln(N/N0)/dt). All phenomenological models have the same maximum growth rate, whereas the maximum growth rate differs between mechanistic models.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1313500
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ghenu et al. 10.3389/fevo.2023.1313500
several stochastic realizations, did not include the myriad sources of

noise present in experiments.

As shown by the lines in Figure 3A, there is an excellent

agreement between our analytical predictions (lines) and the

estimates from simulated data (points). As predicted analytically,

the estimated maximum growth rate µmax does not equal the known

intrinsic growth rate µ value used to create the simulations unless

N0=K ≪  1 . For the Baranyi, Huang, Logistic, and Richards

models, the smaller the initial population fraction, the better the

maximum growth rate performs as a proxy for estimating the

intrinsic bacterial growth rate, µ. However, this is not the case for

the Gompertz model. For the Baranyi and Richards models

(Supplementary Figures S4A, B), the smaller the parameter h0
and the larger the parameter b, the closer is the maximum

growth rate µmax to the intrinsic growth rate µ. Similarly, for the

Huang model, the higher the curvature defined by a and the shorter

the duration t of the lag phase, the better µmax is as a proxy for µ (see

Figures S4C, D).

We showed that the maximum growth rate µmax is not always

equivalent to the intrinsic growth rate µ. Therefore, methods that
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estimate the maximum growth rate µmax but then (often implicitly)

assume that this value can be treated as the µ of a mechanistic model

must be applied with caution. As we have demonstrated in Table 2

and Figure 3A, µmax tends to underestimate the true intrinsic

growth rate µ – except when population growth follows the

Gompertz mechanistic model, in which case the maximum

growth rate µmax mostly overestimates the true intrinsic growth

rate µ. This is because the per capita growth rate is generally smaller

than the intrinsic one. Hence, we recommend that a clear

distinction must be made between the intrinsic growth rate µ and

the maximum growth rate µmax.

2.2.3.2 The initial population fraction, N0/K, is a key
parameter determining the relationship of µmax and µ

Above, we showed that (for most models) we can use the

estimated maximum growth rate µmax as an approximation of µ

when initial population fractions N0/K are small. We estimated the

dilution fractions used in different experiments (Figure 3B) to

ascertain whether most studies are using appropriately small

initial population fractions. Papers reporting experiments with
B

A

FIGURE 3

(A) The Gompertz model and large initial population fractions make the maximum growth rate a poor proxy for the intrinsic growth rate: Maximum
growth rate µmax versus initial population fraction N0/K for different mechanistic population growth models, where µ = 1. Each point represents
estimated values by Spline (from Petzoldt, 2020) from simulated data averaged over 104 stochastic realizations. The solid lines correspond to the
analytical predictions of the maximum growth rate (see Table 2). The dashed line shows the intrinsic growth rate value µ. Parameter values: K = 105,
µ = 1, a = 2, b = 2, h0 = 2 and t = 2. (B) For the most commonly used dilution fractions in the literature, the maximum growth rate is a good proxy
for the intrinsic growth rate: Histogram of the estimated dilution fractions observed for the 27 (out of 50) papers that provided sufficient information
to estimate this value. Each circle represents a publication, and the number inside the circle indicates the number of the reference, as given in
Supplementary Table S1. Several publications appear more than once because they used more than one dilution fraction for different experiments.
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multiple, different batch culture starting conditions are included as

multiple points with the same number. For example, Ganucci et al.,

2018 (labeled as 21) used a dilution fraction near 1. The authors

used cell viability counts to track yeast growth in media with

increasing ethanol concentrations, sometimes resulting in almost

no growth. Two values from Ganucci et al. (2018) are summarized

in Figure 3B, indicating the largest (0.1) and the smallest (0.94)

dilution fractions observed. Since methods differ between

publications, with some using a mid-exponential phase culture

and others using a stationary phase culture for inoculation (see

Supplementary Table S1), the estimated dilution fraction should be

considered as an upper bound for the initial population fraction

used in each paper.

More than two-thirds of papers use at least one estimated

dilution fraction smaller than 10−2; the geometric-mean observed

dilution fraction was 10−2.7. For such small dilution fractions, if

there is no lag time, and if growth follows one of the population

growth models except Gompertz, the maximum growth rate µmax

tends to be a good estimator of the intrinsic growth rate µ. When

the true growth curve dynamics in the experiments follows one of

the mechanistic models other than Gompertz, the relative difference

between the maximum growth rate and the intrinsic growth rate for

the mean initial population fractionN0/K = 10−2.7 is between 0-12%.

Here, the largest difference between µmax and µ is obtained for the

Baranyi model. However, for the Gompertz model, the relative

difference between the maximum growth rate and the intrinsic

growth ranges from -821% to 31% (see Figure 3).

2.2.3.3 Consequences of the difference between µmax

and µ

We showed that the µmax values calculated from mechanistic

models depend on other parameters in addition to µ, such as the

initial population fraction. Conversely, one cannot obtain µ from

µmax alone. For mechanistic models, additional parameters such as

the initial population size and carrying capacity are required (see

Table 1) to be able to calculate µ from µmax. For phenomenological

approaches, which are specified directly in terms of µmax, µ is not

defined. Nevertheless, even when µmax is estimated by

phenomenological models, its estimated value will be different

when experimental quantities such as the initial population size

and carrying capacity change. In reality, the estimated values for

both µmax and µ may also vary with the experimental conditions

(such as genotype, medium, temperature, etc).

We emphasize that the main difference between the maximum

growth rate µmax and the intrinsic growth rate µ is that µmax is a

phenomenological quantity, whereas µ is a model parameter.

Therefore, obtaining different estimates of µ and µmax is expected

and not a sign of bad performance of a model or method, especially

for large initial population fractions. For example, the manual of

one software (Delaney, 2014) provides options for fitting various

phenomenological models and a single mechanistic model but

discourages users from applying the mechanistic model because

“it predicts fastest growth” as compared to the other implemented

models. Our results can readily explain this observation and debunk

the implied worse performance of the mechanistic model. Indeed,
Frontiers in Ecology and Evolution 09
the publication associated with this software recommends a large

inoculum size (Delaney et al., 2013; associated studies labeled as 8,

22, 25, 42, and 43 in Figure 3B and Supplementary Table S1), for

which we showed that µmax should consistently overestimate µ.

Given the differences between µmax and µ, which should be

estimated? Unfortunately, there is no one-size-fits-all answer to this

question. From a theoretician’s perspective, one might recommend

that researchers estimate the intrinsic growth rate µ. Most studies

perform growth curve experiments to characterize growth for

specific strains, treatments, or environments in the (either explicit

or implicit) context of population ecology or mechanistic models,

defined in terms of µ. Only the intrinsic growth rate µ can be used to

simulate mechanistic models and identify the mechanisms that best

explain the observed dynamics. On the other hand, the maximum

growth rate µmax is phenomenological: it describes what is observed

in the data contingent on the population’s starting conditions and

the experimental environment. At best, µmax approximates µ.

However, from an experimenter’s perspective, estimating µmax has

the advantage that model-free methods are technically easier to use

than estimators of mechanistic models, especially for data that

displays an uncommon trend (e.g., biphasic growth) different from

the usually modeled exponential or “S”/sigmoid shapes. We

strongly encourage researchers who decide to estimate µmax to use

(and report) a small initial population fraction and to assert that the

data does not have a significant lag time.

When using phenomenological methods, a second decision

about whether to use model-based or model-free methods is

necessary. In our noise-free, simulated data, model-based and

model-free phenomenological methods yielded the same estimates

for µmax (Figure 3A); future work should elaborate on their

performance in the presence of different sources of noise (e.g., to

expand previous work by Mira et al. (2017) for the Easy Linear

method). Although model-based methods may be preferable from a

theoretician’s view, certain types of experimental data (for example,

displaying biphasic growth, curves without samples in the

stationary phase, and other unusually shaped data as well as very

noisy data) may not be fitted well by models of exponential or

sigmoidal growth. In this case, the data may be better summarized

by a model-free phenomenological method. Importantly, we

recommend that the choice of method is justified clearly and in

writing, no matter which method is used.
2.3 Guidelines for estimating growth rates

2.3.1 Ad-hoc fitting of an exponential model to
growth curves should be avoided

One common approximation (Monod, 1949; Kassen, 2014) that

is used to obtain an estimate of the intrinsic growth rate µ is to fit an

exponential equation, likeN(t) =N0e
µt, to the early phases of growth

(i.e., during the “log” phase, before the deceleration and stationary

phases). This method is explained in many introductory

microbiology textbooks, as previously summarized in the

explanation of model-free methods in section 2.2.1 above, and we

refer to this approach as an exponential approximation. Under the
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exponential approximation, the intrinsic growth rate is given by µ =

ln(N(t)/N0)/t.

To test the accuracy of the exponential approximation when

applied to batch culture population growth, we expressed the

intrinsic growth rate as a function of population size and other

possible parameters for different mechanistic population growth

models (Table 3 and Supplementary Figure S5).

We found that the exponential approximation is frequently a

poor estimator of the intrinsic growth rate µ. The exponential

approach is never valid for a population following the Gompertz

growth. There is no parameter range for which the equation ln(ln(N0/

K)/ln(N(t)/K))/t reduces to ln(N(t)/N0)/t (see Table 3). The

exponential approach is valid for the logistic growth when the

initial population size is very small in comparison to the carrying

capacity (i.e., N0 ≪ K) and for time points at which the population

size remains small in comparison to the carrying capacity (i.e., N(t)

≪ K). These conditions lead to ln(N(t)(1 −N0/K)/(N0(1 −N(t)/K)))/t

≈ ln(N(t)/N0)/t (see Table 3). This makes sense since the phase during

which these conditions are satisfied corresponds to the regime in

which logistic growth can be reduced to exponential growth. The

same conditions apply to Baranyi growth, with the additional

condition that the lag phase must be short (i.e., h0 ≪ 1), so that

one obtains ln 1 − eh0 (1 − N(t)=N0)=(1 − N(t)=K))=t ≈ ln (N(t)=N0

)=t (see Table 3). If the lag phase is not short, the exponential phase

starts later, whereas the exponential approach assumes that it starts at

the beginning of the growth. The Richards growth is more complex.

Here, the quantities (N0/K)
b and (N(t)/K)b must be much less than 1

to make the exponential approach valid. The larger the deceleration

parameter b is when N0 ≪ K and N ≪ K , the more abruptly the

“log” phase transitions into the stationary phase, and the more valid

the exponential approximation becomes, so that ln ((N(t)=N0)
b (1 −

(N0=K)
b )=(1 − (N(t)=K)b ))=(tb)  ≈   ln (N(t)=N0)=t (see Table 3).

Consequently, the exponential approximation is valid only in a very

restricted set of conditions: when there is no lag phase, the initial

population fraction is very small, and the measured population sizes

remain small as compared to the carrying capacity. Most
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experimental data probably does not meet this necessary set

of conditions.

It is of note that throughout the literature, including

introductory textbooks, the term “exponential growth rate” tends

to be used to describe the intrinsic growth rate µ and is sometimes

deemed the same as the maximum growth rate µmax (e.g., Novak

et al., 2009; Basra et al., 2018). We here strongly caution against this

conflation of potentially very different quantities. In particular, we

recommend that approximating batch culture growth with an

exponential curve to get an estimate for the intrinsic growth rate

µ requires careful assurance that the assumption is valid for the data

at hand.

2.3.2 Theory predicts that using µmax or the
exponential approximation for estimating relative
fitness can yield wrong results

In evolution and population biology, the relative fitness w of a

mutant strain (M) compared to a wild-type strain (WT) is

classically defined as the ratio of their intrinsic growth rates, µM/

µWT. The relative fitness or the selection coefficient, defined as s ≡ w

−1 = µM/µWT −1, is used to classify a mutant as deleterious (w < 1 or

s < 0), neutral (w = 1 or s = 0), or beneficial (w > 1 or s > 0). Thus, to

infer how natural selection favors one strain over another from

monoculture growth curves, microbial ecologists and evolutionary

biologists need to estimate the intrinsic growth rate, which is

obtained by fitting a mechanistic model.

It is often argued that the concerns regarding miscalculation of

the intrinsic growth rate µ discussed above are important for

absolute growth rate estimates but can be disregarded when

considering relative estimates. The argumentation is that whereas

absolute estimates cannot be compared between data sets, relative

growth rates can be estimated within a data set by using a common

reference sample, and these relative growth rates can then be

compared between data sets. Moreover, the sign of an estimated

selection coefficient may be more important than the absolute value.

Namely, incorrect absolute estimates should yield correct rankings

of growth rate estimates and thus correctly estimated signs of the

selection coefficient. Below, we demonstrate that these assumptions

are wrong and that incorrect estimates of the growth rates (for

example, by assuming that µmax = µ) can severely affect the

classification of strains into beneficial, neutral, or deleterious.

To demonstrate the effects of assuming µmax = µ on relative

fitness estimates, we simulated growth curve data from separate

batch monocultures for two strains. We estimated their maximum

growth rates µmax using the growth curves. Then, we assumed

(erroneously) that the maximum growth rate µmax was a good

approximation of the intrinsic growth rate µ. We calculated the

relative fitness of the mutant with respect to the wild-type as w =

mM
max=mWT

max (or the selection coefficient as s = mM
max=mWT

max − 1).

Figure 4A shows that using µmax to estimate the relative fitness

generally infers incorrect values for the relative fitness (as well as the

selection coefficient), unless both strains have the same initial

population fraction (N0/K). Even more concerningly, this

estimation sometimes categorizes the mutant as deleterious when

it is beneficial and vice versa. This is especially problematic because

we assumed noise-free data and an ideal case in which both
TABLE 3 Intrinsic growth rate as a function of the model parameters at
time t for different mechanistic population growth models.

Mechanistic model Intrinsic growth rate µ

Exponential ln  
N(t)
N0

� �
=t

Logistic ln  
N(t)
N0

1 − N0=K
1 − N(t)=K

� �
=t

Gompertz ln  
ln   (N0=K)
ln   (N(t)=K)

� �
=t

Richards ln  
(N(t)=N0)

b (1 − (N0=K)
b )

1 − (N(t)=K)b

 !
=(tb)

Baranyi ln   1 −
eh0 (1 − N(t)=N0)

1 − N(t)=K

� �
=t

Huang a
ln(( − 1 + K=N(t))=(1 − K=N0))

ln ((1 + eat )=(eat − eat ))
The difference between the equations indicates that the exponential approximation may often
not be appropriate; see also Supplementary Figure S5.
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bacterial strains followed the same population dynamics. In

summary, we conclude that equivocating µmax with µ will likely

lead to wrong fitness and selection coefficient estimates.

Mis-estimating the selection coefficient also occurs when

calculating relative growth rate values using the exponential

approximation. Lenski et al. (1991) extended the exponential

approximation to calculate the fitness of a mutant strain (M)

relative to the fitness of a wild-type strain (WT), w = ln (NM(t)=

NM
0 )= ln (NWT (t)=NWT

0 ) (or the selection coefficient s  ≡  w  −  1  =

  ln (NM(t)=NM
0 ))=  ln (NWT (t)=NWT

0 Þ � 1. Note that under the

assumption of exponential growth, both the relative fitness and

the selection coefficient measured by the equation stated above are

time-independent. Both Lenski et al. (1991) and Ram et al. (2019)

empirically set the time interval of measurements t to 24 hours.

Similarly to using µmax as a proxy for µ, the exponential

approximation yields wrong estimates for the relative fitness (as

well as the selection coefficient) in many cases (Figure 4B). For

growth curves (except for the Gompertz model) in which the initial

population fraction of the mutant is smaller than that of the wild-

type, the exponential approximation is a more conservative

estimator than µmax; it is less likely to overestimate the relative

fitness. However, when the initial population fraction of the mutant

is larger than that of the wild-type, the exponential approximation is

likely to incorrectly infer that a beneficial mutant is deleterious

(Figure 4B). Thus, the exponential approximation potentially

misestimates and misclassifies selection coefficients throughout

much of the experimentally reasonable parameter range.

2.3.3 Implications for the estimation of selection
coefficients from growth rates

We showed that using µmax as a proxy for µ to calculate the

relative growth rates or relative fitness can lead to biased estimates

(Figure 4). The bias in the estimate becomes larger as the difference
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in the true growth parameters between the two studied strains

becomes larger. Accordingly, we strongly recommend that

experimenters use the intrinsic growth rate µ to estimate relative

fitness. According to population biology, relative fitness is defined

as the ratio of the intrinsic growth rate of the mutant strain over the

wild-type strain, µM/µWT (Lenski et al., 1991; Crow and Kimura,

2009; Chevin, 2011). From this point of view, relative fitness can

only be estimated using the intrinsic growth rate µ. Nevertheless,

fitness-related phenotypes, like mM
max=mWT

max, are sometimes used as a

summary statistic of population growth that is contextual to the

environmental, temporal, and population conditions (e.g., Adkar

et al., 2017). Above, we showed that a proxy of the intrinsic growth

rate (like µmax or the exponential approximation) can accurately

estimate the relative fitness only if specific criteria are met. When

these criteria are notmet, µmax becomes a composite parameter that

depends on other experimental quantities that should be reported,

like the initial population fraction and lag time. Only if experiments

are set up with small and equal initial population fractions of the

mutant and wild-type strains and if the strains do not exhibit a lag

phase, using µmax as a proxy for µ to estimate the relative fitness may

be justified.
2.4 Application of theory: Re-analyzing 4
published data sets

To clarify the theoretical considerations discussed above, we re-

analyzed four published data sets using the diversity of methods

discussed above. Then, we compared how the different methods

were performed on the same data. Among the 50 studies reviewed,

we identified four appropriate for re-analysis since these papers

provided their complete data set and reported their estimated values

(Adkar et al., 2017; Ram et al., 2019; Todd and Selmecki, 2020;
BA

FIGURE 4

Different initial population fractions between wild-type and mutant batch cultures result in poor estimates of relative fitness: Relative fitness bw
estimate versus initial population fraction N0,M/K of mutants for different mechanistic population growth models. As a reminder, w = µM/µWT. (A) the
maximum growth rate µmax is used as a proxy for the intrinsic growth rate µ. Each point represents estimated values by Spline (growthrates package)
from simulated data averaged over 104 stochastic realizations. The solid lines correspond to the analytical predictions of the relative fitness using
estimates of the maximum growth rate (see Table 2). (B) the intrinsic growth rate is obtained applying the exponential approximation. Solid lines
correspond to the analytical predictions of the relative fitness using estimates of the maximum growth rate (see Table 3). In both panels the dashed
line shows the real relative fitness value w. The dotted line represents the configuration in which the growth model parameters of the mutant are
equal to the parameters of the wild-type (except their intrinsic growth rates). The dash-dotted line corresponds to the neutral case, i.e. when both
the mutant and the wild-type have the same growth rate. Parameter values: KWT= KM= K = 105, µWT= 1, µM= 1.1, aWT= aM= 2, bWT= bM= 2, h0,WT =
h0,M = 2, tWT = tM = 2 and t = 1.
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Hammer et al., 2021). Each bacterial growth curve data set reports

optical density versus time for different bacterial strains, with 142

curves across all studies. We used three publicly available R

packages, Growthcurver, grofit, and growthrates, to estimate

growth parameters (Kahm et al., 2010; Sprouffske and Wagner,

2016; Petzoldt, 2020). We tested two model-free methods (Spline

and Easy Linear) and the model-based methods listed in Table 1.

These models are based on different equations that are

phenomenological (Zwietering et al., 1990) or mechanistic

(Baranyi and Roberts, 1994; Tsoularis and Wallace, 2002; Huang,

2011). We focused on inferring the maximum growth rate (µmax),

both because it is of greatest relevance to the work discussed above

and because it is the only quantity common to all methods we

tested. For mechanistic models (which are defined in terms of µ), we

estimated µmax by using derivatives to find the maximum slope of

ln(N/N0) (as shown in Figure 1C; see Table 2).

The maximum growth rate (µmax) values estimated from the

same data vary widely depending on the method used (Figure 5A,

and Figures S1A, S2A and S3A). Assessing the accuracy of the

estimates for the model-free methods is not possible. However, we

used goodness-of-fit tests to assess the model-based methods by

calculating the residual sum of squares (RSS). The RSS measures the

discrepancy between the data and the fitted model. Thus, the

smaller the RSS, the better the model. Since the models we tested

have different numbers of parameters, we also calculated Akaike’s

Information Criterion (AIC) for mechanistic models using the

method of López et al. (2004). The results of the AIC are

consistent with those of the RSS (see Supplementary Material).

Despite the discrepancy in the inferred maximum growth rate,

many of the models fit the data well in most cases because the RSS

values are low and similar (Figures 5B, C, and Supplementary

Figures S1B, C, S2B, C and S3B-C).

A visual inspection of the fits corroborates our findings that all

models fit the data well (visualizations are available as part of the

archived code repository on Zenodo 10.5281/zenodo.6629064). We

emphasize that a visual inspection is important to ensure the

estimated values are appropriate. Indeed, in a few cases, the fits

proved unsatisfactory, although the summary statistics were good

(see, e.g., Supplementary Figure S6).

No model is consistently preferred for all samples of a data set.

This highlights the difficulty of choosing ‘the one’ right model,

although this choice greatly impacts the growth parameter

estimates. Whether phenomenological or mechanistic, the

Gompertz equation frequently yielded the worst statistics,

although our literature review indicated the phenomenological

Gompertz equation as the most frequently used model. Moreover,

the models used in the original data publications were not always

the models we found to obtain the best statistics.

As previously stated, model-free methods may be preferred for

some research questions, especially when neither the underlying

mechanisms nor relative fitness estimates are of interest. Model-free

methods obtain the maximum growth rate by determining the

maximum of the function d ln(N(t)/N0)/dt (see Figure 1C). A quick

comparison with the derivative of the experimental data ensures the

validity of the estimate. We found that Easy Linear gave slightly

different results from the Spline method because the former requires
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the user to specify how many data points to include to analyze the

log-linear part of the growth curve. Note that model-free methods

are likely more accurate than model-based methods for estimating

µmax because the latter type involves more parameters and a data fit.

2.4.1 Relative growth rate estimates from
empirical data

Adkar et a l . (2017) used µmax est imates f rom a

phenomenological Gompertz model to estimate relative fitnesses.

Therefore, this study allowed us to evaluate our concerns about

using µmax for relative fitness estimates. First, we used all

approaches (model-free methods, phenomenological models, and

mechanistic models) to estimate µmax for the wild-type and mutant

strains from this data set. Assuming (erroneously) that µmax was a

proxy for µ, we then calculated the relative fitness. Figure 5D shows

that mechanistic models (circles) estimate more beneficial fitness

values than methods that estimate µmax directly (diamonds for

model-free methods and squares for phenomenological models).

Especially for strains estimated by Adkar et al., 2017 (crosses) to

have especially low fitness, we found a large variation in the fitness

values estimated by different methods.

Next, we used mechanistic models to estimate the intrinsic

growth rate µ for the wild-type and mutant strains from this data set

and subsequently calculated the relative fitness. In Figure 5E, we

compared our estimated values with those published by Adkar et al.

(2017). Again, many models estimate larger fitness values than

those reported in the original study. This is especially pronounced

for samples estimated by Adkar et al., 2017 (crosses) to have

especially low fitness.

The overall conclusion of this section is that estimating relative

fitness using inaccurate estimates of µ likely propagates to the level

of relative fitness and causes large discrepancies between relative

fitness values estimated using different methods. Importantly, these

discrepancies are most pronounced for samples of special interest in

an experiment.

2.4.2 Implications of data re-analysis
Our analysis indicates that choosing the best method to analyze

growth curve data is very difficult. Identifying the ‘right’ model that

best fits all strains/treatments within a data set seems daunting. This

difficulty might explain why such a diversity of methods for

analyzing growth curve data exists, as we found in the literature

review. Interestingly, we saw that most articles only report using

one data analysis method. We suspect that different labs and

researchers have their preferences and habits on how to obtain

growth rate estimates. In the interest of time (and sanity),

researchers may be using the model and method they know best

and for which they have obtained reasonable-looking results rather

than trying out many unfamiliar computational tools.

One clear finding from our re-analysis of published data is that

the Gompertz family of models – both phenomenological and

mechanistic – are usually not the best choice. This point was

previously made by López et al. (2004). We corroborate their

empirical results with mathematical arguments. However, our

literature review showed that the Gompertz models have

remained popular long after López et al.’s study in 2004. We
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recommend that experimenters fit and compare more than one

model when analyzing data. In light of our results, it will be

important to develop one easy-to-use framework that allows for

model choice and comparison, which would easily single out

inappropriate models.

Our results confirmed the finding of (Peleg and Corradini,

2011) that standard statistical techniques for model selection were

often unhelpful (Figures 5B, C): when comparing the fit of different

models to the same data, the goodness-of-fit statistics did not always

select the model that looked best upon visual inspection and/or
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there was not much difference between models in terms of

goodness-of-fit. This corroborates our communications with

empiricists that they are reluctant to use models for fitting their

growth curve data.
3 Recommendations & conclusions

Despite the long-established study of batch culture growth

curve data, estimating growth rates is still not straightforward.
B C

D E

A

FIGURE 5

Analysis of published data-sets (Adkar et al., 2017) shows that estimates differ vastly depending on the method: (A) Maximum growth rate bmmax

estimate for each strain. Each growth curve was analyzed using three different R packages, including both model-free and model-based methods.
The crosses show the values reported in the paper, the circles are obtained by methods based on mechanistic models, the squares by methods
based on phenomenological models, and the diamonds by model-free methods. The model grofit - Logistic (Phe) describes a Logistic model with
lag. (B) Goodness-of-fit measured as the residual sum of squares (RSS) by strain for the phenomenological models. (C) RSS by strain for the
mechanistic models. We include the RSS of phenomenological and mechanistic models in different plots as the scale of the y-axes differs between
these models: phenomenological models operate on a logarithmic scale since y = ln(N/N0) but mechanistic models operate on a linear scale N(t).
Relative fitness: (D, E) Relative fitness estimate bw versus strain. In (D), the relative fitness is computed using µmax whereas in (E), it is computed
using µ.
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Using a literature review, math, simulations, and analysis of

previously published data, our work highlights experimental and

theoretical pitfalls encountered by many researchers who work with

batch monoculture growth curves. We have summarized our

recommendations for better growth rate estimates as a checklist

in Figure 6.
3.1 General recommendations

We urge readers to remember that the intrinsic growth rate µ, a

model parameter estimated from mechanistic models, is not the

same as the maximum growth rate µmax, a summary-statistic

estimated using phenomenological models or by model-free

methods. Although µmax is often used as a proxy for µ, this

assumption is not always justified. In particular, this assumption

can only be justified when small and equal initial population

fractions of the mutant and wild-type strains are used and if the

strains do not exhibit a lag phase.

We recommend that researchers make their raw data and

methods available and reproducible. In particular, this involves

reporting all experimental parameters like inoculum size (for

experiments with a fixed N0) or carrying capacity/density of the

inoculating-culture and the dilution factor (for experiments with a

fixed dilution fraction), and lag time. During our literature review,

we were surprised by the lack of sufficient information on

experimental methods, estimated values, and data availability.
3.2 Experimental recommendations

Good data begins with good experimental methods. In the

absence of a lag phase, the fastest growth rate (both for the

maximum growth rate µmax and for the intrinsic growth rate µ) is

observed at the very start of the growth curve. As we show in
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Figures 3A and 4, estimates of interest can be highly sensitive to the

inoculum size. Also, when a lag phase is suspected, reliable data

from the start of the growth curve is necessary to quantify the lag

time and growth rate. Therefore, we recommend that experimenters

use the smallest inoculation size possible that is still reliably above

the detection threshold. If cell counts are to be approximated using

optical density, then it is imperative that the data be appropriately

calibrated following the recommendations of Hall et al., 2014;

Stevenson et al., 2016; Mira et al., 2022.

For accurate estimation of the relative growth rate, we stress that

the mutant and reference/wild-type strains should start from the same

initial population fraction ( NM
0 =KM = NWT

0 =KWT ; Figure 4), which is

not necessarily the same absolute size. Suppose the strains have the

same carrying capacity (KM =KWT) at the stationary phase. In that case,

it is possible to either dilute the cultures used for inoculation by the

same dilution factor or begin the growth curves at the same absolute

inoculum size ( NM
0 = NWT

0 ). However, if the carrying capacities differ

between strains, then the same absolute inoculum size cannot be used.

We found in our literature review that about half of the papers use a

fixed absolute inoculum size to start their growth curve experiments. In

contrast, the other half uses a fixed dilution factor, usually without

justifying either choice. We recommend that experimenters interested

in calculating relative growth rates use a fixed dilution factor. A pilot

experiment is ideal for predicting the carrying capacities and

corresponding optimal inoculum sizes.

By following these recommendations, monoculture growth

curves can be used to predict relative growth rate/fitness and to

better understand interactions between strains/species. Estimated

growth rates from monocultures can be used to generate a priori

predictions for the outcome of a direct competition (for example,

using mechanistic consumer resource models). Comparison of the

predicted outcome and the observed outcome of competition can

distinguish between interactions due to differences in growth rates

alone as compared to the presence of direct interactions (reviewed

in Picot et al., 2023).
FIGURE 6

A list of recommendations for better growth rate inference from monoculture growth curves.
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3.3 Inference recommendations

Regarding inference methods, our main recommendation is to

try out several different methods on the same data. We recommend

that a computational method be used to estimate the growth rate.

(Manual) Fitting of an exponential model should be avoided

(Table 3), regardless of whether the exponential model is fit

explicitly or implicitly by using the equation R =(log2 N2 − log2
N1)/(t2 − t1).

Model-free computational methods tend to be technically easier

to use than model-based methods, but they can only estimate µmax.

Model-based methods often require more computational

knowledge for fitting, but we still recommend that researchers try

to fit more than one model. For those familiar with the R statistical

programming language, we recommend the growthrates package

because all of the mechanistic models presented in Table 1, as well

as model-free methods for estimating µmax, can easily be fitted with

this package. We recommend that researchers use goodness-of-fit

summary statistics (like the RSS, AIC, etc.) to compare models and

select the best fit. Additional visual inspection of the estimated value

and the data is essential because goodness-of-fit statistics can be

misleading (e.g., Supplementary Figure S6).

Our work explains and demonstrates that and why the

maximum growth rate µmax is different from the intrinsic growth

rate µ, which is a key point to take away and remember from this

paper. We suggest that researchers attempt to estimate µ directly

from their data using mechanistic models. However, we have shown

that using the phenomenological quantity µmax as a proxy for the

model parameter µ can be justified, if certain conditions are met.

We recommend that experimenters decide which makes more sense

for the experimental question at hand and, based on that decision,

select the types of models or model-free approaches to use. If µmax is

to be inferred, model-free methods or fits of phenomenological

models can be used. Model-based methods can either be used to

estimate the maximum growth rate µmax of phenomenological

models or the intrinsic growth rate µ of mechanistic models. We

urge experimenters to refrain from comparing estimates obtained

from mechanistic and phenomenological models because these

different model types estimate different growth rate parameters.

Researchers should know that confusion between the two quantities

is common and that different authors/fields use different naming

conventions. We hope this paper provides readers with the

necessary conceptual understanding to navigate the literature

critically. Finally, we note that only the intrinsic growth rate µ

(and not µmax or the exponential approximation) should be used for

estimating the relative fitness (Figure 4) from monoculture

growth curves.

It is important to verify that the necessary conditions are met

for the inference method(s) to be used. For example, the

exponential approximation should only be used when the

inoculum size is much smaller than the carrying capacity

(N0 ≪ K , e.g., by at least 2 orders of magnitude), only time

points at which the population size remains much smaller than

the carrying capacity are considered (N(t) ≪ K), and the lag time is

very short or absent (e.g., h0 ≪  1 for growth following a Baranyi
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model). Given these restrictive assumptions, rather than

demonstrating that the conditions for the exponential

approximation are met, it may be more feasible for researchers to

directly fit one of the mechanistic models listed in Table 1. Another

approximation that requires justification is the use of µmax as a

proxy for µ. This approximation is only valid for small initial

population fractions (Figure 3) and short (or absent) lag times.

To demonstrate that this is the case, it is essential that

experimenters report the initial population fraction(s) and the lag

time(s) when using µmax as a proxy for µ.

Finally, we recommend that researchers avoid fitting the

Gompertz model for both absolute and relative estimates of µ. In

our study, the mechanistic Gompertz model consistently showed

wrong estimates for simulated data (Figures 3, 4) and unusually

large estimates for empirical data (Figure 5).
4 Methods

4.1 Literature review

We quantified the most frequently used methods of analyzing

growth curve data for extracting summary statistics. In July-

September 2021, we queried Web of Knowledge and Google

Scholar for papers from 1990-2021 using the following search

terms: “Bioscreen C”, “growth curve”, “OD”, “optical density”,

“growth rate”, “batch culture”, or “bacterial OR microbial”. Two

papers (Gullberg et al., 2011; Trindade et al., 2012) were selected

using the former criteria. However, these search terms proved too

vague to yield useful results. Instead, most papers were found

because they cited one of the following growth curve methods

papers, Zwietering et al. (1990); Hall et al. (2014); Sprouffske and

Wagner (2016); or Delaney et al. (2013). The total citations to these

papers were filtered to include only those published in journals

related to evolution, ecology, or evolutionary/ecological

microbiology. The resultant 262 publications were considered for

inclusion in the literature review if they gathered any type of growth

curve data proportional to the number of individuals growing in a

homogeneous, liquid culture and estimated growth parameters

from that data. Papers that quantified binary presence/absence of

growth (e.g., to assay lag time or spore viability), quantified only the

areaunder-the curve (AUC), or investigated biofilms were excluded.

A sample of 48 papers was selected using the latter criteria. From

each paper, we extracted information about whether the method

used to analyze growth curves is explicitly cited or described, what

type(s) of growth curve summary statistic was used, whether a

model-free or model-based approach was used, whether the growth

rate is from a phenomenological or mechanistic approach, which

model(s) were fitted (if no equation is given, then the name of the

model as reported by the author), whether the growth curves were

inoculated from a fixed starting value or the inoculating-culture was

diluted by a fixed dilution factor, and whether the growth curve raw

data is publicly available or, at least, plotted (summarized in Table

S1). For papers where growth curves were inoculated using a

dilution of the inoculating-culture, the dilution factor itself was
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used as an estimator of the dilution fraction. If given, we extracted

the initial dilution factor and any accompanying information about

the inoculum (e.g., length of overnight culture) to indicate whether

the dilution factor is a good proxy for the initial population fraction

(N0/K). For papers where growth curves were inoculated using a

fixed absolute initial population size, we estimated the dilution

fraction only if sufficient information about the inoculum size and

carrying capacity was provided in the methods. Finally, we

categorized different model-free growth rate estimation methods

that were applied ad hoc as either “Easy Linear” if a consistent

method was given for selecting which points to include in the

regression (since this is the main feature of popular model-free

methods like that of Hall et al., 2014), or as “exponential

approximation” if there was no information about which points

were included in the regression or as “spline” if pairs of successive

measurements were used to estimate the local slope of the curve.
4.2 Analyzing 4 published data sets

Data sets appropriate for our analysis were found during our

literature review, and the data was accessed as indicated in

each paper.

We used the following R (version 4.1.1) packages to re-analyze

the data: Growthcurver (version 0.3.1), grofit (version 1.1.1-1), and

growthrates (version 0.8.2). Each of them was downloaded from the

CRAN repository except grofit, which we obtained from Kahm et al.

(2010). Indeed, the latter was found to have been removed from the

CRAN repository. The package Growthcurver is based on the

mechanistic logistic model, whereas grofit includes four

phenomenological models (Logistic, Gompertz, modified

Gompertz, and Richards). The package growthrates provides both

model-free methods (Easy Linear and Spline) as well as methods

based on mechanistic models (Logistic, Gompertz, Richards,

Baranyi, and Huang).

We analyzed 143 population growth curves (31 from Adkar

et al., 2017; 6 from Ram et al., 2019; 66 from Todd and Selmecki,

2020; and 40 from Hammer et al., 2021) using all methods

mentioned above. We focused on the maximum growth rate µmax,

because it is the only quantity common to all models and methods.

Since the mechanistic models are defined based on the intrinsic

growth rate µ, we used Table 1 to calculate the maximum growth

rate µmax from the respective model.

To test the accuracy of the fits obtained by the model-based

methods, we calculated the residual sum of squares (RSS). We used

the definition from López et al. (2004):

RSS   =  o
n

i=1
(ODi −  dODi)

2 :

Here, n is the number of data points, ODi is the ith optical

density value to be estimated and dODi is the ith estimated optical

density value. Since the models have different numbers of

parameters, we also calculated the Akaike’s Information Criterion

(AIC) for the mechanistic models as given in López et al. (2004) and

explained in the Supplementary Methods.
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4.3 Simulations

We generated data representing the dynamics of microbial

populations using a Gillespie algorithm for the mechanistic

Gompertz, Richards and Logistic models (Gillespie, 1976;

Gillespie, 1977). For the Baranyi and Huang models, a modified

Next-Reaction algorithm was required since these models have

time-dependent growth rates (Anderson, 2007). All simulation

code was written in C and is available at https://github.com/

LcMrc/GrowthRates (Zenodo 10.5281/zenodo.6629064). We

detail below the algorithms used.

Gillespie algorithm: Let us denote by N the number of

individuals. The only elementary event that can happen is

division of a microbe, whose rate is denoted by kN→N+1. Let us

note that kN→N+1 = µ log(K/N)N, kN→N+1 = µ(1 − N/K)N and

kN→N+1 = µ(1 − (N/K)b)N for the mechanistic Gompertz, Logistic

and Richards models, respectively. Simulation steps are as follows:
1. Ini t ia l izat ion: The populat ion s tarts f rom N0

microorganisms at time t = 0.

2. Time update: The time increment Dt is sampled randomly

from an exponential distribution with mean 1/kN→N+1 and

the time t is updated such that t ← t + Dt.
3. Number of individuals update: a division occurs and the

population size N increases by one such that N ← N + 1.

4. We go back to Step 2 and iterate until the desired time limit

is reached.
Next-Reaction algorithm: Let us denote by N the number of

individuals. The only elementary event that can happen is division

of a microbe, whose time-dependent rate is denoted by kN→N+1(t).

Let us note that kN→N+1(t) = µeµt(1 − N/K)N/(eh0 − 1 + eµt) and

kN→N+1(t) = µ(1 − N/K)N/(1 + ea(t−t)) for the mechanistic Baranyi

and Huang models, respectively. In the following, we will denote by

P the first firing time and T the internal time.
1. initialization: The population starts fromN0 microorganisms

at time t = 0. The first firing time P is sampled from an

exponential distribution of mean 1 and the internal time T

is set to 0.

2. Time update: The time increment Dt is computed solvingZ t+Dt

t
kN→N+1(u)du  =  P  − T and the time t is updated

such that t ← t + Dt.
3. Number of individuals update: a division occurs and the

population size N increases by one such that N ← N + 1.

4. Internal time update: The internal time T is updated such

that T ← T + DT, where DT =
Z t+Dt

t
kN→N+1(u)du :

5. First firing time update: The first firing time P is updated

such that P ← P + DP, where DP is sampled from an

exponential distribution of mean 1.

6. We go back to Step 2 and iterate until the desired time limit

is reached.
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4.4 Data availability

The authors state that all data necessary for confirming the

conclusions presented in the article are represented fully within the

article or Supplemental Material. Annotated C implementations of

numerical simulations, annotated code to reproduce all

computationally produced graphs, and additional figures and

tables reporting the data re-analysis fits and estimates are

available on Zenodo 10.5281/zenodo.6629064.
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Glossary

carrying capacity: the maximum total population size late in the batch culture
when usable resources have been exhausted

dilution fraction: an empirical estimate of the initial population fraction that is
calculated by dividing the inoculum size by the carrying capacity

initial population fraction, N0/K: a combination of the inoculum size and
carrying capacity mechanistic model parameters

inoculum size, N0: number of cells at the start of the batch culture

intrinsic growth rate, µ: theoretical maximum per capita growth rate that can be
reached in the idealized absence of limitations (e.g., space or resources);
estimated by mechanistic models

lag: earliest phase of batch culture growth before cells increase in number

maximum growth rate, µmax: fastest per capita growth rate actually achieved
during the growth curve; estimated by phenomenological models and “model-
free” methods

mechanistic model: equation(s) that describe the underlying process(es) that
produced the data

phenomenological model: equation(s) that describe the pattern(s) of interest in
the data
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