
Pattern Recognition 144 (2023) 109859

A
0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Graph-based pattern recognition on spectral reduced graphs✩

Anthony Gillioz ∗, Kaspar Riesen
Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern, 3012, Switzerland

A R T I C L E I N F O

Keywords:
Graph matching
Graph classification
Graph reduction

A B S T R A C T

Graph-based pattern recognition – in particular in conjunction with large graphs – is often computationally
expensive. This hampers, or makes it at least challenging, to employ graph-based representations for real-
world data. To address this issue, we propose a method for reducing the size of the underlying graphs to their
most important substructures using spectral graph clustering. The proposed method partitions the nodes of
the graphs into clusters and then merges each cluster into supernodes. The motivation of this procedure is
to reduce the computational cost of any graph comparison algorithm while maintaining the accuracy of the
final classification. To assess the benefits and limitations of our method, we conduct thorough experiments
on nine real-world datasets with different levels of graph reductions. The classification is obtained by four
different graph classifiers (viz. a KNN based on graph edit distance, two SVMs based on a shortest path graph
and a Weisfeiler–Lehman graph kernel, as well as a graph neural network). The results indicate that we can
reduce computation time by up to two orders of magnitude without substantially degrading the classification
accuracy.
1. Introduction

Graphs are one of the most fundamental and powerful data struc-
tures in computer science and are thus often used to model complex
systems or patterns [1,2]. Basically, a graph consists of finite sets of
nodes and edges. The nodes are generally employed to represent the
attributes of the basic entities of a pattern and the edges are used to
represent the relationships between pairs of those basic entities.

Graph matching is a common and essential task in graph-based
pattern recognition [3,4], with applications in many domains (e.g., in
computer vision [5], text processing [6], or bioinformatics [7], to
name three prominent examples). The goal of any graph matching
algorithm is to identify common substructures in the underlying graphs
and derive a similarity or dissimilarity score upon the found matching.
The widespread use of both graphs and graph matching in pattern
recognition motivates the research, development and study of efficient
methods for this task. Several methods have been proposed in the
literature to perform graph matching [3,4]. Noteworthy instances in-
clude the Graph Edit Distance [8], Graph Kernels [9], and Graph Neural
Networks [10].

A major limitation of graph-based pattern recognition is its high
computational cost. Graph edit distance, for instance, is known to
be -complete in its general form, making it unfeasible for large
real-world graphs. Many graph kernels also have rather high time

✩ This material is based upon work supported by the Swiss National Science Foundation (SNSF) under Grant Nr. 200021_188496.
∗ Corresponding author.

E-mail addresses: anthony.gillioz@unibe.ch (A. Gillioz), kaspar.riesen@unibe.ch (K. Riesen).

complexity. To address the computational problems of graph matching,
approximation techniques have been proposed for both graph edit
distance [11] and graph kernels [12].

An alternative approach for improving the efficiency of graph-
based pattern recognition is to work with reduced versions of the
original graphs [13]. This idea is used, for instance, in [14] where the
graphs are decomposed using the Fiedler vector in a hierarchical graph
simplification process. The authors of [15] introduce another graph
reduction technique using centrality measures to select essential nodes.
The resulting graphs substantially improve the computation time in
graph-based pattern recognition scenarios. In [16], a reduction method
is proposed based on a novel spectral coarsening algorithm that uses the
head and tail eigenvalues to obtain a multilevel graph representation.

In the present paper, we propose a novel two-step approach with
the aim of substantially reducing the time required for graph classi-
fication. In a first step, the original graphs are reduced to a given
level using spectral clustering. In a second step, graph matching and
classification is performed on the reduced graphs (using both graph
edit distance in conjunction with a KNN, two graph kernels with an
SVM, and a graph neural network). The main contribution of this
paper is to investigate the effects of this graph reduction process in
a typical graph-based pattern recognition scenario. In particular, we
evaluate the effectiveness of the proposed method by comparing the
vailable online 1 August 2023
031-3203/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.patcog.2023.109859
Received 20 February 2023; Received in revised form 10 July 2023; Accepted 28 J
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

uly 2023

https://www.elsevier.com/locate/pr
http://www.elsevier.com/locate/pr
mailto:anthony.gillioz@unibe.ch
mailto:kaspar.riesen@unibe.ch
https://doi.org/10.1016/j.patcog.2023.109859
https://doi.org/10.1016/j.patcog.2023.109859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109859&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen

i
u
o
a
b
a
n

a
T
t

c

p
e
a
𝐺
L

w
l
𝑓
I
c
g
t
b

2

N
l
b
m
c

m
c

matching time and classification accuracy achieved on the reduced
graphs with the corresponding metrics observed in the original graph
domain. This experimental setup allows us to study the impact of the
proposed spectral graph reduction on graph-based pattern recognition
computation. To the best of our knowledge, this is the first contribution
that is based on spectral graph clustering for reducing the size of a
graph for pattern recognition purposes.

The remainder of the present paper is organized as follows. In
Section 2, we provide a brief overview of the basic definitions of graphs,
graph edit distance, the graph kernels and the graph neural network
actually used. In Section 3, we describe the spectral graph clustering
employed to find the graph partitioning and then introduce the novel
method for graph reduction. In Section 4, we describe the experimental
setup and present the main results of the empirical investigation.
Finally, in the last section, we summarize our findings and suggest
directions for future work.

2. Background

In this section, we formally introduce and review several basic
concepts necessary in our novel framework. In particular, we formally
introduce the concept of a graph in Section 2.1 and then review, in
Sections 2.2, 2.3, and 2.4, the graph matching approaches actually used
in our empirical evaluation.

2.1. Basic graph theory

A graph 𝐺 = (𝑉 ,𝐸) is a tuple of finite sets 𝑉 and 𝐸, where 𝑉 is a
non-empty set of 𝑛 nodes (sometimes called vertices) and 𝐸 ⊆ 𝑉 × 𝑉
s a set of 𝑚 edges. In a simple, undirected graph an edge 𝑒 ∈ 𝐸 is an
nordered pair of distinct nodes (𝑣𝑖, 𝑣𝑗) ∈ 𝑉 ×𝑉 that represents any kind
f relationship that may exist between nodes 𝑣𝑖 and 𝑣𝑗 . The nodes 𝑣𝑖
nd 𝑣𝑗 are also called endpoints of an edge 𝑒 = (𝑣𝑖, 𝑣𝑗), and the adjacency
etween node 𝑣𝑖 and 𝑣𝑗 via edge 𝑒 is denoted by 𝑣𝑖 ∼ 𝑣𝑗 . The degree of
node 𝑣 ∈ 𝑉 (denoted by deg(𝑣)) is the number of incident edges to

ode 𝑣.
An 𝑛-dimensional feature vector 𝐱𝑖 ∈ R𝑛, termed label, might be

ttached to any node 𝑣𝑖 ∈ 𝑉 containing real-valued node attributes.
he same accounts for the edges. In the case that there are labels on
he nodes or edges (or both), one speaks of labeled, or attributed, graphs.

The graph domain = {𝐺(1),… , 𝐺(𝑁)} is defined as a set of 𝑁 graphs
ontained in a given dataset.

A graph 𝐺 = (𝑉 ,𝐸) is termed connected, if there exists at least one
ath connecting every pair of nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 × 𝑉 . Otherwise, if there
xists at least one pair of nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 × 𝑉 that is not connected by
path, graph 𝐺 is referred to as disconnected. The structure of a graph
= (𝑉 ,𝐸) is often encoded by means of the adjacency 𝐀, degree 𝐃, or

aplacian 𝐋 matrix.
Given 𝑁 i.i.d. classified training graphs = {𝐺𝑖, 𝑦𝑖} ⊆ (×),

here represents the graph domain and the corresponding class
abel alphabet. The graph classification task consists of finding a model
∶ → that assigns a class label 𝑦 ∈ to any input graph 𝐺 ∈ .

n this paper, we make use of graph edit distance coupled with a KNN
lassifier, two graph kernels jointly used with an SVM classifier, and a
raph neural network as graph classification model 𝑓 . Hence, we cover
hree of the most commonly used families of graph classifiers, and we
riefly review these concepts in the next three subsections.

.2. Distance-based graph classification

The traditional approach for graph classification is based on the K-
earest Neighbor (KNN) algorithm. The KNN algorithm assigns a class

abel to a new sample based on the majority class of its nearest neigh-
ors in the feature space. As this classifier depends on a dissimilarity
easure only, it is particularly well suited for graph-based pattern
2

lassification.
Dissimilarity measures for graphs are often defined upon graph
atching. Graph matching [3,4] corresponds to the general task of

omparing two graphs 𝐺 = (𝑉 ,𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) with each other
and trying to find similar (sub-)structures in 𝐺 and 𝐺′.

A popular error-tolerant graph matching method is Graph Edit Dis-
tance [8]. Its high flexibility and adaptability allows graph edit distance
to be applied to a wide range of problems [17,18]. One of the major
benefits of graph edit distance, compared to other graph dissimilarity
measures, is that it provides information about how the substructures
of the graphs actually match with each other. To this end, graph edit
distance computes an edit path 𝜆 = {𝑒1,… , 𝑒𝑘} which represents the
𝑘 edit operations actually necessary to transform graph 𝐺 into graph
𝐺′. Three edit operations are commonly employed, namely insertion,
deletion, and substitution which are defined on both nodes and edges.
A cost function 𝑐(𝑒𝑖) associated with each edit operation 𝑒𝑖 is generally
used to formalize the severity of operation 𝑒𝑖. The graph edit distance
GED(𝐺,𝐺′) between two graphs 𝐺 and 𝐺′ is then defined by the overall
cost of the minimum cost edit path between 𝐺 and 𝐺′.

The overall complexity of graph edit distance optimization is known
to be -complete for general graphs [19], which hinders its ap-
plication to large-scale problems. However, many graph edit distance
approximations have been proposed in the last decade [11,20]. Note
that, these sub-optimal algorithms do not guarantee to find the global
minimum edit path. In the present paper, we use a sub-optimal graph
edit distance computation that offers cubic time complexity in the
number of nodes [20].

2.3. Kernel based graph classification

Graph Kernels [9] constitute another prominent family of graph
classification algorithms. Roughly speaking, a graph kernel is a measure
of similarity between graphs that compares their underlying structures.
More formally, a graph kernel is a symmetric, positive semi-definite
function 𝑘 ∶ × → R defined on the graph domain .

The vast majority of graph kernels proposed are instances of so-
called convolution kernels. Given two graphs 𝐺 and 𝐺′, the idea of the
convolution framework is to decompose 𝐺 and 𝐺′ into substructures
and evaluate a kernel between each pair of such substructures. Using a
convolution operation, these similarities are then turned into a kernel
function on the complete graphs. Prominent examples are, for instance,
walk kernels [12], cycle kernels [21], or subgraph kernels [22], to
name just three examples. In the present paper we make use of two
widely applied graph kernels, viz. the shortest path kernel [23] and
the Weisfeiler–Lehman kernel [24] in conjunction with Support Vector
Machines (SVMs).

The main concept of the Shortest-Path Kernel [23] is to derive a
kernel 𝑘SP ∶ × → R based on both attributes and length of the
shortest paths between pairs of nodes (𝑣𝑖, 𝑣𝑗) ∈ 𝑉 × 𝑉 . The similarities
between shortest paths in both graphs 𝐺 and 𝐺′ are then aggregated to
obtain an overall similarity score between 𝐺 and 𝐺′.

The Weisfeiler–Lehman kernel is another popular graph kernel with
efficient classification performance [24]. This kernel works on top of
a well-known graph isomorphism algorithm, namely the Weisfeiler–
Lehman graph isomorphism test. This test consists of an iterative
method that produces a canonical form for each graph. In each iter-
ation, the current feature label 𝑙 of a given node 𝑣𝑖 is aggregated with
the labels of all adjacent nodes and replaced with a new compressed
label.

The Weisfeiler–Lehman graph kernel repeats the above-described
procedure ℎ ≥ 0 times and then compares the final sets of node labels
between the two graphs. The similarity between the node label sets is

then used as a measure of similarity between the graphs.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen

e
t
g
m

2.4. Graph neural network based classification

Graph Neural Networks (GNNs) [10] are a type of deep learning
method that is specifically designed to work with graph-based data. At
a high level, GNNs learn representations for each node in a graph based
on their local neighborhood structure. This is done by propagating
information between neighboring nodes in the graph, in a way that
is similar to how information spreads in a social network. This allows
GNNs to capture important local patterns and relationships in the
graph, while also leveraging the overall structure of the graph to make
predictions.

The typical architecture of a GNN consists of several layers of com-
putation, each of which involves two main steps, viz. message passing
and node updating. In the message-passing step, each node in the graph
sends a message to its neighboring nodes, based on its current feature
representation. These messages are then aggregated and transformed
into a new representation for each node. In the node updating step,
each node combines its new representation with its old representation,
using a neural network to compute a new feature vector. This new
feature vector is then passed on to the next layer in the GNN, or used
for making predictions about the graph.

There are different variations of GNNs available. In the present
paper, we make use of the Deep Graph Convolutional Neural Network
(DGCNN) [25]. This architecture consists of three consecutive stages.
First, graph convolutional layers are used to extract local substructure
features of the nodes and establish a consistent node ordering. Second,
a SortPooling layer arranges the node features in the established order
and standardizes input sizes. Third, traditional convolutional and dense
layers are utilized to process the sorted graph representations and
generate the final classification.

3. Graph reduction method

The major objective of the present paper is to introduce and re-
search a novel method for substantially reducing the size of graphs
while preserving their essential properties. These properties can vary
depending on the specific problem at hand. In this work, we aim to
maintain the classification accuracy achieved on the reduced graphs as
close as possible to the one obtained on the original graphs.

Specifically, given a graph 𝐺 = (𝑉 ,𝐸) with 𝑛 nodes and 𝑚 edges,
we create a reduced graph 𝐺𝜌 = (𝑉𝜌, 𝐸𝜌) with 𝑛𝜌 < 𝑛 nodes and 𝑚𝜌 < 𝑚
edges such that 𝐺𝜌 is a good approximation of 𝐺 in some sense [26].
Parameter 𝜌 ∈ N is a user-defined reduction factor that controls the
extent to which the original graph is reduced. For example, a value of
𝜌 = 2 results in a reduction of the graph size (i.e., the number of nodes)
by approximately 50%. The reduced graph domain 𝜌 = {𝐺(1)

𝜌 ,… , 𝐺(𝑁)
𝜌 }

is obtained from the original graph domain by reducing all graphs
𝐺 ∈ according to the defined reduction procedure.

The aim of the following two subsections is twofold. First, in Sec-
tion 3.1, we elaborate on the principles of spectral graph clustering,
which builds the basis of our reduction method. Second, in Section 3.2,
we demonstrate how one can employ the node partitioning result-
ing from spectral clustering to achieve a substantial and meaningful
reduction of the underlying graphs.

3.1. Graph clustering

Graph Clustering [27] is a technique for dividing the nodes of a graph
into groups, called clusters, such that the nodes within each cluster are
closely related in some pre-defined sense. The clustering of the nodes is
typically based on the underlying structure of the graph so that nodes
belonging to the same cluster must exhibit ‘‘similar behavior’’.

In the present paper, spectral graph clustering [28] is used as
the basis for graph reduction, leveraging key properties of the graph
Laplacian L [29].
3

o

The basic idea behind spectral graph clustering is to compute a
node embedding based on the 𝑘 smallest eigenvectors of the graph
Laplacian matrix (where 𝑘 is the number of clusters). This embedding
ncodes information about the connections between the nodes and can
hus be used to identify clusters of densely connected nodes within the
raph. Once the embedding has been computed, standard clustering
ethods (such as 𝑘-means [30] or others) can be applied to find the

node partitioning of the graph.
For our specific purpose of fast graph reduction, we apply a slight

modification to the standard spectral clustering algorithm to improve
the computational efficiency of the eigendecomposition (line 2). In-
stead of embedding the nodes in a 𝑘-dimensional space, where 𝑘 is
the number of clusters to be identified in the graph, we embed the
nodes in a 𝑑-dimensional space with 𝑑 < 𝑘. This reduction in the
number of dimensions speeds up the computation of the eigenvalues
and eigenvectors, and therefore the overall clustering method. The
value of 𝑑 is treated as a free parameter and is optimized for each
dataset individually.

3.2. Graph reduction

Based on the spectral graph clustering described above, we pro-
pose to coarsen the underlying graphs in a novel graph reduction
approach, which is potentially able to preserve important structural
features of the graphs. We are aware that graph reduction has been
largely investigated in the literature under different formalisms and
different names, such as graph summarization, graph coarsening, and
graph clustering [13,26]. Moreover, connections between graph reduc-
tion and spectral algorithms were also explored in [16,31]. The major
contribution of the present paper is that we thoroughly evaluate the
effects of reduced graphs on a wide range of graph classifiers.

Before applying the spectral graph clustering algorithm, we first
conduct a pre-processing step to all of the graphs in the underlying
dataset. In this pre-processing step, we consider all connected com-
ponents of the graphs as distinct graphs. In other words, in case a
certain graph 𝐺 ∈ consists of more than one connected component,
we individually apply the spectral graph clustering to each connected
component. This pre-processing step turns out to be necessary because
the spectral clustering algorithm may not produce meaningful results
when applied to graphs that consist of more than one connected com-
ponent (due to the multiplicity of zero eigenvalues, which can result in
problematic node embeddings).

The basic idea of the proposed graph reduction approach is to
condense the nodes of one cluster into supernodes and simplify the
edge structure between these supernodes. To create the supernodes, we
first obtain the graph partitioning by means of the spectral clustering
algorithm and then condense all the nodes in a given partition into a
single entity without considering the intra-cluster edges. The compu-
tation of the feature vector attached to the supernode is achieved by
summing up the 𝑛 feature vectors 𝐱1,… , 𝐱𝑛 of the 𝑛 nodes that belong to
the same cluster.1 This process effectively reduces the size of the graph
by replacing multiple nodes with a single supernode. Additionally,
we condense all inter-cluster edges into a single edge between two
corresponding supernodes in order to simplify the edge structure while
preserving the connections between the clusters.

In Fig. 1, we illustrate how our supernode creation process operates.
In this example, we show two levels of reduction, with 𝜌 = 2 and
𝜌 = 4, and how nodes are merged at each level once the node clustering
is determined. The clusterings obtained with 𝜌 = 2 and 𝜌 = 4 are
represented by blue and red circles, respectively. In the reduced graphs
𝐺𝜌=2 and 𝐺𝜌=4, the node feature vectors correspond to the sum of the
feature vectors of the nodes belonging to the blue and red clusters,
respectively. Note also how the inter-cluster edges are simplified during
the reduction process.

1 Note that other, in particular more elaborated, methods for the labeling
f supernodes could be defined — see future work in Section 5.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
Fig. 1. Example of the supernode creation process. We show parts of the original graph 𝐺 in (a) and two corresponding graph reductions in (b) and (c) with 𝜌 = 2 and 𝜌 = 4,
respectively.
Fig. 2. Two examples of the graph reduction algorithm on two different graphs (a) and (b) from the NCI1 dataset using two reduction factors 𝜌 = 2 and 𝜌 = 4. Each color
corresponds to a cluster in the original graph and the corresponding color in the reduced graph represents the condensation of all nodes in the respective cluster into a supernode.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In our reduction scheme, the number of clusters 𝑘 corresponds to
the number of supernodes obtained upon merging the nodes (and vice
versa). Hence, value 𝑘 determines the size of the reduced graph that is
finally created. The number of nodes in each cluster is proportional to
the reduction factor 𝜌, which specifies the amount by which the size of
a graph must be divided to obtain the desired reduction. In particular,
the number of clusters can be calculated as 𝑘 = |𝑉 |

𝜌 , where |𝑉 | is the
total number of nodes in the graph. For example, if we have a graph
with |𝑉 | = 1000 nodes and a reduction factor of 𝜌 = 2, the size of the
graph would be reduced by a factor of two, resulting in 𝑘 = 1000

2 = 500
clusters.

In Fig. 2, we provide two real-world examples that illustrate the
graph reduction process. We use graphs from the NCI1 dataset (see
Section 4.1 for details on this particular dataset). We apply a graph
reduction with parameters 𝜌 = 2 and 𝜌 = 4. As can be seen in the
figure, both clustering and reduction reflect the communities present
in the graphs. In the original graphs, each cluster found is represented
by a unique color, and in the reduced graphs, the color corresponds to
the reduction of nodes within that cluster into a single supernode. An
interesting aspect of spectral partitioning is that it might produce un-
equally sized clusters, with some clusters containing only a single node
while others containing multiple nodes. This behavior is noteworthy
because we typically want to keep the main communities within the
same cluster.
4

4. Experimental evaluation

This section is organized as follows. First, in Section 4.1, we briefly
outline the datasets used in our evaluation. Next, in Section 4.2, we
summarize the experimental setup. In Section 4.3, we present the major
results obtained on the datasets, and finally, in Section 4.4, we present
a qualitative evaluation of the effects of the proposed reduction.

4.1. Datasets

We conduct empirical evaluations of the novel reduction approach
using nine datasets from the TUDataset graph repository [32]. Table 1
provides details on the number of graphs, and classes, as well as the
average, minimum, and maximum number of nodes and edges per
graph for each dataset.

The first six datasets (BZR, DHFR, Enzymes, Mutagenicity, NCI1,
and NCI109) are composed of graphs that represent real-world
molecules and their potential effects or activities. The BZR dataset con-
sists of graphs that represent ligands for the benzodiazepine receptor,
while the DHFR dataset contains inhibitors of dihydrofolate reductase.
The Enzymes dataset is divided into six classes and includes graphs that
encode protein structure elements. The Mutagenicity dataset includes
graphs representing chemical compounds and their potential to cause
mutation. The NCI1 and NCI109 datasets, which are sourced from
the National Cancer Institute, consist of graphs representing molecular
compounds and their ability to inhibit the growth of cancerous or non-
cancerous cells. The last three datasets (COLLAB, REDDIT-MULTI-5K,

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen

(

c
w
g

H
c
t

4

d
f
g
T
o

r

t
𝛼
o
e
g
f

i
W

l
o
w
m
e

p
m
S
o
c
m
a
t

s
d
i

4

Table 1
Statistics of the graph datasets. We show the number of graphs (|𝐺|), the number of
classes (|𝛺|), and the average (∅|𝑉 |, ∅|𝐸|), minimum (min |𝑉 |, min |𝐸|), and maximum
max |𝑉 |, max |𝐸|) number of nodes and edges per dataset.
Dataset ∅ min max

|𝐺| |𝛺| |𝑉 | |𝐸| |𝑉 | |𝐸| |𝑉 | |𝐸|

BZR 405 2 35.7 38.4 13 13 57 60
DHFR 467 2 42.4 44.5 20 21 71 73
Enzymes 600 6 32.6 62.1 2 1 126 149
Mutagenicity 4,337 2 30.3 30.8 4 3 417 112
NCI1 4,110 2 29.9 32.3 3 2 111 119
NCI109 4,127 2 29.7 32.1 4 3 111 119
COLLAB 5,000 3 74.5 2,457.8 32 60 492 40,119
REDDIT-MULTI-5K 4,999 5 508.5 594.9 22 21 3,648 4,783
REDDIT-MULTI-12K 11,929 11 391.4 456.9 2 1 3,782 5,171

and REDDIT-MULTI-12K) contain graphs that represent different social
media networks. COLLAB, for instance, consists of graphs that represent
the collaboration networks of researchers from various fields of physics.
Each graph in this dataset is labeled with one of three fields of the
corresponding researcher. The REDDIT-MULTI-5K and REDDIT-MULTI-
12K datasets consist of graphs that represent discussions from various
subreddits, labeled with the subreddit it belongs to.

Table 1 reveals that on most of the graph datasets, the number of
nodes are quite similar to the number of edges. This implies that the
graphs are sparse, which is positive in our scenario. Spectral graph
clustering is particularly efficient on sparse graphs because it involves
computing the eigendecomposition of the Laplacian matrix L (which is
computationally efficient on sparse matrices).

We are aware that there are numerous additional datasets available
in the TUDataset graph repository that could potentially be used in
our evaluation. However, rather simple baseline approaches, such as
global sum pooling of node features, which reduce graphs to a single
feature vector (completely neglecting the edge structure), perform very
well and even outperform elaborated graph kernels in some cases [33].
Therefore, we only use datasets in our analysis for which the clas-
sification accuracy using this naïve baseline approach is lower than
the accuracy obtained by an SVM using a 4-Weisfeiler–Lehman kernel
(i.e., a Weisfeiler–Lehman kernel with ℎ = 4).2

An interesting question is whether or not the graph reduction pro-
ess has a substantial influence on the graph density. To find this out,
e show in Table 2 the average graph density for both the original
raphs and reduced graphs (with reduction levels of 𝜌 = 4 and 𝜌 = 16).

We observe that the original graphs are generally sparse (except the
COLLAB dataset where a mean density of 0.51 is observed). On the
other datasets, the mean densities range from 0.01 (on REDDIT-MULTI-
5K) to 0.16 (on Enzymes). We observe a trend towards increasing graph
densities as the reduction factor is increased. On some data sets the
increase in density is substantial. For instance, on BZR the density is
increased from 0.06 to 0.27 and 0.70 for 𝜌 = 4 and 𝜌 = 16, respectively.

owever, it is also observed that even with the strongest reduction,
omplete graphs are not obtained (the highest density is obtained on
he DFHR data with 0.81).

.2. Experimental setup

For each dataset described in the previous subsection, we create re-
uced graph domains 𝜌 by reducing the original graphs with reduction
actors 𝜌 ∈ {2, 4, 8, 16}. These reduction factors lead to slightly reduced
raphs (when 𝜌 = 2) to quite strongly reduced graphs (when 𝜌 = 16).
he reduction process is not applied on graphs that have a number
f nodes |𝑉 | already smaller than, or equal to, 𝜌. For each reduction

2 We report the results of this naïve baseline approach together with the
esults of the novel method in Section 4.3.
5

Table 2
Mean of the graph densities of the original graphs and their reduced counterparts (for
𝜌 = 4 and 𝜌 = 16) for all datasets.

Dataset Original 𝜌 = 4 𝜌 = 16

BZR 0.06 0.27 0.70
DHFR 0.05 0.21 0.81
Enzymes 0.16 0.32 0.57
Mutagenicity 0.09 0.37 0.50
NCI1 0.09 0.33 0.50
NCI109 0.09 0.34 0.49
COLLAB 0.51 0.54 0.79
REDDIT-MULTI-5K 0.01 0.04 0.15
REDDIT-MULTI-12K 0.02 0.08 0.21

factor 𝜌, we generate reduced graphs using different dimensions for
node embedding during spectral clustering. That is, the dimension of
the node embedding space is varied in 𝑑 ∈ {2, 3, 4, 5, 8}. Note that 𝑑 is
treated as an additional free hyperparameter and is chosen during the
optimization phase.

For each experiment, we produce stratified splits of the datasets
into training, validation, and test sets using a 60%, 20%, and 20%
split size, respectively. For each dataset, we optimize the classifiers
and hyperparameters five times with different data splits and random
initialization by means of the validation sets. Finally, the mean and
standard deviation of the classification results for the five runs obtained
on the test sets are reported.

For the computation of graph edit distance, we use unit costs for
both node and edge insertions/deletions. To calculate the node substi-
tution cost 𝑐(𝑢𝑖 → 𝑣𝑖), we utilize the Euclidean distance between the
node features 𝐱𝑖 and 𝐱𝑗 , respectively, with a cost limit of 2.0. Formally,
the substitution cost is 𝑐(𝑢𝑖 → 𝑣𝑖) = min(‖𝐱𝑖 − 𝐱𝑗‖, 2.0).

This definition ensures that the substitution cost is never greater
han the sum of cost of a deletion and a subsequent insertion. Parameter
∈]0, 1[represents the relative importance of node and edge edit

peration costs and is varied from 0.1 to 0.9 in increments of 0.1 in our
valuation (with the exception of both REDDIT datasets on the original
raphs and REDDIT-MULTI-12K with reduction level 𝜌 = 2. Here, 𝛼 is
ixed to 0.5 due to the high computational cost).

The only parameter that needs to be optimized for the KNN classifier
s the number of neighbors 𝑘 considered in the classification process.

e optimize this parameter in the range 𝑘 ∈ {3, 5, 7}. For the SVM
we optimize parameter 𝐶 ∈ 10{−2.0,−1.5,…,2.0}, which serves as a regu-
arization parameter to control the trade-off between the requirements
f large margins and few misclassifications. In other words, 𝐶 controls
hat is more important, the minimization of the structural risk or the
inimization of the empirical risk. For the training process of the GNN

xperiments, we use the hyperparameters as proposed in [25].
The experimental evaluation is divided into two parts. In the first

art, described in Section 4.3, we evaluate the classification perfor-
ance of the four graph classification algorithms reviewed in Sections

ection 2.2, 2.3, and 2.4. By comparing the classification accuracy
f these four systems on both the original graphs and the reduced
ounterparts we can examine the power of the proposed reduction
echanism. We also compare the runtime of the matching and kernel

lgorithms on both the original and reduced graphs in order to observe
he time gain attributable to our novel approach.

In the second part of the evaluation, in Section 4.4, we present
catter plots that visualize the correlations between the similarity/
issimilarity values obtained on the original graphs and the similar-
ty/dissimilarity values obtained on the reduced graphs.

.3. Classification accuracy and computation time
In this subsection, we address the following two research questions:

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
Fig. 3. Graph classification accuracies for all datasets and all reduction levels using GED (Graph Edit Distance and KNN), SP (Shortest Path Kernel and SVM), 4-WL (4-Weisfeiler–
Lehman Kernel and SVM), and GNN (DGCNN graph neural network), including the corresponding reference systems that rely on the original graphs (𝜌 = 1). The black horizontal
lines represent the results obtained with the baseline, where all the graphs are reduced to a single feature vector.
Q.1. Does the proposed reduction lead to graphs on which a signif-
icant decline in classification accuracy is observed (compared
to using the original graphs)? Are there substantial differences
among the four classifiers employed on the reduced graphs?

Q.2. How large is the runtime improvement that can be achieved by
performing graph classification on the reduced rather than on
the original graphs?

In order to answer question Q.1, we present the classification
accuracies for each reduced graph domain across all datasets and all
classifiers in Fig. 3. Additionally, in each figure, the black horizontal
lines represent the results obtained with the baseline where all graphs
are reduced to a single feature vector by means of a global sum pooling.
The classification of these vectors is then performed with an SVM
based on a RBF kernel. Overall, we observe a general, yet relatively
slight, decrease in classification accuracy as the size of the graphs is
reduced. However, the classification accuracy remains relatively stable
even with strongly reduced graphs. This is particularly noteworthy as it
indicates that the reduced graphs still retain sufficient information for
accurate classification. For example, the classification accuracies of the
KNN using graph edit distance obtained on the datasets BZR, DHFR,
MUTAGENICITY, NCI1, and NCI109 remain relatively consistent even
with strongly reduced graphs. This observation is also valid for the two
kernel classifiers. However, on some datasets, we also observe rather
strong reductions of the classification accuracies — in particular when
strong graph reductions are applied (see for instance the ENZYMES
dataset where the accuracy drop is clearly visible for all classifiers).

Note that on some datasets – especially on the unlabeled datasets
REDDIT-MULTI-5K and REDDIT-MULTI-12K – we can actually improve
6

the classification accuracy when the classification is performed on the
reduced rather than the original graphs. This phenomenon might be
attributed to the fact that we fixed parameter 𝛼 to 0.5 for the reference
system (with 𝜌 = 1) in order to avoid computational expenses and thus
the results shown here are somehow sub-optimal.

In general, we observe that the black horizontal line, representing
the results obtained with the baseline where all graphs are reduced to
a single feature vector, is only crossed when the graphs are strongly
reduced (with reduction levels of 𝜌 = 8 or 𝜌 = 16). However, on the
DHFR dataset and both REDDIT datasets, we observe that even for the
original graphs and slightly reduced graphs with 𝜌 = 2 and 𝜌 = 4,
the accuracies obtained with GNN and GED, struggle to surpass the
accuracy of the naïve baseline. This indicates that neither GNN nor GED
are well-suited methods for solving those tasks.

Overall the results suggest that our approach is effective in im-
proving the accuracy of pattern recognition systems based on graph
representations, although, there may be some instances where the
baseline outperforms the novel approach (particularly for graphs that
have undergone significant reduction).

To provide a more precise analysis of the relative differences among
the different systems, we present the classification accuracies for all
datasets, classification methods, and reduction levels in Table 3. This
table allows us to compare the number of instances where the classi-
fication accuracy achieved on the reduced graphs is statistically sig-
nificantly worse than the accuracy achieved on the original graphs.
We employ a t-test using the classification accuracy of the five runs
to determine if there is a statistically significant difference in accuracy
between the reference system and the systems that use the reduced
graphs.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen

p
l
o
a
𝜌
a
r
s
g
w

r
e
t
u
s
W
s
w
t
c
w
b
L
i

Table 3
Classification accuracies obtained by all classifiers, viz. a KNN using graph edit distance (GED), as well as the
shortest path graph kernel (SP), the 4-Weisfeiler–Lehman graph kernel (4-WL) in conjunction with an SVM and
the DGCNN graph neural network (GNN). We present results on all datasets and reduction levels, i.e., Ref. System
(𝜌 = 1) and 𝜌 ∈ {2, 4, 8, 16}. Using symbols ◦/∙, we indicate results that are statistically significantly better or worse
than those achieved with the reference system, respectively.
Dataset Classifier Ref. System 𝜌 = 2 𝜌 = 4 𝜌 = 8 𝜌 = 16

BZR GED 86.9 ± 4.0 84.4 ± 5.4 84.0 ± 6.1 82.2 ± 3.5 80.2 ± 5.5
SP 85.2 ± 3.7 86.7 ± 3.3 80.2 ± 3.7 82.2 ± 3.5 81.0 ± 3.5
4-WL 87.9 ± 1.6 83.7 ± 3.0∙ 82.5 ± 2.7∙ 80.7 ± 2.8∙ 79.5 ± 3.2∙
GNN 81.3 ± 0.8 82.7 ± 1.0 83.3 ± 0.5◦ 83.8 ± 0.7◦ 82.6 ± 0.7◦

DHFR GED 77.7 ± 1.0 76.8 ± 2.4 73.8 ± 3.1∙ 74.8 ± 1.1∙ 77.9 ± 3.4
SP 76.6 ± 3.1 74.6 ± 1.9 75.5 ± 3.9 74.3 ± 2.9 70.5 ± 3.3∙
4-WL 81.6 ± 2.9 78.7 ± 2.0 77.0 ± 1.8∙ 74.3 ± 2.8∙ 77.1 ± 2.8∙
GNN 68.0 ± 1.4 68.5 ± 1.1 68.5 ± 1.1 67.0 ± 0.5 63.8 ± 0.7∙

ENZYMES GED 43.5 ± 5.5 41.3 ± 3.1 38.0 ± 3.9 33.7 ± 3.6 34.2 ± 5.1
SP 41.8 ± 4.0 37.2 ± 1.9 32.5 ± 2.4∙ 30.0 ± 2.8∙ 21.5 ± 2.7∙
4-WL 51.0 ± 3.5 41.0 ± 3.9∙ 37.8 ± 4.3∙ 31.3 ± 2.9∙ 27.2 ± 1.9∙
GNN 37.5 ± 1.6 37.9 ± 1.6 34.6 ± 0.4∙ 31.8 ± 1.1∙ 27.9 ± 0.5∙

MUTAGENICITY GED 74.5 ± 1.6 74.7 ± 1.7 74.5 ± 1.2 71.6 ± 1.5∙ 70.5 ± 1.4∙
SP 79.0 ± 1.2 75.4 ± 1.5∙ 75.1 ± 1.5∙ 68.7 ± 1.3∙ 58.5 ± 1.4∙
4-WL 83.5 ± 1.3 78.2 ± 1.1∙ 77.8 ± 1.2∙ 73.2 ± 1.2∙ 69.9 ± 1.4∙
GNN 75.6 ± 0.6 74.3 ± 0.3∙ 74.1 ± 0.4∙ 73.3 ± 0.2∙ 72.8 ± 0.2∙

NCI1 GED 73.3 ± 1.1 74.7 ± 1.4 73.3 ± 0.9 72.1 ± 0.9∙ 68.2 ± 1.6∙
SP 74.3 ± 1.0 75.9 ± 0.9 74.7 ± 1.3 69.8 ± 0.9∙ 57.9 ± 1.2∙
4-WL 85.8 ± 1.1 80.3 ± 1.1∙ 77.4 ± 0.5∙ 73.5 ± 1.1∙ 68.8 ± 1.2∙
GNN 70.9 ± 0.9 70.8 ± 0.7 69.4 ± 0.4∙ 69.0 ± 0.2∙ 67.1 ± 0.3∙

NCI109 GED 73.5 ± 2.1 72.4 ± 1.3 73.5 ± 2.3 70.6 ± 0.9∙ 66.5 ± 0.7∙
SP 73.0 ± 0.8 75.5 ± 1.5◦ 74.2 ± 2.0 70.1 ± 1.5∙ 57.7 ± 1.9∙
4-WL 86.2 ± 1.3 80.6 ± 1.0∙ 77.2 ± 1.9∙ 72.3 ± 0.8∙ 68.3 ± 1.3∙
GNN 69.9 ± 0.8 69.4 ± 0.5 68.0 ± 0.4∙ 67.1 ± 0.2∙ 66.8 ± 0.1∙

COLLAB GED 69.9 ± 1.2 66.3 ± 1.6∙ 65.2 ± 1.3∙ 65.1 ± 1.8∙ 61.9 ± 2.2∙
SP 67.8 ± 1.7 69.2 ± 1.0 69.6 ± 1.0 64.7 ± 2.2∙ 63.0 ± 1.9∙
4-WL 77.6 ± 0.5 70.6 ± 1.6∙ 70.4 ± 1.7∙ 67.2 ± 2.1∙ 63.8 ± 2.0∙
GNN 57.3 ± 0.3 65.9 ± 0.4◦ 65.4 ± 0.2◦ 62.2 ± 0.5◦ 58.8 ± 0.1◦

REDDIT-MULTI-5K GED 24.9 ± 1.1 38.3 ± 1.7◦ 38.1 ± 1.2◦ 34.2 ± 1.9◦ 31.1 ± 2.1◦
SP 41.2 ± 0.9 42.5 ± 0.5◦ 43.4 ± 1.8◦ 41.9 ± 1.6 40.0 ± 0.8∙
4-WL 52.3 ± 1.1 52.9 ± 1.2 49.5 ± 0.9∙ 47.8 ± 1.0∙ 45.2 ± 0.9∙
GNN 39.9 ± 0.2 43.2 ± 0.3◦ 46.8 ± 0.3◦ 45.4 ± 0.4◦ 42.3 ± 0.7◦

REDDIT-MULTI-12K GED 15.3 ± 0.7 14.1 ± 0.5∙ 24.3 ± 1.2◦ 21.8 ± 1.6◦ 21.0 ± 1.7◦
SP 33.8 ± 0.4 32.4 ± 0.7 32.1 ± 0.8 29.5 ± 0.9∙ 27.5 ± 0.2∙
4-WL 37.0 ± 0.8 37.0 ± 1.2 35.1 ± 0.7i∙ 32.5 ± 0.4∙ 29.2 ± 0.4∙
GNN 27.9 ± 0.9 32.3 ± 0.3◦ 32.4 ± 0.3◦ 31.2 ± 0.4◦ 28.6 ± 0.4
r

W

a
n

We first analyze the effects of the different reduction levels by com-
aring all datasets and classifiers simultaneously. When the reduction
evels are small, we observe no statistically significant difference to the
riginal graphs in 26 out of 36 cases and 19 out of 36 cases for 𝜌 = 2
nd 𝜌 = 4, respectively. However, as the reduction levels increase to
= 8 and 𝜌 = 16, the results degrade and we find that only 12 out of 36
nd 9 out of 36 cases are statistically equivalent to the original system,
espectively. These observations, together with the insights from Fig. 3,
uggest that it is possible to obtain reasonable results on the reduced
raphs, but that it is considerably more difficult to do so (especially
ith strongly reduced graphs).

Next, we compare the four different classifiers for all datasets and
eduction levels simultaneously. We observe that when using graph
dit distance, we obtain results that are statistically equivalent to
hose obtained on the original graphs in 23 out of 36 cases. When
sing the graph neural network (DGCNN), we obtain results that are
tatistically equivalent to the original system also in 22 out of 36 cases.
hen using the shortest path graph kernel, we obtain results that are

tatistically equivalent to the original system in 19 out of 36 cases,
hen using the 4-Weisfeiler–Lehman graph kernel, we obtain results

hat are statistically equivalent in only 3 out of 36 cases. This analysis
learly shows that the 4-Weisfeiler–Lehman graph kernel does not cope
ell with the reduced graphs. One possible explanation for these rather
ad results is that the similarity matrix obtained with the 4-Weisfeiler–
ehman kernel on the reduced graphs tends to shrink towards zero, as
t will be explained in further detail in the following subsection.
7

t

To investigate the potential of the proposed graph reduction with
espect to computation time, that is answering question Q.2, we present

the runtimes of all classifiers3 and reduction levels. In particular, Fig. 4
illustrates the average runtime, calculated over five runs for all datasets
and classification methods.

In summary, our method demonstrates a clear improvement in run-
time for all tested configurations. Already with the first reduction level
(i.e., 𝜌 = 2), the results indicate a substantial decrease in computation
time. That is, we observe an average reduction of the total runtime of
about a factor of two for all datasets and classifiers. As the reduction
factor is increased, we further observe a consistent decrease in runtime.
When the graphs are strongly reduced (with 𝜌 = 16), we see a reduction
in the runtime of approximately an order of magnitude on all datasets
and classification methods. This improvement is even more pronounced
for the large graphs stemming from the REDDIT datasets, where we see
a reduction of two orders of magnitude.

In general, we observe that computationally demanding classifiers
(i.e., graph edit distance and the shortest path kernel) benefit to a
greater extent from using the reduced graphs. However, also the 4-

eisfeiler–Lehman kernel, which is computationally more efficient

3 We omit the analysis of the runtime achieved using the GNN classifier,
s the classification runtime is negligible once the GNN has been trained, and
o clear difference appears in the runtime between the reference system and
he systems that operate on the reduced graphs.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
Fig. 4. Runtime in seconds on a logarithmic scale for all reduction levels and all datasets using all three classification systems, viz. a KNN using graph edit distance (GED), as
well as the shortest path graph kernel (SP) and the 4-Weisfeiler–Lehman graph kernel (4-WL) in conjunction with an SVM.
than both graph edit distance and shortest path kernel, shows clear
improvements through the use of reduced graphs. It is worth noting
that these reductions in runtime are achieved while maintaining, or
even improving, the classification accuracy (as we have seen before).

4.4. Similarity/dissimilarity quality measure

Graph edit distance and graph kernels are often used in conjunction
with distance-based classifiers and SVMs, respectively. Thus, it is im-
portant to determine whether the similarities/dissimilarities obtained
on reduced graphs are reliable. To validate this, we visually compare
the similarities/dissimilarities obtained on the original graphs to those
obtained in the reduced graph domains using scatter plots (see Fig. 5).
Each point in these plots represents a similarity/dissimilarity in the
original graph domain (𝑥-axis) and the corresponding distance on the
reduced graph (𝑦-axis). The Pearson Correlation Coefficient (PCC) is
also shown to indicate the linear correlation between the distances
obtained on the original and reduced graphs. The black diagonal rep-
resents the one-to-one correspondence between reduced and original
graphs. Due to the lack of space, we show results on two datasets only
(BZR and NCI1). Note, however, that similar behavior is observed for
the other datasets as well.

The graph edit distances obtained in the original graph domain and
in the reduced ones appear to be quite correlated. In general, when the
distance between two graphs is large in the original domain, it is also
relatively large in the reduced domain. Conversely, when the distance
is small in the original graph domain, it is also small in the reduced
graph domain. Yet, the similarities obtained with both graph kernels
are reduced when performed on the weakly reduced graphs (i.e., with
𝜌 = 2) and shrink towards zero when the graphs are strongly reduced.
8

Overall, we observe that graph edit distances on the reduced graphs
retain a coherent correlation and are still suitable for classification,
while it may be more difficult to utilize the graph kernel similarities,
as they tend to approach zero when the graphs are reduced in their
sizes. This accounts for the lower classification accuracy obtained with
the reduced graphs, as compared to the original graphs, for both graph
kernels.

Upon deeper analysis, we observe that diverse graph similarities/
dissimilarities in the original graph domain are mapped to the same
value in the reduction space. The large number of equal similarities/dis-
similarities between different pairs of graphs makes it difficult to
discern any pattern in the data. Thus, it is no longer possible to extract
trends from the intra-class similarities or dissimilarities (shown with
red dots) and inter-class similarities/dissimilarities (shown with blue
dots).

In Table 4, we show the PCCs between similarities/dissimilarities
obtained in the original and reduced graph domain (we show the corre-
lations between the original domain and two reduction levels only (𝜌 =
2 and 𝜌 = 16)). As already seen in Fig. 5, the PCCs of graph edit distance
remain stable when the graphs are strongly reduced. However, the PCCs
tend to decrease when the reduction is increased and approaches zero
when using both graph kernels. This trend is consistently visible across
all labeled datasets. Yet, on the three unlabeled datasets (i.e., COLLAB,
and both REDDIT datasets), we observe that the PCCs remain stable
when the reduction is increased. This stability is actually also visible in
the corresponding scatter plots. In Fig. 6, for instance, we show as an
example a comparison of the Weisfeiler–Lehman kernel similarities in
the original and in the reduced graph domain on the COLLAB dataset.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
Fig. 5. Comparison of pairwise similarities/dissimilarities between graphs in the original and the reduced graph domains for both BZR and NCI109 datasets. Three classification
systems are used to make the comparison including a KNN using graph edit distance (GED), as well as the shortest path graph kernel (SP), and the 4-Weisfeiler–Lehman graph
kernel (4-WL) combined with an SVM.
5. Conclusions and future work

Graphs are powerful and flexible data structures and are thus widely
used as representation formalism in pattern recognition and related
fields. A prominent task in graph-based pattern recognition is graph
classification. In order to tackle this particular task, many algorithms,
such as the combination of graph edit distance with a KNN or the
use of graph kernels with SVMs, have been proposed. However, it is
generally admitted that these standard algorithms are computationally
expensive, hindering their application on problems where large graphs
are required. Throughout the years, various sub-optimal approxima-
tions have been proposed to speed up the computation time of those
methods. Also, the use of size-reduced graphs has been proposed as a
possible solution to the high complexity of algorithms expecting graphs
as input.

In the present paper, we propose and research spectral graph clus-
tering as the basis for a novel graph reduction framework. In particular,
9

we use spectral graph clustering to first partition the nodes of a graph
and then condense each partition of the nodes into supernodes. The
benefit of this reduction process is that it can efficiently discover sig-
nificant communities in the underlying graphs, thus offering accurate
clusters for reducing the graphs to their most significant structures.

The proposed procedure to reduce the size of the graphs can be
easily controlled by a parameter that defines the size of the resulting
graphs (basically by the number of clusters to be found in the graph).
The general goal of the proposed reduction framework is to speed
up the computation of standard graph classification algorithms while
maintaining satisfactory classification accuracy. In order to demon-
strate the effectiveness of the proposed graph reduction technique, we
compare the classification accuracy as well as the computation time on
the original and reduced graphs with four different classifiers (graph
edit distance with a KNN as well as shortest path, 4-Weisfeiler–Lehman
kernel with SVMs, and graph neural network).

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
Fig. 6. Comparison of pairwise similarities, obtained with the 4-Weisfeiler–Lehman graph kernel, between the original graphs and their reduced counterparts (with 𝜌 = 2 and
𝜌 = 16) for the COLLAB dataset.
Table 4
Pearson correlation coefficient (PCC) between similarities (i.e., shortest path (SP) and
the 4-Weisfeiler–Lehman graph kernel (4-WL))/dissimilarities (i.e., graph edit distance
(GED)) obtained in the original and reduced graph domain on all datasets. We show the
correlations between the original domain and two reduction levels (𝜌 = 2 and 𝜌 = 16).

GED SP 4-WL

Dataset 𝜌 = 2 𝜌 = 16 𝜌 = 2 𝜌 = 16 𝜌 = 2 𝜌 = 16

BZR 0.70 0.46 0.74 0.06 0.70 0.14
DHFR 0.67 0.71 0.69 0.09 0.76 0.11
ENZYMES 0.91 0.79 0.84 0.02 0.87 0.03
MUTAGENICITY 0.90 0.82 0.87 0.05 0.86 0.04
NCI1 0.97 0.90 0.89 0.07 0.92 0.03
NCI109 0.96 0.88 0.88 0.11 0.92 0.04
COLLAB 0.80 0.90 0.77 0.73 0.91 0.89
REDDIT-MULTI-5K 0.95 0.99 0.94 0.93 0.96 0.91
REDDIT-MULTI-12K 0.94 0.99 0.92 0.90 0.93 0.92

We conduct a comprehensive experimental evaluation on nine real-
world graph datasets. Our experimental evaluation shows that while
the classification accuracy decreases with the use of reduced graphs in
general, the resulting accuracies are still comparable to those obtained
with the original-sized graphs. In more detail, we are able to draw the
following conclusions regarding the classification accuracy.

1. We find that the use of graph edit distance in conjunction with
a KNN on reduced graphs achieves comparable classification
accuracies to that of the original graphs in the majority of the
cases.

2. We also show that the shortest path kernel works quite well on
the weakly reduced graphs (i.e., 𝜌 ∈ {2, 4}), as the classification
accuracy remains statistically similar to those achieved with the
reference system on the majority of datasets.

3. The reduced graphs have the least beneficial effect when used
in conjunction with the 4-Weisfeiler–Lehman kernel, as the clas-
sification accuracy drops statistically significantly for almost all
the reduction levels and datasets.

4. We observe that graph edit distances obtained in the original
and the reduced graph domain remain in the same order of
magnitude, while the similarities (obtained with the shortest
path and the 4-Weisfeiler–Lehman graph kernel) shrink towards
zero as the reduction level is increased.

The empirical evaluation also shows a significant decrease in com-
putation time across all datasets and graph classifiers. That is, we
observe a reduction of the runtime of about a factor of two when
using weakly reduced graphs (i.e., 𝜌 = 2) and at least one order of
magnitude (and in some cases more than two orders of magnitude)
10
when the graphs are strongly reduced (i.e., 𝜌 = 16). These empirical
results suggest that our approach may provide significant time savings
compared to existing methods, which could be particularly useful in
contexts where the time required for classification is a major limiting
factor.

Regarding future research activities, we see several rewarding av-
enues to be pursued. Currently, the process of aggregating nodes of
one cluster into supernodes consists of summing up the node features.
As a first direction for future research, more advanced methods for
merging nodes into supernodes could be explored. Specialized GNNs
may be utilized in this process, with the goal of identifying optimal
feature vectors for the supernodes. This could further improve the
efficiency and effectiveness of the proposed graph reduction methods.
A second line of research involves other fast and high-performing
graph clustering algorithms – rather than spectral clustering – for
graph partitioning [34]. A third line of research involves using the
reduced graphs in a novel graph-based pattern recognition paradigm
that addresses the permutation problem. The general idea is to fix
the number of nodes for all graphs to a global value and arrange
the nodes of each reduced graph based on their spectral information.
This approach would resolve the issue of node permutation, potentially
enabling faster graph comparisons in subsequent steps. Another possi-
bility for future research involves the incorporation of variants in our
general framework. In some preliminary experiments, for instance, we
explore two modifications of the method described in the present paper.
The first modification involves a continuous node hashing approach,
which exchanges node features within a cluster through intra-cluster
edges and iteratively updates each node’s feature according to the
received features. The second modification consists of applying alterna-
tive clustering methods on the spectral node embeddings (rather than
𝑘-means). With both modifications, no significant differences in clas-
sification accuracy can be observed when compared with the present
configuration. It is worth noting, however, that these results are based
on limited experimentation and further research may be necessary to
fully evaluate the relative performance of these methods.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Pattern Recognition 144 (2023) 109859A. Gillioz and K. Riesen
References

[1] F.B. Silva, R.d.O. Werneck, S. Goldenstein, S. Tabbone, R.d.S. Torres, Graph-
based bag-of-words for classification, Pattern Recognit. 74 (2018) 266–285,
http://dx.doi.org/10.1016/j.patcog.2017.09.018.

[2] Z. Gharaee, S. Kowshik, O. Stromann, M. Felsberg, Graph representation learning
for road type classification, Pattern Recognit. 120 (2021) 108174, http://dx.doi.
org/10.1016/j.patcog.2021.108174.

[3] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty Years Of Graph Matching
In Pattern Recognition, Int. J. Pattern Recognit. Artif. Intell. 18 (3) (2004)
265–298, http://dx.doi.org/10.1142/S0218001404003228.

[4] P. Foggia, G. Percannella, M. Vento, Graph Matching and Learning in Pattern
Recognition in the Last 10 Years, Int. J. Pattern Recognit. Artif. Intell. 28 (1)
(2014) http://dx.doi.org/10.1142/S0218001414500013.

[5] S. Wan, S. Pan, S. Zhong, J. Yang, J. Yang, Y. Zhan, C. Gong, Multi-level graph
learning network for hyperspectral image classification, Pattern Recognit. 129
(2022) 108705, http://dx.doi.org/10.1016/j.patcog.2022.108705.

[6] X. Li, B. Wu, J. Song, L. Gao, P. Zeng, C. Gan, Text-instance graph: Exploring the
relational semantics for text-based visual question answering, Pattern Recognit.
124 (2022) 108455, http://dx.doi.org/10.1016/j.patcog.2021.108455.

[7] A. Mrzic, P. Meysman, W. Bittremieux, P. Moris, B. Cule, B. Goethals, K. Laukens,
Grasping frequent subgraph mining for bioinformatics applications, BioData Min.
11 (1) (2018) 20:1–20:24, http://dx.doi.org/10.1186/s13040-018-0181-9.

[8] H. Bunke, G. Allermann, Inexact graph matching for structural pattern recogni-
tion, Pattern Recognit. Lett. 1 (4) (1983) 245–253, http://dx.doi.org/10.1016/
0167-8655(83)90033-8.

[9] N.M. Kriege, F.D. Johansson, C. Morris, A survey on graph kernels, Appl. Netw.
Sci. 5 (1) (2020) 6, http://dx.doi.org/10.1007/s41109-019-0195-3.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A Comprehensive Survey
on Graph Neural Networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2021)
4–24, http://dx.doi.org/10.1109/TNNLS.2020.2978386.

[11] A. Fischer, C.Y. Suen, V. Frinken, K. Riesen, H. Bunke, Approximation of graph
edit distance based on Hausdorff matching, Pattern Recognit. 48 (2) (2015)
331–343, http://dx.doi.org/10.1016/j.patcog.2014.07.015.

[12] U. Kang, H. Tong, J. Sun, Fast Random Walk Graph Kernel, in: Proceedings of
the Twelfth SIAM International Conference on Data Mining, Anaheim, California,
USA, April 26-28, 2012, SIAM / Omni Press, 2012, pp. 828–838, http://dx.doi.
org/10.1137/1.9781611972825.71.

[13] Y. Liu, T. Safavi, A. Dighe, D. Koutra, Graph Summarization Methods and
Applications: A Survey, ACM Comput. Surv. 51 (3) (2018) 62:1–62:34, http:
//dx.doi.org/10.1145/3186727.

[14] H. Qiu, E.R. Hancock, Graph matching and clustering using spectral partitions,
Pattern Recognit. 39 (1) (2006) 22–34, http://dx.doi.org/10.1016/j.patcog.2005.
06.014.

[15] A. Gillioz, K. Riesen, Speeding up Graph Matching by Means of Systematic Graph
Reductions Using Centrality Measures, in: 2022 12th International Conference on
Pattern Recognition Systems, ICPRS, 2022, pp. 1–7, http://dx.doi.org/10.1109/
ICPRS54038.2022.9854062.

[16] Y. Jin, A. Loukas, J.F. JáJá, Graph Coarsening with Preserved Spectral Properties,
in: S. Chiappa, R. Calandra (Eds.), The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo,
Sicily, Italy], in: Proceedings of Machine Learning Research, 108, PMLR, 2020,
pp. 4452–4462, URL http://proceedings.mlr.press/v108/jin20a.html.

[17] P. Maergner, N.R. Howe, K. Riesen, R. Ingold, A. Fischer, Offline Signature
Verification Via Structural Methods: Graph Edit Distance and Inkball Models, in:
16th International Conference on Frontiers in Handwriting Recognition, ICFHR
2018, Niagara Falls, NY, USA, August 5-8, 2018, IEEE Computer Society, 2018,
pp. 163–168, http://dx.doi.org/10.1109/ICFHR-2018.2018.00037.

[18] C. Garcia-Hernandez, A. Fernández, F. Serratosa, Ligand-Based Virtual Screening
Using Graph Edit Distance as Molecular Similarity Measure, J. Chem. Inf. Model.
59 (4) (2019) 1410–1421, http://dx.doi.org/10.1021/acs.jcim.8b00820.

[19] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, 1979.

[20] K. Riesen, H. Bunke, Approximate graph edit distance computation by means
of bipartite graph matching, Image Vis. Comput. 27 (7) (2009) 950–959, http:
//dx.doi.org/10.1016/j.imavis.2008.04.004.
11
[21] T. Horváth, T. Gärtner, S. Wrobel, Cyclic pattern kernels for predictive graph
mining, in: W. Kim, R. Kohavi, J. Gehrke, W. DuMouchel (Eds.), Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Seattle, Washington, USA, August 22-25, 2004, ACM, 2004, pp.
158–167, http://dx.doi.org/10.1145/1014052.1014072.

[22] N.M. Kriege, P. Mutzel, Subgraph Matching Kernels for Attributed Graphs, in:
Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, icml.cc / Omni Press,
2012, pp. 1–20, URL http://icml.cc/2012/papers/542.pdf.

[23] K.M. Borgwardt, H.-P. Kriegel, Shortest-Path Kernels on Graphs, in: Proceedings
of the 5th IEEE International Conference on Data Mining (ICDM 2005), 27-30
November 2005, Houston, Texas, USA, IEEE Computer Society, 2005, pp. 74–81,
http://dx.doi.org/10.1109/ICDM.2005.132.

[24] N. Shervashidze, P. Schweitzer, E.J.v. Leeuwen, K. Mehlhorn, K.M. Borg-
wardt, Weisfeiler-Lehman Graph Kernels, J. Mach. Learn. Res. 12 (2011)
2539–2561, http://dx.doi.org/10.5555/1953048.2078187, URL https://dl.acm.
org/doi/10.5555/1953048.2078187.

[25] M. Zhang, Z. Cui, M. Neumann, Y. Chen, An End-to-End Deep Learning
Architecture for Graph Classification, in: S.A. McIlraith, K.Q. Weinberger (Eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, AAAI Press, 2018,
pp. 4438–4445.

[26] J. Chen, Y. Saad, Z. Zhang, Graph coarsening: From scientific computing to
machine learning, CoRR (2021) arXiv:2106.11863, URL https://arxiv.org/abs/
2106.11863, arXiv:2106.11863.

[27] S.E. Schaeffer, Graph clustering, Comput. Sci. Rev. 1 (1) (2007) 27–64, http:
//dx.doi.org/10.1016/j.cosrev.2007.05.001.

[28] U.v. Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007)
395–416, http://dx.doi.org/10.1007/s11222-007-9033-z.

[29] J. Lurie, Review of Spectral Graph Theory: by Fan R.K. Chung, SIGACT News
30 (2) (1999) 14–16, http://dx.doi.org/10.1145/568547.568553.

[30] N. Shi, X. Liu, Y. Guan, Research on k-means Clustering Algorithm: An Improved
k-means Clustering Algorithm, in: Third International Symposium on Intelligent
Information Technology and Security Informatics, IITSI 2010, Jinggangshan,
China, April 2-4, 2010, IEEE Computer Society, 2010, pp. 63–67, http://dx.doi.
org/10.1109/IITSI.2010.74.

[31] A. Merchant, M. Mathioudakis, Y. Wang, Graph Summarization via Node Group-
ing: A Spectral Algorithm, in: T.-S. Chua, H.W. Lauw, L. Si, E. Terzi, P. Tsaparas
(Eds.), Proceedings of the Sixteenth ACM International Conference on Web
Search and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March
2023, ACM, 2023, pp. 742–750, http://dx.doi.org/10.1145/3539597.3570441.

[32] C. Morris, N.M. Kriege, F. Bause, K. Kersting, P. Mutzel, M. Neumann, TUDataset:
A collection of benchmark datasets for learning with graphs, CoRR (2020)
arXiv:2007.08663, URL https://arxiv.org/abs/2007.08663, arXiv:2007.08663.

[33] K.M. Borgwardt, M.E. Ghisu, F. Llinares-López, L. O’Bray, B. Rieck, Graph
Kernels: State-of-the-Art and Future Challenges, Found. Trends Mach. Learn. 13
(5–6) (2020) http://dx.doi.org/10.1561/2200000076.

[34] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, Recent Advances in
Graph Partitioning, in: L. Kliemann, P. Sanders (Eds.), Algorithm Engineering -
Selected Results and Surveys, in: Lecture Notes in Computer Science, vol. 9220,
2016, pp. 117–158, http://dx.doi.org/10.1007/978-3-319-49487-6_4.

Anthony Gillioz has received a M.Sc. in Computer Science from the University of
Bern in 2020. He is currently a Ph.D. student in the Pattern Recognition Group at the
University of Bern. His research interests are pattern recognition with a special focus
on graph matching and graph reduction.

Kaspar Riesen received his M.Sc. and Ph.D. degrees in Computer Science from the
University of Bern in 2006 and 2009, respectively. His Ph.D. thesis received the
Alumni price for an outstanding work at the Institute of Computer Science and Applied
Mathematics of the University of Bern. His research interests cover the fields of artificial
intelligence, pattern recognition, machine learning and data mining. In particular, he is
working on the development of novel algorithms for solving graph matching problems
in various domains of intelligent information processing.

http://dx.doi.org/10.1016/j.patcog.2017.09.018
http://dx.doi.org/10.1016/j.patcog.2021.108174
http://dx.doi.org/10.1016/j.patcog.2021.108174
http://dx.doi.org/10.1016/j.patcog.2021.108174
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1142/S0218001414500013
http://dx.doi.org/10.1016/j.patcog.2022.108705
http://dx.doi.org/10.1016/j.patcog.2021.108455
http://dx.doi.org/10.1186/s13040-018-0181-9
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1007/s41109-019-0195-3
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://dx.doi.org/10.1137/1.9781611972825.71
http://dx.doi.org/10.1137/1.9781611972825.71
http://dx.doi.org/10.1137/1.9781611972825.71
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1016/j.patcog.2005.06.014
http://dx.doi.org/10.1016/j.patcog.2005.06.014
http://dx.doi.org/10.1016/j.patcog.2005.06.014
http://dx.doi.org/10.1109/ICPRS54038.2022.9854062
http://dx.doi.org/10.1109/ICPRS54038.2022.9854062
http://dx.doi.org/10.1109/ICPRS54038.2022.9854062
http://proceedings.mlr.press/v108/jin20a.html
http://dx.doi.org/10.1109/ICFHR-2018.2018.00037
http://dx.doi.org/10.1021/acs.jcim.8b00820
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb19
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb19
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb19
http://dx.doi.org/10.1016/j.imavis.2008.04.004
http://dx.doi.org/10.1016/j.imavis.2008.04.004
http://dx.doi.org/10.1016/j.imavis.2008.04.004
http://dx.doi.org/10.1145/1014052.1014072
http://icml.cc/2012/papers/542.pdf
http://dx.doi.org/10.1109/ICDM.2005.132
http://dx.doi.org/10.5555/1953048.2078187
https://dl.acm.org/doi/10.5555/1953048.2078187
https://dl.acm.org/doi/10.5555/1953048.2078187
https://dl.acm.org/doi/10.5555/1953048.2078187
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://refhub.elsevier.com/S0031-3203(23)00557-5/sb25
http://arxiv.org/abs/2106.11863
https://arxiv.org/abs/2106.11863
https://arxiv.org/abs/2106.11863
https://arxiv.org/abs/2106.11863
http://arxiv.org/abs/2106.11863
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1145/568547.568553
http://dx.doi.org/10.1109/IITSI.2010.74
http://dx.doi.org/10.1109/IITSI.2010.74
http://dx.doi.org/10.1109/IITSI.2010.74
http://dx.doi.org/10.1145/3539597.3570441
http://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2007.08663
http://arxiv.org/abs/2007.08663
http://dx.doi.org/10.1561/2200000076
http://dx.doi.org/10.1007/978-3-319-49487-6_4

	Graph-based pattern recognition on spectral reduced graphs
	Introduction
	Background
	Basic Graph Theory
	Distance-Based Graph Classification
	Kernel Based Graph Classification
	Graph Neural Network Based Classification

	Graph Reduction Method
	Graph Clustering
	Graph Reduction

	Experimental Evaluation
	Datasets
	Experimental Setup
	Classification Accuracy and Computation Time
	Similarity/Dissimilarity Quality Measure

	Conclusions and Future Work
	Declaration of competing interest
	Data availability
	References

