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a b s t r a c t 

The increasing amount of data available and the rate at which it is collected leads to rapid develop- 

ments of systems for intelligent information processing and pattern recognition. Often the underlying 

data is inherently complex, making it difficult to represent it by linear, vectorial data structures. This is 

where graphs offer a versatile alternative for formal data representation. Actually, quite an amount of 

graph-based methods for pattern recognition has been proposed. A considerable part of these methods 

rely on graph matching. In the present paper, we propose a novel encoding of specific graph matching 

information. The basic idea is to formalize the stable cores of individual classes of graphs – discovered 

during intra-class matchings – by means of so called matching-graphs. We evaluate the benefit of these 

matching-graphs by researching two classification approaches that rely on this novel data structure. The 

first approach is a distance based classifier focusing on the matching-graphs during dissimilarity compu- 

tation. For the second approach, we propose to use sets of matching-graphs to embed input graphs into 

a vector space. The basic idea is to produce hundreds of matching-graphs first, and then represent each 

graph g as a vector that shows the occurrence of, or the distance to, each matching-graph. In a thorough 

experimental evaluation on seven real world data sets we empirically confirm that our novel approaches 

are able to improve the classification accuracy of systems that rely on comparable information as well as 

state-of-the-art methods. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Pattern recognition is a major field of research which aims 

t solving various problems like the recognition of facial expres- 

ions [1] , the temporal sorting of images [2] , or the enhancing 

f weakly lighted images [3] , to name just a few examples. Pat- 

ern recognition can be roughly divided into two main approaches 

ith respect to the formal data or pattern representation. Statistical 

attern recognition relies on feature vectors for data representation, 

hile structural pattern recognition employs strings, trees , or graphs 

or the same task. Since graphs are able to encode more informa- 

ion than merely an ordered and fixed-size list of real numbers, 

hey offer a compelling alternative to vectorial approaches. This is 

articularly true in applications that involve complex data. Graphs 

re used in applications of highest diversity ranging from protein 
� Supported by Swiss National Science Foundation (SNSF) Project 

o. 20 0 021_188496. 
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unction/structure prediction [4] , over signature verification [5] , to 

he detection of Alzheimer’s Disease [6] , and many others [7,8] . 

he main drawback of graphs is, however, the computational com- 

lexity of basic operations, which in turn makes graph based al- 

orithms for pattern recognition often slower than their statistical 

ounterparts. 

In the last four decades a huge number of procedures for graph 

atching have been proposed in the literature [7,8] . Graph match- 

ng is typically used for quantifying graph proximity. Graph edit 

istance [9] , introduced about 40 years ago, is still recognized as 

ne of the most flexible and robust graph matching models avail- 

ble. In contrast with many other distance measures (e.g. graph 

ernels [10] or graph neural networks [11] ), graph edit distance of- 

ers more information than merely a dissimilarity score, viz. the in- 

ormation which subparts of the underlying graphs actually match 

ith each other (known as edit path ). To date we see no sub- 

tantial research that exploits this particular knowledge as meta- 

nformation for reasoning about graphs and/or classifying graphs. 

The present paper aims at bridging this gap. That is, we pro- 

ose a specific encoding of matching information derived from 

raph edit distance in a novel data structure. In principle, the pro- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.patcog.2022.108846
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108846&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mathias.fuchs@inf.unibe.ch
mailto:kaspar.riesen@inf.unibe.ch
mailto:kaspar.riesen@fhnw.ch
https://doi.org/10.1016/j.patcog.2022.108846
http://creativecommons.org/licenses/by/4.0/


M. Fuchs and K. Riesen Pattern Recognition 131 (2022) 108846 

(graph edit distance)

Creating Matching-Graphs  
(Section 3)

Classification with Matching-Graphs  
(Section 4)

Selecting a Small Set
of Matching-Graphs

(Section 3.1) 
  

Creating a Large Set
of Distinct  

Matching-Graphs 

(Section 3.2)

1 if subgraph, 0 else

Distance Based Classification using Matching-Graphs  
(Section 4.1)

Graph Embedding using Matching-Graphs  
(Section 4.2)

 

or

Building Block 1 Building Block 2

Graphs stemming from different classes

Sets of matching-graphs  

per class

Fig. 1. The proposed framework consists of two major building blocks. The first is about creating matching-graphs (detailed in Section 3 ) and the second is about using the 

matching-graphs for classification (detailed in Section 4 ). 
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osed procedure first computes the graph edit distance for several 

airs of labeled training graphs (stemming from the same class). 

ased on the matching found, a meta-graph is eventually created, 

hich formalizes the corresponding parts of the two graphs. We 

enote this meta-graph as matching-graph . The rationale of these 

atching-graphs is to formalize the stable cores of specific classes 

f graphs. It is our hypothesis that the information captured in the 

esulting matching-graphs offers the potential to achieve both a 

etter understanding of the regularities and stable parts of a given 

lass and ultimately improve the matching quality of unknown 

atterns (by focusing on these stable cores of the graphs during 

he matching process, for instance). The overall goal of the present 

aper is to introduce matching-graphs, investigate their benefits, 

nd ultimately verify our hypothesis. 

Note that the present paper is based on three preliminary pa- 

ers [12–14] . In [12] we describe the novel concept of matching- 

raphs for the first time and confirm the potential usefulness of 

hese graphs in some initial experiments. In [13] we extend our 

nitial idea by iteratively creating sets of matching-graphs on the 

asis of already existing matching-graphs. Finally, in Fuchs and 

iesen [14] we propose to embed graphs into a vector space with 

he aid of matching-graphs. In the present work we combine the 

roposed methods in an overarching framework, give a more thor- 

ugh and detailed description of the individual methods, and sub- 

tantially extend both the method and the empirical evaluation. In 

articular, the present paper extends the previous papers as fol- 

ows. 

• We introduce a formal definition of the concept of a matching- 

graph, examine the background more thoroughly, and provide 

illustrative examples. 
• Rather than only one method for selecting useful matching- 

graphs (as proposed in Fuchs and Riesen [12] ), we now propose 

and evaluate two complementary selection algorithms. 
• We simplify the iterative algorithm originally used in Fuchs and 

Riesen [13] so that it matches better to the requirement of cre- 

ating very large sets of matching-graphs. 
• In addition to the subgraph based embedding (as proposed 

in Fuchs and Riesen [14] ) we now also define a distance based 

embedding using our matching-graphs. 
• In contrast with the preliminary papers, we employ now 

two, rather than only one, classifiers in conjunction with our 

matching-graphs. 
2 
• We evaluate our algorithms on seven instead of only three data 

sets. 
• We compare the different subsystems proposed in Fuchs and 

Riesen [12–14] for the first time with each other and show and 

discuss additional results. In particular, the present paper in- 

cludes an ablation study which measures the value of the indi- 

vidual components of our framework, a comparison with state- 

of-the art algorithms from the field, and a run time analysis. 

The remainder of the paper is organized as follows. 

ection 2 covers the basic definitions and concepts to make 

he paper self-contained. Moreover, it describes and summarizes 

he related work. In Section 3 we describe in detail the first of 

wo major building blocks of our complete framework (illustrated 

n Fig. 1 ). In particular, we define how a set M of initial matching-

raphs is built from arbitrary sets of graphs G and introduce 

wo approaches to postprocess the initial matching-graphs. The 

rst approach – described in Section 3.1 – condenses the set of 

atching-graphs by selecting a useful set of matching-graphs from 

he raw set. The second approach – described in Section 3.2 –

s somehow complementary to the first approach since this 

ethod iteratively increases the initial set of matching-graphs. 

n Section 4 , we describe the second building block of our novel 

ramework, viz. the classification with matching-graphs. In partic- 

lar, we introduce two conceptually different strategies to use the 

atching-graphs in order to solve classification problems. The first 

pproach makes use of the matching-graphs in a distance based 

lassifier (detailed in Section 4.1 ). The second classifier is built on 

 graph embedding that crucially relies on the matching-graphs 

detailed in Section 4.2 ). 

As shown in Fig. 1 we primarily use the matching-graphs se- 

ected with the method described in Section 3.1 for the distance 

ased classifier. Likewise, the matching-graphs which are itera- 

ively created by means of the method described in Section 3.2 are 

sed for the graph embedding classifier. One could, however, also 

ombine the method described in Section 3.1 with the classifica- 

ion method from Section 4.2 and, conversely, the method from 

ection 3.2 with the classification method from Section 4.1 (shown 

ith dashed lines in Fig. 1 ). Although possible, we actually fol- 

ow only those combinations that are connected with drawn lines 

mainly for the sake of conciseness). The background and rationale 

or this decision follow in the corresponding subsections. 
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Eventually, in Section 5 , we conduct a thorough experimental 

valuation of our framework. That is, we empirically confirm that 

he matching-graphs are actually significant substructures of their 

lasses and that our approach is able to improve the classification 

ccuracy of various related systems. Finally, in Section 6 , we con- 

lude the paper and discuss potential ideas for future work. 

. Basic definitions and related work 

.1. Basic definitions 

In this section, we provide the necessary definitions in order to 

ake the paper self-contained. 

Let L V and L E be finite or infinite label sets for nodes and edges,

espectively. A graph g is a four-tuple g = (V, E, μ, ν) , where V is

he finite set of nodes, E ⊆ V × V is the set of edges, μ : V → L V 
s the node labeling function, and ν : E → L E is the edge labeling

unction. 

In some algorithms or applications it is necessary to formalize 

mpty “nodes” and/or empty “edges” – both are denoted by sym- 

ol ε from now on. A subgraph g 1 of another graph g 2 , denoted 

y g 1 ⊆ g 2 , is defined in analogy to the subset relation in set the-

ry. That is, a subgraph g 1 is obtained from a graph g 2 by remov-

ng some nodes and their incident (as well as possibly some addi- 

ional) edges from g 2 . 

When graphs are used to represent different objects or patterns, 

 measure of distance or similarity is usually required [7] . We em- 

loy graph edit distance [9] as basic dissimilarity model throughout 

he paper. One of the main advantages of graph edit distance is its 

igh degree of flexibility, which makes it applicable to virtually all 

ypes of graphs. 

Given two graphs g 1 and g 2 , the basic idea of graph edit dis-

ance is to transform g 1 into g 2 using some edit operations for 

oth nodes and edges (such as insertions, deletions , and substitu- 

ions ). We denote the substitution of two nodes u ∈ V 1 and v ∈ V 2 
y (u → v ) , the deletion of node u ∈ V 1 by (u → ε) , and the inser-

ion of node v ∈ V 2 by (ε → v ) . For edge edit operations we use a

imilar notation. 

A set { e 1 , . . . , e k } of k edit operations e i that transform a source

raph g 1 completely into a target graph g 2 is called an edit path 

(g 1 , g 2 ) between g 1 and g 2 . Let ϒ(g 1 , g 2 ) denote the set of all edit

aths transforming g 1 into g 2 while c denotes the cost function 

easuring the strength c(e i ) of edit operation e i . The graph edit 

istance can now be defined as follows. 

Let g 1 = (V 1 , E 1 , μ1 , ν1 ) be the source and g 2 = (V 2 , E 2 , μ2 , ν2 )

he target graph. The graph edit distance between g 1 and g 2 is de- 

ned by 

 λmin 
(g 1 , g 2 ) = min 

λ∈ ϒ(g 1 ,g 2 ) 

∑ 

e i ∈ λ
c(e i ) (1) 

Optimal algorithms for computing the edit distance of two 

raphs are typically based on combinatorial search procedures. A 

ajor drawback of those procedures is their computational com- 

lexity, which is exponential in the number of nodes. To render 

raph edit distance computation less demanding, approximation 

lgorithms can be employed (e.g. Riesen and Bunke [15] , Fischer 

t al. [16] , Bougleux et al. [17] ). These algorithms offer cubic or

uadratic time complexity with respect to the number of nodes of 

he involved graphs. 

Actually, any computation method for graph edit distance can 

e employed as basis in our framework, as long as it provides us 

ith a valid edit path between two graphs. That is, the actual al- 

orithm for graph matching does not crucially impact the rest of 

he proposed method. We decide to use the graph edit distance 

pproximation termed BP [15] , since it is a widely used (and some- 

ow a standard) algorithm for the graph edit distance approxima- 
3 
ion. The graph edit distance between g 1 and g 2 computed by al- 

orithm BP is termed d BP (g 1 , g 2 ) from now on. 

.2. Related work and broader perspective 

The concept of matching-graphs actually requires a graph 

atching procedure – the task of identifying similar substructures 

n two graphs. We make use of graph edit distance [9] for this ba-

ic task (outlined above). Over the years, however, several other 

issimilarity measures for graphs have been proposed [7,8] . They 

ange from Spectral Methods [18] , over Graduated Assignment Al- 

orithms [19] , to Expectation Maximization Algorithms and Con- 

inuous Optimization Algorithms [20] . 

Some of the most prominent graph matching algorithms are 

raph kernels . A seminal contribution in the field are kernels that 

re based on the analysis of walks or paths in graphs. These ker- 

els measure the similarity of two graphs by the number of equal 

or at least similar) walks or paths in the underlying graphs [10] . 

n [4] a second class of kernels for graphs with discrete labels is 

ntroduced. This class of kernels is based on the 1-dimensional 

eisfeiler–Lehman, or color refinement, algorithm. Since this con- 

ribution, several extensions and adaptations of this idea have been 

roposed [21] 

A further prominent class of graph kernels is based on the work 

n convolution kernels, which provide a general framework for 

ealing with complex objects that consist of simpler parts. In par- 

icular, convolution kernels infer the similarity of two objects from 

he similarity of their parts (e.g., nodes, subgraphs, or trees [10] ). 

Graph embedding approaches can actually also be interpreted 

s graph kernels. In [22] , for instance, a graph g is represented by 

 vector that counts the number of times certain subgraphs oc- 

ur in g, while the Subgraph Matching Kernel [23] and Graphlet Ker- 

el [24] both count the number of matchings between subgraphs 

f fixed sizes in two graphs. In [25] , a graph is represented based

n its dissimilarities to certain prototypes. 

Besides the strong dependency of our novel matching-graphs 

n a specific graph matching procedure, we also observe a cer- 

ain similarity of our novel concept with the idea of Frequent Sub- 

raph Mining (FSM) [26] . FSM focuses on the identification of fre- 

uent subgraphs within a set of graphs. In particular, in FSM, one 

ims at extracting all subgraphs from a given set of graphs that 

ccur more often than a specified threshold. We observe two main 

ategories in FSM, viz. Apriori-based approaches [27] and Pattern- 

rowth approaches [28] . The apriori-based methods start with fre- 

uent nodes and proceed to grow subgraphs by using a Breadth 

irst Search strategy. That is, before they continue to find graphs of 

ize k + 1 these approaches first search for all frequent graphs of 

ize k . Pattern-growth approaches, on the other hand, work by us- 

ng a Depth First Search strategy, where one graph is extended until 

ll frequent supergraphs of this graph are found. 

. Creating matching-graphs 

The general idea of matching-graphs – originally proposed 

n Fuchs and Riesen [12] – is to extract information on the match- 

ng of pairs of graphs in a new data structure that in turn encodes 

he corresponding parts of the two graphs. 

Formally, we assume k sets of training graphs G ω 1 , . . . , G ω k 
temming from k different classes ω 1 , . . . , ω k . We formalize the in-

ormation on the matching of two graphs g i = (V i , E i ) , g j = (V j , E j )

stemming from the same class ω l – in a graph denoted by m g i ×g j . 

Basically, a matching-graph m g i ×g j should represent both nodes 

nd edges of g i and g j that have been matched under the us- 

ge of some particular graph matching algorithm. In our scenario, 

atching-graphs m g i ×g j are created according to the following pro- 

edure. 



M. Fuchs and K. Riesen Pattern Recognition 131 (2022) 108846 

Fig. 2. Matching-Graphs with unpruned and pruned edges derived from source graph g i and target graph g j . 
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For all pairs of graphs stemming from the same class ω l , the 

raph edit distance is computed by means of algorithm BP [15] . 

ence, we obtain a (sub-optimal) edit path λ(g i , g j ) for each 

air of graphs g i , g j . For each edit path λ(g i , g j ) , two matching-

raphs m g i ×g j and m g j ×g i are built (for the source and the tar- 

et graph g i and g j , respectively). To this end, all nodes of g i and

 j that are actually substituted in edit path λ(g i , g j ) are added

o m g i ×g j and m g j ×g i , respectively. Vice versa, all nodes that are 

eleted in g i or inserted in g j are neither considered in the two 

atching-graphs. 

In preliminary experiments we observe that isolated nodes 

ight occur in the resulting matching-graphs. Although many 

raph matching algorithms can actually handle isolated nodes, we 

till remove them from our matching-graphs. The rationale for this 

euristic is that we aim at building small and robust cores of the 

raphs with nodes that are actually connected to at least one other 

ode in the formal substructure. 

The question remains how to handle the edges of the involved 

raphs g i , g j in the resulting matching-graphs m g i ×g j and m g j ×g i . 

learly, if a node is not included in the matching-graph (since it 

as either deleted or inserted in the underlying edit path), the 

ncident edges of this node will not be included in the resulting 

atching-graph as well. Edges that connect two substituted nodes, 

owever, can be included in the matching-graphs. We propose two 

ifferent strategies for edge handling. 

1. No Pruning : If two nodes u 1 , u 2 ∈ V i of a source graph g i are

substituted with nodes v 1 , v 2 ∈ V j in a target graph g j and there

is an edge (u 1 , u 2 ) ∈ E i available, (u 1 , u 2 ) is actually included

in the matching-graph m g i ×g j regardless whether or not edge 

(v 1 , v 2 ) is available in E j . Hence, in this case no pruning is ap-

plied to the edges. 

2. Pruning : We assume the same scenario as above. However, edge 

(u 1 , u 2 ) is included in the matching-graph m g i ×g j if, and only if, 

there is an edge (v 1 , v 2 ) available in E j . Hence, in cases where

no corresponding edge can be found in the other graph, the 

edge is actually pruned . 

Formally, a matching-graph m g i ×g j = (V g i ×g j , E g i ×g j ) is defined as 
4 
• V g i ×g j = { v ∈ V i : (v → u ) ∈ λ(g i , g j ) and u ∈ V j } 
• Unpruned: E g i ×g j = { E i ∩ (V g i ×g j × V g i ×g j ) } 
• Pruned: E g i ×g j = { E i ∩ E j ∩ (V g i ×g j × V g i ×g j ) } 

For the matching-graph m g j ×g i the definition is similar to 

 g i ×g j , but the indices i and j have to be exchanged. From a 

roader perspective, the novel matching-graphs can be interpreted 

s a generalization of the concept of a common subgraph [29] . In 

ts original definition, a common subgraph of two graphs consists 

f nodes which occur identically in the both graphs. In our novel 

ata structure, a node is incorporated whenever the corresponding 

ode is actually substituted with another node w.r.t. the found edit 

ath. 

In Fig. 2 an illustration of the procedure is given for two 

raphs of the Letter graph data set (graphs from this data 

et represent artificially distorted letter line drawings, and are 

ften used for illustration purposes [30] ). For this example 

he matching between the source and target graph results in 

he edit path λ(g i , g j ) = { 0 → 0 , 1 → 1 , 2 → 2 , 3 → 3 , 4 → 4 , 5 →
, ε → 5 , ε → 6 , ε → 7 } . According to this edit path, the two

atching-graphs that are generated without pruning are shown in 

ig. 2 (b) and (e). By applying edge pruning, we observe that edges 

hat have no counterpart in the other graph are not included in 

he resulting matching-graph (like, for instance, the edges (0 , 2) or 

0 , 4) in the source and target graphs, respectively). Regardless the 

trategy actually applied, we observe a strong denoising effect on 

he input graphs in this illustrative example. 

The actual definition of the cost function, and in particular the 

ost for insertions and deletions of nodes, has a crucial impact on 

he resulting matching-graphs. The higher the cost for node dele- 

ions/insertions is defined, the more nodes of both graphs are sub- 

tituted with each other, which in turn leads to larger matching- 

raphs in general. This effect is illustrated in Fig. 3 . We show differ-

nt matching-graphs derived from two source graphs (representing 

he letters A and E). We use different cost values for node dele- 

ions/insertions. By decrementing the deletion/insertion cost we 

radually obtain smaller matching-graphs (with fewer and fewer 

odes in general). 
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Fig. 3. The smaller the cost for both node deletion and insertion is defined, the smaller is the resulting matching-graph in general. 
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.1. Selecting a small set of matching-graphs 

Let us assume we have a set of training graphs G ω l available. 

urthermore, we assume that G ω l contains n graphs representing 

lass ω l . If we create all possible matching-graphs for all possible 

ombinations of graph pairs (g i , g j ) stemming from G ω l × G ω l , we

nd up with a set of matching-graphs M ω l of size n (n − 1) . De-

ending on both the actual size of G ω l and the specific require- 

ents for M ω l this quantity might be too large 1 . In order to re-

uce M ω l to a reasonable size, various graph selection methods 

an be used [25] . We propose to reduce M ω l with the aid of the

et median graph [31] , which is defined as 

edian (S) = argmin 

g 1 ∈S 

∑ 

g 2 ∈S 
d(g 1 , g 2 ) 

here S is an arbitrary set of graphs. The set median graph is the 

raph of S whose sum of distances to all other graphs in S is min- 

mal. 

Based on the set median graph we propose two ways to select 

atching-graphs. 2 Both approaches take as input an initial set of 

atching-graphs M ω l and a user defined parameter t which cor- 

esponds to the number of matching-graphs desired. The first al- 

orithm, iteratively selects (and eventually removes) the set me- 

ian graph from the set of all available matching-graphs M ω l 
ntil the required number t of matching-graphs is selected (see 

lgorithm 1 ). That is, we select in total t matching-graphs that are 

Algorithm 1: Center-selection ( M ω l , t). 

1: Initialize M̄ ω l 
to the empty set {} 

2: while | M̄ ω l 
| < t do 

3: m = median (M ω l 
) 

4: M̄ ω l 
= M̄ ω l 

∪ { m } 
5: M ω l 

= M ω l 
\ { m } 

6: end while 
7: return M̄ ω l 
1 Note that the proposed framework can instantly produce matching-graphs for 

ny pair of graphs, and is thus not reliant on a specific set or subset of graphs. This, 

n turn, makes our system quite fast and flexible (since we only need to consider 

airs of graphs to create a new graph). Moreover, since it is possible to specify 

n advance how many graphs of the training set are actually used to create the 

atching-graphs, scalability is not a major problem in practical applications. 
2 In contrast to Fuchs and Riesen [12] , where only one approach is proposed and 

valuated. 

G  
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f
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5 
ituated in, or near, the center of the complete set of matching- 

raphs. 

Second, we propose a spanning based approach. We also start 

y selecting the set median graph. Each additional matching-graph 

elected is the graph the furthest away from the already se- 

ected matching-graphs. We repeat this procedure until the re- 

uired number t of matching-graphs is selected (see Algorithm 2 ). 

Algorithm 2: Spanning-selection ( M ω l , t). 

1: Initialize M̄ ω l 
to the empty set {} 

2: m = median (M ω l 
) 

3: M̄ ω l 
= M̄ ω l 

∪ { m } 
4: M ω l 

= M ω l 
\ { m } 

5: while | M̄ ω l 
| < t do 

6: m = argmax 
g∈M ω l 

min 
m ∈ M̄ ω l 

d(g, m ) 

7: M̄ ω l 
= M̄ ω l 

∪ { m } 
8: M ω l 

= M ω l 
\ { m } 

9: end while 
10: return M̄ ω l 

.2. Creating a large set of distinct matching-graphs 

The overall aim of the two methods described in the previous 

ubsection is to reduce the set of matching-graphs to a reason- 

ble size. Depending on the actual application and requirements it 

ight be beneficial to have a large set of matching-graphs that are 

istinct from each other. For this purpose, we propose an iterative 

lgorithm to produce matching-graphs out of existing matching- 

raphs. 3 Algorithm 3 takes as input k sets of graphs G ω 1 , . . . , G ω k 
ith graphs from different classes ω 1 , . . . , ω k , as well as the num-

er of matching-graphs n that will be kept from one iteration to 

nother ( n is a user defined parameter). 

The algorithm iterates over all k sets (classes) of graphs from 

 ∈ G (main loop of Algorithm 3 , from line 2 to line 14). For each

et of graphs G and for all possible pairs of graphs g i , g j stemming

rom the current set G , the initial set of matching-graphs M is pro- 

uced (line 3 to 6). 4 Note that a matching-graph is only added to 
3 The method described in the present section is similar to the algorithm pro- 

osed in a preliminary paper [13] . In contrast with [13] , however, we propose a 

implification of the algorithm so that we get more and also distinct graphs. 
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Fig. 4. Illustration of the procedure of creating matching-graphs over multiple iterations. 

Algorithm 3: Iterative matching-graph creation. 

input : sets of graphs from k different classes G = { G ω 1 , . . . , G ω k } , the 

maximum number n of matching-graphs to keep in each 
iteration 

output : sets of matching-graphs for each of the k different classes 
M = { M ω 1 

, . . . , M ω k 
} 

1 Initialize M as the empty set: M = {} 
2 foreach set of graphs G ∈ G do 
3 Initialize M as the empty set: M = {} 
4 foreach pair of graphs g i , g j ∈ G × G with j > i do 
5 M = M ∪ { m g j ×g i 

, m g i ×g j 
} 

6 end 
7 do 
8 M 

′ = a subset of n randomly selected graphs of M 

9 foreach pair of graphs m i , m j ∈ M 

′ × M 

′ with j > i do 
10 M = M ∪ { m m j ×m i 

, m m i ×m j 
} 

11 end 

12 while M has changed in the last iteration 
13 M = M ∪ M 

14 end 
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if it does not already exist in M, meaning that we do not allow

o have duplicates in M. Eventually, we aim at iteratively build- 

ng matching-graphs out of pairs of existing matching-graphs. The 

otivation for this procedure is to further reduce the size of the 

atching-graphs and to find small core-structures that are often 

vailable in the corresponding graphs. Due to computational lim- 

tations, we randomly select a subset of size n from the current 

atching-graphs M (line 8). Based on this selection, the next gen- 

ration of matching-graphs is built. This is actually carried out in 

he second for-loop on lines 9 to 11 where for all pairs of graphs

n M 

′ two novel matching-graphs are created and added to M. This 

rocess is repeated until no more changes occur in set M. Finally, 

et M is compiled as the union of all matching-graphs individually 

roduced for all available classes. 

In Fig. 4 we provide an illustrative example of our iterative pro- 

edure on four graphs from the Letter data set [30] . Subfigures 

a) to (d) show the original graphs. Subfigure (e) shows the re- 
4 We take into account the first matching-graph m g i ×g j only. Moreover, due to 

omputational reasons we stick with the pruned version of the matching-graphs. 

t

A

i

6 
ulting matching-graph m g i ×g j of graph g i and g j , whereas Subfig- 

re (f) shows the matching-graph m g o ×g k 
resulting from graphs g o 

nd g k . Finally, in Subfigure (g) we show the matching-graph re- 

ulting from the two matching-graphs of the first iteration. 5 This 

xample illustrates that the size of the matching-graphs declines 

rom one iteration to another in general. 

. Classification with matching-graphs 

We propose two approaches for using the matching-graphs in 

 classification scenario. The first idea is to enhance the accuracy 

f graph edit distance by explicitly focusing on matching-graphs 

detailed in Section 4.1 ). The second idea is to use the resulting 

atching-graphs for graph embedding (detailed in Section 4.2 ). 

.1. Distance based classification using matching-graphs 

In our first approach we use the matching-graphs in a distance 

ased classification scenario. Let us assume we aim at computing 

he distance between a given test graph g and a training graph g i ∈ 

 ω l . We define a novel distance measure d M 

(·, ·) that combines the 

ollowing two distances with each other. 

1. The approximated graph edit distance information d BP (g, g i ) be- 

tween the test graph g and the original training graph g i ∈ G ω l . 

2. A statistical score S on the basis of all distances between the 

test graph g and all matching-graphs m ∈ M ω l stemming from 

the set of matching-graphs of class ω l (the actual class of the 

corresponding training graph g i ). 

Formally, we define the distance d M 

as a weighted sum of the 

riginal edit distance and the information obtained by means of 

he meta-matching. That is, 

 M 

(g, g i ) = α · d BP (g, g i ) + (1 − α) · S({ d BP (g, m ) : m ∈ M ω l } ) 
here α ∈ [0 , 1] is a weighting parameter to trade off between the 

wo dissimilarity scores and function S denotes a descriptive sta- 
5 The matching-graph in Fig. 4 (g) appears very small and generic and not specific 

o the class. Note, however, that the specificity heavily depends on the node labels. 

lso keep in mind, that this is only an illustrative example with rather small graphs 

n order to give an intuition. 
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istical value computed on the set of distances between the orig- 

nal graph g and the matching-graphs m ∈ M ω l (we propose to 

se the minimum, the maximum, or the average function for S). 

learly, with α = 1 we obtain the standard graph edit distance, 

hile α = 0 leads to a distance that relies on the matching-graphs 

nly. 

The set of matching-graphs M ω l actually used for building 

 M 

, is created and reduced according to the process described 

n Section 3.1 . It would also be possible to use the large sets of

atching-graphs iteratively created by means of the method de- 

cribed in Section 3.2 (it actually turns out that this produces sim- 

lar results as the proposed combination). However, this specific 

etup is computationally much more demanding – due to the very 

arge set of matching-graphs – and is therefore not a viable alter- 

ative which is not pursued. 

We employ this novel distance model in two classifiers. First, 

e feed d M 

into a k -NN classifier denoted by k -NN( d M 

). Second,

e use the novel distance as basic similarity kernel κ(g i , g j ) =
d M 

(g i , g j ) in conjunction with a Support Vector Machine (de- 

oted as SVM( −d M 

)). 

.2. Graph embedding using matching-graphs 

The general idea of the second classification approach is to em- 

ed a given graph into a vector space by means of the matching- 

raphs. Let g be an arbitrary graph stemming from a given set 

f graphs. Using a large set M = { m 1 , . . . , m N } of N matching-

raphs, created according to the method described in Section 3.2 . 

ne could also employ the matching-graph selection described 

n Section 3.1 for this purpose. The rationale of this selection is, 

owever, to reduce an existing set. For embedding, on the other 

and, we are more interested in generating large sets of distinct 

raphs. Therefore, this particular combination seems a bit counter- 

ntuitive. Moreover, we observe that both combinations – given 

hat the used sets are actually large enough – achieve quite similar 

esults. Hence, we only follow one of the two possible combina- 

ions. 

We embed g in two different ways. Once using subgraph iso- 

orphism (as originally proposed in Fuchs and Riesen [14] ) and 

nce using the graph edit distance. 

The first embedding is defined by 

 sub (g) = ( sub (m 1 , g) , . . . , sub (m N , g)) , 

here sub (m i , g) = 1 , if m i ⊆ g, and 0 else. 

That is, for this embedding we employ subgraph isomorphism 

hat provides us with a binary similarity measure which is 1 or 

 for subgraph-isomorphic and non-subgraph-isomorphic graphs, 

espectively. When considering if a given matching-graph m i is a 

ubgraph of a graph g, it is necessary to decide whether or not 

wo nodes are equal with respect to their labels. For nodes with 

ategorical labels this task can be solved in a straightforward man- 

er. When a node, however, contains continuous labels, this deci- 

ion process is more subtle. In this particular case one could, for 

nstance, employ a distance measure for the node labels and even- 

ually define a threshold to decide whether or not two nodes are 

imilar enough to be considered as equal. 

There are various algorithms available that can be applied to 

olve the subgraph isomorphism problem [7,8] . In the present pa- 

er we employ the VF2 algorithm [32] which makes use of efficient 

euristics to speed up the search process. 

The second embedding is defined by 

 ged (g) = (d BP (g, m 1 ) , . . . , d BP (g, m N )) 

n other words we compute the graph edit distance (in our case 

sing the suboptimal algorithm BP [15] ), between the graph g to 
7

e embedded and all matching-graphs in M and then represent g

s a vector of the resulting distances. 

Obviously, both graph embeddings produce vectors with a di- 

ension that is equal to the number of matching-graphs actually 

vailable. As the iterative method described in Section 3.2 might 

enerate thousands of matching-graphs, the dimension of the re- 

ulting feature vectors might be very large. In cases where the high 

imensionality of the data is a problem, one can apply an arbitrary 

eature selection method to the resulting graph embeddings. 

These specific graph embeddings are similar in spirit to the fre- 

uent substructure approaches [22] , the subgraph matching ker- 

el [23] , the graphlet kernel [24] , as well as dissimilarity based 

mbeddings [25] . The main difference of our approach to those 

ethods lies in the creation of the subgraphs (or prototypes in 

ase of [25] ). We employ graph edit distance to create our novel 

ata structure of matching-graphs. These matching-graphs offer a 

atural way of defining significant and large sets of subgraphs that 

an readily be used for vector space embeddings. 

Likewise to the novel distance d M 

, also for the graph embed- 

ing we employ two different classifiers. First, we classify the re- 

ulting vectors using a k -NN in conjunction with a vector simi- 

arity measure s . For the subgraph based embedding ϕ sub (g) we 

se binary similarity measures Dice, Yule, Tanimoto (Rogers), Jaccard 

oefficient , as well as Kulczynski-1 and 2 . For the distance based 

mbedding ϕ ged (g) we use the Euclidean, Cosine and Minkowski 

issimilarity. Second, we employ an SVM that operates on the 

mbedding vectors (using standard kernel functions k for feature 

ectors such as the Radial Basis Function (RBF) , the Sigmoid kernel , 

nd the Linear kernel ). We denote these approaches as k -NN( s ϕ(g) )

nd SVM( κϕ(g) ), respectively. 

. Experimental evaluation 

.1. Experimental setup 

The main question to be answered in our empirical evaluation 

s whether the proposed matching-graphs can be used to improve 

he classification accuracies of existing graph matching procedures 

that rely on the same graphs and graph edit distance information 

s our novel procedure). Hence, we compare our novel method 

ith two reference classifiers that are often used in conjunction 

ith graph edit distance. 

The first reference system is a k -nearest-neighbor classifier 

 k -NN) that directly operates on the distances d BP , denoted as 

 -NN( d BP ) from now on. The second reference system is a Support 

ector Machine, denoted as SVM( −d BP ), that operates on the simi- 

arity kernel κ(g i , g j ) = −d BP (g i , g j ) . 

.1.1. Data sets 

The novel approaches for graph classification using matching- 

raphs are evaluated on seven data sets. 

• AIDS, Mutagenicity, NCI1, PTC(MR) and COX-2 : We use five 

data sets that represent chemical compounds from different ap- 

plications. The AIDS data set stems from the IAM graph repos- 

itory [30] and was initially gathered by the National Cancer 

Institute (NCI). The compounds that are able to perfectly pro- 

tect the human cells from HIV are labeled as Confirmed Active 

and those that are not are labeled Confirmed Inactive . The Muta- 

genicity data set [30] is also split into two classes, one contain- 

ing mutagenic compounds, and the other non-mutagenic com- 

pounds. The other data sets from this category stem from Mor- 

ris et al. [33] . The NCI1 data set originates from anti-cancer 

screens and is split into molecules that contain activity for 

growth inhibition of non-small cell lung cancer ( active ) and 

these that do not ( inactive ). The fourth data set PTC(MR) con- 

sists of compounds that are potentially carcinogenic. The COX-2 
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Table 1 

The total number of graphs for each data set as well as the 

corresponding number of graphs in the training, validation, 

and test sets. 

Data set Total Training Validation Test 

AIDS 2000 250 250 1500 

Mutagenicity 4337 1500 500 2337 

NCI1 4110 2465 822 823 

IMDB 1000 600 200 200 

COX-2 466 280 93 93 

PTC (MR) 344 206 68 70 

Letter 2250 750 750 750 
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6 The statistical significance is computed via Z -test using a significance level of 

α = 0 . 05 . 
data set contains cyclooxygenase-2 (COX-2) inhibitors with or 

without in-vitro activities against human recombinant enzymes. 

The nodes of the chemical compound data sets always repre- 

sent the atoms labeled with their chemical symbol. The edges 

of the graphs of the PTC(MR) data set additionally contain in- 

formation about the chemical bonds between the atoms, while 

the edges of all other sets remain unlabeled. 
• IMDB : The IMDB data set stems from Morris et al. [33] and 

is a movie collaboration data set with the actor/actresses and 

genre information of a movie. The nodes represent the ac- 

tors/actresses and the edges state whether they appear in the 

same movie. A single graph always represents one movie stem- 

ming from a genre, which is either action or romance (the class 

to be predicted). 
• Letter : This data set contains graphs that represent artificially 

distorted letter line drawings of 15 different letters that con- 

sist of straight lines [30] . The nodes represent the end points 

of individual lines, and the edges represent the line drawing 

itself. The nodes are labeled with their corresponding x -and y - 

coordinates. This data set is often used for preliminary evalua- 

tions and, moreover, employed to provide illustrative examples 

of novel techniques (as we also did in the previous sections). 

.2. Validation of metaparameters 

For the experimental evaluation each data set is split into three 

redefined random disjoint sets for training, validation, and test- 

ng. Details about the size of the individual splits can be found in 

able 1 . The matching-graphs are created on the training set only, 

hereas the optimization of the metaparameters is performed 

ith the help of the validation set. The optimal parameters ob- 

ained with the usage of the validation set are then applied on the 

est set (without any further modifications). 

For algorithm BP, that approximates the graph edit distance, the 

ost for node and edge deletions, as well as a weighting parame- 

er β ∈ [0 , 1] that is used to trade-off the relative importance of 

ode and edge edit costs are often optimized [15,25] . However, 

or the sake of simplicity we employ unit cost of 1.0 for deletions 

nd insertions of both nodes and edges and optimize the weight- 

ng parameter β only (on all data sets). For data sets where the 

nderlying graphs contain label alphabets L v with categorical at- 

ributes, the cost of non-identical substitutions is set to the cost 

f one insertion plus the cost of one deletion (which amounts to 

). For data sets with continuous node labels, we employ the Eu- 

lidean distance as a cost for substituting the two nodes. For the 

reation of the matching-graphs – actually also dependant on the 

ost model – the same cost parameters are employed. 

For both classification algorithms k -NN( d M 

) and SVM( −d M 

) 

e optimize the weighting parameter α (used in d M 

), the type 

f matching-graphs (pruned vs. unpruned), the matching-graph 

election method ( center vs. spanning ), the number t of se- 

ected matching-graphs per class, and function S, that determines 

hether the minimum, the maximum, or the average is used 

o condense the set of distances { d BP (g, m ) : m ∈ M ω l } . In addi-
8 
ion, for the k -NN classifier we optimize the number of neigh- 

ors k considered, while for the SVM classifier parameter C is op- 

imized to trade off between the size of the margin and the num- 

er of misclassified training examples. The discussion of the val- 

dation results and the actual parameter values can be found in 

ppendix A.1 . 

Both classification algorithms k -NN( s ϕ(g) ) and SVM( κϕ(g) ) rely 

n graph embeddings ϕ(g) that are computed by means of large 

ets of matching-graphs. Remember that these sets are created in 

n iterative manner. We set the number of matching-graphs con- 

idered for the next iteration to n = 200 on all data sets. The stop

riterion of the iterative process checks whether or not the last 

teration resulted in a change of the currently considered set of 

atching-graphs and the dimension of the resulting feature vec- 

ors turns out to be very large. Thus, we apply a recursive feature 

limination process [34] to the resulting graph embeddings. After 

he feature selection process, we end up with about 5 to 13% of the 

vailable matching-graphs for all data sets. The complete analysis 

n the feature selection process can be found in A.2 . 

For both approaches k -NN( s ϕ(g) ) and SVM( κϕ(g) ) we optimize 

he type of the embedding ( ϕ sub (g) vs. ϕ ged (g) ) as well as the

eighting parameter β ∈ [0 , 1] that is used to trade-off the rela- 

ive importance of node and edge edit costs. For the k -NN we fur-

her optimize the similarity measure s as well as the number k of 

eighbors that are considered. For the SVM we optimize the kernel 

unction and parameter C ∈ [0 , 1] . In the case of an RBF or Sigmoid

ernel, parameter γ ∈ [0 , 1] is optimized as well. All optimizations 

re conducted by means of a grid search. The detailed validation 

esults can be found in Appendix A.3 . 

.3. Test results and discussion 

In Table 2 we show the classification accuracies of both refer- 

nce systems, viz. k -NN( d BP ) and SVM( −d BP ), as well as the re-

ults of our novel approaches k -NN( d M 

), SVM( −d M 

), k -NN( s ϕ(g) ),

nd SVM( κϕ(g) ) that all rely on matching-graphs. 

We observe that our novel approaches k -NN( d M 

) and SVM( −d M 

)

utperform their respective reference systems on all data sets (ex- 

ept for Letter where the SVM( −d M 

) approach achieves approxi- 

ately the same accuracy as SVM( −d BP )). For k -NN( d M 

) we ob-

erve that six out of seven improvements are statistically sig- 

ificant, while three out of six improvements achieved with 

VM( −d M 

) are satistically significant. 6 

The classifier k -NN( s ϕ(g) ) achieves higher accuracies than both 

eference systems on five out of seven data sets (i.e., 10 improve- 

ents in total). Five of these improvements are statistically signif- 

cant. The classifier SVM( κϕ(g) ) achieves even better accuracies in 

eneral. We outperform both reference systems on all data sets. 

even of the 14 improvements are statistically significant. 

Comparing our novel classifiers with each other, we observe 

hat k -NN( d M 

) performs the best in general. That is, it outperforms 

oth reference systems on all seven data sets, with 11 out of 14 

mprovements being statistically significant. Moreover, on three out 

f seven data sets, this classifier achieves the overall best classifi- 

ation results (followed by SVM( κϕ(g) ) that achieves the best result 

n three out of seven cases, and SVM( −d M 

) that performs best for 

ne data set). 

.4. Ablation study, comparison with state of the art and run time 

nalysis 

We can state the following as an interim conclusion. Our novel 

pproach using matching-graphs is clearly beneficial when com- 
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Table 2 

Classification accuracies of two reference systems compared to our novel approaches. Symbol ◦/ ◦ indicates a 

statistically significant improvement and •/ • indicates a statistically significant deterioration over the first and 

second system, respectively (using a Z -test at significance level α = 0 . 05 ). The best result per data set is shown 

in bold face. 

Reference systems Proposed system 

Data set k-NN( d BP ) SVM( −d BP ) k-NN( d M ) SVM( −d M ) k-NN( s ϕ(g ) ) SVM( κϕ(g ) ) 

AIDS 98.6 99.4 99.8 ◦/ − 99.7 ◦/ − 99.5 ◦/ − 99.6 ◦/ −
Mutagenicity 72.4 69.1 73.0 −/ ◦ 70.4 −/ ◦ 74.8 ◦/ ◦ 76.3 ◦/ ◦
NCI1 74.4 68.6 77.6 ◦/ ◦ 68.8 •/ − 76.1 −/ ◦ 76.7 −/ ◦
IMDB 60.5 63.5 68.0 ◦/ ◦ 66.0 ◦/ − 59.0 −/ − 68.5 ◦/ −
COX-2 76.3 71.3 81.7 ◦/ ◦ 81.0 −/ ◦ 80.6 −/ ◦ 78.5 −/ ◦
PTC(MR) 55.7 54.3 65.7 ◦/ ◦ 67.1 ◦/ ◦ 58.6 −/ − 61.4 −/ −
Letter 89.9 92.7 91.7 ◦/ − 92.5 ◦/ − 90.8 ◦/ • 93.2 ◦/ −

Table 3 

Classification accuracies of an approach that uses randomly created subgraphs for 

embedding instead of using matching-graphs (Without-1), an approach that uses 

matching-graphs without using the iterative process (Without-2), as well as an ap- 

proach that uses the embedded graphs without feature selection (Without-3), com- 

pared to our novel approach SVM( κϕ(g) ). 

Data set Without-1 Without-2 Without-3 SVM( κϕ(g ) ) 

AIDS 95.5 ± 0.7 99.3 99.2 99.6 

Mutagenicity 69.1 ± 1.2 74.3 73.1 76.3 

NCI1 70.6 ± 0.6 73.4 73.4 76.7 

IMDB 60.9 ± 6.1 66.5 65.5 68.5 

COX-2 73.1 ± 1.3 77.4 77.7 78.7 

PTC(MR) 48.3 ± 1.2 44.3 44.3 67.2 

Letter 86.1 ± 1.0 90.5 89.9 90.1 
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Table 4 

Comparison of the classification accuracies of our novel framework with three state- 

of-the art kernel based approaches, viz. Graphlet, Shortest-Path (SP) and Wasser- 

stein Weisfeiler–Lehman (WWL). The best accuracy per data set is shown in bold 

face. A dash (–) as entry indicates that the experiment timed out or that we do not 

get a reasonable result. 

Data set Graphlet [24] SP [35] WWL [36] Ours 

AIDS 98.5 99.4 99.5 99.8 

Mutagenicity 55.5 – 77.0 76.3 

NCI1 64.1 73.0 79.3 77.6 

IMDB 58.0 73.0 71.0 68.5 

COX-2 77.4 49.5 77.4 81.7 

PTC(MR) 55.7 55.7 54.3 67.1 

Letter 30.1 – 41.1 93.2 
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7 We compute the reference accuracies using the GraphKernels library [37] for 

the Graphlet and Shortest-Path kernel. For the WWL kernel we use the implemen- 

tation provided in Togninalli et al. [36] . 
ared with similar systems that have no access to the matching- 

raphs. The aim of the next evaluations presented in this subsec- 

ion is threefold. First, we conduct an ablation study in order to 

etter get to the root of the strength of our novel framework. Sec- 

nd, we conduct a comparison with three state-of-the-art methods 

rom the field, and third we carry out an analysis of the run time 

ehavior. 

.4.1. Ablation study 

For the embedding approach, we aim to determine whether it is 

he matching-graphs themselves, the iterative construction of the 

ets of matching-graphs or the selection of certain features that 

elps the most to improve the results. To this end, we conduct the 

ollowing ablation study using the results of SVM( κϕ(g) ) (with the 

ubgraph based embedding). 

• Without-1 : This is a system which operates without matching- 

graphs. That is, this approach uses randomly generated sub- 

graphs, rather than our matching-graphs, for graph embedding. 

The random generation of subgraphs works by randomly re- 

moving 30 to 50% of the nodes from the graphs (and their in- 

cident edges). The amount of random graphs created for each 

data set corresponds to the number of matching-graphs actu- 

ally used for SVM( κϕ(g) ). This set of random subgraphs is then 

used for graph embedding. We repeat the random creation of 

subgraphs and classification five times and report the mean and 

standard deviation of the accuracy. 
• Without-2 : This is a system which refrains from producing the 

matching-graphs with an iterative procedure as suggested in 

Section 3.2 . Instead we use the matching-graphs created after 

the first for loop of Algorithm 3 (at line 6). 
• Without-3 : This is a system which operates without feature se- 

lection. In other words, it uses all matching-graphs created dur- 

ing the iterative process. 

In Table 3 we see that Without-1 performs worse compared to 

ll other approaches on all data sets (except for the PTC(MR) data 

et, where the accuracy of Without-3 is even worse). 
9 
This is a first and quite strong indication of the usefulness of 

he matching-graphs. Next, we conclude that the iterative process 

n its own is not beneficial, as Without-2 and Without-3 perform 

lmost equally well (except on Mutagenicity and Letter). However, 

eature selection applied to the resulting embedding is definitely 

seful as our complete system outperforms both Without-2 and 

ithout-3 on all data sets (except on Letter). 

In summary, the strength of our novel framework also lies 

n the combination of the iterative generation with a subsequent 

eature selection. The most valuable component of the proposed 

ystem is, however, the concept of matching-graphs themselves 

as the comparisons with the reference system Without-1 clearly 

how). 

.4.2. Comparison with state-of-the-art 

In Table 4 we put the best accuracies of our novel framework 

denoted as Ours ) in the context with several other kernel based 

lassifiers that are evaluated with the same experimental setup 

nd data sets as used in the present paper. In particular, we com- 

are our method with the Graphlet kernel [24] , Shortest-Path ker- 

el (SP ) [35] , as well as the Wasserstein Weisfeiler–Lehman kernel 

WWL ) [36] . 7 On the Mutagenicity and NCI1 data sets our approach 

s narrowly outperformed by the WWL kernel and on the IMDB 

ata set the SP kernel beats our system quite clearly. However, we 

an also report that on four out of seven data sets our framework 

chieves the overall best accuracy when compared with the cur- 

ent state-of-the-art. 

.4.3. Run time discussion 

Of course the main downside of the proposed framework is the 

dditional run time that comes from the increased computational 
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Table 5 

Run time comparison of the time needed to calculate the baseline matrix −d BP , as well 

as the time needed to calculate our novel matrix −d M and the times needed to create 

the subgraph embedding ϕ sub (g) and graph edit distance based embedding ϕ ged (g) for 

one graph. Time in Seconds. 

Distance based classifiers Embedding based classifiers 

Data set −d BP −d M ϕ sub (g ) ϕ ged (g ) 

AIDS 9 15 54 ∼ 0 

Mutagenicity 224 240 3020 6 

NCI1 552 601 633 1 

IMDB 19 22 996 3 

COX-2 10 15 820 3 

PTC(MR) 2 3 41 ∼ 0 

Letter 41 63 3 1 
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For the following discussion on the run times, we distinguish 

etween classification systems that rely on distances and systems 

hat are based on embeddings. For the first category we identify 

he following two computations whose run times are of interest. 

• Run time to compute the complete distance matrix using the 

original graph edit distance d BP by means of algorithm BP. This 

can be taken as a reference run time for relative comparison 

with the following operation. 
• Run time to compute the complete distance matrix using the 

enhanced graph edit distance d M 

using the matching-graphs. 

For the second category, we are most interested in the run time 

or graph embedding as this is the bottleneck of our framework. In 

articular, we report the run times for one embedding using either 

he subgraph approach ϕ sub (g) or the graph edit distance based 

pproach ϕ ged (g) . 

In Table 5 we show the four discussed run times of both cate- 

ories in seconds. When comparing the run times for the compu- 

ation of the novel distance matrix d M 

with the original distance 

omputation d BP , only marginal differences can be observed. If we 

ake into account that, for example, the k -NN that uses d M 

outper- 

orms k -NN( d BP ) on all seven data sets (six times with statistical

ignificance), then this small overhead in run time is more than 

ustified. 

For the run times of the second category, weighing is more im- 

ortant than in the first category discussed above. For instance, 

t is obvious that the subgraph based embedding is significantly 

lower than the distance based embedding. On the other hand, 

e have seen that subgraph based embedding basically performs 

lightly better than the distance based embedding. It is not nec- 

ssarily clear whether this rather small difference in accuracy can 

ustify the large discrepancy in the run times. Note, however, that 

raph embedding can be parallelized with special hardware infras- 

ructure, which in turn can dramatically reduce the high run time, 

f necessary. 

. Conclusion and future work 

In the present paper we introduce and research a novel data 

tructure called matching-graph, which can be pre-computed on 

raining graphs. Our general goal is to leverage the power of graph 

dit distance to build a novel graph representation that formalizes 

he matching parts found between two graphs. This formalization 

an be interpreted as stable part, or core, of two graphs. We pro- 

ose to build matching-graphs on the basis of the edit path be- 

ween two graphs. Formally, a matching-graph of two graphs con- 

ists of the nodes substituted under a given cost model in a graph 

dit distance computation. We propose to build matching-graphs 

etween all pairs of graphs stemming from the same class. Even- 

ually, we define two complementary approaches that (a) condense 

he initial set of matching-graphs to the most influential ones and 
10 
b) iteratively enlarges the set of matching-graphs by recursively 

uilding novel matching-graphs out of already created matching- 

raphs. The benefit of these matching-graphs is that they can be 

tilized to improve the classification accuracy of various classi- 

ers. The drawback is – of course – the increased computation 

ime. 

To show the usefulness of matching-graphs we propose two 

lassification approaches. The first system employs a weighted dis- 

ance of the original graph edit distance and an aggregated dis- 

ance to sets of matching-graphs. The second approach uses the 

atching-graphs to build vector representations of the underlying 

raphs. To this end, we embed our graphs in an N-dimensional 

ector space such that the i -th entry of the resulting vector repre- 

ents either the distance to the corresponding matching-graph or 

hether the corresponding matching-graph occurs as a subgraph 

n the graph to be embedded. 

By means of a thorough experimental evaluation on diverse 

raph data sets covering a wide spectrum of applications, we em- 

irically confirm that classification systems that (in part) rely on 

he novel matching-graphs significantly outperform their counter- 

arts that have no access to this specific information. 

In a thorough ablation study, we are also able to clearly un- 

erline the value of the novel matching-graphs. Last but not least, 

ith a comparison with three state-of-the-art methods we empir- 

cally confirm that our framework is able to set new benchmarks 

n several data sets. 

The proposed matching-graphs have – besides the ability of im- 

roving the classification accuracy in a graph-based classification 

cenario – another interesting benefits. They can automatically re- 

eal significant patterns in large sets of graphs. In particular, it 

urns out that matching-graphs often represent crucial patterns 

hat actually constitute a certain class of patterns. For instance, for 

he mutagen class of the Mutagenicity data set we autonomically 

dentified both patterns NO 2 and NH 2 in many matching-graphs. 

oth compounds are well known to be mutagenic [38] . This is es- 

ecially interesting as the matching-graphs are automatically cre- 

ted on the basis of the edit path between training graphs with- 

ut any domain knowledge. In future work we plan to exploit this 

utomatic finding of significant patterns in the data in a more sys- 

ematic manner (and discuss the identified patterns with domain 

xperts). Besides this idea we identify the following potential fu- 

ure research activities. 

• Rather than the approximation algorithm BP, one could employ 

any other graph edit distance computation. We believe that us- 

ing more expensive algorithms for the computation of the edit 

distance could lead to other (perhaps larger?) matching-graphs. 
• The novel matching-graphs might actually be used as a sparse 

representation of any input data. Hence, our framework could 

potentially be used as a novel and quite fast way for dictionary 

learning in the graph domain. 
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Table A3 

The number of matching-graphs created for each data 

set and the final number of matching-graphs after fea- 

ture selection is applied. 

Data set Total Selected 

AIDS 4,955 199 

Mutagenicity 86,752 4139 

NCI1 4544 618 

IMDB 43,015 2141 

COX-2 19,704 989 

PTC(MR) 3893 207 

Letter 13,514 689 
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• We plan to conduct more theoretical and empirical investiga- 

tion of the novel matching-graphs to further explore the rela- 

tionship between matching-graphs and common subgraphs. 
• There are several other ways to use the matching-graphs for 

classification purposes. For instance, we could employ the 

matching-graphs to augment training sets for classifiers that are 

heavily dependent on large sets of training data (e.g. graph neu- 

ral networks). 
• Currently, we aim at finding a data structure that represents 

the similarity core of two given graphs and thus we only con- 

sider nodes that are actually matched with each other under 

some cost model. We do see the potential of building matching- 

graphs that do not only include substituted nodes, but also in- 

serted (or deleted) nodes. 
• Last but not least, we feel, that the concept of matching-graphs 

might also be beneficial for regression problems (e.g. one could 

employ the matching-graphs in conjunction with a nearest- 

neighbor regression, which depends on a large number of train- 

ing data). 
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ppendix A. Detailed validation results 

1. Validation results k -NN( d M 

) and SVM( −d M 

) 

In Tables A.6 and A.7 we show the best performing parameters 

ound during validation for k -NN( d M 

) and SVM( −d M 

), respectively. 

ajor findings of the validation process for the k -NN are as fol- 

ows(see also Table A.6 ). On all data sets but NCI1 the parameter 

lies between 0.35 and 0.65, which means that both distance in- 

ormations are – more or less – equally important. Moreover, we 

bserve that pruning seems to be beneficial in general, and that 

he optimal selection method is center on all data sets but NCI1. 

inally we can see that the max function performs the best for dis- 

ance aggregation in almost all cases. 

The optimal parameters for SVM (see Table A.7 ) indicate that 

he aggregated distance is rather less important and that the opti- 
Table A1 

Optimal parameter values found on the validation

the classification accuracy). 

Data set β α Pruning S

AIDS 0.90 0.35 pruned c

Mutagenicity 0.60 0.60 pruned c

NCI1 0.75 0.90 pruned s

IMDB 0.40 0.65 unpruned c

COX-2 0.40 0.50 pruned c

PTC(MR) 0.60 0.30 pruned c

Letter 0.65 0.60 pruned c

Table A2 

Optimal parameter values found on the validation se

classification accuracy). 

Data set β α Pruning Se

AIDS 0.60 0.85 pruned sp

Mutagenicity 0.75 0.65 pruned ce

NCI1 0.75 0.95 pruned ce

IMDB 0.35 0.90 pruned ce

COX-2 0.95 0.90 pruned ce

PTC(MR) 0.75 0.90 unpruned sp

Letter 0.70 0.90 pruned sp

11 
al selection method is center in most of the cases. Furthermore, 

he min, together with the max function, is often used for con- 

ensing the set of distances. 

2. Number of graphs after feature selection 

In Table A.8 we show the total number of matching-graphs pro- 

uced first and the number of matching-graphs selected (via re- 

ursive feature elimination). On all data sets substantial reductions 

an be observed. For instance, on AIDS, Mutagenicity, IMDB, COX- 

, PTC(MR) and Letter about 4 to 5% of the available matching- 

raphs are selected, while on NCI1 about 13% of the matching- 

raphs are selected. The conclusions we draw from this table are 

wofold. First, we note that the iterative procedure can be used 

o produce almost arbitrarily large sets of graphs. Second, it ap- 

ears that only a small fraction of the matching-graphs are actually 

eeded. Of course, it would be desirable to produce from the very 

tart only those matching-graphs that will really be used’ with our 

urrent solution this is not possible and we thus follow the well- 

nown paradigm of overproduce and select . 

3. Validation results k -NN( s ϕ(g ) ) and SVM( κϕ(g ) ) 

In Tables A.9 and A.10 we show the optimal parameters for k - 

N( s ϕ(g) ) and SVM( κϕ(g) ). For the k -NN( s ϕ(g) ) (see Table A.9 ) the

mbedding applied is ϕ sub (g) for all data sets except for Letter. Re- 

arding the similarity measure s we can not report a clear win- 

er (although Kulczynski-1 or -2 might be a good choice when in 

oubt). 
 sets for the k -NN( d M ) classifier (including 

election t S k Accuracy 

enter 30 max 7 99.6 

enter 10 max 1 76.2 

panning 3 avg 1 78.5 

enter 65 max 3 75.5 

enter 10 avg 5 84.9 

enter 7 max 7 69.1 

enter 60 max 3 93.2 

ts for the SVM( −d M ) classifier (including the 

lection t S C Accuracy 

anning 75 min 10 −1 100.0 

nter 15 max 10 −2 73.2 

nter 75 max 10 −2 67.3 

nter 65 avg 10 −3 70.0 

nter 25 max 10 −1 82.8 

anning 25 min 10 1 77.9 

anning 75 min 10 −2 94.3 
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Table A4 

Optimal parameter values found on the validation sets for the k -NN( s ϕ(g) ) classifier 

(including the classification accuracy). 

Data set Embedding β s k Accuracy 

AIDS ϕ sub N/A Kulczynski-1 5 99.6 

Mutagenicity ϕ sub N/A Dice 7 79.2 

NCI1 ϕ sub N/A Rogers 5 79.2 

IMDB ϕ sub N/A Kulczynski-2 7 76.0 

COX-2 ϕ sub N/A Yule 5 82.8 

PTC(MR) ϕ sub N/A Kulczynski-2 5 72.1 

Letter ϕ ged 0.70 Cosine 5 91.2 

Table A5 

Optimal parameter values found on the validation sets for the SVM( κϕ(g) ) classifier 

(including the classification accuracy). 

Data set Embedding β Kernel C γ Accuracy 

AIDS ϕ sub N/A RBF 10 −1 10 0 99.6 

Mutagenicity ϕ sub N/A RBF 10 2 10 −3 82.4 

NCI1 ϕ sub N/A RBF 10 1 10 −2 77.4 

IMDB ϕ sub N/A RBF 10 1 10 −3 74.5 

COX-2 ϕ ged 0.40 Linear 10 −2 N/A 86.0 

PTC(MR) ϕ ged 0.05 Linear 5 × 10 −3 N/A 77.8 

Letter ϕ ged 0.60 Linear 5 × 10 −3 N/A 93.1 
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The optimal parameters for the SVM (see Table A.10 ) indicate 

hat the best embedding function is on four out of seven data sets 

he subgraph based function ϕ sub . The best performing kernel func- 

ion κ is in four out of seven data sets the RBF kernel, which are

otably all based on the ϕ sub embedding. On the three other data 

ets that use ϕ ged for embedding, the linear kernel seems to be op- 

imal. The best value of C is either 10 or 100 for all data sets em-

edded with the ϕ sub embedding, except for AIDS, where the opti- 

al value is 0.1. For the ϕ ged embedded graphs the optimal values 

or C are much smaller (between 0.005 and 0.01). The optimal pa- 

ameter γ on the other hand is smaller than 0.01 for all data sets 

xcept for AIDS (where γ = 1 performs the best). 
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