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To cope with the immense complexity of 
the brain, neuroscientific research often 
focuses on isolated brain structures or 
circumscribed perceptual, cognitive or 
motor functions [1 ]. This reductionist 
approach overlooks the intricate and 
multifaceted interplay among various 
structural and functional components. 
For instance, even simple movements 
require the coordinated activation of 
numerous neuronal populations across 
multiple brain regions [2 ]. Furthermore, 
and importantly, this approach ignores 
the complex interactions between the 
brain, the body and the environment, 
despite the significant role the latter 
two play in shaping cognition and 
perception [3 ]. 

Over the past decades, there has been 
a growing recognition that integrative 
brain models that synthesize various 
structural and functional subsystems 
wi l l play an indispensable role in pro- 
viding a more holistic understanding of 
the brain and its relation to the body 
and environment [4 ,5 ]. These models 
are large scale in the dual sense that 
they encompass various structural and 
functional components that, in turn, 
comprise large numbers of elementary 
units. The extent to which these ele- 
mentary units need to reflect biological 
detail or overarching neurocomputa- 
tional principles to achieve brain-like 

behavior in the integrated models is a 
point of contention among researchers 
[6 ]. This debate underscores the diverse 
methodologies in computational model- 
ing, often characterized as ‘bottom-up’ 
and ‘top-down’ approaches. Bottom-up 
modeling emphasizes simulation of the 
detailed biological processes occurring 
in the brain [4 ,5 ]. Model parameters are 
primarily informed by existing biological 
data with the aim of providing meaning- 
ful constraints for functional capacities, 
which are assumed to spontaneously 
emerge [4 ,6 ]. Top-down modeling, by 
contrast, starts explicitly from functional 
capacities. It traditionally begins by iden- 
tifying the functions of brain structures 
and then develops neurocomputational 
algorithms that realize these functions. 
In recent years, this hypothesis-driven 
approach has been supplemented with 
goal-driven deep learning [7 ]. This ar- 
tificial intelligence–enabled approach 
aims to generate neurocomputational 
algorithms that realize brain function 
through parameter optimization such 
that the model can solve ecologically 
valid tasks [8 ]. Top-down models aim 

to achieve brain-like functionalities by 
emulating the brain’s overarching prin- 
ciples without necessarily simulating 
their biological details. For an in-depth 
review of these approaches, we refer the 
interested reader to [5 –9 ]. 

HYBRID MODELS: PROMISES 

AND CHALLENGES 

In general, the bottom-up approach 
provides a biologically plausible but 
functionally limited perspective, whereas 
the top-down approach offers functional 
performance at the potential expense 
of biological realism. Moreover, both 
approaches tend to develop models using 
a homogeneous implementation frame- 
work, usually combining all components 
of a brain model in a single codebase. 
This implies that translating the insights 
gleaned from the plethora of existing 
models of circumscribed brain structures 
or functions, which may have been imple- 
mented using vastly different tools and 
programming languages, requires their 
reimplementation within the specific 
framework of a particular integrative 
brain model. Hybrid models offer a 
potential solution to some of the above 
problems: they make it possible to blend 
biological plausibility and functional per- 
formance and support the direct integra- 
tion of existing model implementations 
into a unified system. This is not only 
more efficient, but also provides a testing 
ground wherein models of circumscribed 
brain areas or cognitive functions can 
be evaluated within a holistic context. 
This provides a benchmark for such 
models as they need to demonstrate their 

©The Author(s) 2023. Published byOxfordUniversity Press on behalf of China Science Publishing &Media Ltd. This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original 
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bility to interact effectively with other 
omponents. A flexible, plug-and-play 
ntegration approach additionally sup- 
orts continuous model refinement and 
omparative hypothesis testing. These 
onsiderations were a significant impe- 
us behind the establishment of Work 
ackage 3 (WP3) ‘Adaptive networks for 
ognitive architectures: from advanced 
earning to neurorobotics and neuromor- 
hic applications’ of the Human Brain 
roject [10 ]. In addition to developing 
rain models using both bottom-up and 
op-down approaches, a key objective of 
P3 was to specify a practical approach 

or the development of hybrid integrative 
rain models that can efficiently accom- 
lish real-world tasks in embodied and 
ituated settings, while at the same time 
aintaining a high degree of biological 
ealism. 
The Work Package has dedicated 

ignificant effort to identifying and sur- 
ounting the challenges that arise from 

his objective. The primary challenge lies 
n effectively connecting components 
e.g. models of circumscribed brain areas 
r cognitive functions) to create a coher- 
nt system. This is complicated by the 
ften-observed heterogeneity of the com- 
onents. First, components may be im- 
lemented using different programming 
anguages and frameworks, potentially 
eading to dependency issues. Second, 
omponents exhibit varying levels of ab- 
traction from biological detail to high- 
evel neurocomputational principles. 
ne issue this raises is that of numerical 
tability: components may employ dif- 
erent numerical methods with varying 
tability conditions and accuracy charac- 
eristics. Varying levels of abstraction also 
aise issues surrounding communication 
nd synchronization between heteroge- 
eous components, which might operate 
t different timescales. Special care needs 
o be taken when integrating compo- 
ents into the overarching architecture. 
nputs, outputs and internal states of each 
omponent need to be clearly specified 
o interface components correctly with 
ach other and potentially with a body 
nd the external environment. For ex- 
mple, one might need to specify how to 
onvert signals between spiking and rate 
eurons. These issues are exacerbated 
n a plug-and-play setting that should 
llow replacement of any component 
y an alternative realization. Replacing 
omponents can easily disrupt interfaces 
o other components and hence the 
unctionality of the system as a whole. 

ODULAR-INTEGRATIVE 

ODELING 

o overcome these challenges, WP3 
dopted a modular-integrative modeling 
pproach. Inspired by modular simula- 
ion frameworks utilized in other scien- 
ific domains (e.g. [11 ]), this approach 
ses containerization technologies to en- 
apsulate each component as a module in 
n isolated environment. Modularization 
elps to avoid dependency issues and 
llows each component to employ nu- 
erical methods that operate under their 
ptimal conditions without interfering 
ith other components. Modularization 
ur ther suppor ts subtask decomposition 
nd hence initialization, pre-training and 
ne-tuning of each component indepen- 
ently. Importantly, modules allow the 
ombination of differentiated learning 
aradigms, such as a basal ganglia model 
ith reinforcement learning connected 
o a cerebellar model with supervised 
earning. Implementation-wise, as in 
odular deep learning, components can 
hus be optimized while retaining their 
verall context to ensure that solutions 
eet global task requirements as well 
s constraints imposed by other com- 
onents [12 ]. This is highly efficient 
nd generalizes better than end-to-end 
ptimization of the full model [13 ]. 
inally, modularization also promotes 
mbodiment and situatedness by in- 
luding modules dedicated to body and 
nvironment simulations. The resulting 
bility of the overarching system to gen- 
rate overt behavior can be exploited for 
urther fine-tuning of model components 
hrough learning. However, ensuring 
ompatibility between modules can 
mpose restrictions on their design and 
unctionality. It is therefore crucial that 
ach module is developed with its role 
ithin the larger system in mind and 
hat a uniform data exchange format and 
recise interface specifications are in 
lace. 
Page 2 of 4
Communication between compo- 
ents is achieved through a message 
roker using a topic-based publish- 
ubscribe pattern. Any component may 
ublish information such as neuron spike 
imes or neural network layer activations 
n a dedicated topic. Other components 
hat require this information subscribe to 
his topic. This communication method 
rovides loose coupling between compo- 
ents as they do not need to know about 
he existence of a particular component 
ealization, but only about the topics 
hey are interested in. This ensures that 
ndividual components can be updated, 
odified or replaced without needing 
xtensive changes to the broader system 

11 ]. Additionally, a publish-subscribe 
attern allows integration of information 
enerated by a subset of components into 
 global signal that individual compo- 
ents may, in turn, subscribe to in order 
o modulate their internal state. This fa- 
ilitates incorporation of global processes 
uch as attention, potentially mediated 
ia hub structures like the thalamus [14 ]. 
owever, ensuring that messages are 
eceived and processed in the correct 
rder can be challenging. Modules may 
perate at different speeds, and without 
roper synchronization; this can lead 
o race conditions or outdated infor- 
ation being acted upon. To address 
otential synchronization issues, the 
odular-integrative modeling approach 

ncorporates a specialized simulation 
oordinator. 
This coordinator guarantees a unified 

ramework for time management, while 
llowing each component to indepen- 
ently publish and subscribe to topics. 
he simulation coordinator regulates 
imulation cycles, with each cycle rep- 
esenting a fixed global simulation time 
tep. The simulation coordinator signals 
he start of cycles, ensuring synchroniza- 
ion between components. Importantly, 
hile there is a fixed global simulation 
ime step, each component can have 
ts own internal time step based on its 
umerical method’s stability and accu- 
acy requirements [11 ]. The simulation 
oordinator also coordinates the overall 
et-up of the simulation, including the 
pecification of initial conditions and 
imulation duration as well as of the 



Natl Sci Rev, 2024, Vol. 11, nwad318

Simulation coordinator

Message broker

ct f ID
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Figure 1. Example of a working implementation of the modular-integrative modeling approach de- 
vised within WP3 of the Human Brain Project. The example model performs saccades to facilitate 
scene understanding. The full system is divided into six modules: environment (visual scene), body 
(eye) and four components of an integrative brain model (scene classifier, saliency detector, tar- 
get selector and saccade generator). All modules are containerized, as indicated by the dashed 
outlines. The colors of the modules indicate their types. Green and magenta indicate modules 
dedicated to body and environment simulations, respectively. Orange indicates modules associ- 
ated with circumscribed brain components assumed to be implemented following a bottom-up 
approach. Blue indicates modules associated with circumscribed brain functions assumed to be 
implemented following a top-down approach. The simulation coordinator is indicated in dark gray, 
and the message broker in light gray. Note that the message broker is not containerized, but han- 
dles communication across containers. The simulation coordinator publishes the central time (to 
the ct topic) whenever it is incremented by a global time step. All modules subscribe to the ct topic, 
while also keeping track of their local time. Whenever the central time exceeds a module’s local 
time, the module performs a simulation for one global time step using a local time step appropriate 
for the particular module. When a module finishes its simulation for a specific global time step, it 
publishes its unique identifier (module ID) to the fID (finished ID) topic. The simulation coordinator 
subscribes to the fID topic to keep track of the modules that have finished their simulation for the 
current global time step. Once all modules have finished, the simulation coordinator updates the 
current time to initiate a new simulation cycle. This setup controls the simulation and is general 
to all hybrid models implemented using the modular-integrative approach. Additionally, any par- 
ticular module may specify additional topics it either publishes or subscribes to. For example, the 
saliency detector publishes a saliency distribution over the visual scene and subscribes to snap- 
shots from the scene that are published by the eye module. The target selection module subscribes 
to the saliency distribution and publishes the outcome of a spatial decision-making process as a 
desired eye position. The saccade generator, in turn, subscribes to the desired eye position and 
publishes the actual eye position, to which the eye subscribes. Finally, the scene classifier sub- 
scribes to snapshots from the scene and integrates information across snapshots to classify the 
overall scene. 
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CONCLUSION 

We argue that the modular-integrative 
modeling approach offers a promising 
avenue for constructing hybrid integra- 
tive brain models that enable the blend- 
ing of biological plausibility and func- 
tional performance, hence providing the 
means to complement the bottom-up and 
top-down approaches. By incorporating 
global processes, specific structures and 
functions, this approach supports con- 
structing models capturing the intricacies 
fundamental to diverse brain functions. It 
is crucial to emphasize that the modular 
aspect of the modular-integrative model- 
ing approach is motivated by engineer- 
ing considerations. It is distinct from (and 
does not necessarily require) the notion 
that the brain itself is neatly modular in its 
structure or function. We would further 
like to underscore the integrative nature 
of the approach, which is explicitly de- 
signed to counteract an overly compart- 
mentalized perspective on the brain. It is 
interesting to consider that the brain itself 
must address the problem of integrating 
the contributions of different brain net- 
works and functions, which show at least 
some degree of modular organization. 
While the proposed modular-integrative 
modeling approach was not primarily in- 
tended to model functional segregation 
and integration in the brain, we hope 
that it may catalyze a more compre- 
hensive understanding of brain structure, 
dynamics and function, and of the inter- 
play between the brain, the body and the 
environment. 
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iming, duration and magnitude of 
xternal inputs. 
The modular-integrative modeling 

pproach lends itself to a multitude of use 
ases, including multisensory integra- 
ion, multiscale dynamics and embodied 
ognition. One particular example of the 
atter is scene understanding, which op- 
rates under constraints imposed by the 
ye. The retina is characterized by a sharp 
ecline of receptor density from the fovea 
o the periphery. This allows for high vi- 
ual acuity, while maintaining a large 
eld of view, but also necessitates the 
isual system to integrate high-resolution 
limpses of a scene across various eye 
xations. This process involves several 
erceptual and motor components, 
nd the modular-integrative model- 
ng approach is suitable for developing 
mbodied models that efficiently in- 
orporate and interface the necessary 
omponents. Figure 1 presents a possible 
mplementation of a model that uses 
accades to efficiently sample and classify 
 visual scene following the modular- 
ntegrative approach. For technical 
etails of this example implementation, 
e refer the interested reader to https://
ithub.com/ccnmaastricht/SSU. 
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