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Abstract
The 3-dimensional (3D) structure of the genome is of significant importance for many
cellular processes. In this paper, we study the problem of reconstructing the 3D struc-
ture of chromosomes from Hi-C data of diploid organisms, which poses additional
challenges compared to the better-studied haploid setting. With the help of tech-
niques from algebraic geometry, we prove that a small amount of phased data is
sufficient to ensure finite identifiability, both for noiseless and noisy data. In the light
of these results, we propose a new 3D reconstruction method based on semidefinite
programming, paired with numerical algebraic geometry and local optimization. The
performance of thismethod is tested on several simulated datasets under different noise
levels and with different amounts of phased data.We also apply it to a real dataset from
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mouse X chromosomes, and we are then able to recover previously known structural
features.

Keywords 3D genome organization · Diploid organisms · Hi-C · Applied algebraic
geometry · Numerical algebraic geometry

Mathematics Subject Classification 92E10 · 92-08 · 13P25 · 14P05 · 65H14 · 90C90

1 Introduction

The eukaryotic chromatin has a three-dimensional (3D) structure in the cell nucleus,
which has been shown to be important in regulating basic cellular functions, including
gene regulation, transcription, replication, recombination, and DNA repair (Uhler and
Shivashankar 2017; Wang et al. 2018). The 3D DNA organization is also associated
with brain development and function; in particular, it is shown to be misregulated in
schizophrenia (Rajarajan et al. 2018; Rhie et al. 2018) and Alzheimer’s disease (Nott
et al. 2019).

All genetic material is stored in chromosomes, which interact in the cell nucleus,
and the 3D chromatin structure influences the frequencies of such interactions. A
benchmark tool to measure such frequencies is high-throughput chromosome confor-
mation capture (Hi-C) (Lafontaine et al. 2021). Hi-C first crosslinks cell genomes,
which “freezes” contacts between DNA segments. Then the genome is cut into frag-
ments, the fragments are ligated together and then are associated with equally-sized
segments of the genome using high-throughput sequencing (Rao et al. 2014). These
segments of the genome are called loci, and their size is known as resolution (e.g., bins
of size 1Mb or 50Kb). The result of Hi-C is stored in a matrix called contact matrix
whose elements are the contact counts between pairs of loci.

According to the structure they generate, computational methods for inferring the
3D chromatin structure from a contact matrix fall into two classes: ensemble and
consensus methods. In a haploid setting (organisms having a single set of chromo-
somes), ensemble models such as MCMC5C (Rousseau et al. 2011), BACH-MIX (Hu
et al. 2013) and Chrom3D (Paulsen et al. 2017), try to account for structure variations
on the genome across cells by inferring a population of 3D structures. On the other
hand, consensus methods aim at reconstructing one single 3D structure which may
be used as a model for further analysis. In this category, probability-based methods
such as PASTIS (Varoquaux et al. 2014; Cauer et al. 2019) and ASHIC (Ye and Ma
2020) model contact counts as Poisson random variables of the Euclidean distances
between loci, and distance-based methods such as ChromSDE (Zhang et al. 2013)
and ShRec3D (Lesne et al. 2014) model contact counts as functions of the Euclidean
distances. An extensive overview of different 3D genome reconstruction techniques
is given in Oluwadare et al. (2019).

Most of the methods for 3D genome reconstructions fromHi-C data are for haploid
organisms. However, like most mammals, humans are diploid organisms, in which the
genetic information is stored in pairs of chromosomes called homologs. Homologous
chromosomes are almost identical besides some single nucleotide polymorphisms
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Fig. 1 Ambiguity of phased data. Each entry ci, j of the Hi-C matrix corresponds to four different contacts
between the two pairs (xi , yi ) for locus i and (x j , y j ) for locus j

(SNPs) (Li et al. 2021). In the case of diploid organisms, the Hi-C data does not gener-
ally differentiate between homologous chromosomes. If we model each chromosome
as a string of beads, then we associate two beads to each locus i ∈ {1, . . . , n}, one
bead for each homolog. Therefore, each observed contact count ci, j between loci i
and j represents aggregated contacts of four different types of interactions, more pre-
cisely one of the two homologous beads associated to locus i gets in contact with one
of the two homologous beads associated to locus j , see Fig. 1. This means that the
Hi-C data is unphased. Phased Hi-C data that distinguishes contacts for homologs
is rare. In our setting, we assume that the data is partially phased, i.e., some of the
contact counts can be associated with a homolog. For example, in the (mouse) Patski
(BL6xSpretus) (Deng et al. 2015; Ye and Ma 2020) cell line, 35.6% of the contact
counts are phased; while this value is as low as 0.14% in the human GM12878 cell
line (Rao et al. 2014; Ye and Ma 2020). Therefore, methods for inferring diploid 3D
chromatin structure need to take into account the ambiguity of diploid Hi-C data to
avoid inaccurate reconstructions.

Methods for 3D genome reconstruction in diploid organisms have been studied in
Tan et al. (2018); Ye and Ma (2020); Cauer et al. (2019); Luo et al. (2020); Belyaeva
et al. (2022); Lindsly et al. (2021); Segal (2022). One approach is to phase Hi-C
data (Tan et al. 2018; Luo et al. 2020; Lindsly et al. 2021), for example by assigning
haplotypes to contacts based on assignments at neighboring contacts (Tan et al. 2018;
Lindsly et al. 2021). Cauer et al. (2019) and Ye and Ma (2020) model contact counts
as Poisson random variables. To find the optimal 3D chromatin structure, Cauer et al.
maximize the associated likelihood function combined with two structural constraints.
The first constraint imposes that the distances between neighboring beads are similar,
and the second one requires that homologous chromosomes are located in different
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regions of the cell nucleus. On the other hand, Ye and Ma first compute the maximum
likelihood estimate of model parameters for each of the homologs separately; these
estimates are then refined by estimating the distance between the homologs. Belyaeva
et al. (2022) show identifiability of the 3D structure when the Euclidean distances
between neighboring beads and higher-order contact counts between three ormore loci
simultaneously are given. Under these assumptions, the 3D reconstruction is obtained
by combining distance geometrywith semidefinite programming. Segal (2022) applies
recently developed imaging technology, in situ genome sequencing (IGS) (Payne et al.
2021), to point out issues in the assumptions made in Tan et al. (2018); Cauer et al.
(2019); Belyaeva et al. (2022), and suggests as alternative assumptions that intra-
homolog distances are smaller than corresponding inter-homolog distances and intra-
homolog distances are similar for homologous chromosomes. IGS (Payne et al. 2021)
provides yet another method for inferring the 3D structure of the genome, however,
at present the resolution and availability of IGS data is limited.

Contributions In this work, we focus on a distance-based approach for partially
phased Hi-C data. In particular, we assume that contacts only for some loci are phased.
In the string of beads model, the locations of the pair of beads associated to i-th
loci are denoted by xi , yi ∈ R

3. Then homologs are represented by two sequences
x1, x2, . . . , xn and y1, x2, . . . , yn inR

3; seeFig. 1. Inferring the 3Dchromatin structure
corresponds to estimating the bead coordinates. Based on Lieberman-Aiden et al.
(2009), we assume the power law dependency ci, j = γ dα

i, j , where α is a negative
conversion factor, between the distance di, j and contact count ci, j of loci i and j .
Following Cauer et al. (2019), we assume that a contact count between loci is given
by the sum of all possible contact counts between the corresponding beads. We call a
bead unambiguous if the contacts for the corresponding locus are phased; otherwise,
we call a bead ambiguous.

Our first main contribution is to show that for negative rational conversion factors
α, knowing the locations of six unambiguous beads ensures that there are generically
finitely many possible locations for the other beads, both in the noiseless (Theorem 1)
and noisy (Corollary 1) setting. Moreover, we prove finite identifiability also in the
fully ambiguous settingwhenα = −2 and the number of loci is at least 12 (Theorem2).
Note that the identifiability does not hold for α = 2 as shown in Belyaeva et al. (2022).

Our second main contribution is to provide a reconstruction method when α = −2,
based on semidefinite programming combined with numerical algebraic geometry
and local optimization (Sect. 4). The general idea is the following: We first estimate
the coordinates of the unambiguous beads using only the unambiguous contact counts
(which precisely corresponds to the haploid setting) using the SDP-based solver imple-
mented in ChromSDE (Zhang et al. 2013). We then exploit our theoretical result on
finite identifiability to estimate the coordinates of the ambiguous beads, one by one, by
solving several polynomial systems numerically. These estimates are then improved
by a local estimation step considering all contact counts. Finally, a clustering algo-
rithm is used to overcome the symmetry (xi , yi ) �→ (yi , xi ) in the estimation for the
ambiguous beads.

The paper is organized as follows. In Sect. 2, we introduce our mathematical model
for the 3D genome reconstruction problem. In Sect. 3, we recall identifiability results
in the unambiguous setting (Sect. 3.1) and then prove identifiability results in the
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partially ambiguous setting (Sect. 3.2) and in the fully ambiguous setting (Sect. 3.3).
We describe our reconstruction method in Sect. 4. We test the performance of our
method on synthetic datasets and on a real dataset from the mouse X chromosomes in
Sect. 5. We conclude with a discussion about future research directions in Sect. 6.

2 Mathematical Model for 3D Genome Reconstruction

In this section we introduce the distance-based model under which we study 3D
genome reconstruction. In Sect. 2.1 we give the background on contact count matrices.
In Sect. 2.2 we describe a power-law between contacts and distances, which allows to
translate the information about contacts into distances.

2.1 Contact Count Matrices

Wemodel the genome as a string of 2n beads, corresponding to n pairs of homologous
beads. The positions of the beads are recorded by a matrix

Z = [x1, . . . , xn, y1, . . . , yn]T ∈ R
2n×3.

The positions xi and yi correspond to homologous beads. When convenient, we use
the notation z1 := x1, . . . , zn := xn, zn+1 := y1, . . . , z2n := yn . In this notation,

Z = [z1, . . . , zn, zn+1, . . . , z2n]T ∈ R
2n×3.

Let U be the subset of pairs that are unambiguous, i.e., beads in the pair can be
distinguished, and let A be the subset of pairs that are ambiguous, i.e., beads in the
pair cannot be distinguished. The sets U and A form a partition of [n].

A Hi-C matrixC is a matrix with each row and column corresponding to a genomic
locus. Following Cauer et al. (2019), we call these contact counts ambiguous and
denote the corresponding contact count matrix by CA. If parental genotypes are avail-
able, then one can use SNPs to map some reads to each haplotype (Deng et al. 2015;
Minajigi et al. 2015; Rao et al. 2014). If both ends of a read contains SNPs that can be
associated to a single parent, then the contact count is called unambiguous and the cor-
responding contact count matrix is denoted byCU . Finally, if only one of the genomic
loci present in an interaction can be mapped to one of the homologous chromosomes,
then the count is called partially ambiguous and the contact count matrix is denoted
by CP .

The unambiguous count matrix CU is a 2n × 2n matrix with the first n indices
corresponding to x1, . . . , xn and the last n indices corresponding to y1, . . . , yn . The
ambiguous count matrix CA is an n × n matrix and we assume that each ambiguous
count is the sum of four unambiguous counts:

cAi, j = cUi, j + cUi, j+n + cUi+n, j + cUi+n, j+n .
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Fig. 2 Seven different types of contacts between the i th and j th locus

The partially ambiguous countmatrixCP is a 2n×nmatrix and each partially ambigu-
ous count is the sum of two unambiguous counts:

cPi, j = cUi, j + cUi, j+n .

2.2 Contacts and Distances

Denoting the distance ‖zi − z j‖ between zi and z j by di, j , the power law dependency
observed by Lieberman-Aiden et al. (2009) can be written as

cUi, j = γ dα
i, j , (1)

where α < 0 is a conversion factor and γ > 0 is a scaling factor. This relationship
between contact counts and distances is assumed in Belyaeva et al. (2022); Zhang
et al. (2013), while in Cauer et al. (2019); Varoquaux et al. (2014) the contact counts
ci, j are modeled as Poisson random variables with the Poisson parameter being βdα

i, j .
In our paper, we assume that contact counts are related to distances by (1). Similarly

to Belyaeva et al. (2022), we set γ = 1 and in parts of the article α = −2. In
general, the conversion factor α depends on a dataset and its estimation can be part
of the reconstruction problem (Varoquaux et al. 2014; Zhang et al. 2013). Setting
γ = 1 means that we recover the configuration up to a scaling factor. In practice,
the configuration can be rescaled using biological knowledge, e.g., the radius of the
nucleus.

Our approach to 3D genome reconstruction builds on the power law dependency
between contacts and distances between unambiguous beads.We convert the empirical
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contact counts to Euclidean distances and then aim to reconstruct the positions of beads
from the distances. This leads us to the following system of equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cAi, j = ‖xi − x j‖α + ‖xi − y j‖α + ‖yi − x j‖α + ‖yi − y j‖α ∀i, j ∈ A

cPi, j = ‖xi − x j‖α+‖xi − y j‖α, cPi+n, j = ‖yi − x j‖α+‖yi − y j‖α ∀i ∈ U , j ∈ A

cUi, j = ‖xi − x j‖α, cUi, j+n = ‖xi − y j‖α,

cUi+n, j = ‖yi − x j‖α, cUi+n, j+n = ‖yi − y j‖α ∀i, j ∈ U

(2)

If α is an even integer, then (2) is a system of rational equations.
Determining the points xi , yi , where i ∈ U , is the classical Euclidean distance

problem: We know the (noisy) pairwise distances between points and would like to
construct the locations of points, see Sect. 3.1 for details. Hence after Sect. 3.1 we
assume that we have estimated the locations of points xi , yi , where i ∈ U , and we
would like to determine the points xi , yi , where i ∈ A.

3 Identifiability

In this section, we study the uniqueness of the solutions of the system (2) up to rigid
transformations (translations, rotations and reflections), or in other words, the iden-
tifiability of the locations of beads. We study the unambiguous, partially ambiguous
and ambiguous settings in Sects. 3.1, 3.2 and 3.3, respectively.

3.1 Unambiguous Setting and Euclidean Distance Geometry

If all pairs are unambiguous, i.e.,U = [n], then constructing the original points trans-
lates to a classical problem in Euclidean distance geometry. The principal task in
Euclidean distance geometry is to construct original points from pairwise distances
between them. In the rest of the subsection, we will recall how to solve this problem.
Since pairwise distances are invariant under translations, rotations and reflections
(rigid transformations), then the original points can be reconstructed up to rigid trans-
formations. For an overview of distance geometry and Euclidean distance matrices,
we refer the reader to Dokmanic et al. (2015), Krislock andWolkowicz (2012), Liberti
et al. (2014) and Mucherino et al. (2012).

The Gram matrix of the points z1, . . . , z2n is defined as

G = Z ZT = [z1, . . . , z2n]T · [z1, . . . , z2n] ∈ R
2n×2n .

Let z = 1
2n

∑2n
i=1 zi and z̃i = zi −z for i = 1, . . . , 2n. The matrix Z̃ = [z̃1, . . . , z̃2n]T

gives the locations of points after centering them around the origin. Let G̃ denote the
Gram matrix of the centered point configuration z̃1, . . . , z̃2n .
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Let Di, j = ‖zi − z j‖2 denote the squared Euclidean distance between the points
zi and z j . The Euclidean distance matrix of the points z1, . . . , z2n is defined as
D = (Di, j )1≤i, j≤2n ∈ R

2n×2n . To express the centered Gram matrix in terms of
the Euclidean distance matrix, we define the geometric centering matrix

J = I2n − 1

2n
11T ,

where I2n is the 2n × 2n identity matrix and 1 is the vector of ones. The linear
relationship between G̃ and D is given by

G̃ = −1

2
J DJ .

Therefore, given the Euclidean distance matrix, we can construct the centered Gram
matrix for the points z1, . . . , z2n .

The centeredpoints up to rigid transformations are extracted from the centeredGram
matrix G̃ using the eigendecomposition G̃ = Q�Q−1, where Q is orthonormal and�

is a diagonalmatrixwith entries ordered in decreasing orderλ1 ≥ λ2 ≥ . . . ≥ λ2n ≥ 0.
We define �

1/2
3 := [diag(√λ1,

√
λ2,

√
λ3), 03×(2n−3)]T and set Ẑ = Q�

1/2
3 . In the

case of noiseless distancematrix D, the Grammatrix G̃ has rank three and the diagonal
matrix � has precisely three non-zero entries. Hence we could obtain Ẑ also from
Q�1/2 by truncating zero columns. Using �

1/2
3 has the advantage that it gives an

approximation for the points also for a noisy distance matrix D. The uniqueness of Ẑ
up to rotations and reflections follows from Krislock (2010, Proposition 3.2) which
states that AAT = BBT if and only if A = BQ for some orthogonal matrix Q.

The procedure that transforms the distance matrix to origin centered Gram matrix
and then uses eigendecomposition for constructing original points is called clas-
sical multidimensional scaling (cMDS) (Cox and Cox 2008). Although cMDS is
widely used in practice, it does not always find the distance matrix that minimizes the
Frobenius norm to the empirical noisy distance matrix (Sonthalia et al. 2021). Other
approaches to solving the Euclidean distance and Euclidean completion problems
include non-convex (Fang and O’Leary 2012; Mishra et al. 2011) as well semidefinite
formulations (Alfakih et al. 1999; Fazel et al. 2003; Nie 2009; Weinberger et al. 2007;
Zhang et al. 2013; Zhou et al. 2020).

3.2 Partially Ambiguous Setting

The next theorem establishes the uniqueness of the solutions of the system (2) in the
presence of ambiguous pairs. In particular, it states that there are finitely many possi-
ble locations for beads in one ambiguous pair given the locations of six unambiguous
beads. The identifiability results in this subsection hold for all negative rational num-
bers α. In the rest of the paper, we denote the true but unknown coordinates by x∗ and
the symbol x stands for a variable that we want to solve for. We write ‖ · ‖ for the
standard inner product on R

3.
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Theorem 1 Let α be a negative rational number. Then for a∗, b∗, . . . , f ∗, x∗, y∗ ∈ R
3

sufficiently general, the system of six equations

‖x − t∗‖α + ‖y − t∗‖α = ‖x∗ − t∗‖α + ‖y∗ − t∗‖α for t∗ = a∗, b∗, . . . , f ∗ (3)

in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many solutions.

Remark 1 The proof will show that this system has only finitely many solutions over
the complex numbers.

We believe that the theorem holds for general nonzero rational α. Indeed, our
argument works, with a minor modification, also for α > 2, but for α in the range
(0, 2] a refinement of the argument is needed.

Proof First write Q(x) := x21 + x22 + x23 , so that ‖x‖ = √
Q(x) for x ∈ R

3. The
advantage of Q over ‖x‖ is that it is well-defined on C

3.
Write α

2 = m
n with m, n relatively prime integers, m �= 0, and n > 0. Consider the

affine variety X ⊆ (C3)8 × (C2)6 consisting of all tuples

((a∗, . . . , f ∗, x∗, y∗), (rt∗ , st∗)t∗=a∗,..., f ∗)

such that

Q(x∗ − t∗)m = rnt∗ �= 0 and Q(y∗ − t∗)m = snt∗ �= 0 for t∗ = a∗, . . . , f ∗.

Note that, if x∗, t∗ are real, then it follows that

Q(x∗ − t∗)m = (‖x∗ − t∗‖α)n,

and similarly for Q(y∗ − t∗). Hence if a∗, . . . , y∗ are all real, then the point

((a∗, . . . , f ∗, x∗, y∗), (‖x∗ − t∗‖α, ‖y∗ − t∗‖α)t∗) (4)

is a point in X with real-valued coordinates.
The projection π from X to the open affine subsetU ⊆ (C3)8 where all Q(x∗ − t∗)

and Q(y∗ − t∗) are nonzero is a finite morphism with fibers of cardinality n12; to see
this cardinality note that there are n possible choices for each of the numbers rt∗ , st∗ .
Each irreducible component of X is a smooth variety of dimension 24.

Consider the map ψ : X → (C3 × C
1)6 defined by

((a∗, . . . , f ∗, x∗, y∗), (rt∗ , st∗)t∗) �→ ((t∗, rt∗ + st∗))t∗

We claim that for q in some open dense subset of X , the derivative dqψ has full rank
24. For this, it suffices to find one point p ∈ U such that dqψ has rank 24 at each of the
n12 points q ∈ π−1(p). We take a real-valued point p := (a∗, b∗, . . . , f ∗, x∗, y∗) ∈
(R3)8 to be specified later on. Let q ∈ π−1(p). Then, near q, the map ψ factorises
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via π and the unique algebraic map ψ ′ : U → (C3 × C
1)6 (defined near p) which on

a neighborhood of p in U ∩ (R3)8 equals

ψ ′(a, . . . , f , x, y) = ((t, ξt∗ · Q(x − t)α/2 + ηt∗ · Q(y − t)α/2))t=a,..., f ∈ (C3 × C
1)6

where ξt∗ and ζt∗ are n-th roots of unity in C depending on which q is chosen among
the n12 points in π−1(p). The situation is summarised in the following diagram:

(X , q)

π
ψ

(U , p)
ψ ′ ((C3 × C

1)6, ψ(q)).

Now, dqψ = dpψ ′ ◦ dqπ , and since dqπ is a linear isomorphism, it suffices to prove
that dpψ ′ is a linear isomorphism. Suppose that (a′, . . . , f ′, x ′, y′) ∈ ker dpψ ′. Then,
since the mapψ ′ remembers a, . . . , f , it follows immediately that a′ = . . . = f ′ = 0.
On the other hand, by differentiating we find that, for each t∗ ∈ {a∗, . . . , f ∗},

ξt∗ · (α/2) · Q(x∗ − t∗)α/2−1 · 2 · 〈x ′, x∗ − t∗〉
+ηt∗ · (α/2) · Q(y∗ − t∗)α/2−1 · 2 · 〈y′, y∗ − t∗〉 = 0,

where 〈·, ·〉 stands for the standard bilinear form on C
3. In other words, the vector

(x ′, y′) ∈ C
6 is in the kernel of the 6 × 6-matrix

M :=
⎡

⎢
⎣

‖x∗ − a∗‖α−2 · ξa∗ · (x∗ − a∗) ‖y∗ − a∗‖α−2 · ηa∗ · (y∗ − a∗)
...

...

‖x∗ − f ∗‖α−2 · ξ f ∗ · (x∗ − f ∗) ‖y∗ − f ∗‖α−2 · η f ∗ · (y∗ − f ∗)

⎤

⎥
⎦

where we have interpreted a∗, . . . , f ∗, x∗, y∗ as row vectors. It suffices to show that,
for some specific choice of p = (a∗, . . . , f ∗, x∗, y∗) ∈ (R3)8, this matrix is nonsin-
gular for all n12 choices of ((ξt∗ , ηt∗))t∗ .

We choose a∗, . . . , f ∗, x∗, y∗ as the vertices of the unit cube, as follows:

a∗ = (1, 0, 0) b∗ = (0, 1, 0) c∗ = (0, 0, 1)

c∗ = (0, 1, 1) d∗ = (1, 0, 1) f ∗ = (1, 1, 0)

x∗ = (0, 0, 0) y∗ = (1, 1, 1).
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Then the matrix M becomes, with β = α − 2:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ξa∗ 0 0 0 2
β
2 · ηa∗ 2

β
2 · ηa∗

0 −ξb∗ 0 2
β
2 · ηb∗ 0 2

β
2 · ηb∗

0 0 −ξc∗ 2
β
2 · ηc∗ 2

β
2 · ηc∗ 0

0 −(2
β
2 · ξd∗) −(2

β
2 · ξd∗) ηd∗ 0 0

−(2
β
2 · ξe∗) 0 −(2

β
2 · ξe∗) 0 ηe∗ 0

−(2
β
2 · ξ f ∗) −(2

β
2 · ξ f ∗) 0 0 0 η f ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, det(M) equals

− ξa∗ · ξb∗ · ξc∗ · ηd∗ · ηe∗ · η f ∗ + 22+3β · ηa∗ · ηb∗ · ηc∗ · ξd∗ · ξe∗ · ξ f ∗ + 22β · R
(5)

where R is a sum of (products of) roots of unity. Now α < 0 implies that β < −2,
so that 2 + 3β < 2β < 0. Since roots of unity have 2-adic valuation 0, the second
term in the expression above is the unique term with minimal 2-adic valuation. Hence
det(M) �= 0, as desired.

It follows that ψ is a dominant morphism from each irreducible component of X
into (C3×C

1)6, and hence for all q in an open dense subset of X , the fiberψ−1(ψ(q))

is finite. This then holds, in particular, for q in an open dense subset of the real points
as in (4). This proves the theorem. ��
Remark 2 If α > 2, then β > 0, and hence the unique term with minimal 2-adic
valuation in (5) is the first term. This can be used to show that the theorem holds then,
as well. The only subtlety is that for positive α, solutions where x or y equal one of
the points a∗, . . . , f ∗ are not automatically excluded, and these are not seen by the
variety X . But a straightforward argument shows that such solutions do not exist for
sufficiently general choices of a∗, . . . , f ∗, x∗, y∗.

We now consider the setting when we know locations of seven unambiguous beads.
In the special case when α = −2, we construct the ideal generated by the polyno-
mials obtained from rational Eqs. (3) for seven unambiguous beads after moving all
terms to one side and clearing the denominators. Based on symbolic computations in
Macaulay2 for the degree of this ideal, we conjecture that the location of a seventh
unambiguous bead guarantees unique identifiability of an ambiguous pair of beads:

Conjecture 1 Let a∗, b∗, c∗, d∗, e∗, f ∗, g∗, x∗, y∗ ∈ R
3 be sufficiently general. The

system of rational equations

1

‖t∗ − x∗‖2 + 1

‖t∗ − y∗‖2 = 1

‖t∗ − x‖2 + 1

‖t∗ − y‖2 for t∗ = a∗, b∗, c∗, d∗, e∗, f ∗, g∗

(6)

has precisely two solutions (x∗, y∗) and (y∗, x∗).
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In practice, we only have noisy estimates a, b, . . . , f ∈ R
3 of the true positions of

unambiguous beads a∗, b∗, . . . , f ∗ ∈ R
3, and we have noisy observations ct of the

true contact counts c∗
t := ‖x∗ − t∗‖α + ‖y∗ − t∗‖α . We aim to find x, y ∈ R

3 such
that

‖x − t‖α + ‖y − t‖α = ct for t = a, b, . . . , f .

We may write ct = ‖x∗ − t‖α + ‖y∗ − t‖α + εt for some εt that depends on the noise
level. Hence, the above system of equations can be rephrased as

‖x − t‖α + ‖y − t‖α = ‖x∗ − t‖α + ‖y∗ − t‖α + εt for t = a, b, . . . , f . (7)

In the following corollary we show that this system has generically finitely many
solutions.

Corollary 1 Let α be a negative rational number. Then for a, b, . . . , f , x∗, y∗ ∈ R
3

and εa, εb, . . . , ε f ∈ R sufficiently general, the system of six equations

‖x − t‖α + ‖y − t‖α = ‖x∗ − t‖α + ‖y∗ − t‖α + εt for t = a, b, . . . , f (8)

in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many solutions.

Proof Recall the map ψ : X → (C3 × C
1)6 from the proof of Theorem 1 defined by

((a, . . . , f , x∗, y∗), (rx∗,t , sy∗,t )t ) �→ ((t, rx∗,t + sy∗,t ))t .

We showed that ψ is a dominant morphism from each irreducible component of X
into (C3 × C

1)6, and that each irreducible component of X is 24-dimensional. Every
solution to (8) is the (x, y)-component of a point in the fiber

ψ−1((t, ||x∗ − t ||α + ||y∗ − t ||α + εt ))t .

Since this is a fiber over a sufficiently general point, the fiber is finite. ��
Corollary 1will be the basis of a numerical algebraic geometric based reconstruction

method in Sect. 4.

3.3 Ambiguous Setting

Finally we consider the ambiguous setting, where one would like to reconstruct the
locations of beads only from ambiguous contact counts. It is shown in Belyaeva et al.
(2022) that for α = 2, one does not have finite identifiability no matter how many
pairs of ambiguous beads one considers.We show finite identifiability for the locations
of beads given contact counts for 12 pairs of ambiguous beads for α = −2 in both
the noisy and noiseless setting. We believe that the result might be true for further
conversion factors α’s, however our proof technique does not directly generalize.
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Theorem 2 Let α = −2. Then for (ci j )1≤i< j≤12 ∈ R
66 sufficiently general, the system

of 66 equations

‖xi − x j‖α + ‖xi − y j‖α + ‖yi − x j‖α + ‖yi − y j‖α = ci j for 1 ≤ i < j ≤ 12 (9)

in the 72 unknowns x1,1, x1,2, x1,3, y1,1, y1,2, y1,3, . . . , x12,1, x12,2, x12,3, y12,1,
y12,2, y12,3 ∈ R has only finitely many solutions up to rigid transformations. In partic-
ular, it holds that for sufficiently general (x∗

1 , y
∗
1 , . . . , x

∗
12, y

∗
12) ∈ (R3)24, the system

‖xi − x j‖α + ‖xi − y j‖α + ‖yi − x j‖α + ‖yi − y j‖α =
‖x∗

i − x∗
j ‖α + ‖x∗

i − y∗
j ‖α + ‖y∗

i − x∗
j ‖α + ‖y∗

i − y∗
j ‖α for 1 ≤ i < j ≤ 12

(10)

has finitely many solutions up to rigid transformation.

Proof As before, we write Q(x) := x21 + x22 + x23 , so that ‖x‖ = √
Q(x) for

x ∈ R
3. Consider the affine open subset X ⊆ (C3)24 consisting of all tuples

(x∗
1 , y

∗
1 , . . . , x

∗
12, y

∗
12) such that

Q(x∗
i − x∗

j ) �= 0, Q(x∗
i − y∗

j ) �= 0, Q(y∗
i − x∗

j ) �= 0 and Q(y∗
i − y∗

j ) �= 0 for i < j .

Consider also the map ψ : X → C
66 defined by

(x∗
1 , . . . , y∗

12) �→
(
Q(x∗

i − x∗
j )

−1+ Q(x∗
i − y∗

j )
−1+ Q(y∗

i − x∗
j )

−1+ Q(y∗
i − y∗

j )
−1

)

i< j
.

By a computer calculation (with exact arithmetic) we found that at a randomly chosen
q ∈ X with rational coordinates, the derivativedqψ had full rank 66. It then follows that
for q in some open dense subset of X , dqψ has rank 66. Hence ψ is dominant, and for
any sufficiently general c ∈ C

66, all irreducible components of the fiber ψ−1(c) have
dimension 6. Moreover, each such component C is preserved by the 6-dimensional
connected group G = SO(3, C) � C

3.
The stabilizer in G of a sufficiently general point in X is zero-dimensional. This

follows from a Lie algebra argument: if a point (x∗
1 , y

∗
1 , . . . , x

∗
12, y

∗
12) ∈ X has a

positive-dimensional stabilizer in G, then there is a nonzero element A in the Lie
algebra of SO(3, C) that maps all the differences x∗

i − x∗
j , x

∗
i − y∗

j , y
∗
i − y∗

j to zero.
Since A is a skew-symmetricmatrix and hence of rank 2, it follows that all points x∗

i , y∗
j

lie on a line. The variety of such collinear tuples has dimension 28, so it does not map
dominantly to C

66. Hence there exists a Zariski open dense subset V ⊆ C
66 such that

for all c ∈ V , the fiberψ−1(c) contains no points with positive-dimensional stabilizers
in G, and hence ψ−1(c) is a disjoint union of finitely many 6-dimensional G-orbits.
Likewise, ψ−1(V ) is a Zariski open dense subset of (C3)24 such that ψ−1(ψ(q))

consists of finitely many G-orbits for all q ∈ ψ−1(V ). With this, we have proven the
complex analog of the theorem.
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To obtain the statement over the real numbers, we note that if c ∈ V has real-valued
coordinates, then a finite number of the G-orbits that make up ψ−1(c) contain a real-
valued tuple. If G · q for q ∈ (R3)24 is such an orbit, it holds that (G · q) ∩ (R3)24 =
(SO(3, R)�R

3) ·q whenever the 24 points that make up the tuple q are not coplanar.
The set of coplanar configurations form a subset of X of dimension 51, and does
therefore not map dominantly to C

66. Hence, by shrinking V appropriately, we can
assume that no fibers above it contain coplanar configurations. In particular, thismeans
that the real part of the fiber over any real point in V consists of a finitely many orbits
under the action of SO(3, R) � R

3, as desired. ��
Remark 3 A standard numerical algebraic geometry computation with monodromy
and the certification techniques of Breiding et al. (2023), using Homotopy
Continuation.jl (see, e.g., Sturmfels and Telen (2021)), proves that the system
(8) generically has more than 1000 complex solutions up to the action of O(3, C)�C

3

and the symmetries (xi , yi ) �→ (yi , xi ) for i = 1, . . . , 12. This constitutes theoretical
motivation for working with partially phased data, even if we, in principle, have finite
identifiability already from the unphased data.

Remark 4 When α = 2, which corresponds to the setting studied in Belyaeva
et al. (2022), then computationally we found that for some special choices of
x∗
1 , y

∗
1 , . . . , x

∗
12, y

∗
12 ∈ R

3 the rank of the Jacobian matrix in Theorem 2 is 42. This is
consistent with the fact that Theorem 2 fails for α = 2 (Belyaeva et al. 2022).

4 A New ReconstructionMethod

In this section, we outline a new approach to diploid 3D genome reconstruction for
partially phased data, based on the theoretical results discussed in subsection 3.2. The
method consists of the following main steps:

1. Estimation of the unambiguous beads {xi , yi }i∈U through semidefinite program-
ming (discussed in Sect. 4.1).

2. A preliminary estimation of the ambiguous beads using numerical algebraic geom-
etry, based on Corollary 1 (discussed in Sect. 4.2).

3. A refinement of this estimation using local optimization (discussed in Sect. 4.3).
4. A final clustering step, where we disambiguate between the estimations (xi , yi )

and (yi , xi ) for each i ∈ A, based on the assumption that homolog chromosomes
are separated in space (discussed in Sect. 4.4).

In what follows, we will refer to this method by the acronym SNLC (formed from
the initial letters in semidefinite programming, numerical algebraic geometry, local
optimization and clustering).

4.1 Estimation of the Positions of Unambiguous Beads

As discussed in Sect. 3.1, the unambiguous bead coordinates {xi , yi }i∈U =
{zi }i∈U∪(n+U ) can be estimated with semidefinite programming.More specifically, we
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use ChromSDE Zhang (2013, Section 2.1) for this part of our reconstruction, which
relies on a specialized solver from Jiang et al. (2014), to solve an SDP relaxation of
the optimization problem

min{zi }i∈U∪(n+U )

∑

i, j∈U∪(n+U )

cUi j �=0

√

cUi j

(
1

cUi j
− ‖zi − z j‖2

)2

+ λ
∑

i, j∈U∪(n+U )

cUi j=0

‖zi − z j‖2

(11)

with λ = 0.01 (cf. Zhang, et al. (2013, Eq. 4)). The terms in the first sum are weighted
by the square root for the corresponding contact counts, in order to account for the
fact that higher counts can be assumed to be less susceptible to noise.

4.2 Preliminary Estimation Using Numerical Algebraic Geometry

To estimate the coordinates of the ambiguous beads {xi , yi }i∈A, we will use a method
based on numerical equation solving, where we estimate the ambiguous bead pairs
one by one.

Let x, y be the unknown coordinates inR
3 of a pair of ambiguous beads.We pick six

unambiguous beads with already estimated coordinates a, b, c, d, e, f ∈ R
3. For each

t ∈ {a, . . . , f }, let ct ∈ R be the corresponding partially ambiguous counts between t
and the ambiguous bead pair (x, y). Clearing the denominators in the system (8), we
obtain a system of polynomial equations

‖x − t‖2 + ‖y − t‖2 = ct‖x − t‖2‖y − t‖2 for t = a, b, c, d, e, f . (12)

By Corollary 1, this system has finitely many complex solutions both in the noiseless
and noisy setting, which can be found using homotopy continuation.

We observe that the system (12) generally has 80 complex solutions, and we only
expect one pair of solutions (x, y), (y, x) to correspond to an accurate estimation.
Naively adding another polynomial arising from a seventh unambiguous bead (as in
Conjecture 1) does not work; in the noisy setting this over-determined system typically
lacks solutions. Instead,we compute an estimation based on the following twoheuristic
assumptions:

1. The most accurate estimation should be approximately real, in the sense that the
max-norm of the imaginary part is below a certain tolerance (in this work, 0.15was
used for the experiments in both Sects. 5.1 and 5.2). The choice of this threshold
was made based on analysing the imaginary parts of solutions to (12) for various
choices of unambiguous beads, see Fig. 9.

2. The most accurate estimation should be consistent when we change the choice of
six unambiguous beads.

Based on these assumptions, we apply the following strategy. We make a number
N ≥ 2, choices of sets of six unambiguous beads, and solve the corresponding N
square systems of the form (12). Since larger contact counts can be expected to have
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smaller relative noise, wemake the choices of beads among the 20 unambiguous beads
t that have highest contact count ct to the ambiguous locus at hand. For each system,
we pick out the approximately real solutions, and obtain N sets S1, . . . ,SN ⊆ R

6

consisting of the real parts of the approximately real solutions. Up to the symmetry
(x, y) �→ (y, x), we expect these sets to have a unique “approximately common”
element. We therefore compute, by an exhaustive search, the tuple (w1, . . . , wN ) ∈
S1 × · · · × SN that minimizes the sum

∥
∥
∥
∥w1 − w1 + · · · + wN

N

∥
∥
∥
∥ + · · · +

∥
∥
∥
∥wN − w1 + · · · + wN

N

∥
∥
∥
∥ ,

and use w1+···+wN
N as our estimation of (x, y). For the computations presented in

Sect. 5, we use N = 5.
To solve the systems, we use the Julia package HomotopyContinuation. jl (Brei-

ding et al. 2018), and follow the two-phase procedure described in Sommese and
Wampler (2005, Sect. 7.2). For the first phase, we solve (12) with randomly chosen
parameters a∗, . . . , f ∗ ∈ C

3 and ca∗ , . . . , c f ∗ ∈ C, using a polyhedral start system
(Huber and Sturmfels 1995). We trace 1280 paths in this first phase, since the New-
ton polytopes of the polynomials appearing in the system (12) all contain the origin,
and have a mixed volume of 1280, which makes 1280 an upper bound on the num-
ber of complex solutions by Li (1996, Theorem 2.4). For the second phase, we use
a straight-line homotopy in parameter space from the randomly chosen parameters
a∗, . . . , f ∗ ∈ C

3 and ca∗ , . . . , c f ∗ ∈ C, to the values a, . . . , f and ca, . . . , c f ∈ C at
hand. We observe that we generally find 80 complex solutions in the first phase, which
means 40 orbits with respect to the symmetry (x, y) �→ (y, x). By the discussion in
Sommese, (2005, Sect. 7.6) it is enough to only trace one path per orbit, so in the end,
we only trace 40 paths in the second phase.

Remark 5 If the noise levels are sufficiently high, there could be choices of six
unambiguous beads for which the system lacks approximately-real solutions. If this
situation is encountered, we try to redraw the six unambiguous beads until we find
an approximately-real solution. If this does not succeed within a certain number of
attempts (100 in the experiments conducted for this paper), we use the average of the
closest neighboring unambiguous beads instead.

4.3 Local Optimization

A disadvantage of the numerical algebraic geometry based estimation discussed in
the previous subsection is that it only takes into account “local” information about the
interactions for one ambiguous locus at a time, which might make it more sensitive
to noise. In our proposed method, we therefore refine this preliminary estimation of
{xi , yi }i∈A further in a local optimization step that takes into account the “global”
information of all available data.
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The idea is to estimate {xi , yi }i∈A by solving the optimization problem

min{xi ,yi }i∈A

∑

i∈U , j∈A

((
cPi, j − 1

‖xi−x j‖2 − 1
‖xi−y j‖2

)2+
(
cPi+n, j − 1

‖yi−x j‖2 − 1
‖yi−y j‖2

)2
)

(13)

while keeping the estimates of {xi , yi }i∈U from the ChromSDE step fixed. We use
the quasi-Newton method for unconstrained optimization implemented in the Matlab
Optimization Toolbox for this step. The already estimated coordinates of {xi , yi }i∈A

from the numerical algebraic geometry step are used for the initialization.

4.4 Clustering to Break Symmetry

Our objective function remains invariant if we exchange xi and yi for any i ∈ A.
We can break symmetry by relying on the empirical observation that homologous
chromosomes typically are spatially separated in different so-called compartments of
the nucleus (Eagen 2018). Let (x̄i , ȳi )ni=1 denote the estimates from the previous steps.
Our final estimations will be obtained by solving the minimization problem

min{xi ,yi }i∈A

n−1∑

i=1

gi,i+1(x, y), with gi,i+1(x, y) :=
(
‖xi − xi+1‖2 + ‖yi − yi+1‖2

)
,

(14)

where (xi , yi ) = (x̄i , ȳi ) for i ∈ U are fixed, and (xi , yi ) ∈ {(x̄i , ȳi ), (ȳi , x̄i )} for
i ∈ A are the optimization variables. The optimal solution can be computed efficiently,
as explained next.

We first decompose the problem into contiguous chunks of ambiguous beads. Let
(i1, . . . , iL) := U be the indices of the unambiguous beads and let i0 := 1, iL+1 := n.
The optimization problem can be phrased as

min{xi ,yi }i∈A

L∑


=0

G
(x, y), with G
(x, y) :=
i
+1−1∑

i=i


gi,i+1(x, y) (15)

where there is one summandG
(x, y) for each contiguous chunk of ambiguous beads.
Since the summands G
(x, y) do not share any ambiguous bead, we can minimize
them independently.

We proceed to describe the optimal solution of the problem. Let

si =
{
1, if (xi , yi ) = (x̄i , ȳi )

−1, if (xi , yi ) = (ȳi , x̄i )
, wi,i+1 = (x̄i − ȳi )

T (x̄i+1 − ȳi+1).
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The variable si indicates whether we keep using (x̄i , ȳi ) or we reverse it. Note that
si = 1 for i ∈ U . The next lemma gives the optimal assignment of si for i ∈ A. This
assignment is constructed by using inner products wi,i+1.

Lemma 1 The optimal solution of (14) can be constructed as follows:

1. For the last chunk (
 = L) we have

s∗
i
 = 1, s∗

i+1 = sgn(wi,i+1)s
∗
i for i = i
, i
+1, . . . , i
+1−1

where sgn(·) is the sign function and sgn(0) can be either 1 or −1.
2. For the first chunk (
 = 0) we have

s∗
i
+1

= 1, s∗
i = sgn(wi,i+1)s

∗
i+1 for i = i
+1−1, i
+1−2, . . . , i


3. For any other chunk, let k be the index of the smallest absolute value |wk,k+1|,
among i
 ≤ k ≤ i
+1 − 1. The solution is

s∗
i
 = 1, s∗

i+1 = sgn(wi,i+1)s
∗
i for i = i
, i
+1, . . . , k−1

s∗
i
+1

= 1, s∗
i = sgn(wi,i+1)s

∗
i+1 for i = i
+1−1, i
+1−2, . . . , k+1

Proof Denoting ūi := 1
2 (x̄i + ȳi ), v̄i := 1

2 (x̄i − ȳi ), then xi = ui +sivi , yi = ui −sivi .
Note that

‖x̄i‖2 + ‖ȳi‖2 + ‖x̄i+1‖2 + ‖ȳi+1‖2 − gi,i+1(x, y) = 2(xTi xi+1 + yTi yi+1)

= 2(ūi + si v̄i )
T (ūi+1 + si+1v̄i+1) + 2(ūi − si v̄i )

T (ūi+1 − si+1v̄i+1)

= 4(ūTi ūi+1) + 4(v̄Ti v̄i+1)si si+1

= 4(ūTi ūi+1) + wi,i+1si si+1

Since x̄i , ȳi , ūi , v̄i are constants, minimizing gi,i+1(x, y) is equivalent to maximiz-
ing wi,i+1si si+1. Then for each chunk we have to solve the optimization problem

max
si∈{1,−1}

i
+1−1∑

i=i


wi,i+1si si+1 , (16)

The formulas from the first and last chunk are such that wi,i+1s∗
i s

∗
i+1 ≥ 0 for all i .

This is possible because in these cases only one of the endpoints has a fixed value,
and the remaining values are computed recursively starting from such a fixed point.
Since all summands are nonnegative, the sum in (16) is maximized.

For the inner chunks, the two endpoints are fixed, so it may not be possible to have
that wi,i+1s∗

i s
∗
i+1 ≥ 0 for all indices. In an optimal assignment we should pick at

most one term to be negative, and such a term (if it exists) should be the one with the
smallest absolute value |wi,i+1|. This leads to the formula from the lemma. ��
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5 Experiments

In this section, we apply the SNLC scheme described in Sect. 4 to synthetic and
real datasets, and compare its performance with the preexisting software packages
ASHIC (Ye and Ma 2020) and PASTIS (Cauer et al. 2019). We chose these two
reconstruction methods for comparison because they are best suited for our setting.
Also Belyaeva et al. (2022) and Tan et al. (2018) have reconstruction methods for
diploid organisms, but the former method requires higher-order contact information
and the latter method is targeted for single cell data.

All SNLC experiments are done using Julia 1.6.1, with ChromSDE being run in
Matlab 2021a, and the Julia package MATLAB.jl (v0.8.3) acting as interface between
Julia and Matlab. The numerical algebraic geometry part of the estimation procedure
is done with HomotopyContinuation.jl (v2.5.5) (Breiding et al. 2018). The
PASTIS experiments are run in Python 3.8.10, and the ASHIC experiments in Python
3.10.5.

For the PASTIS computations, we fix α = −2 to ensure compatibility with the
modelling assumptions made in this paper. We run PASTIS without filtering, in order
to make it possible to compare RMSD values. Since PASTIS only takes integer inputs,
we multiply the theoretical contact counts calculated by (2) by a factor 105 and round
them to the nearest integer. Following the approach taken in Cauer et al. (2019), we
use a coarse grid search to find the optimal coefficients for the homolog separating
constraint and bead connectivity constraints. Specifically, we fix a structure simulated
with the same method as used in the experiments, and compute the RMSD values for
all λ1, λ2 ∈ {1, 101, 102, . . . , 1012}. In this way, we find that λ1 = 1011 and λ2 = 1012

give optimal results.
For the ASHIC computations, we use the ASHIC-ZIPM method, which has the

lowest distance error rate among the ASHIC’s models according to Ye (2020, Fig. 2)
and models the contact counts as a zero-inflated Poisson distribution (ZIP) to account
for the sparsity of the Hi-C matrix. We run ASHIC without filtering out any loci
and with the setting |aggregate| to ensure that the coordinates of all beads are
estimated.

5.1 Synthetic Data

We conduct a number of experiments where we simulate a single chromosome pair
(referred to as X and Y in figures) through Brownian motion with fixed step length,
compute unambiguous, partially ambiguous and ambiguous contact counts according
to (2), add noise, and then try to recover the structure of the chromosomes through the
SNLC scheme described in Sect. 4. Following (Belyaeva et al. 2022), we model noise
by multiplying each entry of CU , CP and CA by a factor 1 + δ, where δ is sampled
uniformly from the interval (−ε, ε) for some chosen noise level ε ∈ [0, 1].

As a measure of the quality of the reconstruction, we use the minimal root-mean
square distance (RMSD) between, on the one hand, the true coordinates (x∗

i , y∗
i )ni=1,

and, on the other hand, the estimated coordinates (xi , yi )ni=1 after rigid transformations
and scaling, i.e., we find the minimum
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min
R∈O(3)

s>0, b∈R3

√
√
√
√ 1

2n

n∑

i=1

(
‖(sRxi + b) − x∗

i ‖2 + ‖(sRyi + b) − y∗
i ‖2

)
.

This can be seen as a version of the classical Procrustes problem solved in Schönemann
(1966), which is implemented in Matlab as the function procrustes.

Specific examples of reconstructions of the Brownian motion and helix-shaped
chromosomes obtained with SNLC at varying noise levels and 50% of ambiguous
beads are shown in Fig. 3. For low noise levels the reconstructions by SNLC and the
original structure highly overlap. For higher noise levels the general region occupied
by the reconstructions overlaps with the original structure, while the local features
become less aligned. Analogous reconstructions obtained with SNLC without the
local optimization step are shown in Fig. 6 in Appendix.

A comparison of how the quality of the reconstruction depends on the noise level
and proportion of ambiguous beads for SNLC, ASHIC and PASTIS is done in Fig. 4.
We measure the RMSD value between the reconstructed and original 3D structure
for different noise levels over 20 runs. The RMSD values obtained by SNLC are
consistently lower than the ones obtained by ASHIC and PASTIS. The difference is
specially large for low to medium noise levels. While our method outperforms ASHIC
and PASTIS in the setting considered in this paper, it is worth mentioning that ASHIC
and PASTIS work also in a more general setting, where there might be contacts of all
three types (ambiguous, partially ambiguous and unambiguous) between every pair
of loci.

5.2 Experimentally Obtained Data

We compute SNLC reconstructions based on the real dataset explored in Cauer et al.
(2019), which is obtained from Hi-C experiments on the X chromosomes in the Patski
(BL6xSpretus) cell line. The data has been recorded at a resolution of 500 kb, which
corresponds to 343 bead pairs in our model.

For some of these pairs, no or only very low contact counts have been recorded.
Since such low contact counts are susceptible to high uncertainty and can be assumed
to be a consequence of experimental errors, we exclude the 47 loci with the lowest
total contact counts from the analysis. To select the cutoff, the loci are sorted according
to the total contact counts (see Fig. 7a in Appendix), and the ratios between the total
contact counts for consecutive loci are computed. A peak for these ratios is observed
at the 47th contact count, as shown in Fig. 7b in Appendix. After applying this filter,
we obtain a dataset with 296 loci. Out of these, we consider as ambiguous all loci
i for which less than 40% of the total contact count comes from contacts where xi
and yi were not distinguishable. These proportions for all loci are shown in Fig. 7c in
Appendix. For the Patski dataset, we obtain 46 ambiguous loci and 250 unambiguous
loci in this way.

In the Patski dataset, a locus can simultaneously participate in unambiguous, par-
tially ambiguous and ambiguous contacts. To obtain the setting of our paper where loci
are partitioned into unambiguous or ambiguous, we reassign the contacts according to
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Fig. 3 Examples of reconstructions for varying noise levels, for a chromosome pair with 60 loci, out of
which 50% are ambiguous. a–c Show chromosomes simulated with Brownian motion (projected onto the
xy-plane), whereas d–e show helix-shaped chromosomes (color figure online)
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Fig. 4 Comparison between our reconstruction method, ASHIC and PASTIS. The values are the average
over 20 runs, with the error bars showing the standard deviation. All experiments took place with 60 loci,
with varying levels of noise, as well as varying numbers of ambiguous loci, uniformly randomly distributed
over the chromosomes (color figure online)
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Fig. 5 a Reconstruction from a real dataset using our reconstruction method. A dashed line between two
beads is used to indicate that there is one or more beads between them, for which we have not given an
estimation (due to low contact counts). b Bipartite index for the reconstructed chromosomes. The dashed
vertical line indicates the known hinge point at locus 146 (color figure online)

whether a locus is unambiguous or ambiguous. Our reassignment method is motivated
by the assignment of haplotype to unphased Hi-C reads in Lindsly et al. (2021). The
exact formulas are given in Appendix.

The reconstruction obtained via SNLC can be found in Fig. 5a. The logarithmic
heatmaps for contact count matrices for original data and the SNLC reconstruction
are shown in Fig. 8.

Itwas discovered inDeng et al. (2015) that the inactive homolog in thePatskiXchro-
mosome pair has a bipartite structure, consisting of two superdomains with frequent
intra-chromosome contacts within the superdomains and a boundary region between
the two superdomains. The active homolog does not exhibit the same behaviour. The
boundary region on the inactive X chromosome is centered at 72.8−72.9 MB (Deng
et al. 2015) which at the 500 kB resolution corresponds to the bead 146 (Cauer et al.
2019). We show in Fig. 5b that the two chromosomes reconstructed using SNLC
exhibit this structure by computing the bipartite index for the respective homologs
as in Cauer et al. (2019); Deng et al. (2015). We recall that, in the setting of a single
chromosome with beads z1, . . . , zn ∈ R

3, the bipartite index is defined as the ratio of
intra-superdomain to inter-superdomain contacts in the reconstruction:

BI (h) =
1
h2

∑h
i=1

∑h
j=1

1
‖zi−z j‖2 + 1

(n−h)2

∑n
i=h+1

∑n
j=h+1

1
‖zi−z j‖2

2
h(n−h)

∑h
i=1

∑n
j=h+1

1
‖zi−z j‖2

.
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6 Discussion

In this article we study the finite identifiability of 3D genome reconstruction from
contact counts under themodelwhere the distancesdi, j and contact counts ci, j between
two beads i and j follow the power law dependency ci, j = dα

i, j for a conversion factor
α < 0. We show that if at least six beads are unambiguous, then the locations of the
rest of the beads can be finitely identified from partially ambiguous contact counts
for rational α satisfying α < 0 or α > 2. In the fully ambiguous setting, we prove
finite identifiability for α = −2, given ambiguous contact counts for at least 12 pairs
of beads. From Belyaeva et al. (2022) it is known that finite identifiability does not
hold in the fully ambiguous setting for α = 2. It is an open question whether finite
identifiability of 3D genome reconstruction holds for other α ∈ R\{−2, 2} in the fully
ambiguous setting and for rational α ∈ (0, 2] in the partially ambiguous setting. We
conjecture that in the partially ambiguous setting seven unambiguous loci guarantee
unique identifiability of the 3D reconstruction for rational α < 0 or α > 2. When
α = −2, then one approach to studying the unique identifiability might be via the
degree of a parametrized family of algebraic varieties.

After establishing the identifiability, we suggest a reconstruction method for the
partially ambiguous setting with α = −2 that combines semidefinite program-
ming, homotopy continuation in numerical algebraic geometry, local optimization
and clustering. To speed up the homotopy continuation based part, we observe that
the parametrized system of polynomial equations corresponding to six unambiguous
beads has 40 pairs of complex solutions and we trace one path for each orbit. It is an
open question to prove that for sufficiently general parameters the system has 40 pairs
of complex solution. This question again reduces to studying the degree of a family
of algebraic varieties. While our goal is to highlight the potential of our method, one
could further regularize its output and use interpolation for the beads that are far away
from the neighboring beads. A future research direction is to explore whether numer-
ical algebraic geometry or semidefinite programming based methods can be proposed
also for other conversion factors α < 0.

Supplementary information

The code for computations and experiments is available at https://github.com/
kaiekubjas/3D-genome-reconstruction-from-partially-phased-HiC-data.
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Code Availability The code used for generating the synthetic data discussed in Sect. 5.1 is available in the
GitHub repository https://github.com/kaiekubjas/3D-genome-reconstruction-from-partially-phased-HiC-
data. This repository also contains the code used for the computations referred to in the discussion preceeding
Conjecture 1, and in the proof of Theorem 2.
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Appendix

In this part of the paper, we include additional details and figures for the experiments
in Sect. 5.

Figure 6 shows reconstructions of the same chromosomes as displayed in Fig. 3
but without the local optimization step, indicating that semidefinite programming,
numerical algebraic geometry and clustering alone can recover the main features of
the 3D structure.

Figure 7 illustrates the preprocessing steps of the real dataset where loci with low
contact counts are removed and the rest of the loci are partitioned into unambiguous
and ambiguous. The total contact count for the i th locus is defined as the sum of all
contacts where it participates:

T (i)=
∑

j∈[n]

(
cA(i, j)+cP (i, j)+cP (i + n, j)

)
+

∑

j∈[2n]

(
cP ( j, i)+cU (i, j)+cU (i+n, j)

)
.
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Fig. 6 SNLC reconstructions, without the local optimization step (color figure online)
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Fig. 7 a Total contact counts sorted in increasing order. b Ratios between total contact counts. The peak
corresponding to the ratio between the 48th and the 47th smallest count is used as a motivation for excluding
the 47 loci with smallest total contact from the analysis. c Unambiguity quotients for each of the remaining
296 loci, sorted in increasing order.We consider a locus as ambiguous if this ratio is less than 0.4; otherwise,
we consider it as unambiguous (color figure online)

Similarly, we define the unambiguity quotient as the proportion of T (i) that consists
of contacts where xi and yi could be distinguished:

UQ(i) = 1

T (i)

⎛

⎝
∑

j∈[n]

(
cP (i, j) + cP (i + n, j)

)
+

∑

j∈[2n]

(
cU (i, j) + cU (i + n, j)

)
⎞

⎠ .

To obtain the setting of our paper where loci are partitioned into unambiguous or
ambiguous, we reassign the contact counts of C̃U C̃ P and C̃ A of the Patski dataset
according to whether a locus is unambiguous or ambiguous. For i, j ∈ U , we define

cUi, j = c̃Ui, j+ c̃Pi, j
c̃Ui, j

c̃Ui, j+ c̃Ui, j+n

+ c̃Pj,i
c̃Ui, j

c̃Ui, j + c̃Ui+n, j

+ c̃Ai, j

c̃Ui, j
c̃Ui, j+ c̃Ui, j+n+c̃Ui+n, j+ c̃Ui+n, j+n

,

cUi, j+n= c̃Ui, j+n + c̃Pi, j
c̃Ui, j+n

c̃Ui, j + c̃Ui, j+n

+ c̃Pj+n,i

c̃Ui, j+n

c̃Ui, j+n + c̃Ui+n, j+n

+

+ c̃Ai, j
c̃Ui, j+n

c̃Ui, j + c̃Ui, j+n + c̃Ui+n, j + c̃Ui+n, j+n

,

cUi+n, j = c̃Ui+n, j + c̃Pi+n, j

c̃Ui+n, j

c̃Ui+n, j + c̃Ui+n, j+n

+ c̃Pj,i
c̃Ui+n, j

c̃Ui, j + c̃Ui+n, j

+

+ c̃Ai, j
c̃Ui+n, j

c̃Ui, j + c̃Ui, j+n + c̃Ui+n, j + c̃Ui+n, j+n

,

cUi+n, j+n= c̃Ui+n, j+n + c̃Pi+n, j

c̃Ui+n, j+n

c̃Ui+n, j + c̃Ui+n, j+n

+ c̃Pj+n,i

c̃Ui+n, j+n

c̃Ui, j+n + c̃Ui+n, j+n

+
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Fig. 8 Logarithmic heat maps for the reassigned contact count matrices obtained from the original Patski
dataset and from the SNLC reconstruction: a and bCU ; c and dCP ; e and f CA . The axis labels correspond
to the 500 unambiguous beads, and the 46 ambiguous loci
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Max-norm of the imaginary parts encountered in the numerical algebraic geometry estimation of
various loci. Each subfigure corresponds to an ambiguous locus: a–d correspond to the first four loci of the
synthetic dataset used in Fig. 3b; e–h correspond to the first four ambiguous loci of the Patski dataset. Each
colored line corresponds to a specific choice of 6 unambiguous beads used in the estimation of the locus.
Each line connects 40 points, that record the max-norm of the imaginary part of a solution (up to symmetry)
found for the corresponding choice of 6 unambiguous beads. The dashed line at 0.15 corresponds to the
choice of threshold for when a solution is considered approximately real. Similar figures for the rest of
the ambiguous loci in the respective chromosome pairs can be found in the Github repository (color figure
online)

+ c̃Ai, j
c̃Ui+n, j+n

c̃Ui, j + c̃Ui, j+n + c̃Ui+n, j + c̃Ui+n, j+n

.

For i ∈ U , j ∈ A, we define

cPi, j = c̃Ui, j + c̃Ui, j+n + c̃Pi, j + c̃Pj,i
c̃Ui, j

c̃Ui, j + c̃Ui+n, j

+ c̃Pj+n,i

c̃Ui, j+n

c̃Ui, j+n + c̃Ui+n, j+n

+

+ c̃Ai, j
c̃Pi, j

c̃Pi, j + c̃Pi+n, j

,

cPi+n, j = c̃Ui+n, j + c̃Ui+n, j+n + c̃Pi+n, j + c̃Pj,i
c̃Ui+n, j

c̃Ui, j + c̃Ui+n, j

+ c̃Pj+n,i

c̃Ui+n, j+n

c̃Ui, j+n + c̃Ui+n, j+n

+

+ c̃Ai, j
c̃Pi+n, j

c̃Pi, j + c̃Pi+n, j

.

Finally, for i, j ∈ A, we define

cAi, j = c̃Ui, j + c̃Ui, j+n + c̃Ui+n, j + c̃Ui+n, j+n + c̃Pi, j + c̃Pi+n, j + c̃Pj,i + c̃Pj+n,i + c̃Ai, j .

In Fig. 8 in Appendix, the experimental contact counts from the Patski dataset are
compared with the contact counts from the SNLC reconstruction.

Figure 9 shows how the max-norm of the imaginary part of the solutions varies
between different instances of the system (12) used for the reconstruction in Fig. 3(b),
and for the reconstruction from the Patski data in Fig. 5. A complete set of figures for
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these two datasets can be found in the Github repository. Taken together, the figures
indicate that amax-normof 0.15was an appropriate threshold for approximate realness
for both data sets, in the sense that it is low enough to single out solutions that have
significantly smaller imaginary parts than the others, while also ensuring that it is
possible to find an approximately real solution for each ambiguous locus.
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