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1.  INTRODUCTION

MRI can provide invaluable information on tissue compo-
sition and structure in vivo through the manipulation of 
spins with magnetic fields. Several MRI contrasts have 
shown a dependence on tissue orientation w.r.t. the main 
magnetic field direction (

!
B0), including T2

(*), T1, and mag-
netisation transfer (Bender & Klose, 2010; Cherubini 
et  al., 2009; Denk et  al., 2011; Gil et  al., 2016; Knight 
et al., 2015, 2017, 2018; Lee et al., 2010, 2011; Oh et al., 
2013; Pampel et al., 2015; Rudko et al., 2014; Sati et al., 

2012, 2013; Schyboll et  al., 2018, 2019; Wharton & 
Bowtell, 2012, 2013; Wiggins et  al., 2008). Orientation 
dependence of the apparent T2

(*) in adult white matter 
(WM) has primarily been attributed to local magnetic 
susceptibility-induced gradients from the myelin sheath, 
and as such can provide valuable information on its con-
dition in health and disease (Knight et al., 2018; Wharton 
& Bowtell, 2013). In addition, recent work (Bartels, 
Doucette, Birkl, Zhang, et  al., 2022) found that orienta-
tional anisotropy of transverse relaxation rates in newborn  
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WM, with a much lower degree of myelination, followed 
the pattern of residual dipolar coupling. Recent works 
have demonstrated different orientational behaviours of 
T2-estimates in intra- and extra-axonal microstructural 
WM compartments (McKinnon & Jensen, 2019; Tax et al., 
2021), see also Appendix A.

In diffusion MRI (dMRI), typically only the orientation 
dependence on externally applied spatial gradients is 
considered: It sensitises the signal to the diffusion of 
water molecules in one or multiple directions by deliber-
ately applying magnetic field gradients, and as such can 
infer information on the directional organisation of tissue. 
At low to moderate diffusion weightings, the diffusion 
tensor MRI (DT-MRI) representation (Basser et al., 1994) 
remains the most commonly used approach to charac-
terise the diffusion process, and DT-MRI-derived mea-
sures such as mean diffusivity (MD) and fractional 
anisotropy (FA) reflect both intra- and extra-axonal signal 
contributions.

Theoretically, dMRI signals and derived measures can 
also exhibit 

!
B0-orientation dependence when magnetic 

susceptibility variation is combined with anisotropic 
geometry at a subvoxel level. Several mechanisms may 
contribute to dMRI-signal anisotropy in this case. Firstly, 
several works have considered the interaction (or cross-
term) of susceptibility-induced gradients with the exter-
nally applied diffusion encoding gradients, and their 
effect on estimates of the apparent diffusion coefficient 
(ADC) (Beaulieu & Allen, 1996; Clark et al., 1999; Does 
et  al., 1999; Knight et  al., 2017; Novikov, Reisert & 
Kiselev, 2018; Zhong & Gore, 1991; Zhong et al., 1991). 
Specifically, local gradients in the direction of the diffu-
sion encoding gradient can lead to an under- or overes-
timation of ADC from individual isochromats, leading to 
a reduction of the overall ADC because isochromats with 
reduced ADC contribute a higher weighting (Zhong 
et  al., 1991). By employing sequences sensitive and 
insensitive to local susceptibility-induced gradients, 
early ex vivo experiments in WM (Beaulieu & Allen, 1996; 
Trudeau et  al., 1995) concluded that the effects from 
local gradients on diffusivity values did not have a mea-
surable role in nerve samples at 4.7 T and 2.35 T, respec-
tively, which was later corroborated in vivo at 1.5 T (Clark 
et al., 1999). Interestingly, Beaulieu and Allen (1996) did 
observe that diffusivity values along the axon varied by 
about 15% due to reorientation w.r.t. 

!
B0. In silico works 

provided theoretical background on the effect of meso-
scopic susceptibility on ADC and DT-derived measures 
under variable diffusion times (Novikov, Reisert & Kiselev, 
2018) and sample orientation (Knight et  al., 2017), 

respectively. Furthermore, the recent observation of dif-
ferences in compartmental T2-anisotropy suggests 
another mechanism of 

!
B0-orientation dependence in DT 

measures. The intrinsic T2-weighting of the diffusion-
weighted spin-echo sequence affects the T2-weighting 
of intra- and extra-axonal signal fractions. As a result, 
differences in compartmental T2-orientation dependence 
w.r.t. 

!
B0 can lead to orientation-dependent variation in 

compartmental signal fractions and, consequently, affect 
DT measures.

This motivates further investigation of the potential ori-
entational dependence of DT measure w.r.t. 

!
B0. The addi-

tional dMRI dependence on tissue orientation w.r.t. 
!
B0 

may introduce variability in the results when not taken 
into account, potentially reducing statistical power to 
detect true effects, and could even provide important 
additional information on tissue microstructure (e.g., 
myelin). The aim of this work is to determine the variation 
of DT-MRI-derived measures as a function of fibre orien-
tation w.r.t. 

!
B0. To this end, we investigate the effect of 

head-orientation dependence of compartmental T2  (Tax 
et  al., 2021) and the consequent variation of compart-
mental signal fractions on DT-MRI measures in silico, and 
characterise the 

!
B0-orientation dependence in in vivo 

human brain data at 3 T using a tiltable RF coil.

2.  METHODS

2.1.  Simulations

The following simple simulations investigate the effect of 
!
B0-orientation dependence of compartmental T2 (Tax 
et al., 2021) on estimated DT-MRI measures, thereby not 
considering cross-terms between the diffusion and back-
ground gradient. The simulations are based on a “stan-
dard model” of diffusion for white matter in the long-time 
limit, which models the intra-axonal space as a “stick” 
with zero perpendicular apparent diffusivity and the 
extra-axonal space as axially symmetric tensor (Assaf & 
Basser, 2005; Jespersen et  al., 2007; Kroenke et  al., 
2004; Novikov et al., 2019). Different levels of complexity 
are investigated: First, in the case of no fibre dispersion 
and no noise, one can derive analytical equations for the 
ADC as a function of compartmental diffusivities, signal 
fractions, and compartmental T2 (which can be 

!
B0- 

orientation dependent). Second, still in the case of no 
dispersion, the signal can be generated from analytical 
equations, noise added, and the DT fitted. Finally, this 
can be repeated for signals generated in the case of fibre 
dispersion.
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For all simulations, scenarios for a range of θ  (i.e., ori-
entation w.r.t. 

!
B0) were generated corresponding to the 

distribution of θ observed in the in vivo data of all sub-
jects and head orientations (see Section 2.2).

2.1.1.  Analytical case: no dispersion and no noise

Consider a simplified two-compartment model of the dif-
fusion- and T2 relaxation-weighted signal in WM (no fibre 
dispersion) as a function of the echo time, TE, and b-
value:

S b,g,TE( ) = f ⋅ e−R2,iaTE ⋅ e−bg
TDiag + 1− f( ) ⋅e−R2,eaTE ⋅ e−bg

TDeag,	
(1)

where subscripts i/e denote intra-/extra-axonal compart-
ments, respectively, R2 = 1/T2 are the relaxation rates, D 
are positive semi-definite diffusion tensors, and f  is the 
intra-axonal signal fraction. Suppose Dia and Dea have 
equal principal eigenvectors (denoted by n) and parallel 
and perpendicular eigenvalues Dia,!,Dia,⊥ (where Dia,⊥ = 0) 
and Dea,!,Dea,⊥ respectively, then the signal can be simpli-
fied as

S b,g,TE( )  ~  f ⋅ e−R2,iaTE ⋅ e−bDia + 1−f( ) ⋅e−R2,eaTE ⋅ e−bDea,	

(2)

where D = D⊥ + (g ⋅n)2(D! − D⊥).
Considering DTI as a signal representation at suffi-

ciently low b-values, i.e., capturing the first order b-term 
in the Cumulant expansion (Jensen et al., 2005), one can 
derive expressions for the ADC, e.g., by expanding in 
powers of b the analytic expression for lnS(b) (Eq. 2). For 
non-interacting compartments, the diffusion coefficient is 
a weighted sum of the diffusivities in the individual com-
partments where the signal fractions are T2-weighted. 
Specifically, the ADC is the first order term of the Maclau-
rin series expansion of ln(S) in b:

	
ADC TE( ) = f ⋅Dia ⋅ e

−R2,iaTE + 1− f( ) ⋅Dea ⋅ e
−R2,eaTE

f ⋅ e−R2,iaTE + 1− f( ) ⋅e−R2,eaTE
.
	

(3)

Equation 3 was used to compute apparent axial diffu-
sivity (AD, g !n), radial diffusivity (RD, g ⊥ n), MD, and FA. 
Recent work suggests that the effect of WM fibre orienta-
tion θ  on the magnetic field can most prominently be 
observed in the extra-axonal apparent transversal relax-
ation rate R2,ea = 1/T2ea (Tax et  al., 2021). The depen-
dence could be described as

	 R2,ea θ( ) = R2,iso + R2,anisosin
4θ.	 (4)

This orientational dependence of R2,ea θ( ) will result in 
orientational dependence of the ADC in addition to a 
straightforward TE dependence.

Analytical noiseless scenarios were simulated using 
Equations 3 and 4. TEs were selected to match the in vivo 
acquisition (cf., Section 2.2.1). The axonal fraction was 
varied f = 0.1,  0.3,  0.5,  0.7,  0.9[ ], and diffusivities D and 
relaxation rates R2 were set to the following values: 
[Di,!,De,!,De,⊥ ] = [2.6,  2,  0.4] µm2/ms, and R2,i = 12[s

−1], 
R2,e = 17.4 + 2.4 ⋅sin4θ  [s−1], respectively.

2.1.2.  Noise simulations without dispersion

Equation 2 was used to simulate signals with TE,  b and g 
matching the in vivo data Section 2.2. Signals were sim-
ulated using the same fractions, intra- and extra-axonal 
diffusivities, and relaxation rates as for the analytical sim-
ulations. Rician noise was added to the signal with an 
SNR of 100 on the b = 0, TE = 0 signal, similar to the in 
vivo acquisitions (Tax et al., 2021). DT were estimated for 
each TE on b ≤ 1500s/mm2 data using iterative weighted 
linear least squares, and AD, RD, MD, and FA were com-
puted.

2.1.3.  Noise simulations with dispersion

Finally, the effect of fibre orientation dispersion was stud-
ied by forward simulating a distribution of orientation-
dispersed compartments according to a Watson 
distribution, where each sub-compartment (i.e., each dis-
tinctly oriented extra-axonal compartment) can sepa-
rately exhibit R2-orientation dependence (Tax et al., 2021; 
Appendix A). Tissue properties, noise, and estimation 
were as described in the simulations without dispersion.

2.1.4.  Data analysis

To quantify the magnitude of orientation dependence, B, 
the simulated values of each DTI-derived measure at 
each TE were directly represented by a function of θ:

	 F θ( ) = A+ B ⋅sin4θ. 	 (5)

We note that this representation does not exactly 
describe the orientation dependence even in the simplest 
analytical case (Eq. 3), but nevertheless provides a close 
approximation (see an example of a sin4θ-fitting in  
Figure S1) and allows for the quantification of anisotropy 
through the estimation of B. The performance of the 
anisotropic representation relative to the isotropic case, 
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F (θ ) = A, was estimated using the rescaled Akaike’s 
Information Criterion (AIC) (Akaike, 1974; Burnham & 
Anderson, 2004): ΔAIC =AIC− AICmin. Here, AICmin is the 
minimal AIC value in the set. Per (Burnham & Anderson, 
2004), ΔAIC values allow a comparison of the relative 
merits of representations in the set as follows: Represen-
tations having ΔAIC ≤ 2 are considered to have similar 
substantial support as the representation with AICmin, 
those with 4 ≤ ΔAIC ≤ 7 have considerably less evidence, 
and those with ΔAIC ≥ 10 have no support. Additionally, 
the isotropic model is selected over the anisotropic, if the 
85% confidence interval of the magnitude of anisotropy 
included zero (Arnold, 2010).

2.2.  In vivo data

In this work, we used a subset of the multi-dimensional 
diffusion-R2 data presented in previous work (Tax et al., 
2021), and relevant data acquisition and pre-processing 
steps are re-iterated below. The study was approved by 
the Cardiff University School of Psychology Ethics Com-
mittee, and written informed consent was obtained from 
all participants in the study.

2.2.1.  Data acquisition

Multi-dimensional diffusion-R2-weighted data were 
acquired from five healthy participants (3 female, 25-31 
y.o.) on a 3 T MRI scanner equipped with a 300 mT/m 
gradient system and a 20ch head/neck receive coil that 
can tilt about the L-R axis (Siemens Healthineers, Erlan-
gen, Germany). The acquisition was repeated in default 
(0!) and tilted (18!) coil-orientation to introduce variable 
anatomical orientation w.r.t. 

!
B0. Acquisition parameters 

are summarised in Figure 1A.

2.2.2.  Data processing

The data were checked for slice-wise outliers (Sairanen 
et al., 2018) and signal drift, corrected for Gibbs ringing 
(Kellner et al., 2016), subject motion, geometrical distor-
tions (Andersson & Sotiropoulos, 2016; Andersson et al., 
2003; Glasser et al., 2013), and noise bias (Koay, Ozarslan, 
& Basser, 2009; Koay, Özarslan, & Pierpaoli, 2009; 
St-Jean et al., 2016, 2020).

From the pre-processed data, a subset with diffusion 
weightings matching across echo times was selected 
(Fig. 1B), and for each echo time diffusion tensors, fibre 
orientation w.r.t. 

!
B0  and single fibre population masks 

were obtained as described below. DT were estimated 

for each TE on the nominal b = 0,750,1500⎡⎣ ⎤⎦s /mm2 
data, using iterative weighted linear least squares. Gradi-
ent non-linearities were considered and b-values/-vectors 
were corrected correspondingly prior to fitting (Rudrapatna 
et al., 2021). Fibre orientations θ  w.r.t. 

!
B0 were computed 

from the first eigenvector of the estimated DT. Note that 
!
B0 

has to be in image coordinates of each subject/head ori-
entation.

Fibre orientation distribution functions (fODF) 
(Descoteaux et al., 2008; Tournier et al., 2007) were esti-
mated per TE using multi-shell multi-tissue constrained 
spherical deconvolution (Jeurissen et al., 2014) from the 
data acquired at TE = 54ms. From the fODFs, single-fibre 
population (SFP) voxels with low dispersion (p2 > 0.5) 
were identified (Tax et al., 2014). Dispersion was quanti-

fied by p2 = 4π / 5
m∑ | p2m |2 , where p are spherical 

harmonics coefficients (Novikov, Veraart, et  al., 2018; 
Reisert et al., 2017; Tax et al., 2021).

We used WM tract segments extracted in previous 
work (Tax et al., 2021). Briefly, 18 major WM tracts and, 
where applicable, their bilateral counterparts were 
extracted and segmented using TractSeg (Wasserthal 
et al., 2018).

2.2.3.  Data analysis

θθ -dependence of DT measures: pooling all SFP  
voxels.  General trends in orientational anisotropy of DTI 
measures were investigated by subdividing the range of 
angles into bins, averaging the estimates within each bin, 
and smoothing. Specifically, the data were binned in 1!- 
subsets and the corresponding DT-measure estimates 
and θ-values were averaged across each bin, denoted as 
〈measure〉1! and 〈θ 〉1!. Then, a smoothing spline as a func-
tion of 〈θ 〉1! and weighted by the number of data points in 
each bin was fitted to 〈measure〉1! (〈θ 〉1! ). An example of 
this procedure is shown in Figure S2 for the lowest TE.

The magnitude of anisotropy was defined as the differ-
ence between the minimal and the maximal values of the 
fitted curves. Their signs were set negative if the minimal 
values were below those at θ = 0. The contribution of ori-
entational anisotropy to overall variance was calculated 
as: (stdiso − stdaniso ) / stdiso. Here, stdaniso and stdiso are 
the standard deviations across all SFP voxels with and 
without orientational anisotropy being considered, 
respectively. Additionally, mean values A across all SFP 
voxels were obtained for each measure and TE.

In addition to the spline analysis, to assess whether 
DT measures as a function of θ showed significant 
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orientation dependence, we assessed whether an aniso-
tropic representation described the data better than iso-
tropic (cf., Supporting Information), using the approach 
similar to the in silico analysis described in Section 2.1.

θθ-dependence of DT measures: tractometry analysis 
to achieve spatial correspondence.  By comparing the 
measures estimated within the same anatomical region 
at default or tilted coil orientation, we aimed to reduce the 
effects of the potential microstructural variability across 
the WM in the approach described above. The anatomi-
cal correspondence between the coil-orientations was 
established using the segments derived from the trac-
tometry approach. The outer-most 20% of tract seg-
ments and the segments with 3 or fewer voxels were 
excluded to minimise the effects of fanning and noise, 
respectively. To obtain the effect of the re-orientation, we 
evaluated 〈measure0! 〉

s − 〈measure18! 〉
s as a function of 

〈sin4θ0! 〉
s − 〈sin4θ18! 〉

s. Here, 〈〉s denotes the average of 
corresponding values from SFP voxels over each seg-
ment, and the subscripts 0! and 18! correspond to default 
and tilted head orientations, respectively.

3.  RESULTS

3.1.  Simulations

Figure 2A and B shows examples of MD, AD, RD, and FA 
as a function of fibre orientation θ to 

!
B0 for the noiseless 

analytical simulations without fibre dispersion. For the 
parameter settings investigated, AD and FA increase with 
θ (the magnitude of anisotropy, B̂ > 0), while RD decreases 
(B̂ < 0). The absolute value of the magnitude of anisot-
ropy, | B̂ |, generally increases with TE. The resulting 
behaviour of MD is non-trivial and sensitive to simulation 
parameters (e.g., axonal signal fraction f ), with possible 
sign flips of B̂ for increasing TE.

Figure  2C shows results for the analytical simulations 
following Equations 3 and 4 (first row), and the noisy simu-
lations without (middle row) and with (third row) fibre disper-
sion. The plots show the estimated anisotropy B!  (colormap) 
for the scenario D!,i = 2.6µm2/ms, D!,e = 2µm2/ms, and 
D⊥,e = 0.4µm2/ms, echo times matching the acquisition 
parameters (horizontal axis) and a range of f  (vertical 
axis). The columns show results for different DT mea-
sures. A grey colour indicates scenarios for which an iso-
tropic representation was favoured (Section  2.2.3). It 
becomes immediately apparent that the effect on DT 
measures can be vastly different depending on the sce-
nario: In the simple analytical simulations, B for MD can 
be either positive (high f ) or negative (low f ) depending 

on the intra-axonal signal fraction and its absolute value 
becomes larger for increasing TE. For the simulation with 
noise and no dispersion, B can be positive or negative, 
and in the case of dispersion B is lower and negative in 
the cases investigated. For AD, B is predominantly posi-
tive in the non-dispersion analytical scenario and has the 
largest value for high TE, but in the noisy simulations B 
could be negative. The behaviour of BRD is more consis-
tent across simulation scenarios. Whereas BFA is mostly 
positive and largest for high TE  and low f  in the no-
dispersion noiseless and noisy cases, B can be positive 
or negative in the noisy scenarios but is overall low or 
non-significant.

3.2.  In vivo data

3.2.1.  Pooled data

In Figure  3A, DT measures are plotted as functions of 
fibre orientation θ w.r.t. 

!
B0 (horizontal axes), and echo 

time TE (columns), along with the corresponding smooth-
ing spline curves highlighting anisotropic effects. The 
data were pooled from all subjects and both head orien-
tations; each data point represents one SFP voxel. RD 
and FA show global maxima and minima, respectively, 
close to the magic angle (dashed red lines), most promi-
nently for low TE.

The barplots in Figure 3B show the average value (A, 
first column) or the magnitude of anisotropy (B, second 
column) obtained from all SFP voxels for a given measure 
(rows). MD, AD, and FA increase as a function of θ  (B > 0),  
while RD decreases (B < 0). The anisotropic component 
B is least dependent on the echo time for axial diffusivity. 
For other measures, B(TE) is non-monotonic (for evalu-
ated TE-s) with its absolute value being minimal (for MD) 
or maximal (RD, FA) at around 75-100 ms. The fibre-
orientation-independent component A (first column, 
Fig. 3B) evolves non-monotonically as a function of TE. 
The relative range of change of DT measures across 
angles (computed as B /A, results not shown) can reach 
values up to 20%. Finally, column three of Figure  3B 
shows the fraction by which anisotropy effects contribute 
to overall variance, showing the largest contribution for 
AD (around 7% at TE = 54,ms). For MD, RD, and FA, the 
variance contribution was 3%, 2%, and 4%, respectively, 
at the same shortest echo time.

We also observed an overall similar behaviour in mag-
nitude of anisotropy B when the pooled data were evalu-
ated using sin4θ-representation instead of the spline fit 
(cf., Fig. S3).
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Fig. 1.  Methods. (A) Multi-dimensional R2-diffusion data were acquired under simultaneous modulation of echo times 
and diffusion-gradient amplitudes in a pulsed-gradient spin-echo sequence with EPI readout. Time between diffusion 
gradients, Δ = 22 ms, and diffusion gradient duration, δ = 8 ms, were kept fixed for all echo times. The gradient orientations 
were defined in scanner coordinates and thus were not rotated with the head re-orientation. Additional modulation of 
fibre orientation was achieved by head re-orientations relative to 

!
B0. (B) A subset of the pre-processed multi-dimensional 

diffusion-R2-weighted dataset from previous work (Tax et al., 2021) was used to calculate echo-time-dependent diffusion 
tensors and fibre orientation to B0 (denoted by θ ) (blue, bottom left), and single-fibre-population (SFP) voxels (green,  
top left).
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Fig. 2.  Simulation results. The signals were estimated for variable echo times and axonal fractions, f , and fixed 
diffusivities [Di,!,De,!,De,⊥ ] = [2.6,  2,  0.4]µm2/ms, and relaxation rates R2,i = 12, R2,e = 17.4 + 2.4 ⋅sin4θ. Figures in (A)  
and (B) were estimated analytically (Eqs. 3 and 4) and show MD, AD, RD, and FA as functions of fibre orientation w.r.t.  !
B0 for f = 0.4, and f = 0.6, respectively. In (C) the magnitude of anisotropy, B, (colors) is shown as a bi-modal function  
of the echo time (horizontal axis) and the axonal fraction (vertical axis, f = 0.1, 0.3, 0.5,0.7,0.9⎡⎣ ⎤⎦). Columns left-to-right 
are different DTI measures: MD, AD, RD, and FA; rows top-to-bottom are different simulation conditions: using the 
analytical expression, assuming noisy signal with SNR = 100, and adding fibre dispersion (OD = 16) in addition to noise, 
respectively.
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Fig. 3.  Pooled SFP data results. (A) Each DTI measure (rows) from SFP voxels was plotted against the fibre orientation, θ,  
to the magnetic field. Each column/colour corresponds to a different TE. Solid lines represent best fitting smoothing 
spline curves. Dashed red lines indicate the magic angle of 54.7!. (B) The estimated mean value, A, and the magnitude 
of anisotropy, B, over all SFP voxels are shown in the first and the second column, respectively. The third column shows 
the amount of decrease in variation of values when orientation w.r.t. 

!
B0 is taken into account. Colours represent the 

corresponding echo times, for which anisotropy of the measures was investigated.
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Fig. 4.  Tractometry results. Tractometry was used to achieve anatomical correspondence between tilted and default 
head orientation, by comparing values of DTI measures in default vs tilted head orientations tract- and segment-wise. 
(A) In scatterplots, changes in value of the respective DTI measure with re-orientation (rows) are plotted as a function of 
the corresponding change in sin4θ. (B) Barplots show: the magnitude of anisotropy estimated for each DTI measure and 
each echo time (top row); and the change in standard deviation (std) when fibre anisotropy is taken into account (bottom 
row). Data in which anisotropic representation (y = B ⋅ x) described the data better ( AICiso − AICaniso >2 ) than isotropic 
assumption (B = 0) were indicated by a *-symbol.
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3.2.2.  Segment-wise comparison

The scatterplots in Figure 4A show segment-wise differ-
ences between the values in tilted and default head ori-
entation of each measure (rows) against the sin4θ  of fibre 
orientations w.r.t. 

!
B0. Each column and the correspond-

ing colour of the linear fit y = B ⋅ x represent different echo 
times. The fitting results are summarised in the top row of 
Figure 4B, and the fraction of variance contributed by the 
anisotropy effects is in the barplots of the bottom row.

Compared to the pooled analysis, the sign of anisot-
ropy was the same (positive for MD, AD, and FA and neg-
ative for RD), but the trend as a function of TE was 
different for the segment-wise analysis (e.g., the magni-
tude of anisotropy B  in RD increased with echo time 
whereas the pooled analysis showed a decrease for the 
largest echo times).

4.  DISCUSSION

We used diffusion-T2-correlation data acquired in two 
head orientations using a tiltable coil (Tax et al., 2021) to 
achieve a larger range of orientations and investigate the 
effect of head orientation on diffusion tensor measures: 
mean, axial, and radial diffusivities, and fractional anisot-
ropy. We observed that fibre orientation w.r.t. 

!
B0 may be 

responsible for up to three, seven, and two percent of 
variance in MD, AD, and RD, respectively, at TE = 54 ms 
and about four percent of variance in FA at the same TE. 
We also utilised tractometry to achieve anatomical corre-
spondence and used the sin4θ -representation to esti-
mate the effect of head reorientation.

4.1.  TE dependence of DTI measures

Echo-time dependence of diffusion coefficients and DT-
derived measures has long been recognised. Does and 
Gore (2000) have reported an increase/decrease of ADC 
with longer TE when diffusion weighting was applied par-
allel/perpendicular to the rat’s trigeminal nerve. These are 
in correspondence with analytical observations visual-
ised in, e.g., Figure  2A: axial diffusivity, AD, increases, 
while radial diffusivity, RD, decreases with longer echo 
times. Assaf and Cohen (2000) performed diffusion 
experiments with variable echo time to demonstrate the 
presence of two distinct diffusing compartments; they 
also found that the signal of the slow diffusing compo-
nent has a lower R2 relaxation rate. This, again, would 
correspond to the decrease in radial diffusivity with lon-
ger TE. Finally, Qin et al. (2009) have explored DTI mea-

sures as functions of echo time in the rhesus monkey 
internal capsule. They similarly reported a decrease in the 
radial and an increase in axial diffusivities with longer 
TEs, but also an increase in fractional anisotropy and no 
significant changes to the mean diffusivity. Lin et  al. 
(2018) made similar observations for the human corpus 
callosum and internal capsule; in addition, they observed 
no TE dependence of AD in the corpus callosum.

In our data, which were pooled from WM SFP voxels, 
we did not observe any linear trends (cf. isotropic repre-
sentation, A, Fig.  3B); the non-monotonic variations of 
the DTI measures could be due to the variability of each 
measure as a function of TE between SFP voxels. Addi-
tionally, the much noisier data at longer TEs could also 
have contributed to these differences. Yet, for echo times 
≥ 75 ms, we observed a decrease in RD and an increase 
in FA, which agree with observations made by Qin et al. 
(2009) and Lin et al. (2018), and similar to the latter we 
saw no significant changes in AD.

From the same data, compartmental transverse relax-
ation rates were previously estimated (Tax et al., 2021), 
and faster extra-axonal signal decay was observed, 
which is in correspondence with previous findings (Assaf 
& Cohen, 2000; Does & Gore, 2000; Peled et al., 1999; 
Veraart et al., 2018).

4.2.  Head-orientation dependence of DT measures

4.2.1.  Orientational anisotropy of DT measures observed in vivo 
and in silico

We estimated non-zero magnitude of orientation anisot-
ropy in all DTI measures with both methods: pooled SFP 
voxels, and tract-segment-wise comparison between 
default and tilted head orientations. Under the assump-
tion of sin4θ-behaviour, the correspondence in estimated 
magnitude of anisotropy between the two methods was 
higher at shorter echo times of 54 ms and 75 ms, and the 
accuracy at longer echo times was potentially compro-
mised by decreased SNR. Similarly, the contribution of 
anisotropy effects to the variance of DTI measures 
decreased with increasing echo time. Comparing the 
spline with the sin4θ-representation in the pooled results, 
the absolute values of B obtained using spline fitting 
were subtly higher than those estimated using the sin4θ- 
approximation, but overall followed the same trend as a 
function of TE.

The in vivo RD and MD estimates as a function of θ 
followed trends also seen in the analytical simulations, 
i.e., positive B for AD and FA and negative B for RD. 
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However, also opposite signs for B were observed in the 
noisy simulations, e.g., in AD. This could not merely be 
caused by De,! > Di,! (the opposite was simulated), but it is 
hypothesised that this could be attributed to the com-
plexity of tissue (e.g., dispersion, a distribution of diffusiv-
ities and T2 within and across voxels in the in vivo results, 
and other origins of orientation dependence) and differ-
ent levels of noise, amongst others. One can also observe 
that the estimated B of AD decreased as a function of TE 
in vivo in contrast to the increase in the toy-example.

4.2.2.  Origin of anisotropic effects of DTI in WM

The simulations considered the effect of T2-weighting 
and different T2-anisotropy behaviour in the intra- and 
extra-axonal space on DT measures, assuming a domi-
nant role for myelin susceptibility effects in the extra-
axonal space. However, the origin of the orientation 
dependence may be more complex. In in vivo data, both 
the sin4θ  behaviour and a more general spline represen-
tation were used to investigate the θ -dependence, indeed 
resulting in a similar estimated contribution of orientation 
dependence to the variance of DT measures in the pooled 
analysis and similar magnitudes of anisotropy. This simi-
larity partially supported the assumption made in simula-
tions, i.e., that the difference in R2(θ )-dependence 
between the intra- and extra-axonal signals (i.e. sin4θ
-dependence in the extra-axonal space) is a major con-
tributor to the orientational anisotropy. Yet, the behaviour 
of the spline curves deviates from the typical sin4θ -
shape, which indeed suggests that the nature of anisot-
ropy must be more complex.

The hypothesis that self-induced gradients arising 
from local variations in magnetic susceptibility could be 
an additional source of variation in apparent diffusion 
coefficients has been proposed by several works 
(Beaulieu & Allen, 1996; Trudeau et  al., 1995). Trudeau 
et al. (1995) measured diffusivity values at 4.7 T in excised 
porcine spinal cords at room temperature, with diffusion 
gradients applied parallel and perpendicular to the pri-
mary fibre orientation. By reorienting the sample relative 
to the main magnetic field direction, they were able to 
manipulate the distribution of local magnetic susceptibil-
ity. Beaulieu and Allen (1996) performed similar experi-
ments at 2.35 T on excised nerve fibres from garfish and 
frog. Both studies reported no detectable impact of local 
gradients on diffusivity values in these samples, and nei-
ther attributed the observed (Beaulieu & Allen, 1996) ori-
entation dependence w.r.t. 

!
B0 to the effects of local 

gradients. Upon closer inspection of Trudeau et al. (1995; 

Fig. 3), a trend may be apparent with regards to fibre ori-
entation w.r.t. 

!
B0. Although the distributions of D!- or D⊥- 

values overlap when measured at either sample orienta-
tion, the average values for D! seem lower and the aver-
age values for D⊥ seem higher when the primary fibre 
orientation is along 

!
B0. Beaulieu and Allen (1996) solidi-

fied the apparent trend for the dependence of D!-values 
on primary fibre orientation w.r.t. 

!
B0, by reporting 15% 

lower values measured when fibres were along the mag-
netic field. Similarly, in our in vivo data, axial diffusivities 
were higher for fibres across 

!
B0  compared to fibres along 

!
B0, while radial diffusivities followed the opposite trend. 
Knight et al. (2017) have previously simulated the effects 
of mesoscopic magnetic field inhomogeneities near a 
hollow cylinder on T2 and also reported head-orientation 
dependence of MD and FA values. They considered 
cross-terms between local gradients and encoding gradi-
ents to be negligible. Wang et al. (2022) have rotated an 
extracted mouse brain w.r.t. the main magnetic field and 
evaluated MD and FA for seven major brain regions, one 
of which was white matter. They did not observe any sig-
nificant variations across orientations of MD/FA in WM; 
however, they did not break down WM into sub-ROIs  
of similar fibre orientation, potentially averaging away 
effects due to re-orientation. Bartels, Doucette, Birkl, 
Weber, et al. (2022) have recently studied MD, AD, and 
RD as a function of fibre orientation w.r.t. 

!
B0. They 

reported MD to behave in correspondence with simula-
tions by Knight et  al. (2017), but AD/RD obtained from 
their data are respectively minimal/maximal around the 
magic angle, suggesting a different origin of anisotropy. 
Interestingly, our data showed similar trends (cf., spline 
curves or piecewise average in SI). RD also showed a 
local maximum near the magic angle. The AD-curves 
appeared monotonous but still an increase in gradient 
around the same angle was evident. Additionally, a local 
minimum was apparent in the FA-curves. Pang (2022, 
2023) also suggests an important role for magic angle 
effects.

Studies which investigate the 
!
B0-related anisotropic 

effects in DTI are limited in number. Yet, the anisotropic 
effects in DTI measures from WM observed here are 
coherent with those seen in previous works investigating 
R2
(*)-anisotropy, though comparatively less pronounced. 

The majority of studies cover anisotropic effects of the 
WM signal evolution from the multi-echo gradient-
recalled-echo (mGRE) sequence (Bender & Klose, 2010; 
Cherubini et al., 2009; Denk et al., 2011; Lee et al., 2010., 
2011; Oh et al., 2013; Rudko et al., 2014; Sati et al., 2012, 
2013; Wharton & Bowtell, 2012, 2013; Wiggins et  al., 



12

E. Kleban, D.K. Jones and C.M.W. Tax	 Imaging Neuroscience, Volume 1, 2023

2008): Thanks to its sensitivity to B0-inhomogeneities, it 
provides strong contrast in regions composed of tissues 
with different magnetic susceptibilities (myelinated WM 
fibres, in this particular case). Although most dMRI 
sequences are spin-echo-based, in which the B0-effects 
are refocused, some magnetic susceptibility effects may 
shine through. On the one hand, incoherent molecular 
motion happening between the excitation pulse and  
the spin-echo combined with local B0-inhomogeneities 
induced by the myelin sheath may lead to residual non-
fully-refocused phases; on the other hand, echo-planar 
readout has some unavoidable R2

* -weighting during the 
acquisition window. That said, the centre of the k-space 
is closer to the centre spin-echo, and is therefore less 
affected; additionally, lower-resolution data are expected 
to suffer less from this effect. Indeed, Gil et  al. (2016) 
reported sin4θ-dependence of macroscopic R2-values 
on fibre orientation θ  to 

!
B0.

Another candidate for the orientational dependence of 
R2  is the aforementioned magic angle effect (or dipole-
dipole interactions) with the characteristic (3cos2θ −1)2- 
behaviour. So far, those were not only considered the pri-
mary source of WM R2-anisotropy in adults in the in vivo 
and postmortem brain, but also not excluded as a poten-
tial contributor (Birkl et  al., 2020; Lee et  al., 2011; Oh 
et al., 2013). Interestingly, Bartels, Doucette, Birkl, Zhang, 
et  al. (2022) studied R2 orientation dependence in the 
newborn brain having low myelination and observed very 
different behaviour from the adult brain, suggesting a pri-
mary role for residual dipolar coupling. In the absence of 
myelin, neurofilaments and microtubules of the axonal 
cytoskeleton are aligned with the axon and are hypothe-
sised to contribute to orientation dependence. Similar 
observations were made on our data separating the intra- 
and extra-axonal relaxation rates (Tax et  al., 2021): 
R2 θ( )~ (3cos2θ −1)2 fitted the intra-axonal data best.

Summarising, compartmental R2
(*)-values have been 

reported to depend on orientation differentially (Kleban 
et al., 2020; Sati et al., 2013; Tax et al., 2021; Wharton & 
Bowtell, 2012), which could intrinsically lead to DT 
dependence on fibre orientation w.r.t. 

!
B0, regardless of 

the underlying microscopic mechanisms.

4.3.  Limitations and future work

4.3.1.  Anatomical correspondence

The pooled analysis considers all single fibre population 
voxels throughout the WM together to estimate a single 
magnitude of orientation dependence; however, the 

simulations reveal that micro-anatomical differences 
(e.g., signal fractions, myelin sheath thickness, fibre den-
sity, and other potential contributors to compartmental  
T2-differences) can lead to different orientation depen-
dence. The tractometry analysis aims to address this to a 
certain extent by pooling voxels more locally, but with 
two head orientations as used in this study it remains 
challenging to estimate local differences in orientation 
dependence. More head orientations and a boost in SNR 
could help to further investigate this. Here, more efficient 
acquisition-schemes, such as ZEBRA (Hutter et  al., 
2018), would be beneficial to enable reasonable acquisi-
tion times. Moreover, anatomical correspondence could 
be further achieved by co-registering the data from the 
two head orientations in future work. To accomplish this, 
it is essential to employ a reliable registration method that 
can effectively handle the residual nonlinear effects. Fur-
thermore, by pooling the data from all subjects’ SFP WM 
voxels, we were able to compensate for low number of 
subjects. With more subjects, one could investigate the 
anisotropy w.r.t. B0 of individual tracts and consequently 
provide additional anatomical information.

4.3.2.  Gradient nonlinearities

Another limitation potentially arises from nonlinearities of 
gradient fields. With the rotation of the tiltable coil the 
head is positioned further from the iso-centre, where gra-
dient nonlinearities have a larger effect. This, in turn, 
influences the effective B-matrix, and could introduce 
additional variability between the non-tilted and tilted ori-
entation. In addition to effects reported as a result of the 
effective B-matrix not being taken into account (Bammer 
et al., 2003; Guo et al., 2020; Mesri et al., 2020), if gradi-
ent nonlinearities cause the effective b-value to be higher 
than the imposed value, kurtosis effects may start to play 
a more prominent role and bias DT estimates. In the cur-
rent work, we take into account the effective B-matrices, 
and to further minimise this potential confound we anal-
ysed a subset of the data at TE = 54ms for which a lower 
b-value of 1050s/mm2 was available (Fig. 1A). Figure S4 
shows a comparison of the pooled- and tractometry 
analyses with a maximum b-value of 1500s/mm2 and 
1050s/mm2. The observation of orientation dependence 
remained unchanged, with larger estimated absolute 
magnitude of anisotropy at the lower b-value for AD, RD, 
and FA in both analyses and also MD in the tractometry 
analysis.

We also considered the effect of gradient non-linearities 
in the estimation of the fibre direction. In this work, the 
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first eigenvector of the DT was used, but this can be done 
in alternative ways and with different estimation tech-
niques, e.g., spherical deconvolution to obtain the fODF. 
The reason this work opted for the current approach is 
that spherical deconvolution approaches typically do not 
take into account gradient nonlinearities (Guo et  al., 
2020). The DT estimation used in this manuscript does 
take this into account, and the estimates of the maps and 
fibre direction come from the same DT estimate.

4.3.3.  Crossing fibres

This scope of this work is limited to single fibre population 
voxels. Previous work has characterised T2 per fibre pop-
ulation in crossing fibre voxels, for example, Reymbaut 
et al. (2020). In the current work, based on Tax et al. (2021), 
we have simulated a distribution of orientation-dispersed 
compartments according to a Watson distribution, where 
each sub-compartment (e.g., each extra-axonal zeppelin) 
can separately exhibit R2-orientation dependence. This 
could be straightforwardly adapted to model crossing 
fibres, but the bundles will have to have the same relax-
ation properties. A recently presented abstract described 
estimation of such a model for multi-echo gradient-echo 
sequences (Sandgaard et al., 2022).

4.3.4.  SNR

Finally, the SNR distribution in WM can change with head 
reorientation. While the tiltable coil minimises differences 
in the coil-to-brain distance across different head orien-
tations, SNR may still be affected due to, e.g., change in 
the reception efficiency of the tiltable coil as the axis of 
the coil is rotated away from 

!
B0, gradient non-uniformities, 

or B0 shim. Previous work (Tax et al., 2021) showed that 
the temporal SNR (tSNR) distribution in WM globally 
overlapped between tilted and default orientation, and 
Figure S5 further investigates this per tract-segment from 
the tractometry pipeline. Overall, the estimated tSNR of 
the same location in tilted vs default orientation is distrib-
uted along the line y = x, but a global fit through tSNR 
measurements from all locations implies that tSNR val-
ues in the tilted position could be up to 15% lower than in 
the default orientation. Preliminary experiments in a 
phantom with the body coils for signal reception suggest 
that the impact of B0 shim and gradient non-uniformities 
may be greater than the impact of receive coil efficiency 
(results not shown). While we have attempted to correct 
for noise bias—which can significantly impact DTI esti-
mates (Jones & Basser, 2004)—denoising strategies 

could further reduce the impact of noise differences, 
especially at longer TE.

5.  CONCLUSION

DT measures may vary up to 20% as a function of WM 
fibre orientation w.r.t. 

!
B0 in the scenarios investigated. 

Fibre orientation can be responsible for up to 7% vari-
ance in diffusion tensor measures across single fibre 
populations of the whole brain white matter. While poten-
tially containing useful information on, e.g., myelination, 
the orientation dependence of DTI w.r.t. 

!
B0  can be an 

additional source of variance camouflaging the effect-of-
interest in clinical research studies, particularly when the 
effect size is small and it is difficult to control for fibre 
orientation w.r.t. 

!
B0 (e.g., fetal or neonatal imaging, or 

when the trajectories of fibres change due to, e.g., space 
occupying lesions).
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APPENDIX A: KEY FINDINGS FROM TAX ET AL. (2021)

In our previous work, we estimated the apparent R2

-values for intra- and extra-axonal compartments from 
the WM SFP data acquired by varying nominal b-values 
and TEs simultaneously. The acquisition parameters are 
reproduced in this work in Figure 1A. The compartmental 
spin-echo signals with associated apparent R2-values 
were included in the compartmental model of diffusion in 
WM. The latter describes the signal as a convolution of 
the signal associated with a population of perfectly paral-
lel fibres with a fibre orientation distribution function. The 
diffusion in the intra- and extra-axonal spaces was 
described by “stick” and “zeppelin” tensors, respectively.

We then characterised the dependence of the compart-
mental R2-values on WM fibre orientation angle θ w.r.t. 

!
B0:

	 R2 θ( ) = R2,iso + f θ( ),	 (A1)

	 f θ( ) = R2,aniso1
⋅ sin2θ + R2,aniso2

⋅ sin4θ.	 (A2)

R2,iso is a θ-independent isotropic component of R2(θ ),  
whereas f (θ ) describes the orientation-dependent com-
ponent. We allowed the corresponding anisotropic coef-
ficients R2,aniso1/2 to be independent, linked, or set to zero, 
to achieve different variations of this generalised repre-
sentation. This resulted in a set of the following five rep-
resentations:

	 R2 θ( ) = R2,iso,	 (A3)

	 R2 θ( ) = R2,iso + R2,aniso ⋅ sin
2,	 (A4)

	 R2 θ( ) = R2,iso+ R2,aniso ⋅ sin
4,	 (A5)

	
R2 θ( ) = R2,iso + R2,aniso ⋅ 1− 1

4
(3cos2 −1)2⎡

⎣⎢
⎤
⎦⎥
,
	 (A6)

	 R2 θ( ) = R2,iso+ R2,aniso1
⋅ sin2θ + R2,aniso2

⋅ sin4θ.	 (A7)

All of them were used to analyse the data pooled from 
all SFP voxels and head orientations, while only the first 
three were applied to analyse data, which were anatomi-
cally matched between head orientations using tractom-
etry. We also analysed the R2-values estimated by fitting 
a mono-exponential function to the data obtained at 
b = 0 to compare them to previous studies.

Main results from the pooled data. Intra-axonal R2- 
values were best described by the Equation A6 with the 
isotropic component of 12.0s−1 and the magnitude of 
anisotropy of 0.8s−1. The AIC of the isotropic representa-
tion (Eq. A3) was larger than that of the anisotropic repre-
sentation with ΔAIC = 76 and Riso = 12.6s−1. Extra-axonal 
R2-values were best represented by the Equation A5 with 
the isotropic component of 17.4s−1 and the magnitude of 
anisotropy of 2.4s−1. The corresponding isotropic repre-
sentation was not supported with ΔAIC = 838 and 
Riso = 18.7s−1.

Main results from the tractometry analysis. Intra-
axonal values were best supported by the isotropic rep-
resentation, while extra-axonal values were best 
supported by sin4θ-representation with the magnitude of 
anisotropy of 5.1± 3.0s−1.


