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Abstract

Conceptualizing two-variable disturbances preventing good model fit in confirmatory
factor analysis as item-level method effects instead of correlated residuals avoids vio-
lating the principle that residual variation is unique for each item. The possibility of
representing such a disturbance by a method factor of a bifactor measurement model
was investigated with respect to model identification. It turned out that a suitable
way of realizing the method factor is its integration into a fixed-links, parallel-
measurement or tau-equivalent measurement submodel that is part of the bifactor
model. A simulation study comparing these submodels revealed similar degrees of
efficiency in controlling the influence of two-variable disturbances on model fit.
Perfect correspondence characterized the fit results of the model assuming corre-
lated residuals and the fixed-links model, and virtually also the tau-equivalent model.
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Introduction

The latent variable of a confirmatory factor analysis (CFA) model is expected to

account for the covariation among the random variables representing a set of items so

that remaining systematic variation is unique. In contrast to this ideal case, in many

psychological and educational scales, additional covariation between single pairs of

random variables not reached by the latent variable exists. We refer to such cases as

two-variable disturbances. There is the tradition to classify such two-variable distur-

bances as correlated residuals (Landis et al., 2009), formerly also referred to as corre-

lated errors or as doublets (Mulaik, 2010; Thurstone, 1947). Addressing them as

correlated residuals literally describes how to deal with them for preventing model

misfit. In the present article, we propose conceptualizing two-variable disturbances as

item-level method effects instead of correlated residuals. This alternative conceptuali-

zation requires specific measurement models (Graham, 2006), as will be shown

below. Furthermore, a simulation study comparing these models is reported.

The reason for replacing the conceptualization is the mismatch of correlated resi-

duals with the methodological approach of CFA in its original version. We refer to it

as model-fit approach (Gumedze & Dunne, 2011; Jöreskog, 1970). This approach

combines the search for the best account of the systematic variation characterizing a

correlation or covariance matrix with a check of the fit of the so-called model-implied

matrix to the empirical covariance matrix. Although originally proposed in combina-

tion with the normal distribution-based maximum likelihood method (Jöreskog,

1969), nowadays, this approach characterizes many more recent estimation methods.

A basic principle of this model-fit approach is the distinction between common sys-

tematic variation and unique systematic variation (= residual variation). Correlated

residuals do not match with this principle since unique systematic variation is no

more unique after being allowed to correlate with other unique variation.

The model-fit approach can be perceived as a check of whether an empirical cov-

ariance matrix deviates from a matrix that corresponds to or is similar to a uniform

covariance matrix (except of the main diagonal). Both too small and too large covar-

iances are deviations that potentially impair model fit. This emphasis on uniformity

implicitly means that homogeneity, as indicated by McDonald’s (1999) Omega coef-

ficient, counts. It suggests compiling sets of items with similar degrees of relation-

ships among each other in test construction and avoiding two-variable disturbances.

Thus, two-variable disturbances can be interpreted as construction failures. Item pairs

with identical meanings included in the same scale are examples of such a failure

(Bandalos, 2021).

Conceptualizing two-variable disturbances as method effects avoids the described

mismatch with the model-fit approach since method effects refer to common sys-

tematic variation captured by method factors (Byrne, 2016), as is well known from

models for investigating data collected on the basis of a multitrait-multimethod

(MTMM) design (Campbell & Fiske, 1959). Systematic variation captured by a

method factor is, certainly, neither unique systematic variation nor variation associ-

ated with the constructs intended to be measured. Therefore, models including item-
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level method factors are in line with the separation of systematic variation into com-

mon and unique components according to the model-fit approach (Gumedze &

Dunne, 2011; Jöreskog, 1970).

The close link between established models for investigating method effects

(Byrne, 2016) and the MTMM approach that drafts method effects as scale-level

effects needs further discussion because two-variable disturbances do not fit with

MTMM designs. Recent attempts to clarify the meaning of a method effect describe

it as systematic variation in measurements that is due to the measurement method

but not to the attribute intended to be measured (Maul, 2013; Schweizer, 2020;

Sechrest et al., 2000) instead of highlighting such a link. Yet, there are different

types of method effects: (a) method effects characterizing all items of a scale so that

they are not detectable in the data of a single-scale application and (b) method effects

restricted to a subset of items so that they are detectable. We refer to them as scale-

level and item-level method effects in corresponding order.

Finally, we like to point out that a two-variable disturbance conceptualized as

item-level method effect does not only provide the advantage to be in line with the

model-fit approach but also offers the possibility to investigate what it is related to

and for how much systematic variation it accounts.

In the following sections, the methodological consequences of treating two-

variable disturbances as item-level method effects instead of correlated residuals are

investigated. As with scale-level method effects, item-level method effects are repre-

sented as components of measurement models including a method factor. The suit-

ability of available measurement models for this purpose is discussed before they are

compared in a simulation study.

Measurement Models Taking Item-Level Method Effects
Into Consideration

The customary one-factor CFA measurement model is usually a congeneric model

(Brown, 2015; Graham, 2006). It includes one latent variable (= factor) representing

the construct of interest, jconstruct. The version for the application to centered data has

the following structure:

x = lconstructjconstruct + d ð1Þ

where x is the p31 vector of centered manifest variables, lconstruct is the p31 vector

of factor loadings, jconstruct is the latent variable, and d is the p31 vector of residuals.

Yet, important properties of the model-fit approach are not well represented by this

model. Therefore, the measurement model is complemented by the corresponding

p3p model-implied covariance matrix, S, expected to reproduce the p3p empirical

covariance matrix, S (Gumedze & Dunne, 2011; Jöreskog, 1970). The structure of S
is given by

X
= lconstructflconstruct

0 + u ð2Þ

Schweizer et al. 3



where lconstruct is the p31 vector of factor loadings, lconstruct’ is the transposed ver-

sion, f is the variance parameter, and u is the p3p diagonal matrix of residual varia-

tion. This model is expected to account for the systematic variation of data associated

with the construct that is under investigation when parameters are appropriately spec-

ified. The first summand is thought to account for common systematic variation and

the second one for unique systematic variation. u is a diagonal matrix meaning that

each off-diagonal entry, uij (i, j = 1, . . ., p, i 6¼ j), is zero, that is, reflects the principle

of the model-fit approach mentioned in the introduction. As a consequence, the corre-

sponding entry of the empirical covariance matrix, sij of S, is explained by sij of S
due to the contribution of the latent variable, jconstruct, only:

sij’sij = liflj ð3Þ

where ’ signifies that sij is assumed to closely correspond with sij because of

approximation in estimation.

The Model With Correlated Residuals

For considering a two-variable disturbance in the sense of correlated residuals, the

described model-implied covariance matrix needs a modification. An off-diagonal

entry of u, uij (i, j = 1, . . ., p, i 6¼ j), has to be set free for estimation, while all other

off-diagonal entries stay unchanged. Subscripts i and j identify the manifest variables

assumed to show correlated residuals. This means that the covariance considered as

disturbance, sij of S, is explained by sij of S in the following way:

sij’sij = liflj + uij: ð4Þ

Although setting free one entry of u may be considered a minor modification, it is

a clear violation of the original structure: what is actually part of common systematic

variation and is normally represented by product liflj is transformed into a mixture

of common systematic variation (liflj) and unique systematic variation (uij).

Conceptualizing a two-variable disturbance this way does not only imply a viola-

tion of a basic principle. The possibility to investigate relationships of a factor repre-

senting additional systematic variation due to a two-variable disturbance with other

factors or external variables is also omitted.

Models With a Method Factor

In contrast, treating a two-variable disturbance as an item-level method effect

requires the transformation of the customary one-factor CFA measurement model

into a two-factor CFA measurement model. Another latent variable (= factor) is inte-

grated into the model for representing the item-level method effect. This modifica-

tion turns the customary one-factor CFA measurement model into a bifactor CFA

model (Reise, 2012) if at least one factor loading on one factor is not estimated but
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fixed. This requires the specification of one factor as factor representing the con-

struct, jconstruct, and the other factor as factor representing the method effect, jME.

The resulting measurement model is

x = lconstructjconstruct + lMEjME + d ð5Þ

where x is the p3 1 vector of centered manifest variables, lconstruct and lME are the

p3 1 vectors of factor loadings, jconstruct and jME are the latent variables, and d is

the p3 1 vector of residuals. The vectors of factor loadings differ in the following

way: while jconstruct receives factor loadings from all manifest variables, only the ith

and jth manifest variables (i, j = 1, . . ., p) constituting the two-variable disturbance

load on jME.

Because of the increase in the number of latent variables, the corresponding p3p

model-implied covariance matrix, S (Equation 2), changes to

X
= LFL0 + u ð6Þ

where L is the p3 2 matrix of factor loadings, L’ is the transposed version, F is the

2 3 2 matrix of variance and covariance parameters, and u is the p3p diagonal

matrix of residual variances. This model-implied covariance matrix is expected to

account for the systematic variation of the p3p empirical covariance matrix, S.

For discussing the suitability of types of measurement models for representing

two-variable disturbances, we treat the two-factor measurement model according to

Equation 5 as a whole composed of two specific one-factor measurement models.

We refer to them as construct submodel and method-effect submodel. Figure 1 illus-

trates how these submodels constitute the complete two-factor CFA measurement

model for data with one item-level method effect.

The ellipse of the construct latent variable serves as starting point for arrows aim-

ing at all rectangles representing p manifest variables. In contrast, only two arrows

are rooted in the ellipse of the method latent variable and end up in two rectangles.

Ellipses printed as dashed lines identify the two submodels.

Each submodel is expected to meet the requirements for measurement models.

Especially, they are expected to allow for parameter identification. The customary

one-factor CFA measurement model (Submodel 1) is a congeneric measurement

model (Jöreskog, 1971) that is assumed to be just identified if there are three manifest

variables and one parameter is fixed because of scaling. In the case of more manifest

variables, it is assumed to be identified. This means that Submodel 1 is always at

least just identified since it must include at least one more manifest variable than

Submodel 2 that includes two of them.

In the case of two manifest variables, the situation is as follows: starting from

Equation 2 that fits with a measurement model including two manifest variables (ith

and jth manifest variables taken from a larger set of manifest variables) like Submodel

2, there are three entries of S (sii, sij, sjj) (Note. sji is omitted because it is identical

with sij) that approximate corresponding empirical information (sii, sji, sjj) in

Schweizer et al. 5



parameter estimation. This means that according to Equation 2 there are the following

three equations:

sii = lif li + uii, ð7Þ

sij = lif lj + uij with uij = 0, ð8Þ

sjj = ljf lj + ujj: ð9Þ

Parameter identification requires that this system of equations can be solved (=

just identified) or, even better, that there is a surplus of empirical information (= iden-

tified), that is, the number of pieces of empirical information surmounts the number

of parameters. Because of the need for scaling (Klopp & Klößner, 2020; Little et al.,

2006; Schweizer et al., 2019), one parameter is usually fixed. For example, f may be

set equal to 1. This creates the following situation considering the congeneric model:

there are only three pieces of empirical information, whereas the number of para-

meters that need to be estimated (li, lj, uii, ujj) is four. This means that this submodel

is not identified.

The Tau-Equivalent Submodel. There are further types of measurement models besides

the congeneric one that can alternatively be considered for serving as Submodel 2.

First, there is the tau-equivalent model (Graham, 2006; Raykov, 1997). It is designed

according to the true-score assumption of classical test theory (Lord & Novick, 1968,

Figure 1. Illustration of Bifactor Model Including Latent Variables Representing Construct
and Method Effect (Dashed-Line Ellipses Identify Construct Submodel 1 and Method-Effect
Submodel 2).
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p. 47). According to this assumption, a participant’s response scores are composed of

a true score and an error score, and the true score is the same for all items of a scale,

whereas the error score may vary. Therefore, the tau-equivalent model of measure-

ment constrains the sizes of factor loadings to the same value. This means that the

tau-equivalent measurement model for two manifest variables includes the following

constraints: (a) the factor loadings, li and lj, on jME are set to equal sizes, l*,

l � = li = lj, ð10Þ

and (b) the variance parameter, fME, of latent variable jME is fixed to one because of

the need for scaling:

fME = 1: ð11Þ

Fixing the variance parameter means scaling according to the reference group

method; this implies that the information on explained variation is reflected by the

factor loadings. Due to the constraints (Equations 10 and 11), the number of para-

meters that are to be estimated is three (l*, uii, ujj). This means that the tau-equivalent

model is just identified (dftau-equivalent_submodel = 0).

The Fixed-Links Submodel. Second, there is the fixed-links model (Schweizer, 2006,

2008) that was proposed for structural investigations on the basis of hypotheses

regarding the relationships among items. The application of this model under the

hypothesis of equal contributions of a latent source to two items creates similarity to

the tau-equivalent measurement model. This model requires the assignment of the

same positive numberic value to both factor loadings (li and lj). If there is no reason

for selecting a specific numberic value, the numberic value 1 is usually the default

selected for constraining factor loadings:

1 = li = lj ð12Þ

The fixing of factor loadings is compensated by estimating the variance parameter,

fME, which quantifies the latent variable, jME. In the case of this model, the number

of the parameters to be estimated is also three (f, uii, ujj). Consequently, the fixed-

links model is also just identified (dffixed-links_submodel = 0).

The Parallel-Measurement Submodel. Third, there is the parallel-measurement model

(Graham, 2006) that also has been discussed in the context of classical test theory

(Lord & Novick, 1968, p. 58). The characteristic that distinguishes it from the tau-

equivalent model is that equality of the residual variances is assumed in addition to

equality of the factor loadings. Overall, this measurement model includes three con-

straints: the constraint of the factor loadings to equal sizes (Equation 10), the con-

straint of the variance parameter because of scaling (Equation 11), and the constraint

of the residual variances (uii and ujj) to equal sizes, u*, which means

Schweizer et al. 7



u� = uii = ujj: ð13Þ

It needs to be mentioned that the parallel-measurement model as Submodel 2 implies

impairment for Submodel 1 because of the constraint according to Equation 13. The

freedom to estimate two residual variances of Submodel 1 independently is no more

given. As only two parameters (l*, u*) need to be estimated in the parallel-measurement

model, this model is considered identified (dfparallel-measurement_submodel = 1).

In sum, taking the perspective of model identification, there are three measure-

ment submodels that can be employed for representing item-level method effects as

part of a bifactor model without violating the basic principle regarding the subdivi-

sion of systematic variation. But, we are also aware that the congeneric submodel that

is not considered can lead to a valid result in parameter estimation by EM algorithm.

A Simulation Study

The main objective of the empirical research was to compare the various ways of

controlling a two-variable disturbance in investigating the structure of data by CFA.

The various ways were realized as bifactor models including as one submodel the

tau-equivalent measurement model, the fixed-links model, or the parallel-

measurement model together with the customary one-factor CFA measurement

model as the other submodel. In addition, the customary one-factor CFA measure-

ment model adapted to correlated residuals was employed for investigating the data.

A one-dimensional underlying structure characterized the generated data besides

a two-variable disturbance. The degree of disturbance was varied by manipulating

the size of the covariance of the two variables. In addition, the environment of the

disturbance, that is, the number of additional variables, was varied by modifying the

number of manifest variables.

Method

Data giving rise to a two-variable disturbance were generated according to the

method described by Jöreskog and Sörbom (2001), that is, continuous and normally

distributed random data [N(0,1)] were generated and adapted to a given population

pattern. The generation yielded sets of 500 500 3 5 and 500 500 3 10 matrices of

structured random data based on population patterns differing according to the

degree of disturbance. The number of rows was chosen to meet the recommendation

for such investigations (Bader et al., 2021). The basic population pattern included

coefficients of 0.20 as off-diagonal entries and 1.00 as diagonal entries so that the

size of the factor loading expected under the assumption of one underlying dimen-

sion was 0.447. Further population patterns included a case of a two-variable distur-

bance characterizing a randomly selected pair of variables (the combination of the

fourth column and eighth row in the larger data matrices and the combination of sec-

ond column and fourth row in the smaller data matrices). The following sizes served

as a two-variable disturbance: 0.35, 0.50, 0.65, and 0.80 in addition to 0.20 for no

8 Educational and Psychological Measurement 00(0)



disturbance. They were referred to as increments of 0.15, 0.30, 0.45, 0.60 and 0.00

(= no increment) in corresponding order.

The following set of models served the statistical investigations of the generated

data: (a) the customary one-factor CFA model with free factor loadings, (b) the one-

factor CFA model with free factor loadings and correlated residuals, and also (c) three

versions of the bifactor CFA model. The versions of the bifactor CFA model included

a general factor with free factor loadings and a method-effect factor that was speci-

fied according to (c(i)) the tau-equivalent measurement model (Equations 10 and 11),

(c(ii)) the fixed-links model (Equation 12), and (c(iii)) the parallel-measurement

model (Equations 10, 11, and 13). The method-effect factor had loadings of either the

second and fourth manifest variables or the fourth and eighth manifest variables

depending on the number of columns of the data matrix.

The models, increments, and matrix sizes constituted a 5 3 5 3 2 design for the

simulation study. The focus of the investigation was on model fit. It served checking

whether the data manipulation creating disturbances led to impairment in model fit

and whether measurement models for controlling such impairment were efficient in

doing so.

Maximum Likelihood Estimation (MLE) was selected for parameter estimation

by LISREL (Jöreskog & Sörbom, 2006). Covariances provided the input to CFA. If

a data matrix did not prove to be positive definite, the ridge option was automatically

performed (Yuan et al., 2011). The output of CFA was evaluated on the basis of root

mean square error of approximation (RMSEA � 0.6), standardized root mean

squared residual (SRMR � 0.8), non-normed fit index (NNFI � 0.95), and

comparative fit index (CFI � 0.95) (DiStefano, 2016). Note. The numbers given in

parentheses are cutoffs. x2 and Akaike information criterion (AIC) were additionally

recorded.

Results

The results of investigating data matrices with five columns allowing for models with

five manifest variables are included in Table 1.

Table 1 is organized according to the measurement models (first level) and the

increment sizes (second level). The first to sixth rows include the results for the situ-

ation where the measurement model did not take the two-variable disturbance into

consideration. Therefore, increasing the increment size was expected to be associated

with a decreasing degree of model fit. This was true for RMSEA, SRMR, NNFI, and

CFI. RMSEA, SRMR, NNFI, and CFI indicated good model fit in the absence of a

disturbance (= zero increment, first row) and model misfit for the full disturbance (=

largest increment, sixth row) except for SRMR and CFI. SRMR still signified good

model fit, whereas CFI could be considered as acceptable model fit only. These

results confirmed the expectation that the presence of a two-variable disturbance

impairs model fit to a larger or lesser degree. The larger the increment, the larger the

impairment.

Schweizer et al. 9



All the other rows report results for models that take the two-variable disturbance

into consideration. All results obtained by fit indices with a cutoff indicated good

model fit. The degrees of variation across the increment sizes of many of them were

small, as is obvious from the ranges of numbers included in the columns with results

(x2: 3.94–5.37, RMSEA: 0.012–0.015, SRMR: 0.015–0.021, NNFI: 0.995–1.001,

CFI: 0.992–0.998, AIC: 24.87–26.43). The results obtained by the model including

the fixed-links submodel and the model with correlated residuals exactly corre-

sponded. This degree of correspondence did hold not only at the level of mean results

but also at the level of individual investigations. There was also exact correspondence

of these results in four out of the five increment levels with the results of the model

including the tau-equivalent submodel. While the model, including the parallel-

measurement submodel, yielded numerically slightly better RMSEA and AIC results,

the SRMR and CFI results of other models were the numerically slightly better ones.

Table 1. Fit Results for Data Matrices With Five Manifest Variables and One Case of a
Two-Variable Disturbance Investigated by One-Factor and Two-Factor CFA Models.

Model Incrementa x2 df RMSEA SRMR NNFI CFI AIC

One factor 0 4.99 5 0.013 0.020 1.000 0.993 24.99
.15 12.60 0.049 0.031 0.939 0.969 32.60
.30 26.36 0.090 0.049 0.869 0.934 46.36
.45 35.80 0.109 0.060 0.852 0.926 55.80
.60 41.84 0.119 0.068 0.861 0.931 61.84

Tau equivalent 0 4.43 4 0.015 0.018 0.995 0.993 26.43
.15 3.94 0.013 0.017 1.001 0.995 25.94
.30 3.94 0.012 0.016 1.000 0.996 25.94
.45 3.94 0.013 0.016 1.000 0.997 25.94
.60 3.94 0.013 0.015 1.000 0.998 25.94

Fixed links 0 3.94 4 0.013 0.017 1.000 0.995 25.94
.15 3.94 0.013 0.017 1.001 0.995 25.94
.30 3.94 0.012 0.016 1.000 0.996 25.94
.45 3.94 0.013 0.016 1.000 0.997 25.94
.60 3.94 0.013 0.015 1.000 0.998 25.94

Parallelb 0 5.37 5 0.015 0.021 0.996 0.992 25.37
.15 4.87 0.012 0.020 1.001 0.995 24.87
.30 4.88 0.012 0.019 1.001 0.996 24.88
.45 4.89 0.012 0.018 1.000 0.997 24.89
.60 4.92 0.012 0.017 1.000 0.997 24.92

One_factor_with
correlated errors

0 3.94 4 0.013 0.017 1.000 0.995 25.94

.15 3.94 0.013 0.017 1.001 0.995 25.94

.30 3.94 0.012 0.016 1.000 0.996 25.94

.45 3.94 0.013 0.016 1.000 0.997 25.94

.60 3.94 0.013 0.015 1.000 0.998 25.94

Note. RMSEA = root mean square error of approximation; SRMR = standardized root mean squared

residual; NNFI = non-normed fit index; CFI = comparative fit index; AIC = Akaike information criterion.
aIncrement in size of HSH correlation. b Parallel-measurement model.
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Next, the results of investigating data matrices with 10 columns allowing for 10

manifest variables are reported (see Table 2).

Table 2 is organized in the same way as Table 1 (the measurement models as first

level and the increment sizes as second level). The results reported in the first to sixth

rows were obtained without controlling disturbances due to increments. In this situa-

tion, decreasing degrees of model fit were expected for increasing increment sizes.

RMSEA, SRMR, NNFI, and CFI results were in line with this expectation. In the

absence of a two-variable disturbance (zero increment, first row), RMSEA, SRMR,

NNFI, and CFI indicated good model fit, while in its presence (sixth row), three of

them (RMSEA, NNFI and CFI) signified model misfit, whereas the SRMR result

was not good but could be considered as still acceptable.

Table 2. Fit Results for Data Matrices With 10 Manifest Variables and One Case of a Two-
Variable Disturbance Investigated by One-Factor and Two-Factor CFA Models.

Model Incrementa x2 df RMSEA SRMR NNFI CFI AIC

One factor 0 34.95 35 0.009 0.028 1.000 0.996 74.95
.15 34.95 0.009 0.028 1.000 0.996 74.95
.30 98.21 0.059 0.045 0.923 0.940 138.21
.45 211.59 0.100 0.064 0.832 0.869 251.59
.60 358.13 0.135 0.099 0.768 0.820 398.13

Tau equivalent 0 34.39 34 0.009 0.028 0.999 0.996 76.39
.15 34.04 0.009 0.028 1.000 0.996 76.04
.30 33.85 0.009 0.027 1.000 0.996 75.85
.45 33.86 0.009 0.027 1.000 0.997 75.86
.60 33.87 0.009 0.027 1.000 0.997 75.87

Fixed links 0 33.84 34 0.009 0.028 1.000 0.996 75.84
.15 33.84 0.009 0.028 1.000 0.996 75.84
.30 33.85 0.009 0.027 1.000 0.996 75.85
.45 33.86 0.009 0.027 1.000 0.997 75.86
.60 33.87 0.009 0.027 1.000 0.997 75.87

Parallelb 0 35.37 35 0.009 0.028 0.999 0.996 75.37
.15 34.81 0.009 0.028 1.000 0.996 74.81
.30 34.83 0.009 0.028 1.000 0.996 74.83
.45 34.86 0.009 0.028 1.000 0.997 74.86
.60 34.90 0.009 0.028 1.000 0.997 74.90

One_factor_with
correlated errors

0 33.84 34 0.009 0.028 1.000 0.996 75.84

.15 33.84 0.009 0.028 1.000 0.996 75.84

.30 33.85 0.009 0.027 1.000 0.996 75.85

.45 33.86 0.009 0.027 1.000 0.997 75.86

.60 33.87 0.009 0.027 1.000 0.997 75.87

Note. RMSEA = root mean square error of approximation; SRMR = standardized root mean squared

residual; NNFI = non-normed fit index; CFI = comparative fit index; AIC = Akaike information criterion.
aIncrement in size of HSH correlation. b Parallel-measurement model.
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The fit result for the remaining models that did take the two-variable disturbance

(see increment) into consideration was good and showed hardly any variation across

the models or increment sizes (x2: 33.84–35.37, RMSEA: 0.009–0.009, SRMR:

0.027–0.028, NNFI: 0.999 –1.000, CFI: 0.996–0.997, AIC: 74.81–76.39). Perfect cor-

respondence of the fit results of the model including the fixed-links submodel and the

model with correlated residuals was observed, as was in investigating data matrices

with five columns (Table 1). The results for these models slightly differed from the

results for the model including the tau-equivalent submodel in the first and second

increment levels (0.00 and 0.15). In the remaining levels they also corresponded.

While the model including the parallel-measurement submodel yielded numerically

slightly better AIC results, the SRMR results of the other models were the numeri-

cally slightly better ones.

Figure 2 enables a comparison of the effects of disturbance sizes (increments) on

model fit across smaller and larger sets of manifest variables.

The curves were based on the means of the fit results for the measurement models

taking a two-variable disturbance into consideration (tau-equivalent model, fixed-

links model, parallel-measurement model, one-factor model with correlated residuals)

since the focus was on the difference in the environment of a two-variable distur-

bance, that is, the number of additional variables (three or eight other manifest vari-

ables). Figure 2A includes the RMSEA and SRMR results as curves based on the

investigation of 500 3 5 and 500 3 10 data matrices. All curves showed almost hori-

zontal courses. Whereas the RMSEA curve showed a smaller overall level in 10-vari-

able data than in five-variable data, the overall level of the SRMR curve was higher

in 10-variable data than in five-variable data. Figure 2B includes the curves prepared

from NNFI and CFI results. Horizontal courses characterized these curves when the

number of manifest variables was 10. In contrast, there was a slight increase from no

increment to an increment of 0.15 when the number of manifest variables was five. In

larger increments, the curves also showed horizontal courses.

In sum, all models controlling the effect of a two-variable disturbance on the out-

come of investigating the fit of the analysis model to the data signified good model

fit while the neglect of controlling such disturbance led to model misfit. Increasing

the degree of disturbance did not influence fit outcomes in any way in models

adapted to such disturbance, while in the customary model without such a provision,

the deviation from good model fit reflected the size of the increment.

Discussion

The conceptualization of a two-variable disturbance as either correlated residuals or

an item-level method effect implies the decision for one of two different treatments

of this disturbance in data analysis, although in both cases, the model-fit approach

(Gumedze & Dunne, 2011; Jöreskog, 1970) provides the framework. Analyses check-

ing the compatibility of the treatments with this approach reveal that only the concep-

tualization as item-level method effect fits, whereas the other conceptualization
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implies a violation of one of its basic principles. But, as it turns out, the practical con-

sequences of switching between these conceptualizations are negligible. Starting from

either conceptualization, the virtually same fit results are achieved.

Ignoring two-variable disturbances in structural investigations by CFA is likely to

lead to model misfit because CFA is basically a method that checks for deviations

from a more or less uniform correlation or covariance pattern (except of the main

diagonal). Close correspondence with such a pattern can be achieved by selecting

items for a scale so that their pairwise relationships are very similar. This means that

it may not be sufficient to concentrate on item validity in scale construction (Markus

0 .15 .30 .45 .60
Increment size of disturbance

RMSEA and SRMR

RMSEA, 5 variables RMSEA, 10 variables
SRMR, 5 variables SRMR, 10 variables

0 .15 .30 .45 .60
Increment size of disturbance

NNFI and CFI

NNFI, 5 variables NNFI, 10 variables

CFI, 5 variables CFI, 10 variables

1

0.99

0.98

0.96

0.95

0

0.08

0.06

0.04

0.02

0

A

B

Figure 2. Diagrams Illustrating the Effect of Increasing the Increment Size on RMSEA and
SRMR (A) as Well as on NNFI and CFI (B).
Note. RMSEA = root mean square error of approximation; SRMR = standardized root mean squared

residual; NNFI = non-normed fit index; CFI = comparative fit index.
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& Borsboom, 2013) when it is the plan to demonstrate structural validity by CFA.

Item subsets composed of items showing higher correlations among each other than

the remaining items of the scale are likely to lead to failure in CFA. This is not only

demonstrated by the results of the reported research (see results for the original one-

factor CFA model) but is also in line with consequences of using items with identical

meanings (Bandalos, 2021). Another possible result of ignoring two-variable distur-

bances is a possible bias in parameter estimation (Montoya & Edwards, 2021).

A new type of method effects is proposed for avoiding the violation of the basic

principle of the model-fit approach. Like established method effects (scale-level

method effects), item-level method effects refer to variation in measurement due to

the measurement method (Maul, 2013; Schweizer, 2020; Sechrest et al., 2000). An

item-level method effect is additional common systematic variation on top of com-

mon systematic variation extending to all items of the corresponding scale. Since

common systematic variation due to the attribute is expected to extend to all items

and the additional systematic variation characterizes a subset of all items only, it

remains to refer to it as item-level method effect (if a very small error probability

also characterizes the two-variable disturbance).

The possibility of additional common systematic variation is suggested by theory

of personality. For example, there is the theory of social cognition/situation specifi-

city of social learning asserting that people learn to respond to specific stimuli or

situations in a unique way (Mischel, 2007). According to this theory, the more spe-

cific stimuli or situations are, the more likely people are to respond in the associated

unique way after learning the association. Therefore, high specificity of items

together with similar contents may lead to especially large correlations or covar-

iances with consequences for consistency and reliability in assessment (Patry, 2011).

This argument suggests that two-variable disturbances are not just random effects;

instead they should be treated as item-level method effects. Distinguishing between

disturbances deserving to be classified as item-specific method effects and other dis-

turbances may require more research.

Given that the switch from correlated residuals to item-level method effects finds

acceptance, the question for appropriate ways of representing such effects in CFA

gains importance. This question leads to the bifactor model (Reise, 2012) including a

one-factor measurement submodel for representing such an effect. Our analyses

reveal that the tau-equivalent model, the parallel-measurement model, and the fixed-

links model are suitable for this purpose. Negligible numerical differences regarding

efficiency in securing good model fit distinguish the models. Only AIC signifies a

small advantage for the parallel-measurement model as the most parsimonious model.

Furthermore, astonishing degrees of similarity are revealed for the one-factor model

with correlated residuals and the fixed-links model, and essentially also the tau-

equivalent model.

To select a model for application, the assumptions characterizing the models can

be consulted. The parallel-measurement model includes the largest number of

restricting assumptions (Equations 10, 11, and 13) and, therefore, is the model that is

14 Educational and Psychological Measurement 00(0)



most likely to fail in an application compared with the other models. The tau-

equivalent model and the fixed-links model include the same number of assumptions

and produced corresponding results except for the cases with no or only small two-

variable disturbances. The advantage of the tau-equivalent model is that it produces

conventional output, that is, factor loadings, whereas the advantage of the fixed-links

model is the adaptability to situations where manifest variables show non-negligible

differences in size. This information should facilitate selection.

The focus of the present article on the bifactor model including a submodel for

representing a two-variable disturbance does not mean that the use of the bifactor

model is restricted to such disturbances only. A disturbance may involve more than

two manifest variables, as is, for example, the case in applications of tests that are

composed of the so-called testlets (DeMars, 2006). Since in larger numbers of inter-

related disturbance variables even the congeneric measurement model (Brown, 2015;

Graham, 2006) can serve as a submodel, the resulting combination of submodels cor-

responds to the standard case of the bifactor model so that there is no need for further

concerns.

Before closing the discussion, we would like to outline the additional advantages

of conceptualizing correlated residuals as item-level method effects. First, there is

the opportunity to clarify the contents associated with the systematic variation cap-

tured by the method factor by relating this factor to other factors of the model and to

external variables. This means that it is possible to identify the kind of distortion of

scores that can be expected if the corresponding two-variable disturbance is ignored.

Second, it is possible to estimate the amount of variation that is explained by the

method factor. The variances of the factors of a bifactor model can be estimated,

given appropriate scaling (Schweizer & Troche, 2019), and the corresponding error

probabilities can be determined. This may be helpful in deciding whether the amount

of the disturbance is disadvantageous to the validity of measurement. Neither corre-

lations with other factors and external variables nor information on the factor var-

iances can be made available when computing correlated residuals.

While the use of correlated residuals is usually restricted to the structural investi-

gation of data with no consequences for the application of a scale, the use of a method

factor as part of a bifactor model enables using established factor-analytic techniques

for decomposing systematic variation of data into components and for the computa-

tion of factor scores. Furthermore, there is the possibility to estimate the reliability of

factor scores associated with the main factor as consistency by McDonald’s (1999)

Omega.

A limitation of the present study is its concentration on the comparison of mea-

surement models, while the question regarding the compatibility with the confirma-

tory nature of this approach is not addressed. Furthermore, the study does not provide

advice on how to identify item-level method effects. In this case, resorting to explora-

tive procedures may be helpful (Ferrando et al., 2022). Another limitation is that we

did not investigate how controlling item-level method effects compares with the sim-

ple elimination of items.
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