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Abstract

The use of artificial intelligence systems in clinical routine is still hampered by the necessity of a medical device certi-
fication and/or by the difficulty of implementing these systems in a clinic’s quality management system. In this context,
the key questions for a user are how to ensure robust model predictions and how to appraise the quality of a model’s
results on a regular basis.
In this paper we discuss some conceptual foundation for a clinical implementation of a machine learning system and
argue that both vendors and users should take certain responsibilities, as is already common practice for high-risk med-
ical equipment.
We propose the methodology from AAPM Task Group 100 report No. 283 as a conceptual framework for developing risk-
driven a quality management program for a clinical process that encompasses a machine learning system. This is illus-
trated with an example of a clinical workflow. Our analysis shows how the risk evaluation in this framework can accom-
modate artificial intelligence based systems independently of their robustness evaluation or the user’s in–house expertise.
In particular, we highlight how the degree of interpretability of a machine learning system can be systematically
accounted for within the risk evaluation and in the development of a quality management system.
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1 Introduction

The availability of computational power and of large
amounts of data made it possible for artificial intelligence
(AI) to become one of the most rapidly developing field of
science and technology over the last two decades. The
potential of AI in healthcare was quickly recognized and
research has been directed first to medical domains where
large amounts of more or less standardized data are gener-
ated. This includes disciplines that work with image data,
such as radiology, nuclear medicine, radiation oncology or
renzo Mercolli, Department of Nuclear Medicine,

insel.ch (L. Mercolli).

xx–xxx
medi.2024.02.001
emedi

li, A. Rominger and K. Shi, Towards quality management of
pathology (see e.g. Refs. [1–4]). The benefits of AI systems
in medicine, in particular medical imaging, are manifold and
span different areas and modalities.

While research on AI applications in medicine has grown
rapidly, the use of such tools in clinical routine has not yet
become standard practice. Like every other software, also
AI tools have to fit into a well-defined and potentially rather
complex clinical process. Furthermore, the software usually
has to be classified as a medical device and therefore needs
to satisfy high standards of robustness and reproducibility.
While a growing number of CE marked or FDA approved
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AI software tools become available on the marked (see e.g.
https://grand-challenge.org/aiforradiology/), the certification
procedures are still part an ongoing discussion, as can be
seen e.g. in Refs. [5–8].

Of course, a risk assessment as well as quality manage-
ment (QM) of AI tools is a key requirement for bringing
the potential benefits of AI into clinical routine. The aim
of this paper is to propose a conceptual framework for
QM of AI tools in clinical processes and to hint towards
the elaboration of robust clinical workflows that include AI.

We argue that the AAPM Task Group 100 methodology,
described in the report No. 283 [9], provides a convenient
framework to develop a risk-driven QM system for a clinical
workflow that contains AI. This was developed for complex
and high-risk clinical processes in radiation oncology. With
a simple example of a generic imaging workflow, we show
how to develop a QM program for AI. Furthermore, we dis-
cuss how methods from adversarial attacks/defenses and
interpretable AI can be taken into account in a systematic
way.

2 Conceptual considerations for QM of AI

The importance of robustness of AI for medical applica-
tions, in the sense of coping with errors or faulty input, can-
not be overstated. It is key for a widespread adoption and
integration of this technology, as can be seen from the vast
literature on the topic (see e.g. Refs. [10–12] and references
therein). However, it is often very difficult to assess the
robustness of an AI tool. Nevertheless, we should to find a
way to deal with the potential failures of AI systems in clin-
ical practice in order not to hamper their clinical implemen-
tation. We believe that there are two essential apsects.
Firstly, there is a shared responsibility between the vendor
and the user with respect to the robustness of the AI tool.
Secondly, the robustness requirement should not be applied
to a software alone but rather to the whole clinical process.

The standard practices of radiation oncology, and in par-
ticular to proton therapy, provide useful guiding principle for
our argument: a particle accelerator with the corresponding
beam line and treatment head is an infinitely complex device
with almost uncountable individual components that may
fail at any time. Often proton therapy facilities are unique
prototypes built in research centers with strong ties to accel-
erator and high-energy physics research institutes (see e.g.
https://www.psi.ch/en/protontherapy) and it is therefore not
unusual to employ non-certified equipment or software in
a clinical process that encompasses high risks for patient
harm. In such cases, the clinic takes the full responsibility
for the device’s risk management and QA. We believe that
the clinical implementation of AI can follow this blueprint
and learn from the experiences in this field.
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
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2.1 Threat model for medical devices

In general, stringent national and international regulations
assign the responsibility for the correct functioning of a cer-
tified medical device to the vendors. Depending on the med-
ical devices’ classification, i.e. the associated risks, notified
bodies perform conformity assessments. As seen e.g. in
Ref. [5] or in the European Union’s draft of the Artificial
Intelligence Act, regulators are taking actions in order to pro-
vide a regulatory framework for AI applications in the med-
ical domain. Of course, the robustness of an AI system needs
to be addressed within such a framework.

Medical device certification requires an in-depth risk
analysis by the vendor. For AI products, this is particularly
challenging. Some scholars have therefore put forward the
necessity of model interpretability for the clinical use of
AI (see e.g. Refs. [13–19]). However, while interpretability
can certainly aid the risk assessment and increase the user’s
trust of an AI tool, in our opinion it is too restrictive to
strictly require every medial application of AI to be inter-
pretable. Also, the degree of interpretability and the deduc-
tion of robustness measures therefrom can be quite
subjective (see e.g. Ref. [19] for a review of and future chal-
lenges of interpretability in healthcare).

It was found to be rather simple to construct an input for a
trained AI model that causes erratic predictions [20] (see also
the reviews [21–23]). Such an input is called adversarial
example. This discovery has raised lots of concerns about
AI’s robustness. The basic idea behind adversarial examples
is to design small perturbation to the model input, which are
hardly perceivable to humans and which will cause the AI
model to make a wrong prediction. Illustrative examples
can be found in Refs. [24,25] and on http://www.clever-
hans.io. Adversarial examples can be thought of the AI’s
equivalent to optical illusions for humans. Interestingly,
even the methods from interpretable AI can be vulnerable
to adversarial examples, as shown in Ref. [26].

In response to the challenges posed by adversarial exam-
ples, the authors of Ref. [27] formulated guiding principles
on how to evaluate the robustness for a model and even pro-
vided a checklist for model developers. A basic requirement
is the definition of a threat model, i.e. the rules and restric-
tion under which to assess the robustness. A threat model for
an AI system should, in our opinion, be part of a medical
device’s scope definition. With a precise definition of the
threat model, the robustness of a model is well-defined
and in some cases even computable, as discussed in Refs.
[28,29]. The definition of a threat model is also helpful for
mitigating the lack of robustness. A threat model should
encompass the goals (e.g. simple misclassification, targeted
attack, etc.), knowledge (e.g. white or black box attack,
access to data sets, etc.) and capabilities (size and type of
artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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input perturbations, etc.) under which the robustness of an
AI system is assessed.

While adversarial examples have shown the limits of out-
of-sample variance as a measure for a model’s robustness
and generalization capabilities, they allow to test and assess
the robustness of an AI system under extreme and/or worst
case. As pointed out in Refs. [27,30], evaluating adversarial
robustness of a model can provide some useful insights
about the behavior of the AI model. For risk assessments
of AI systems, adversarial examples can therefore be an
invaluable tool.

We advocate for vendors of a clinical AI system to pro-
vide a detailed documentation about the robustness assess-
ment and risk evaluation of their system. This should
include in particular specifications about the employed threat
model as well as robustness tests and measures. It would be
highly desirable that the users of an AI software could have
insight in the risk evaluations of the CE markings or FDA
approvals. The shared responsibility between the vendors
and users means that this kind information needs to be
shared. Otherwise the user has to assume the worst possible
risk for the AI software.

2.2 Quality management program for AI users

In the previous section we discussed the vendors/devel-
opers responsibilities with respect to robustness of an AI
software. The discussion was purely focused on the software
tool itself. We strongly believe that the whole clinical pro-
cess needs to be robust in order to provide the necessary trust
to the user. Focusing on a software tool alone might hamper
the clinical implementation and delay the exploit the advan-
tages of AI.

Clinics usually have their workflows mapped in a QM
system that is closely related to the clinic’s risk management.
Every software tool that is used in a clinical workflow is
therefore part of a clinic’s risk analysis and QM program
(as emphasized also in Ref. [31]). Often devices and soft-
ware are not explicitly listed or considered in a clinic’s risk
assessment, because there is sufficient trust in the medical
device certification. If we want to use an AI system in a clin-
ical workflow, its risks need to be assessed and QA measures
need to be defined.

From the user’s perspective, we think that AI tools should
be approached in the same way as an external beam radio-
therapy facility regarding risk assessment and QA. Radiation
oncology has shown how unreliable and very complex sys-
tems can fit in a clinical workflow that ensures a very high
level of patient safety.
1 Note that this methodology is in line with the recommendations of the Pa
bottom-up risk assessments is viewed as most effectively (see e.g. Section Sec
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The technical QA program in radiation oncology clinics
is traditionally based on national and international recom-
mendations. Such recommendations usually focus on assess-
ing functional performance measures of a device and rarely
take into account the whole clinical workflow. In particular
in radiation oncology, faulty outcomes are often due to
issues related to the workflow and not necessarily because
of technical failures. Furthermore, these recommendations
often have problems to keep up with the rapid technological
advances due to the rather lengthy publishing process. This
is why the TG-100 of the AAPM put forward a risk-based
methodology that directs the QA measures in a resource-
efficient way, while providing an optimal patient safety
(see e.g. Section 3.B. of Ref. [9]). Since it considers a speci-
fic clinical workflow as a whole, rather than just functional
performance measures, it allows for a swift implementation
of new technologies by the user.

Using the wording of Section 2.1, the threat model for a
full clinical workflow should not only cover failures of indi-
vidual components of the process but the process as a whole.
This is one of the strong points of the proposed methodol-
ogy, as the QM measures are conceived based on the risks
of individual steps in the whole workflow.

2.3 AAPM TG-100 methodology for AI

The AAPM TG-100 methodology relies on three princi-
ples for risk assessment and mitigation1: process mapping,
failure mode and effect analysis (FMEA) and fault trees
(FT). The methodology relies on an iterative procedure:
depending on the outcome of the first risk assessment, the
process map, FMEA, FT and QM program can be adapted
and the risk assessment is repeated until the clinical work-
flow under consideration has an acceptable risk of hazards.

The process for risk analysis and mitigation outlined in
Sec. 5 of Ref. [9] involves the following steps.

2.3.1 Process mapping
In order to assess the risk of a process, it is useful to start

with a graphical representation of the whole process. The
level of detail of the process map should be considered care-
fully as it will directly impact the risk analysis. The process
map emphasizes the fact that the whole clinical process is
under consideration.

2.3.2 Failure mode and effect analysis
“FMEA assesses the likelihood of failures in each step of

a process and considers their impact on the final process out-
come.” Sec. 5.B. [9]. This is sometimes also referred to as a
rticle Therapy Co-Operative Group, where a combination of top-down and
tion 6.1 in Ref. [32]).

artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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bottom-up approach since the analysis starts from possible
failures in the process steps.

For every step in the process map, the risk of failure and
its consequences are evaluated. As discussed in detail in Sec-
tion 4.D. of Ref. [9], the FMEA is a prospective risk assess-
ment, i.e. the risk quantification is based on expert
knowledge.

In a first iteration, the FMEA does not consider any pre-
vious QA measures that might already be in place in order
not to introduce any bias. Since FMEA is a bottom-up
approach, we start by identifying as much failure modes,
i.e. ways that each step in our workflow could fail, as possi-
ble. Then, the causes and the impact on the final outcome of
each failure mode must be determined. Each failure mode is
quantified with three figures of merit: occurrence O, severity
S and lack of detectability D. Therefrom, the risk priority
number RPN is computed as

RPN ¼ O � S � D ð1Þ
The determination of the values for O; S, and D is often chal-
lenging. Usually, it is strongly advised to elaborate the quan-
tification of the FMEA in a cross-professional team. The
values of O; S, and D range from 1 to 10 and correspond
to the definition in Tab. II of Ref. [9]. They span the follow-
ing ranges.

� Occurrence O: goes from O ¼ 1 for “failure unlikely”
(frequency < 0:01%) to O ¼ 10, which is defined as
“failures inevitable” (frequency > 5%).

� Severity S: ranges from S ¼ 1 for “no effect” to S ¼ 10
meaning a “catastrophic” event.

� Lack of detectability D: quantifies the likelihood that a
failure in a process step is not detected. The value spans
D ¼ 1, i.e. an error is detected with a probability
P 0:99%, to D ¼ 10 for failures that are detected
6 20% of the cases.

2.3.3 Fault tree analysis
A FT is a useful tool to visualize how failures propagate

through the process. The FT analysis complements the
FMEA and helps to uncover risks, and in particular intercon-
nection between process steps, that might be somewhat hid-
den in the FMEA. One starts with a failure in the process
outcome and then identifies all possible hazards that could
possibly lead to this failure. The FT analysis starts with
the error at the end of the process, e.g. harm to the patient
or personnel. Then one has to find all possible sources in
the workflow that might lead to this hazard. It depends on
whether there are multiple factors that need to be satisfied
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
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in order to produce a failure (logical “and” gate) or if a sin-
gle factor can lead itself to an error (logical “or” gate).

2.3.4 QM program
Once the risk of the process is assessed with a FMEA and

FT, the QM program is set up to mitigate the major risks that
were identified in the FMEA and FT. These risks are reas-
sessed after mitigation strategies are in place, i.e. the
FMEA’s RPN values guide the users to adapt clinical work-
flow as to decrease the O; S and D values to an acceptable
risk figure. To this end, also the process map and the FT
might require a revision. In the end, the FT will indicate
the process steps that require most QA measures. The
AAPM TG-100 methodology therefore allows to allocate
the resources for QA where they truly matter in terms of risk
and its mitigation.

3 Example for a clinical implementation of an
AI tool

Let us see how we can apply the AAPM TG-100 method-
ology to a clinical workflow that includes an AI system. The
example at hand is kept as simple as possible and focuses on
the AI related parts of the workflow.

3.1 Process mapping

Fig. 1 shows a process map, which is the first step
towards our risk assessment and QA program design. Our
example can be thought of as a generic version of an imag-
ing workflow. First, we generate and post-process the data.
This could be e.g. performing a PET/CT scan and the recon-
struction of the image. Of course, we omit several steps of a
real clinical workflow, such as e.g. patient referral or the
safe operation of a device.

The data is then transferred to an AI system. In real life,
this step might require quite some attention. We ignore
issues related to the actual data transfer, data format, integ-
rity checks, etc. The main task in this step is that the AI
model computes a certain output. Staying with the example
of a PET/CT, the AI system could be a model that automat-
ically segments organs or detects lesions.

In our clinical workflow, we do not allow the AI system
to take direct action on the patient or the treatment. The out-
put from the model is interpreted by a physician or an inter-
disciplinary board of physicians, who in turn will decide on
the further procedures. The AI system should therefore be
thought of as a decision support system.

3.2 Failure mode and effect analysis

In Table 1 we provide a simplified FMEA for the process
shown in Fig. 1. Table 1 shows that an AI system fits very in
a FMEA. It is considered simply as a subsystem and/or step
artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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Fig. 1. Simplified clinical process with AI support. As a concrete example, one can think of this as a PET/CT image of an oncological
patient where the lesion detection is done with AI.

Table 1
FMEA risk quantification for the second and third step in the processes of Fig. 1.

Failure mode Cause Effects O S D RPN

AI system.
Faulty data transfer � Network failure No or faulty data 4 4 1 16

� Wrong data format 1 6 1 6
Faulty model prediction � Hardware failure Faulty AI output 1 5 1 5

� Non-robust model 3 8 10 240
� improper input 2 5 3 30

Interpretation and decision-making.
Faulty data interpretation � Human error Patient damage 3 10 4 120

� Suboptimal reading conditions 2 10 2 40
� Faulty AI output 6 10 2 120

Wrong treatment decision � Insufficient decision support Patient damage 3 10 4 120
� Miscommunication 2 10 1 20

Wrong treatment � Faulty prescription Patient damage 2 10 2 40
� Faulty treatment application 2 10 1 20
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in the clinical workflow that takes some input from the pre-
vious subprocesses and produces some output that is needed
in the subsequent steps. Of course, there are many things that
can go wrong in an AI pipeline. We condensed the causes of
a faulty model prediction to a hardware failure, unstable
model and improper input.

Nowadays, a hardware failure is fairly rare and the chance
to pass undetected is minimal. The consequences might be,
however, somewhat severe (e.g. a major delay in the treat-
ment). This is why we assigned the values O ¼ 1; S ¼ 5
and D ¼ 1 which gives a rather low value of RPN ¼ 5.

Without knowing any details about the AI model’s
robustness, medical device certification or interpretability,
we have to assume that it is inherently vulnerable and unre-
liable. The occurrence might still be limited with O ¼ 3, i.e.
we do not expect a maleficent adversarial attacks and assume
that the input data corresponds to what the model expects.
However, the severeness can be high as faulty output data
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
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might lead to wrong treatment decisions and possibly with-
out being detected. Imagine e.g. that tumor lesions in a PET/
CT image are not detected by the AI system. Therefore, we
need to assign a high severity of S ¼ 8 and a low probability
to detect the error D ¼ 10.

Finally, a faulty model output might be produced because
the input data is outside the model’s validity. Assuming that
the data pipeline is more or less robust, e.g. the model will
not receive an MR image when it expects PET/CT data,
the occurrence should be as low as O ¼ 2. The severity
might be higher S ¼ 5, but we expect the model to produce
an output that is more or less easily detected as faulty, hence
D ¼ 3.

3.3 Fault tree

In Fig. 2 we show a FT for the process in Fig. 1, but for
simplicity’s sake we omitted the continuation of certain
branches in the FT. As seen in Fig. 2, the wrong treatment
artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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Fig. 2. Simplified FT for the process of Fig. 1. The symbol represents an “and” gate while is an “or” gate.
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can be caused either by a wrong prescription or by a wrong
administration of the treatment. It is then clear that and gates
represent a safety feature, since multiple conditions must be
met in order to produce a failure. On the other hand, or gates
should be investigated more closely since they bear the risk
of error propagation. Therefore, any QA measure should
start at an or gates.

The AI related branch of the FT is fairly simple. There are
two possibilities that can produce a wrong or incomplete
model output: either there is a problem with the input or with
the model itself. The input could be faulty or incomplete
e.g. because of random variations in the data acquisition,
wrong data format, wrong data protocol, incomplete data
transfer, adversarial attacks etc. Regarding a failure of the
model, imagine that the model is not adequate for the task
or that the model performance is not as expected.

3.4 QA program

Based on the process map, the FMEA and the FT we can
now design the risk mitigation measures and the QA
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
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program for our clinical workflow. The FMEA and the risk
quantification show which steps are most in need of risk mit-
igation measures. On the other hand, the FT give some
insights in where the propagation of errors is most efficiently
blocked. If a single QM step or measure is sufficient to block
an error from creating an incident depends on the specific
case. In general, however, it is advisable to have multiple
and gates in the FT preventing the propagation of errors.
Having multiple QM measures that can block an error will
certainly reduce the value of RPN, mostly because of a
decreased D value.

Considering our FMEA, it is clear that we should focus
our QM efforts on the AI system’s lack of robustness, the
data interpretation, the decision-making process and the
problems related to contraindication (see Table 1). In prac-
tice this would mean an increased attention to the clinician’s
training, a four-eye sign-off procedure for the decision-
making, allocation of sufficient time for the data interpreta-
tion or similar measure. From the FT, we know that faults in
the AI output could be compensated by a robust data
artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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interpretation. In a second iteration of the analysis, we could
therefore lower the value of D in the FMEA if our QA mea-
sures in the decision-making and prescription process can
prevent a faulty AI output to propagate further in the FT.
This example illustrates nicely how even an unreliable AI
system can be implemented in a robust and safe clinical
workflow.

3.5 Risk mitigation for AI systems

Basically there are two strategies that users can peruse:
risk mitigation through the clinical process or through the
robustness of the AI tool itself. In Section 3.3 we saw how
the data interpretation and decision-making process can
make up for the AI system’s lack of robustness. In the
FMEA this would be expressed in a low value of D and pos-
sibly S.

However, the user might wish to reduce not only D or S
but also O. As discussed in Section 2.1, the medical device
certification involves a risk analysis. The user might choose
to rely on this risk assessment. However, given that in gen-
eral the risk assessments of medical devices are not publicly
available (and often not even checked by the notified bod-
ies), the user should have the knowledge and resources to
understand the risks of the AI tool before assigning low O
scores in the FMEA.

In analogy to the recurring dosimetric measurements of a
QA program in radiation oncology, we believe that setting
up a series of periodic in–house and vendor independent
tests of the AI system’s performance can provide confidence
and trust in the AI model. This could be e.g. a user-specific
test data set that includes adversarial examples, randomly
generated data, corrupted or otherwise faulty input. It is
important to keep in mind that such an in–house test should
cover as much as possible the intended use of the software,
as defined e.g. in the CE labeling or FDA approval of the
software.

Another important aspect for increasing the robustness of
an AI model is its interpretability and/or explainability (see
e.g. Refs.[33,34]). The basic idea of interpretable AI is to find
models and/or develop methods that allow for a human inter-
pretation or explanation of the model’s output. Some scholars
have recently argued that interpretability should be a require-
ment for AI systems in medical applications (see Refs. [14–
16,35]).Weare convinced that interpretability canplay amajor
role in assessing the possible risks of a AI model and thereby
lower the values ofO and S in the FMEA. Note, however, that
interpretation of aAImodelmight require significant expertise
and the authors of Ref. [16] showed how current interpreta-
tion/explanation methods might fail at providing decision
support (see also Refs. [36,19]).
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
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4 Discussion

In the previous sections we illustrated the importance of
performing risk assessments and QA measures focusing on
the full clinical process rather than just on individual tools
or process steps. It is therefore the clinic’s responsibility to
perform such a risk evaluation. To this end, the AAPM
TG-100 methodology provides a conceptual framework
which can accommodate easily AI tools. Of course, data
based assessments are preferable but reliable data on failure
probabilities, severity, etc. is often not available. Depending
on the user’s in–house knowledge, the risk evaluation for the
AI part of the clinical process can be split into the following
categories.

� The AI software is a certified medical device. This means
that there is a risk evaluation of the software, depending
on the type and intended use of the medical device. The
user can assign a low score for O in the FMEA. If the user
does not trust the vendor to adhere to the best practices or
is otherwise sceptical of the AI tool’s robustness (as e.g.
also Ref. [37] suggests), the procedure discussed in Sec-
tion 2.3 is still applicable under the circumstances
described in the following tow points.

� The user has the means and expertise to asses the AI soft-
ware’s robustness and can therefrom deduct the risk
scores for the FMEA. While this might be the case in lar-
ger clinics, smaller centers will likely need to be conser-
vative and apply the next category.

� The AI software is a black box and the user has no means
to assess the software’s robustness. If so, the user should
allocate high RPN numbers to the AI tool. The mitigation
strategy and QM should then focus on the other steps in
the clinical process.

It is apparent that the AAPM TG-100 methodology is
agnostic towards interpretability of the AI tool and the trust
that we put into it. Implementing an interpretable AI model
can alter the risk assessment, i.e. the RPN, and establish con-
fidence in the model’s performance. The same applies to in–
house test data sets and best practices when constructing the
model. The key advantage of the AAPM TG-100 methodol-
ogy is that it does not matter how well a model is inter-
pretable or how robust it is. It is always possible to
implement it in a clinical workflow. The whole workflow
and the QM measures will then simply be adapted according
to the risk that the AI model represents.
artificial intelligence systems for medical applications, Z Med Phys, https://doi.org/10.1016/j.
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In case of high risk scores for the AI model in the FMEA,
the clinical process needs to mitigate the risk of hazards. In
the example of Section 3, the key component is the and gate
in the FT in Fig. 2 that connects the faulty output from the
AI model with the event that the error is not recognized
by the physicians in the decision-making process. Hence, a
wrong prescription will only occur if the AI output is incor-
rect and the error remains unrecognized in the decision-
making process. Due to this and gate, we could in principle
focus all our QA measures on the decision-making process
and ensure that every AI output error gets recognized and
we can compensate for the high RPN of the AI system in
the FMEA (see Table 1a). Or in other words, in a second
iteration of the FMEA we would reduce the value of D
due to the “and” gate in our FT.

Note well that if AI were to take direct and/or automatic
action on the patient treatment, the methodology would not
change and such a process would still fit in the AAPM TG-
100 framework. The FMEA would feature high S and D val-
ues and QM measures would have to be directed to lowering
these figures to an acceptable level.

It is important to be aware of the limitations risk assess-
ment, as discussed in Section 2. On one hand, if the clinical
workflow under consideration is complex a full FMEA can
be time-consuming (see e.g. Sec. 6.4 in Ref. [32]). This is
particularly true in situations where the quantification is
done by a cross-professional team. The quantification of a
risk in terms of O; S and D is subjective, since reliable
empirical data is often missing. This makes the RPN a rather
uncertain figure of merit with possibly large variations. Fur-
thermore, the RPN might not reflect the true risk (is it mean-
ingful to simply multiply O; S and D?) and there are issues
related to the distribution of the numerical values (see Ref.
[38]).

Also the FT analysis has some limitations. E.g. it can
become difficult to visualize and account for complex inter-
actions between the levels of the FT.

5 Conclusions

Despite the huge potential benefits that AI can bring to
healthcare, there are some fundamental issues. One of the
mayor concerns for the clinical implementation of AI is
the robustness of such tools. In this paper, we propose a con-
ceptual framework and discuss how an AI system can be
implemented in a clinical workflow.

The possible robustness issues of AI require a conceptual
framework that can address the risks systematically. We
argue that AI in healthcare should draw from the field of
radiation oncology, where complex and possibly unreliable
equipment that can cause high patient damage is being used
in clinical routine. First, we take the view that there is a
Please cite this article as: L. Mercolli, A. Rominger and K. Shi, Towards quality management of
zemedi.2024.02.001
shared responsibility between the vendors and users when
implementing AI system in a clinical workflow. On one
hand, the vendors (or developers) should adhere to best prac-
tices and, most importantly, should disclose how they
address the robustness of their systems. On the other hand,
the users are responsible for implementing the AI system
in a QM system and setting up appropriate QA measures.
For both, the assessment of a model’s robustness is crucial
and adversarial examples can play a key role in tackling
these questions.

We advocate to use the methodology from the AAPM
Task Group 100 report [9] develop a QA program for com-
plex clinical processes that include AI systems. With a gen-
eric example of an imaging workflow we illustrate this point
by performing a process map, FMEA and FTA. One of the
key points of the AAPM Task Group 100 [9] framework is
that the whole clinical process is considered in the risk
assessment and therefore allows for an efficient construction
of a QA program. Also, this methodology does not depend
on reliability of an AI system. Rather, it provides a frame-
work that can accommodate any level of AI robustness or
user’s expertise to evaluate it. Of course, the risk evaluation
will change according to a model’s robustness and therefore
also the necessary QA measures adapt. We stress that inter-
pretability of a AI model is not a strict requirement in this
framework, but becomes a risk mitigation strategy that can
significantly reduce the risk scores in the FMEA.

Data Availability Statement

The code used to extract the data is distributed by the authors
as open-source. The patient data can be made available on
request due to privacy/ethical restrictions.
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