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The tall cell subtype (TC-PTC) is an aggressive subtype of papillary thyroid carcinoma (PTC). The TC-PTC is defined as
a PTC comprising at least 30% epithelial cells that are three times as tall as they are wide. In practice, this definition is
difficult to adhere to, resulting in high inter-observer variability. In this multicenter study, we validated a previously
trained deep learning (DL)-based algorithm for detection of tall cells on 160 externally collected hematoxylin and eosin
(HE)-stained PTC whole-slide images. In a test set of 360 manual annotations of regions of interest from 18 separate
tissue sections in the external dataset, theDL-based algorithm detected TCswith a sensitivity of 90.6%and a specificity
of 88.5%. The DL algorithm detected non-TC areas with a sensitivity of 81.6% and a specificity of 92.9%. In the vali-
dation datasets, 20%and 30%TC thresholds correlatedwith a significantly shorter relapse-free survival. In conclusion,
the DL algorithm detected TCs in unseen, external scannedHE tissue slides with high sensitivity and specificity without
any retraining.
Introduction

The tall cell subtype of papillary thyroid carcinoma (TC-PTC) is an ag-
gressive subtype compared to classical PTC requiring more aggressive
treatment.1,2 The World Health Organization’s (WHO) Classification of Tu-
mors defines the TC-PTC as a tumor containing at least 30% epithelial cells
that are three times as tall as they are wide often with abundant eosino-
philic cytoplasm.3 However, the task of identifying and quantifying TCs
within PTCs is laborious and prone to subjectivity which results in signifi-
cant inter-observer variability.4,5 Indeed, the TC percentage required for a
tumor to be regarded as a TC-PTC varies in the literature from 10% tall
cells6 to over 50%.7 Others have reported on PTC with TC like features,
i.e., tumors containing some TCs but not enough to meet the TC-PTC
threshold. These tumors have been shown to bemore aggressive and corre-
late with a poor prognosis.8,9
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Deep learning (DL) algorithms have proven promising for a wide range
of applications in tissue sample analysis.10 In thyroid cancer, DL algorithms
have previously been used for tasks such as analysis of inter-operative fro-
zen section samples of thyroid nodules,11 gene expression identification
in neoplasms with papillary-like nuclear features,12 and segmentation of
tumor infiltrating lymphocytes.13 Previously, a DL-based algorithm has
been trained and tested for TC area detection and quantification showing
a correlation between reduction in relapse-free survival (RFS) for patients
with a TC percentage above 30%.14

Despite the proven success of DL in various image analysis tasks, only a
few DL algorithms have been clinically deployed so far. An important rea-
son for this is the challenge of ensuring that the performance of the tested
algorithm transfers to new, unseen datasets, i.e., algorithm
generalizability.15,16 The trained DL models are often validated on internal
data whichmight not capture the variability of sample processing, staining,
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and digitization occurring between laboratories. Therefore, validating the
trained algorithm on external datasets is crucial for performance evaluation
but is still often an overlooked step in the process.17,18

In the present study, we validate the performance of a previously
trained DL algorithm14 for TC scoring. Our aim was to evaluate the gener-
alizability and robustness of the DL algorithmwith regards to identification
of TCs when applied to external whole-slide image (WSI) dataset; one orig-
inating fromUniversity of Bern, Switzerland, the other fromAuria Biobank,
Turku, Finland. Also, we evaluated the association between the TC score
and survival.

Materials and methods

Training of the deep learning-based algorithm

The DL algorithm to be assessed in the current study was trained on a
dataset comprising of 100WSIs from100 individual patients; 70 from a pre-
viously studied dataset from Helsinki University Hospital and 30 WSIs
downloaded from The Cancer Genome Atlas.19 The trained DL algorithm
consisted of two algorithms run in sequence; first, an algorithm segments
the tumor tissue which is fed as input to the second algorithm quantifying
the TC and non-TC areas. The TC algorithm was trained on a total of
2674 manual annotations of regions of interest within the 100 WSIs in
the training dataset as previously described.14

External whole-slide image datasets

The Auria Biobank dataset
The first external dataset used in the study was obtained via the Auria

Biobank which stores samples and data from patients treated in the
Turku University Hospital region. A total of 81 patients treated for PTC
between 2003 and 2013 were obtained and 18 of these patients experi-
enced an adverse outcome. An adverse outcome was defined as at least
two local recurrences (histologically confirmed or elevation in serum
thyroglobulin levels during follow-up), distant metastasis, or death
from PTC. All material was re-evaluated by two experienced endocrine
pathologists (PV, JH) and one formalin-fixed and paraffin-embedded
(FFPE) tissue block containing the most representative tumor regions
was selected for each patient. New sections were freshly cut and fixed
on glass slides and stained with hematoxylin and eosin (HE) according
to standard procedure. The HE stained samples were then digitized
using a WSI scanner (Pannoramic 250 FLASH 3DHISTECH Ltd., Buda-
pest, Hungary) equipped with a plan-apochromat at objective 20×
(NA 0.8), a CMOS camera (Adimec Q-12A-180, Eindhoven, The
Netherlands) with a 1.6 adapter which gives a pixel size of 0.24 μm.
TheWSIs were then imported to an image management platform (Aiforia
Hub, Aiforia Technologies Oy, Helsinki, Finland). Eight WSIs were
dropped due to poor staining quality or lack of tumor material. The
Table 1
Patient characteristics of the Auria Biobank dataset.

Characteristics Adverse outcome (n=17)

Female 9 (47%)
Male 8 (53%)
Mean age at diagnosis 54.5 (SD 15.2)
Nodal metastases 14 (82%)
Primary distant metastases 1 (6%)
Relapse 17 (100%)
Stage of tumor
- T1
- T2
- T3
- T4

Unclear

3 (18%)
4 (23%)
7 (41%)
2 (12%)
1 (6%)

Primary RAI 17 (100 %)
Median algorithm TC score 32.5% (SD 12.6)
Died of PTC 3 (17%)
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final dataset consisted of 73 WSIs; 17 patients with an adverse outcome
and 56 control cases (Table 1).

The Bern dataset
The second external datasets used in the study was a previously de-

scribed PTC series6,20 originally consisting of 125 patients. All patients
had undergone surgery for primary thyroid cancer between 1990 and
2006. Tissue samples from 100 patients from the original cohort was ac-
quired and all FFPE tissue blocks from each patient were revisited. The re-
maining 25 patients were excluded from this study due to lack of tissue
samples. One representative tissue block was selected for each of the 100
included patients. New tissue sections were cut of the representative tissue
blocks, stainedwith HE and digitized using aWSI scanner (Pannoramic 250
FLASH 3DHISTECH Ltd., Budapest, Hungary) equipped with a plan-
apochromat at objective 20×, Camera type CIS VCC-FC60FR19CL with a
pixel size of 0.24 μm/pixels and a 1.6 adapter). The digitized WSIs were
then uploaded to an image management platform (Aiforia Hub, Aiforia
Technologies Oy, Helsinki, Finland). At this phase, 13 additional WSIs
were excluded due to poor staining- or scanning quality, or lack of represen-
tative areas of tumor tissue on the digital slide (Fig. 1). Thus, the final
dataset consisted of 87 WSIs (Table 2).

Algorithm performance evaluation

For quantitative assessment of the trained DL algorithm, we randomly
selected 9 WSIs per external dataset resulting in a total of 18 WSIs
(Fig. 2). One researcher (SS) manually annotated 20 regions of interest
per randomized WSI blinded to the algorithm output. This resulted in a
total of 360 manually annotated regions of interest on which the TC algo-
rithm was quantitatively evaluated (Fig. 2). The total area of the annotated
regions of interest was 4.16 mm2 which averaged to an area of 0.016 mm2

per manual annotation. Furthermore, all WSIs included in the study were
analyzed with the DL algorithm and the heatmaps indicating TC and non-
TC areas were evaluated qualitatively by the researchers.

Statistical analysis

Statistical analysis was performed using a statistical software package
(Stata 17.0 forMac Stata Corp., College Station, TX). The number ofmanual
annotations needed was calculated assuming a sensitivity of 90%, TC prev-
alence of 10%, width of confidence interval of 10%, and a confidence level
of 95% resulting in a minimum of 346 manual annotations. The perfor-
mance metrics reported for the DL-based algorithm was sensitivity (recall),
precision (positive-predictive value, PPV), and F1 score (the harmonic
means of precision and recall). The statistical distribution of the samples ac-
cording to their TC score were analyzed using the Mann–Whitney U test.
The statistical analysis employed Fisher’s exact test to evaluate group differ-
ences for nominal variables. RFS was defined as the time between the
Control group (n=56) p-value

11 (20%) 0.06
45 (80%)

50.0 (SD 17.8) 0.08
13 (23%) <0.001
0 (0%) 0.26

17 (30%) <0.001

21 (38%)
18 (32%)
11 (20%)
1 (2%)
5 (8%)

0.06

53 (95%) 1.00
25.4% (SD 14.8) 0.10

0 (0%) 0.01



Fig. 1. Examples of excluded whole-slide images (WSIs). WSIs were excluded because of e.g., too thick section resulting in very dark samples (a), tissue sample damage
resulting in poor quality of the morphology (b, c).

Table 2
Patient characteristics of the Bern dataset.

Characteristics PTC patients (n=87)

Femalea 61 (70%)
Malea 21 (24%)
Mean age at diagnosisa (n=82) 51.5 (SD 19.7)
Nodal metastases 14 (16%)
Primary distant metastases 4 (5%)
Relapse 8 (9%)
Stage of tumor
- T1
- T2
- T3
- T4

Unclear

25 (28%)
19 (22%)
24 (28%)
9 (10%
10 (12%)

Median algorithm TC score 11.6% (SD 9.3)
Died of PTC 0

a Full data unavailable.
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primary operation until relapse or end of follow-up. We employed the
Kaplan–Meier method to estimate survival probabilities and generate sur-
vival curves. Differences in survival between groups were assessed using
the logrank test. A p-value of lower than 0.05was considered as statistically
significant and two tailed tests were used.

Results

Algorithm performance

In the 360manual annotations for quantitative performance evaluation,
the DL algorithm segmented TC regions with a sensitivity of 91% (95% CI
[86–95%]), a positive-predictive value (precision) of 89% (95% CI [83–
94%]), and an F1 score of 88% (95%CI [85–94%]). Non-TC areaswere seg-
mented with a sensitivity of 82% (95% CI [77–86%]), a PPV of 93% (95%
CI [89–97%]), and an F1 score of 87% (95% CI [82–92%]) (Fig. 3). The
WSIs included in the study and the algorithm results (Fig. 4) can be viewed
via the following URL: https://tinyurl.com/TC-Algorithm.

https://tinyurl.com/TC-Algorithm


Fig. 2. Consort flowchart of algorithm validation. The performance of the trained
deep learning-based algorithm for tall cell scoring was evaluated both
quantitatively and qualitatively. For quantitative performance analysis, nine
whole-slide images (WSIs) per external dataset were randomly selected. Twenty
manual annotations of regions of interest were created per randomized WSI on
which the tall cell algorithm was evaluated. All included WSIs were analyzed by
the trained deep learning algorithm and visually evaluated as a qualitative
performance evaluation.
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TC score and survival

In the Auria Biobank validation dataset, the median TC score for the ad-
verse outcome group was 32.5% (range 11.5–56.7%, SD 12.6) and for the
control group 25.4% (range 1.13–55.5%, SD 14.8) but the difference was
not significant (p=0.10). No statistically significant distribution between
adverse vs control outcome groups was observed when studying TC thresh-
olds of 10%, 20%, 30%, 40%, and 50% (p=0.19, p=0.09, p=0.10, p=
1.00, and p=0.66, respectively).

In the Bern validation dataset, the median TC score was 11.6% (SD=
9.3, range 0.59–46.6%).

For log-rank survival analysis, the two validation datasets were com-
bined. Five TC thresholds were studied, 10%, 20%, 30%, 40%, and 50%.
We found a significant association between a higher TC score and a reduced
RFS using the thresholds 20% and 30% (p=0.015 and p=0.038, respec-
tively), but not for 10%, 40%, or 50% TC thresholds (p=0.068, p=0.44,
and p=0.85, respectively) (Fig. 5). When grouping the samples based on
their TC score into three groups of <10% TC, 10–29% TC, and ≥30% TC,
we found no significant decrease in RFS between the groups (Supplemen-
tary figure 1).

Discussion

The TC-PTCis more aggressive than the classical subtype and should be
treated accordingly. In this multicenter study, we validate a previously
trained DL-based algorithm14 for tall cell quantification on two externally
4

collected and prepared datasets. The DL-based algorithm managed to seg-
ment areas containing TCs in PTCWSIs with high specificity and sensitivity
without any retraining or support training (https://tinyurl.com/TC-
Algorithm). Survival analysis demonstrated a correlation between a reduc-
tion in RFS for TC thresholds of 20% and 30%.

In quantitative performance evaluation on 360 manual annotations in
18 WSIs from the external datasets, the DL algorithm had a sensitivity of
85% and a PPV of 89% for TC regions and 82% sensitivity and 93% PPV
for non-TC regions. This is a relatively small drop in performance compared
to the original study demonstrating a 94% sensitivity and 95% PPV for TC
regions and 91% sensitivity and 94% PPV for non-TC regions in internal
validation.14 This shows that the performance is good on new, unseen
datasets without any retraining of the model. When visually evaluating
the results, we concluded that the TC algorithm performed well on WSIs
of high quality, whereas the performance suffered on thick and dark slides
or slides containing staining and/or scanning artifacts. This is expected
since we used supervised learning in the training of the TC algorithm
where the input data were manually drawn annotations on high-quality re-
gions. Because it is important to label the training data carefully and as ac-
curately as possible, we did not include areas in which the annotator was
not able to clearly distinguish TCs from non-TC regions. The results are pre-
sented and publicly available for further visual assessment on a digital plat-
form (https://tinyurl.com/TC-Algorithm).

Because PTC has an overall very good prognosis with only few deaths
from disease, we defined an adverse outcome as at least two relapses, pri-
mary distant metastases or during follow-up, or death from PTC. Despite
this, for the Auria Biobank dataset, we only managed to include 17 ad-
verse outcome cases in the final validation dataset. It is important to
note that this broadened definition might have allowed more indolent
cases of PTC to be included in the adverse outcome group. The adverse
outcome group did have a higher median TC score of 32.5% compared
to 25.4% in the control group. The difference was not statistically signif-
icant (p=0.10) which at least partly may be explained by the low
number of cases.

For survival analysis, we combined the two external datasets to increase
the number of cases. Two analyzed thresholds, a TC score over 20% TC and
30% TC thresholds correlated with a reduction in RFS (p=0.015 and p=
0.038, respectively) which is in line with the WHO suggestion of a 30%
TC cut-off for TC-PTC.3 Also, these findings are in line with the notion
that all cases with more than 10% but less than 30% TCs, i.e., PTC with
tall cell features, have a worse prognosis than the conventional subtype as
has been reported previously.8,9,21

An absence of proper validation of trained algorithms is a common
problem and many studies reporting well performing models are of high
risk of bias.22,23 The lack of rigorous evaluation using external data is par-
ticularly lacking. One meta-analysis showed that only 31 studies out of
516 eligible published studies performed external validation.24 The pro-
posed DLmodel in this study performedwith a high sensitivity and specific-
ity in external validation. We focused on improving the generalizability of
our model in the training phase already by using a multicenter training
dataset; 70 WSIs from a dataset from Helsinki, Finland and 30 from the
TCGA database.14 Furthermore, in the training process, we utilized mor-
phological augmentations such as rotation variation of scale, shear distor-
tion, and aspect ratio. We also deployed stain color augmentations by
altering contrast, white balance, and luminance to improve the generaliz-
ability of the trained model.

A strength of the current study is the external datasets originating from
two different centers. This allows us to test the generalizability of the
trained TC algorithm as it encounters variations in staining and scanning
compared to the training dataset. However, the size of the datasets could
be considered a limitation and limits the possibility to perform extensive
outcome analyses.

To our knowledge, the proposed and tested method for TC segmenta-
tion is the first of its kind and the novelty of the proposed method could
be considered a strength. However, it is worth noting that other features
and prognostic factors than TC percentage should be considered by the

https://tinyurl.com/TC-Algorithm
https://tinyurl.com/TC-Algorithm
https://tinyurl.com/TC-Algorithm


Fig. 3. Algorithm structure and results. Two good quality examples from the external validation datasets. The trained deep learning-based algorithm consisted of two
algorithms. First, one algorithm segmented tumor tissue (blue). A sequential algorithm then segments tall cell epithelium (red) from non-tall cell epithelium (green) and a
tall cell score was then calculated.
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pathologist when making an evaluation. Important well-known prognostic
factors include a higher age at diagnosis,25 extrathyroidal extensions,26,27

and tumor size.26 The prognosis is also determined by the clinical extent
of the disease. Indeed, the 10-year survival rate for stage I disease is over
5

99%, whereas the survival rate for stage IV disease is under 50%.28 Mor-
phological features and histological subtypes must also be considered,
and one should also be aware of other subtypes of PTCwith an adverse out-
come e.g., the columnar cell subtype.3



Fig. 4. Example images. The trained tall cell (TC) deep learning-based algorithmwas validated on two external papillary thyroid carcinoma datasets. The whole-slide images
(WSIs) were of varying quality; some thick sections that result in a dark sample and some tissue sections with scanning artefacts or damaged in the staining process. Overall,
the algorithm performedwell on high-quality sections, andworse on sections of lower quality. In a fewWSIs, the algorithm performed poorly despite a rather good tissue slide
quality. TC regions registered by the algorithm is highlighted with red and registered non-TC areas is highlighted with green.
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In one study, the outcomes of groups of patientswere compared to vary-
ing TC levels and concluded that an aggressive disease is largely driven by
classical clinicopathological features and that clinical management should
Fig. 5. Survival analysis. Kaplan–Meier curves for relapse-free survival among patients w
10%, (b) 20%, (c) 30%, (d) 40%, and (e) 50% using a deep learning-based algorithm.

6

not be based on tall cell percentage alone.29 However, the TC scoring for
this study was assumably done by visual evaluation using traditional mi-
croscopy which is known to be affected by subjectivity with large inter-
ith papillary thyroid carcinoma according to five tall cell percentage thresholds: (a)
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observer variability.4 The proposedDL-based algorithm is a tool that should
be used in assisting pathologists in TC scoring. Other factors than the TC
score need to be considered in the evaluation and the tool should therefore
not be used for replacing pathologists but to enhance and provide a more
objective way to determine a TC score for a tumor.

We conclude that our DL-based algorithm generalizes well in TC scoring
when applied to externally collected datasets and segments TC regions with
a high sensitivity and specificity. In future studies, this method for TC scor-
ing should be evaluated on a prospective PTC cohort and should be evalu-
ated to see how it could assist pathologists in diagnosing TC-PTC.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2024.100366.
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