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Patient derived tumoroids of high grade
neuroendocrine neoplasms for more
personalized therapies

Check for updates

Simon L. April-Monn1,2,9, Philipp Kirchner 1,9, Katharina Detjen3, Konstantin Bräutigam1,
Mafalda A. Trippel1, Tobias Grob1, Cyril Statzer 4, Renaud S. Maire1, Attila Kollàr5, Aziz Chouchane 1,
Catarina A. Kunze 6, David Horst6, Martin C. Sadowski1, Jörg Schrader7, Ilaria Marinoni1,8,10,
BertramWiedenmann3,10 & Aurel Perren1,8,10

There are no therapeutic predictive biomarkers or representative preclinical models for high-grade
gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), a highly aggressive, fatal, and
heterogeneous malignancy. We established patient-derived (PD) tumoroids from biobanked tissue
samples of advanced high-grade GEP-NEN patients and applied this model for targeted rapid ex vivo
pharmacotyping, next-generation sequencing, and perturbational profiling. We used tissue-matched
PD tumoroids to profile individual patients, compared ex vivo drug response to patients’ clinical
response to chemotherapy, and investigated treatment-induced adaptive stress responses.
PD tumoroids recapitulated biological key features of high-grade GEP-NEN and mimicked clinical
response to cisplatin and temozolomide ex vivo. When we investigated treatment-induced adaptive
stress responses in PD tumoroids in silico, we discovered and functionally validated Lysine
demethylase 5 A and interferon-beta, which act synergistically in combination with cisplatin. Since
ex vivo drug response in PD tumoroids matched clinical patient responses to standard-of-care
chemotherapeutics for GEP-NEN, our rapid and functional precision oncology approach could
expand personalized therapeutic options for patients with advanced high-grade GEP-NEN.

High-grade gastroenteropancreatic neuroendocrine neoplasm (GEP-
NEN), which comprise poorly differentiated neuroendocrine carcinomas
(GEP-NEC) and high-grade well-differentiated neuroendocrine tumors
(GEP-NET), are highly aggressive and heterogeneous cancers and there is
strong need of therapies to treat them1–4. Median overall survival for
metastaticGEP-NECspatients is less than 1 year1–4. Slightly better outcomes
are reported in high-grade GEP-NET patients but with high and unpre-
dictable variations in overall survival3. Existing therapeutic strategies for
GEP-NENs have been adopted from small-cell lung cancers (SCLC) due to

their apparent clinical- and histomorphological similarities5–7. Platinum-
based chemotherapy is frequently used in GEP-NECs treatment.
Temozolomide-based chemotherapy is currently in clinical use for high-
gradeGEP-NET8 as response rates of platinum-based therapies seem lower9.

Due to the rarity and heterogeneity of the disease, extensive multi-arm
clinical trials, and even exploratory and confirmatory studies, are challen-
ging to perform.Nopredictive therapeutic biomarkers for high-gradeGEP-
NEN are in clinical use. Thus, the precise, clinical therapeutic regimes are
mainly empirical, relatively uniform, and based only on small case series5,6.
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This modus operandi has increasingly been scrutinized because uniform
therapy does not account for the heterogeneity of GEP-NEN patients1,10,11.

Preclinical GEP-NEN models were developed during the search for
predictive therapeutic biomarkers and more efficient therapy options. But
these GEP-NEN preclinical models were not successfully used to develop
novel or combined treatments based on mechanistic insights—this is a
pressing unmet need in the field. Patient-derived (PD) xenografts of GEP-
NENs have low success rates, and the few available NEN cell lines fail to
accurately recapitulate the biology of high-grade GEP-NENs12,13. Current
GEP-NEN models provide insufficient functional and mechanistic insight
into drug responses and it remains difficult to develop novel- and co-
treatments for GEP-NEN patients.

We recently described a patient-derived 3-D tumoroid model that
facilitates multi-center collections, efficient processing, characterization,
and short-term drug screening of low abundant tumor tissues from human
low-grade NET with high success rates14. Sato et al. described a tumor
organoid biobank that included stable organoid lines from a few patients
with neuroendocrine neoplasms that the authors used for their longer-term
cultures15.

Without sufficient clinical data, it is difficult to define the translational
relevance of these 3-D ex vivo models that are derived from high-grade
GEP-NENpatients.We thus setout todeterminehowwell a patient-derived
rapid exvivomodel recapitulatesan individual patient’s response to therapy,
and to test whether the rapid ex vivo model can provide functional insight
on drug- and stress responses of individual patients.

We used targeted ex vivo pharmacotyping and next-generation
sequencing in tumor tissues andmatching patient-derived (PD) tumoroids
to determine if PD tumoroids enable rapid ex vivo pharmacotyping and if
the subsidiary biological information and the adaptive stress response
patterns they provided could be used to personalize therapy strategies in
individual advanced high-grade GEP-NEN patients.

We show high success rates in culturing PD tumoroids of high-grade
GEP-NENswithin a 2-week timewindow.These patient-derived tumoroids
recapitulatedkeybiological featuresofhigh-gradeGEP-NENandmimicked
clinical response to cisplatin and temozolomide ex vivo. We also investi-
gatedmolecular stress responses in PD tumoroids in silico, discovering and
functionally validating Lysine demethylase 5 A (KDM5A) and interferon-
beta (IFNB1)—two vulnerabilities that are synergistic in combination with
cisplatin. Either KDM5A or IFNB1 can be combined with cisplatin to boost
the effectiveness of the treatments, opening new therapeutic options for
high-gradeGEP-NENs. Together, our findings suggest that we can translate
patient-centered subsidiary information from PD GEP-NEN tumoroids
into potentially more effective personalized treatment strategies.

Results
In-depth characterization of the high-grade GEP-NEN
patient cohort
To investigate whether patient-derived tumoroids can successfully model
advancedmalignant GEP-NENs and to elucidate the biology of the disease,
we conducted a retrospective cohort study of human high-gradeGEP-NEN
patients who were operated at the University Hospital of Bern (CH) or
Charité University Hospital Berlin (DE). During a systematic retrospective
reviewof hospital biobank records,we identified and retrieved those cases in
which fresh-frozen tissue-matched cryopreserved G3 NEN tumor tissues
were available. Between 1987 to 2022, we identified eight patient cases from
the cryopreserved GEP-NEN patient samples (Fig. 1a). This small sample
reflects the rarity of this type of tissue resource, as most patients are diag-
nosed at an advanced metastatic stage and undergo diagnostic biopsies
rather than surgery.

The cohort comprises high-grade metastatic neuroendocrine tumors
(NETG3, n = 4), neuroendocrine carcinomas (NEC, n = 3) of gastric- (Ga),
pancreatic- (Pan), or unknown primary (CUP) site, and one additional case
that had been diagnosed as NEN (n = 1) at the time of initial diagnosis, but
the livermetastasis thatweobtained at a later disease stagewas reclassified as
acinar cell carcinoma during our case review (Table 1). Patient

demographics, clinicopathological classification, and comprehensive clin-
ical course records are presented in Tables 1 and 2 and Supplementary
Table S1.

The patients’ fresh frozen material was subjected to a transcriptomic
molecular analysis and next-generation sequencing to profile the tumor’s
cancer-related gene mutation burden (Supplementary Fig. S1a). The tumor
mutation burden (TMB) in all patients was low (median 3.1 mt/Mb; IQR
2.13–7.68mt/Mb) except in twopatientswhoseTMBwas elevated (aP490m
11.8mt/Mb;C8802p 16.4mt/Mb) (SupplementaryTable S1).Microsatellite
instability (MSI) was low (2.4 ± 1.9%; mean ± SD), and we detected no
alterations in copy number (Supplementary Table S1). The most frequent
single nucleotide variants (SNV) were missense mutations. Among the
SNVs in our samples, we found well-known prototypic genetic drivers of
GEP-NET (MEN1, ATRX) in two NET samples and drivers of GEP-NECs
(TP53,RB1,APC, SMAD4) in 2GEP-NECsamples (Fig. 1b, Supplementary
Table S2).

Phenotypic characteristics of high-grade GEP-NEN patient-
derived tumoroids resemble original tumor tissue
We successfully generated PD tumoroids from all cryopreserved tissue-
matched specimens based on the criteria specified in our methods section
and found support for translational application ofGEP-NENPD tumoroids
(see Methods,). We first determined if PD tumoroids preserve relevant
histomorphological features of original high-grade GEP-NENs in culture.
Two board-certified pathologists (A.P., M.T.) confirmed PD tumoroids
were alike the original tumor tissue in high tumor content, in tumor cell
morphology, and in the expression of diagnostic neuroendocrine biomarker
synaptophysin, based on the cytology of micro-cell-blocks from cultured
cells (Fig. 2a, Supplementary Fig. S2a, Supplementary Table S3). Thus,
patient-derived tumoroids did preserve the neuroendocrine phenotype of
GEP-NEN tumor cells. Moreover, we detected a focal presence of extra-
cellular matrix (C9502m, C8802p, C5501m) and a focal presence of calci-
fications (C9502m) (Supplementary Fig. S2b, Supplementary Table S3).
Since we intentionally depleted stromal cells in the 3-D culture workflow,
non-neoplastic cells, including fibroblasts and macrophages, were less
abundant in PD tumoroids than in original tumor tissue (Supplementary
Fig. S2b, Supplementary Table S3). Patient-derived tumoroids also exhib-
ited increasedmetabolic activity ex vivo over time (Supplementary Fig S2c),
and this increase significantly correlatedwith the proliferation indices in the
donor tissues.

We used next-generation RNA sequencing to assess the extent to
which transcriptional expression patterns of original tumors had been
retained inmatching PD tumoroids. In the PCA plot of the expression data
thePDtumoroids are separated fromtheoriginal tumor tissue along thefirst
principal component explaining 21% of variance (Fig. 2b). Compared to
established NEN cell lines QGP1 and NT3, the PD tumoroids remained
closer to the original tumor tissues (Supplementary Fig. S3a).

Transcriptional changes between PD tumoroids and original
tumors were modeled using the patient as a random effect (Supple-
mentary Fig. 3b, Supplementary Table S4). Gene set enrichment
analysis (GSEA) on the expression differences revealed gene ontology
(GO) biological processesmore expressed in the original tumors or the
PD tumoroids (Supplementary Fig. S3c, Supplementary Table S5). For
the original tumor samples (positive normalized enrichment score,
NES) the majority of pathways is related to immune function. This
confirms the cytology findings that there were very few immune- and/
or stromal cells in our patient-derived GEP-NEN tumoroids (Sup-
plementary Fig. S2b, Supplementary Table S3). In contrast, for the PD
tumoroids (negative NES) pathways linked to protein expression and
stress response were found frequently. We looked at the expression of
8 neuroendocrine marker genes in the PDT and in the donor tissues as
well as the top 8 genes from each of themost significantly up- or down-
regulated GO terms (Fig. 2c). In most cases, the expression of neu-
roendocrine markers is comparable between original tumor and
matched PD tumoroid. In contrast, genes from the GO terms
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“adaptive immune response” and “post-translational protein mod-
ification” are clearly overexpressed in original tumor or PD tumoroids
respectively.

Altogether, transcriptomic profiles, histomorphology, and func-
tional readouts underlined that GEP-NEN PD tumoroids are biolo-
gically complex and retain key traits of original GEP-NEN donor

tumors, and that PD tumoroids harbor a degree of histological, cel-
lular, and molecular diversity closer to original tumors than con-
ventional permanent NEN cell lines.
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Fig. 1 | Study overview and clinical presentation of high-grade GEP-NEN patient
cohort. a Schematic diagram of study outline, material processing, and analysis
performed in the present study. b Oncoplot showing common genetic alterations of
GEP-NENs found in the study cohort togetherwith a selection of clinical parameters.
The upper panel indicates specific types of single nucleotide variations (SNV) found
in fresh frozen original tumor tissue from high-grade GEP-NEN patients. The lower
panel displays the patient’s clinical parameters, including tumor mutation burden

(TMB;mutation/Mb),1-year survival, IHC-based proliferation status (Ki-67; percent
positive cells per tissue), RB1protein expression, TP53 protein expression, location of
primaries, and the diagnostic classification. NET neuroendocrine tumor, NEC neu-
roendocrine carcinoma, ACC acinar cell carcinoma, CUP cancer of unknown pri-
mary, Mutant expr. pat. Mutant expression pattern (For TP53 loss of protein (0%
positive tumor cells) or overexpression (≥90%positive tumor cell); For RB1 complete
loss of protein), wildtype expr. pat. wildtype expression pattern.
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High-grade GEP-NEN patient-derived tumoroids mimic clinical
response to platin and temozolomide treatment ex vivo
To test if drug sensitivities in PD tumoroids mimicked clinical patient
responses, we performed ex vivo drug pharmacotyping in all samples (Fig.
3a). Based on establishedfirst-line therapy recommendations forGEP-NEC
and high-grade GEP-NET patients5, we screened all PD tumoroids for their
ex vivo sensitivity to cisplatin (CPT) or temozolomide (TEM) chemother-
apy (Supplementary Fig. 4a, b, Supplementary Table S6). For both treat-
ments, PD tumoroid drug sensitivities varied between patients. The ex vivo
responses from naïve-passage PD tumoroids were converted into para-
metrized drug sensitivities using growth rate (GR) adjusted metrics16 to
account for differences in proliferation rates among samples, basedon state-
of-the-art protocols for tumor organoid and other 3D-culture screens17.

Growth rate adjusted drug sensitivities for increasing drug con-
centrations after 168 h of treatment were summarized as the area over the
GR curve (GRAOC). Based onmedian GRAOC per drug, patient samples
were classified into high or low sensitivity groups (Fig. 3b). The ex vivo
sensitivity we observed in PD tumoroids was consistent with the patient’s
response to clinical therapy (Fig. 3c andTable 2). For those cases inwhichwe
coulddirectly compare the patient’s nearest clinical responses - (±2months)
post- and/or pre-operative to the cryo-specimen collected from the patients
—we found sensitivity in the PD tumoroids mimicked clinical patient
responses for both temozolomide (n = 2) and cisplatin (n = 1) therapy (Fig.
3b, c). The functional readout derived from the screen also complemented
the pathological and clinical features (Ki-67 index, differentiation, TP53/
RB1/KRAS mutational status, MGMT promoter methylation status)
(Supplementary Fig. S4c) that recommendations suggest be consolidated
before selecting a therapy in individual cases5.

Patientswhose response to systemic therapywas accentuatedand long-
lasting (C8802p and aP321m) also exhibited high ex vivo drug sensitivity
(Fig. 3b, c, Table 2). PD tumoroids from these patients were exclusively
sensitive to either cisplatin- or temozolomide-based treatment but not both
(Fig. 3b, c), which aligned with their clinical records. These findings suggest
that patient-specific drug sensitivities and inter-patient susceptibilities are
retained in PD GEP-NEN tumoroids and that cultured PD GEP-NEN
tumoroids provide sensitive and direct functional information on ex vivo
drug responses in individual patients.

Transcriptional perturbational profiling in high-grade GEP-NEN
PD tumoroids defines adaptive stress response to
chemotherapy
We then sought to determine if molecular perturbation profiles from
PD tumoroids could provide mechanistic insights into adaptive stress
responses and reveal treatment vulnerabilities. To accomplish this,
we generated transcriptional perturbation profiles from matched PD
tumoroids after DMSO control, cisplatin, or temozolomide treat-
ment. Earlier gene expression studies found that focusing on sub-
lethal drug concentrations prevented artificially exaggerating non-
specific cellular stress or death processes caused by high drug
dosages18,19. Hence we analyzed sublethal concentrations of cisplatin
(0.53 uM) and temozolomide (11.52 uM) to determine the drug-
related mode of action. PCA of gene expression profiles of treated PD
tumoroids revealed that patient-specific expression differences were
greater than cisplatin- or temozolomide-induced expressional effects
(Supplementary Fig. S5a). Grouping the cohort based on changes in
their global gene expression did not clearly separate PD tumoroids
with high- and low cisplatin- or temozolomide ex vivo sensitivities.
(Supplementary Fig. S5b). Neither did the magnitude of gene
expression changes correlate with ex vivo sensitivity (Supplementary
Fig. S5c). We considered that treatment-independent sources of
variation precluded the detection of correlations and hence sought to
factor in such sources using surrogate variable analysis (SVA)18. As
we expected, these surrogate variables correlated with known biolo-
gical variables, including patient age, gender, tumor type, Ki-67
index, and sequencing depth (Supplementary Fig. S5d, e).T
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Fig. 2 | Patient-derived tumoroids recapitulate biological key features of original
tumors. aRepresentativeHematoxylin and eosin (HE) staining and neuroendocrine
diagnostic marker synaptophysin (SYN) immunolabeling in original tumor tissue
and tissue-matched patient-derived (PD) tumoroids. Scale bar, 20 um. b Principal
component analysis (PCA) plot of normalized gene expression in original tumor
tissue and PD tumoroids. The color indicates patient identity with lines connecting
matched original tumor and PD tumoroid samples. The variance explained by each

principal component is indicated on the respective axis label. c Heatmap of gene
expression for 8 neuroendocrine marker genes and the 8 top genes from the most
strongly enriched gene ontology pathways. The pathways are “adaptive immune
response” for the original tumor tissue and “post-translational proteinmodification”
for the PD tumoroids. Gene expression values are centered and scaled row-wise
(dark orange = highest expression, dark blue = lowest expression across all samples).
Rows and columns are ordered by sample and gene identity.

Table 2 | Clinical course records of GEP-NEN patients

Treatments PRIOR to tissue sampling Tissue collection Treatments AFTER tissue sampling

Sample
ID

Clinical course 1 Clinical
course 2

Clinical course 3 Clinical course 4 Clinical
course 5

Clinical
course
6

Clinical
course
7

Clinical
course A

Clinical
course B

Clinical
course C

C8802 Cisplatin &
Etoposidea (PR)

FOLFOX
(Mixed
response)

FOLFIRI (Mixed
response)

Irinotecan & Carbo-
platin (Discont. due
to AE)

CAPTEM &
Bevacizumab
(PD)

Surgery pri-
mary tumor

C3301 Surgery pri-
mary tumor

Cisplatin &
Etoposide
(PR)

Doxorubicin &
Cyclophosphamide
(PR)

Resection liver
metastasis

Brachytherapy

C5501 Cisplatin & Etopo-
side (SD)

FOLFIRINOX CAPTEM (PD) Debulking CAPTEM &
Bevacizumab
(PD)

Debulking CAPTEM &
Bevacizumab
(PD)

C0701 Streptozotocin/5-
FU (SD)

CAPTEM
(PD)

FOLFOX (PR) FOLFIRI (PR) Resection liver
metastasis

Carboplatin &
Etoposid (PD)

C9502 Surgery pri-
mary tumor

PRRT (PR) Resection liver
metastasis

PRRT &
Temozolomideb

(PR)

SSA Resection liver
metastasis

C8101 Cisplatin &
Etoposidea (PR)

Carboplatin
& Etopo-
side (PR)

FOLFIRI (PD) Topotecan (Dis-
cont. due to AE)

Best suppor-
tive care

Resection liver
metastasis & SIRT

FOLFOX &
RTX (PD)

aP321 Streptozotocin &
Doxorubicin (SD;
Delayed PR)

Surgery pri-
mary tumor

Streptozotocine &
Doxorubicin (PR)

PRRT (PR) SSA PRRT
(PR)

SSA Resection liver
metastasis

CAPTEMc (PR) TAE FOLFOX (PR)

aP490 Surgery primary
tumor & liver
metastases

Cisplatin &
Etoposide
(PD)

CAPTEM
(PD)

Best suppor-
tive care

PR partial response, SD stable disease, PD progressive disease.
aStable and long-lasting response.
bTemozolomide discontinued due to bone marrow toxicity.
cComplete response in peritoneal-, pleural-, and cutaneous metastasis; stable hepatic lesions.
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Notably, we found ex vivo sensitivity was associated with the surrogate
variables (Supplementary Fig. S5d); testing differential gene expression and
factoring in all surrogate variables, yielded a clear cisplatin-induced per-
turbation signature (327 DEGs, FDR = 0.1, p-adj < 0.05) (Fig. 4a, Supple-
mentary Table S7), and greatly enriched significant p values in the p value
distribution (Supplementary Fig. S4f). Since differential expression results
for temozolomide were smaller (28 DEGs, FDR = 0.1, p-adj < 0.05,

Supplementary Fig. S5f, Supplementary Table S7), we focused only on
cisplatin in our subsequent analyses.

Pathway (REACTOME; KEGG; WIKI) and GO over-representation
analysis on cisplatin-induced perturbation signatures revealed well-known
underlying biological themes such as response to chemical stress or DNA
damage (Fig. 4b), DNA repair, and apoptosis (Supplementary Fig. S5g)20.
Histone H3K4 methylation also prominently contributed to the perturba-
tion gene signature (Fig. 4b), suggesting the possible relevance of epigenetic
targets. To explore the underlying biological themes further, we compared
the cisplatin-induced perturbational signature to the Connectivity Map
(cMap)19, a large perturbation signature database (Fig. 4c). When we
focusedonpathways annotated in cMapas “DNAdirected compounds,”we
found Amonafide (a DNA intercalating agent) was among the top-ranked
compounds and had very high connectivity score (τ = 96.05) while temo-
zolomide (a DNA alkylating agent) had a nearly neutral connectivity score
(τ =−6.38). These findings corroborate the specificity of the cisplatin-
induced perturbation signature (Supplementary Fig. S5h, Supplementary
Table S7).

IFNB1 and KDM5A genetic perturbation induces inverse
expression signatures to cisplatin chemotherapy of high-grade
GEP-NEN PD tumoroids
Cancer escape mechanisms and the inevitable emergence of resis-
tance to monotherapies make it imperative to formulate effective
combinational chemotherapies, which are now fundamental to
modern cancer therapy20–24. We used transcriptional perturbation
profiles from treated patient-derived GEP-NEN tumoroids to char-
acterize the cisplatin-induced perturbation signature and identify
possible combinational treatment options. To prioritize and evaluate
complementary combinations, we examined perturbation candidates
that created gene expression signatures inversely related to cisplatin-
treated PD tumoroids. Overexpression of Interferon Beta 1 (IFNB1)
and knock-down of Lysine Demethylase 5 A (KDM5A) in cMap’s
core cell panel (3147 genetic perturbations) were among the top-
ranked perturbational candidates, with highly inverse connectivity
map scores (IFNB1, rank 15, τ =−99.54; KDM5A, rank 52,
τ =−97.68) (Fig. 4d; Supplementary Table S8) and this pattern was
robust and specific (Supplementary Fig. S5i; Supplementary Table
S8). Both, KDM5 isoforms and IFNB1 receptors (IFNAR1 and 2)
mRNA, were expressed in PD tumoroids (Supplementary Fig. S5j).
Together, these findings indicate that molecular stress responses in
PD tumoroids are specific and can be exploited to, in silico, predict
treatment vulnerabilities.

In silico-predicted combinational therapies induce effective and
synergistic treatment responses in patient-derived GEP-NEN
tumoroids
To evaluate the functional activity of in silico-predicted candidates in
combinational drug therapy,weapplied eitherhumanrecombinant IFNB1b
or KDM5A-inhibitor CPI-455 with cisplatin in high-grade PD tumoroids
and NEN cell line spheroids. We found that high-grade GEP-NEN
tumoroids were susceptible to mono- and combination treatment respec-
tively (Fig. 5a, b). Activity of theKDM5Ainhibitor in vitrowas confirmed in
NENcell linesbywesternblotting formethylatedHistone 3 (Supplementary
Fig. S6a). We then used the inhibitory effect of cisplatin monotherapy at a
physiologically relevant concentration (Cmax 14.4 uM; inhibition
0.29 ± 0.24, mean ± SD) as a reference level for comparing drug interaction
anddrugpotency among tumoroids.To analyze synergistic drug interaction
and combined drug potency we used the combination index theorem25,26.
The degree of drug interaction was determined relative to a purely additive
null model and summarized as the drug combination index (CI) (Fig. 5c).
The dose reduction achieved in the combination treatment is quantified in
the drug reduction index (DRI) (Fig. 5c).

In line with our in silico findings, exposure to CPT + IFNB1b com-
bination treatment indicated synergistic drug interaction in five of the

a

b

c

PR

PR

ex
 vi

vo

cli
nic

al

PR PR

PR

ex
 vi

vo

cli
nic

al

high

low
ex vivo sensitivity

clinical course
PR = Partial 

Response
= PD Progressive 

Disease

PD

PD

non pre- and 
post-operation 
tissue collection

PDPD

treatment not 
applied in clinics

PD

Recovery TreatmentSpheres

D12D0 D2 D5

aP321m

C5501m

C0701m

aP490m

C8101m

*C8802p

C9502m

C3301m

C0701m

C8802p

aP490m

C9502m

C8101m

C3301m

*aP321m

Fig. 3 | Patient-derivedGEP-NEN tumoroidsmimic the clinical patient response.
a Schematic diagram of ex vivo drug screening workflow in patient-derived GEP-
NEN tumoroids. Cryopreserved tissue of GEP-NEN were dissociated using gentle
MACS. Isolated primary tumoroidsweremaintained inAdvDMEM+GrowFactors
(EGF, bFGF, PlGF, IGF-1) in ultra-low attachment (ULA) plates. Tumor cells were
allowed to form spheres for 2 days following a 3-day recovery period. All drug
sensitivity measurements were obtained after 168 h (7 d) of treatment. For drug
screening, 3000–4000 cells per well were plated in ULA plates and viability mon-
itored in a continuous manner using RealTimeGlo (Promega). Micro cell blocks
were made to assess tumor cell content. b Drug sensitivity in PD tumoroids mea-
sured as area over the growth rate (GR) corrected drug sensitivity curve (GR AOC).
PD tumoroids were treatedwithDMSO (ctrl) or different concentrations of cisplatin
or temozolomide for 168 h. Cell counts were normalized relative to control treated
samples, converted to GR values and summarized as the GR AOC using the
GRmetrics R package. Based on the median of the GR AOC values, PD tumoroids
were equally split into high (bottom) and low (top) drug sensitivity. c Comparison
between ex vivo sensitivity of PD tumoroids and clinical patient response for cis-
platin (left) and temozolomide (right). Colors show drug sensitivity in vivo or
in vitro. Solid circles connected with lines highlight patients with the indicated
therapy applied directly before or after specimen collection. Circles with a gray fill
represent cases where the treatment was applied at some other point in treatment
history. Uncolored circles are samples not treated for the drugs investigated.
Asterisks indicate patients (C8802p and aP321m) with accentuated and long-lasting
clinical responses to either cisplatin or temozolomide systemic therapy.
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screened tumoroids ex vivo (5/9) (CI = 0.43 ± 0.32, mean ± SD) (Supple-
mentary Fig. S6b). Similarly, exposure to the CPT+KDM5A inhibitor
combination yielded synergistic drug interaction in three tumoroids ex vivo
(3/6) (CI = 0.43 ± 0.23, mean ± SD) (Supplementary Fig. S6c). In PD
tumoroids where synergy was detected, combinational dosages needed to
obtain equipotent inhibitory effects were considerably lower than in
monotherapies (Supplementary Fig. S6d, e), showing highly favorable dose-

reduction indices (DRI ≫ 1) for each individual drug (Fig. 5d, e) and
emphasizing the increased potency of combination therapy ex vivo.

Altogether, our findings show that NEN PD tumoroid ex vivo drug
screening and perturbational profiling can be successfully applied for the
timely assessment of standard-of-care therapies and the likely effects of
experimental drugs. Our analysis of therapy-induced adaptive stress
responses revealed two clinically attractive co-vulnerabilities, which proved

Cellular Response to
DNA damage stimulus

Regulation of
translation

Interleukin 12

Ribonucleoprotein
organisation

signalling

interaction
ECM receptor

Cellular response to

organisation
cytoskeleton

starvation

Chromatin

Regulation of

dimethylation

mRNA processing

phosphorilation

chemical stress

organisation

Histone H3K4

Cellular response to

Oxidative

a

c

b
327

28 20
0

100

200

300

In
te

rs
ec

tio
n

Si
ze

CPt_vs_CTRL

TEM_vs_CTRL

0100200300
Set Size

100A
A

Genes UP

Genes DOWN

Query
Signature

Reference
db

Connectivity 
score

~8500 perturbagens
in 9 cell lines

-100

[…]

IFNB1 OE
KDM5A KD

NUP93_kd
SOX2_oe
MAPKAPK5_kd

RHOA_kd

ACLY_kd

CDK5_kd
ZFP36L1_oe

NAE1_kd

IFNB1_kd

-100 -50 0 50 100

Connectivity map score

R
an

k

Perturbation OEKD

d

Fig. 4 | Molecular stress response in patient-derived tumoroids reveals IFNB1
and KDM5A as targets for combination therapy with cisplatin. a Intersection of
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geometric test. Pathways were clustered based on similarity using metascape. Each
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indicate the similarity between terms. c Schematic diagram of connectivity map
(cMap) workflow to detect connectivity between stress response signatures from PD
tumoroids and perturbational signatures in the database. The top 150 significantly
up- or down-regulated genes were matched to the cMap reference data. The simi-
larity to a signature is calculated as the connectivity score τ (range: −100 to 100).
d Waterfall plot of cMap signatures compared to the cisplatin-induced stress
response in PD tumoroids. Signatures were ranked by connectivity score (τ)
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with a stronger inverse relation to the query signature. The 10 signatures with the
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that our findings have direct functional significance for patient-derived and
cell line GEP-NEN tumoroids.

Discussion
Therapeutic target discovery, validation, and translational applications face
severe obstacles in rare cancers such as high-gradeGEP-NEN.The selection
of therapies for high-grade GEP-NENs is largely based on clinical experi-
ence in the absence of large clinical trials1,11 and the absence of predictive
biomarkers for therapy5. Our data demonstrate that high-grade GEP-NEN
PD tumoroids arewell suited for rapid ex vivo pharmacotyping and provide
biological information on this lethalmalignancy. Pharmacotypingmay also
provide useful therapeutic information, helping oncologists select the best
therapies for high-grade GEP-NENs.

The lack of existing preclinical disease models is a major hurdle in the
study of rare cancers12,13. We combined a patient-derived model system of
high-gradeGEP-NEN, extensive characterization ofmatched tumor tissues,
and comprehensive patient clinical follow-up for the study of these rare
cancers. PD tumoroids provided a faithful representation of defining fea-
tures of high-grade NENs. Inter-patient molecular transcriptional patterns
were retained in tissue-matched PD tumoroids, further demonstrating that
key biological features are recapitulated in themodel (Fig. 2). The relevance
of patient-derived models is underscored by the clear difference between
transcriptomes of classical NEN cell line compared to the patient material
and PD tumoroids.

PD tumoroids of high-grade GEP-NEN patients mimic patient
response to establishedfirst-line chemotherapies (Fig. 3, Supplementary Fig.
S4). Nevertheless, we are aware of the limited size of our sample collective,
further studies with a larger number of samples and pretreatment biopsies
are needed.

While our cohort was small, our results align with those of similarly
sized studies of similar sizes of various cancer entities that demonstrated
clinical applicability using patient-derived ex vivomodels, e.g., in colorectal
cancer27,28, pancreatic cancer29, and lung cancer30.

We efficiently and successfully processed low abundant GEP-NEN
tissues with minimal cell requirements, included critical quality control
steps, and ensured turnaround time was only 2 weeks (Figs. 2, 3, Supple-
mentary Figs. S2–4)—far less than the 2 to 6 months reported in other
precision medicine studies30,31. Because patients with high-grade NEN are
not expected to live long without effective treatment, a rapid turnaround
using PD tumoroids bettermatches the clinical course of these patients. As a
trade-off for rapid information, our workflow and model are focused on
“one round of experimentation” per preparation. The rapid ex vivo culture
and analysis of individual tumor specimens can however be expanded with
additional screens if sufficient (i.e., biopsy-sized) additional donor tissue is
available. The amount of tissue needed for a targeted rapid ex vivo screen is
similar to the amount needed for an additional tumor biopsy, which facil-
itates translational applications. Other groups, e.g., Sato et al., have suc-
cessfully generated NEN organoid lines as excellent models for
comprehensive mechanistic studies15. However, the organoid expansion
process took from several months to years15.

Our research lays the groundwork forprospective validationof patient-
derived tumoroids as faithful ex vivo models for personalized screening of
treatment efficacies. Larger prospective studies could evaluate the predictive
relevance in more detail.

Molecular drivers of the divergent clinical course of G3 NET and NEC
are poorly understood, making individual treatment decisions challenging.
Because advanced tumors often resist monotherapies, antineoplastic agents
are combined to be more efficacious at lower doses20–23,28,30–32. Patient-to-
patient heterogeneity, intra-tumoral heterogeneity, and intracellular pathway
dysregulation open new avenues for combining therapies to induce potent
responses that monotherapy cannot achieve. We offer a strategy for using
gene expression profiles to suggest treatments that can be combined with
cisplatin chemotherapy; cisplatin-inducedmolecular stress response in high-
grade GEP-NENPD tumoroids is specific andmirrors perturbational effects
(Fig. 4, SupplementaryFig. S5).Usingperturbational profileswepinpoint two

novel candidates for combinational therapy: Lysine Demethylase 5 A
(KDM5A) and interferon beta 1 (IFN1B) (Fig. 4, Supplementary Fig. S5).

KDM5A is a histone demethylase that often represses target genes at
transcriptional start sites33 and its role in neuroendocrinedifferentiation and
tumorigenesis was recently described34,35. Kaelin et al. demonstrated that
Kdm5a promotes SCLC tumorigenesis in vivo and tumor proliferation and
proposing inhibiting KDM5A as a therapeutic strategy35. Genomic analysis
ofGEP-NENshas shown that in 45% - 52%of the tumors there is aKDM5A
copy number gain10. The findings of these two independent studies closely
align with our finding that KDM5A plays a prominent role in neu-
roendocrine neoplasms. Upon combinational treatment of KDM5A inhi-
bitor with cisplatin, three GEP-NENs we tested showed strong synergism
and clinically attractive efficacies (Fig. 5, Supplementary Fig. S6).

Interestingly, KMD5A and cisplatin susceptibility have a functional
relationship in lung adenocarcinoma, pointing towards altered chromatin
regulation as a potential molecular mechanism for drug tolerance36. Note
that the sample in which the Cisplatin+KDM5A combination was inef-
fective had a mutational disfunction upstream of the H3K4 methylation
axis. Mutations in lysine methyltransferase 2 A (KMT2A) and menin
(MEN1) regulateH3K4methylation, so this dysfunctionmayhave rendered
the combination ineffective.

Type I interferons (IFN-α and IFN-β) are pro-inflammatory cytokines
that can rapidly cause myriad downstream effects in tumor cells and pro-
mote antitumor immunity in immune cells37,38. Type I interferons activate
transcription factors of the signal transducer and activator of transcription
(STAT) family, initiating protein synthesis from interferon-stimulated
genes38. Type 1 interferons are FDA-approved for mono- or combinational
therapy because they cause tumor regression and may prolong survival in
many other highly proliferative hematological and disseminated solid
malignancies37. IFN-αwas used to treat advanced low-gradeGEP-NETs39–41

but was superseded by other regimens (e.g., somatostatin analogs)42.
Recently, two independent studies proposed that IFN-β be used to treat
GEP-NETs because at low doses it effectively inhibits cell proliferation and
stimulates apoptosis in cell lines in vitro43,44. In the clinically more relevant
scenario of patient-derived high-grade GEP-NET tumoroids, we found
IFNB1 was associated with the GEP-NEN perturbational signature. Expo-
sure to Cisplatin+IFNB1 revealed they were synergistic and highly effica-
cious in treating a subset of high-grade GEP-NEN tumoroids (Fig. 5,
Supplementary Fig. S6). This combinational approach may be an attractive
option for patients with high-grade GEP-NETs, who now have few treat-
ment options3,5.

Further studies in larger cohorts are needed to determine to what
extent KDM5A- or IFNB1 combinations are NEC- or NETG3 specific and
further efforts are needed to delineate the exact mechanisms behind treat-
ment susceptibilities. Exact treatment schedules and/or therapeutic priming
should also be evaluated in vitro. A recent extensive and comprehensive
high-throughput combinational drug screen in breast, colon, andpancreatic
cancer indicated that chemotherapeutics combinedwith apoptotic inducers
or cell cycle inhibitors show promise for translational applications21. Both
KDM5A and IFNB1 fall into this category, and our study underlines their
functional potency. KDM5A and IFNB1may prove to be the AchillesHeels
for high-grade GEP-NEN if combined with cisplatin.

In summary, we successfully cultured PD tumoroids of high-grade
GEP-NENs for a rapid ex vivo drug screen. These tumoroids recapitulated
key biological features of high-grade GEP-NEN and mimicked clinical
response to cisplatin and temozolomide ex vivo. We also investigated
molecular stress responses in PD tumoroids in silico, discovering and
functionally validating Lysine demethylase 5 A (KDM5A) and interferon-
beta (IFNB1)—two vulnerabilities that interact when combined with cis-
platin. Either KDM5A or IFNB1 can be combined with cisplatin, opening
new therapeutic options in high-grade GEP-NENs.

Our findings, that GEP-NENPD tumoroids are promising candidates
for rapid and biologicallymeaningful ex vivo pharmacotyping and that they
can provide subsidiary therapy information, brings us closer to developing
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more personalized clinical protocols for later-line therapies in patients with
aggressive high-grade GEP-NEN.

Methods
Patient studies
We assembled a cohort of eight high-grade GEP-NEN patients from two
ENETS Centers of Excellence; The University Hospital Charité Berlin
(Germany) and The University Cancer Institute of the Inselspital and the
University of Bern (Switzerland). Inclusion criteria were histopathologic
diagnosis of G3 gastroenteropancreatic neuroendocrine neoplasm, avail-
ability of both tumor tissue- and matching cryomaterial for ex vivo culture,
and tumor purity of >70%. A board-certified pathologist (A.P.) reviewed all
cases and reclassified them according toWHO 2019 criteria (ISBN 978-92-
832-4499-8) (Table 1 andSupplementaryTable S1).TNMstagingwasbased
on the 8th edition UICC/AJCC (ISBN: 978-1-119-26356-2). We obtained
treatment and outcome information from interdisciplinary NEN tumor
board records of both centers. Assessment of clinical therapy response

accorded with investigator based RECIST criteria. The final classification
was based on all information about immunohistochemistry, clinical course
records, and mutational status from targeted sequencing. The cohort
included 3 female and 5male patients; their ages varied from 39 to 70 years
(mean = 58.0; SD = 11.8). For comprehensive cohort features, patient
demographics, and patient characteristics, see Tables 1, 2 and Supplemen-
tary Table S1. Chemotherapy indication was based on clinical judgement
and patient preferences. The specimens were processed as described in
April-Monn, et al.14. Inbrief, upon surgical resection a pathologist processed
the left-over of the donor tumor tissue to 8-mm^3 cubes under sterile
conditions, avoiding necrotic regions when possible. These cubes were
suspended in recovery cell culture freezing medium (Thermo Fisher Sci-
entific, USA), cryopreserved in an isopropyl alcohol freezing container
(Nalgene, USA), and stored in liquid nitrogen. A consecutive block was
snap-frozen (freshfrozen) in liquid nitrogen. A mirror block was fixed in
formalin and embedded in paraffin. The study was approved by cantonal
authorities (Kantonale Ethikkomission Bern, Ref.-Nr. KEK-BE 105/2015)
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Fig. 5 | Combinational treatment of cisplatin and KDM5A or IFNB1 induces
synergistic and potent treatment response ex vivo. a Drug response heatmap of
mono- and combinational treatment of cisplatin and recombinant IFNB1b. The
short-term treatment response was assessed after 24 h RTG measurements were
normalized to DMSO and converted to inhibition values by subtracting the nor-
malized percentage from100. Red and blue indicate inhibition (reduced growth) and
lack of inhibition (increased growth) respectively. b Same as in A for the combi-
nation of cisplatin and KDM5A inhibitor (CPI-455). c Schematic representation of
parameters to assess combination therapy. Drug interaction was assessed by
determining the combination index (CI) as the deviation of the observed drug
combination activity from a purely additive null model (dashed line between the
drug concentrations required in isoactive monotherapy (iso)) at a defined effect

level. CI values above 1 indicate antagonism and values below 1 synergism. The drug
specific effect level (DE) is the drug dose necessary to achieve 50% inhibition. Drug
potency (drug reduction index, DRI) was calculated as the fold-change in drug dose
between combination- and monotherapy at 50% inhibition. d Heatmap displaying
drug potency parameters for the combination therapy of cisplatin and IFNB1b. The
color scale shows the drug reduction index (DRI). Red (high DRI) or blue (low DRI)
indicate an increase or decrease in the drug dose required to achieve 50% inhibition
compared to monotherapy. The combination index (CI) at 30% inhibition (Sup-
plemental Fig. S6b) was used to classify drug interaction into synergistic (black),
antagonistic (white), or zero-interaction (gray). e Same as in D for the combination
of cisplatin and KDM5A inhibitor (CPI-455).
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in accord with the Swiss Federal Human Research Act and by the ethics
committee at Charité Universitätsmedizin Berlin (Ref.-Nr. EA1/229/17)
which both ensure adherence to the Declaration of Helsinki. All patients
included in this study signed an institutional informed consent for the use of
their residual samples for future research. However, informed consent was
not possible for this specific study since it was developed up to 10 years after
the patient’s death.

Cancer mutation panel
The TruSight Oncology 500 Kit (TSO500, Illumina) was used for DNA
library preparation and enrichment following the manufacturer’s protocol.
DNA (80 ng) were sheared on a Covaris E220 ultrasonicator. DNA frag-
ments were end-repaired, and adapters containing unique molecular
identifiers (UMIs) were ligated to each fragment end. Fragments enriched
by capture hybridization were analyzed by high-throughput sequencing on
a NovaSeq 6000 instrument (Illumina). TSO500 alignment and variant
calling were performed using the TSO500 bioinformatics pipeline v2.1.0.
UMI-filtered total read counts were 103M± 19M, median exon coverage
was 1131 ± 253,medianDNA-insert size was 136 ± 14, and% aligned reads
were 98.9 ± 1.0. Sources of population frequencies that were used for auto-
classification of benign variation include gnomAD (RRID:SCR_014964)
and ExAC (RRID:SCR_004068). We retrieved annotations of oncogenic
effects of identified variants from the OncoKB precision oncology knowl-
edge database (RRID:SCR_014782) and assessed known activating muta-
tions in oncogenes and inactivatingmutations in tumor suppressors (Tier 1
and Tier 2). For the few cases in which IHC was inconclusive, we investi-
gated both known mutations and mutations with unknown and unclear
effects (Tier 3). OncoPrint function from ComplexHeatmap v2.6.245

(RRID:SCR_017270) was used for visualization.

Primary and cell line culture
For the study, we focused on naïve passage PD tumoroids to minimize
clonal drift46 and used NEN cell line spheroids for comparison. All ther-
apeutic studies were completed in 12 days. All screening plates contained
vehicle control wells (DMSO-treated, n = 10) and blank wells (medium-
only, n = 6) and for each plate, the raw luminescent intensity values were
normalized to a relative scale using the blank (B) value. Luminescence was
measured relative to the baseline of each well (BC) (Relative scale =
(Luminescence of treated cells− B)/(BC− B)).

Primary cell isolation and culture
Cryopreserved tumor tissues were used for ex vivo drug screening. For
primary cell isolation, micro-cell blockmanufacture, and quantification, we
followed theworkflowdescribed previously14. In brief, cryopreserved tissues
were dissociated with a gentle MACS® dissociator (Myltenyi Biotec, Swit-
zerland) in AdvDMEM medium, 0.25% Trypsin (Sigma-Aldrich, Switzer-
land), 10mg/ml collagenase IV, (Worthington, USA), 10mg/ml DNAse
(Roche, Switzerland). Isolated primary tumoroids were maintained in
AdvDMEM plus 5% FBS, Hepes 10mM, 1% L-glutamine, 1% penicillin-
streptomycin-amphotericin B and growth factors (20 ng/mL EGF, 10 ng/
mL bFGF (Thermo Fisher Scientific, USA), 100 ng/mL PlGF, 769 ng/mL
IGF-1 (Selleckchem, USA)) in ultra-low attachment (ULA) plates. After
dissociation red blood cells were lysed for 3min with ACK lysis buffer
(Thermo Fisher Scientific, USA) at room temperature. Fibroblast were
segregated by attachment, incubating the cells at 37 for 1 h in coated plates.
Supernatant was collected and plated on ULA plates to recover for 48 h.
After 2 days of recovery phase, cellular aggregates were collected and cen-
trifuged at 120 g for 5min to separate cells and aggregates from debris/
apoptotic cells. Cells were counted and resuspended in fresh AdvDMEM+
GF medium supplemented with 123 μg/mL growth-factor-reduced Matri-
gel and plated in 96-well ULA plates (50 μL/well, 3000–4000 cells/well). In
this studyofhigh-gradeGEP-NENsand inour earlier studies of lower-grade
PanNENs14,47, our definition of “culture success” for patient-derived
tumoroids was based on six factors that support translational application
of patient-derived GEP-NEN tumoroids: (1) Successfully isolating and

culturing viable tumor cells; (2) retaining ± 70% of the isolated cells before
drug screening; (3) passing quality controls, including cytological, mor-
phological, and histopathological examinations of clinically applied neu-
roendocrinemarker expression inmicro-cell-blocks; (4) attaining sufficient
technical replicates (n ≥ 4) indrug screenings; (5) attaining stableRealTime-
Glo™ (RTG) baseline and cell growth; (6) and extending culture life spans of
up to 12 days ex vivo.

NEN cell line culture
The QGP1 cell line (RRID:CVCL_3143) was purchased from the Japanese
Health Sciences Foundation in 2011. QGP1 cells were kept in RPMI 1640
medium (10% FBS, 100 IU/mL penicillin, 0.1 mg/mL streptomycin). The
BON1 cell line (RRID:CVCL_3985) was provided by E.J.M. Speel in 2011.
BON1 cells were cultured in DMEM-F12 (10% FBS, 100 IU/mL penicillin,
0.1mg/mL streptomycin). NT3 cells were provided by J. Schrader and kept
in RPMI 1640 + growth factor medium (10% FBS, 100 IU/mL penicillin,
0.1mg/mL streptomycin, 20 ng/mL EGF, 10 ng/mL bFGF) and cultured in
collagen IV coated culture flasks48. All cells were kept in a humidified
incubator at 5% CO2 and 37 °C and cultured for no longer than 2 months.
For all cell lines, short tandem repeat (STR) analysis by PCRwas performed
(QGP1 in 2011/2016/2020; BON1 in 2014/2016/2020; NT3 in 2018/2020).
QGP1 cells were authenticated by their specific cancer cell profile. A BON1-
orNT3-specific cancer cell profile does not exist yet, but contaminationwith
other common cell lines can be excluded due to non-match to any known
cancer cell line profile. Expression of the specific neuroendocrine markers
chromogranin A and synaptophysin were routinely tested by IHC on cell
blocks.

Compounds
Temozolomide (#S1237, Selleckchem), cisplatin (#4333164, Teva Pharma),
CPI-455 (#S6389, Selleckchem), IFNB1b (#I7662-14S, Biomol) were
obtained fromcommercial vendors and stored as stock aliquots, as indicated
by the manufacturers. We selected drug concentrations for chemother-
apeutics (cisplatin; temozolomide) based on physiologically relevant con-
centrations at each drug’s Cmax (the maximum tolerated serum
concentration of each drug, drawn from published human studies)49. We
based concentrations for combinational exploratory compounds (CPI-455,
IFNB1b) on primary literature and in-house in vitro testing of a 625-fold
concentration range, optimized to induce a range of responses across clas-
sical NEN cell line spheroids (BON1, QGP1). Compoundswere screened at
equidistant 5-point, 625-fold concentration ranges using four technical
replicates for long-term (168 h) chemotherapeutics screens or in equidistant
3-point, 625-fold concentration ranges with three technical replicates for
short-term (24 h) combinational screens25.

Ex vivo drug screening
3000–5000 cells were plated per well. Cell viability was quantified with
RealTime-Glo™MT Cell Viability (RTG) Assay (Promega, #G9712). Assay
plates were incubated for 72 h at 37 °C in a humidified atmosphere at 5%
CO2 to allow sphere formation.

Evaluating drug sensitivity to mono chemotherapeutics
After a baseline measurement (Day 0), we tested spheroids with
titrations of cisplatin, temozolomide, or DMSO (0.16% v/v) as vehicle
control. Assay plates were incubated, and RTG luminescence mea-
surements were recorded at 96 h and 168 h with an Infinite 200 PRO
plate reader (Tecan). A blinded experimenter scored ex vivo experi-
ments and sensitivities to treatments. GR metrics: Raw luminescence
values were normalized to each individual baseline control value at
Day 0 for the same well. Ex vivo responses were converted into
parametrized drug sensitivity metrics, as did state-of-the-art
protocols17, In brief, drug effect estimates were obtained by adjust-
ing normalized luminescence measurements to the growth rate (GR)
of the control treated sample using GRmetrics v1.16.0 as described in
ref. 16. Samples were treated with increasing drug concentrations to
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obtain a curve of GR values after 168 h of treatment. Drug sensitivity
was then calculated as the area over this GR value curve (GR AOC)
with larger GR AOC values indicating a stronger inhibition of cell
growth. Samples with an GR AOC above the median of the dis-
tribution were considered responders and samples with an GR OAC
below the median distribution were considered non-responders
(2016)16.

Evaluating drug sensitivity to combination therapy
After baseline measurement (Day 0), PD tumoroids or cell line spheroids
were dosed with titrations of cisplatin (0.11, 2.67, 66.67 uM), recombinant
IFNB1b (0.26, 6.48, 162.07 pM), or CPI-455 (0.1, 1.6, 40 uM) alone or all
combinations. We incubated assay plates and recorded luminescence
measurements at 24 h with an Infinite 200 PRO plate reader. Raw lumi-
nescence values in the presence of the drug were normalized to baseline
control values andDMSO-treated controls at 24 h.Technical replicateswere
averaged to yield a mean relative cell count per condition. The analysis of
drug-drug interaction was based on the combination index theorem, a
mechanism-independent model for assessing drug interaction and drug
potency25,26. The combination Cisplatin plus IFNB1b was evaluated in a
ratio of 411365:1 and Cisplatin plus CPI-455 in a ratio of 1.67:1 accounting
for differences in effective doses. The combination index (CI) can be derived
by comparing the concentrations in the combination treatment required to
achieve a fixed fractional inhibition effect (fraction affected / fraction
unaffected) to a purely additive null model. Values above 1 indicate
antagonism and values below 1 synergism. The drug reduction index (DRI)
indicates the relative change in concentration per drug required to obtain
the same fractional effect in monotherapy. CompuSyn v1.0 was used to
calculate drug interaction and drug potency metrics26. We summarized the
degree of drug interaction by drug combination indices (CI), and then used
an isobologram to describe how the drug combination activity we observed
deviated from isoactive monotherapies25. The median-effect equation was
used to derive drug potency parameters (Dose Reduction Index [DRI];
Effect at Dose X [DE])25.

Nucleic acid extraction
ADNAPurificationMicro Kit (Norgen Biotek, #50300) was used to extract
genomic DNA from fresh frozen tumor tissue. Total RNA was extracted
from fresh frozen tumor tissue or cultured cells with a Single Cell RNA
Purification Kit (Norgen Biotek, #51800). Nucleic acid quantification was
performed with the Qubit DNA/RNA HS detection kit (Thermo Fisher
Scientific, #Q32852). We used a Femto Pulse system with an Ultra Sensi-
tivity RNA kit (Agilent, #FP-1201-0275) to analyze quality control metrics.

Immunohistochemistry
All the IHC markers were repeated on freshly cut tissue blocks and re-
evaluated by a NEN expert pathologist (A.P.). For immunohistochemistry,
we cut the paraffin-embeddedmaterial into2.5-µm-thick serial sections and
then deparaffinized, rehydrated, and retrieved antigens with an automated
immunostainer (Bond RX, Leica Biosystems). Antigen retrieval was per-
formed in a Tris-EDTA buffer for 30min at 95 °C for Ki-67 (1:200, Dako,
M7240), ATRX (1:400, Sigma-Aldrich, HPA001906), MCT4 (1:50, Santa
Cruz, sc376140 D1), SOX9 (1:100, Cell Signaling, 82630 T D8G8H), ARX
(1:1500, R&D Systems, AF7068), PDX1 (1:100, R&D Systems, MAB2419);
in a Tris-EDTA buffer for 30min at 100 °C for synaptophysin (1:100,
Novocastra, 27G12), CgA (1:400,CellMarque, 238M-94LK2H10), SSTR2A
(1;50, BioTrend, SS-8000-RM UMB-1); in a proteinase K solution for
Trypsin 1 (1:20000, Chemicon, MAB1482); in a citric buffer for 30min at
100° for DAXX (1:40, Sigma-Aldrich, HPA008736), RB1 (1:200, BP Phar-
mingen, 554136G3-245); and, in a citric buffer for 20min at 95 °C for TP53
(1:800, Dako, M7001 DO-7), BCL-10 (1:1000, Santa Cruz, sc-5273 331.3).
Primary antibody incubation lasted 30min at the specified dilutions.
Visualization used a Bond Polymer Refine Detection Kit (Leica, #DS9800)
(RRID:AB_2891238) for visualization; DAB (3,3′-Diaminobenzidine) was
the chromogen. Slides were counterstained with hematoxylin. We used an

automated slide scanner Panoramic 250 (3DHistech) at 20x magnification
to capture scans and acquired images with QuPath software50.

Bulk RNA sequencing
Library preparation and sequencing. Sequencing libraries were pre-
pared fromRNAusing the SMARTer Stranded Total RNA-Seq Kit v3 for
picogram input material (Takara, #634488). Libraries were sequenced as
paired-end 101 bp (tumoroid samples) or paired-end 81 bp (original
tumor tissues) reads on a NovaSeq 6000 (Illumina) platform at ~30M
reads/sample. Reads were demultiplexed and converted to FASTQ for-
mat with bcl2fastq v2.20.0.422 (RRID:SCR_015058). Cutadapt v2.551

(RRID:SCR_011841) was used to trim Illumina adapter sequences and
mask 3’ homopolymers longer than 10 bp.We removed reads containing
more than 20 masked bases or shorter than 65 bp (tumoroid samples) or
50 bp (original tumor tissue). Trimmed reads were mapped against a
custom list of ribosomal RNAs and repetitive RNA elements with bwa
v0.7.1752 (RRID:SCR_010910); mapping reads to this custom list were
discarded. At each step, we used FastQC v0.11.7 (RRID:SCR_014583) to
track read quality. Processed reads were mapped to the human genome
(GRCh37, GENCODE annotation v37) with STAR v2.7.3a53

(RRID:SCR_004463).Mapped reads were deduplicated based on the 8 bp
UMI in the R2; we used UMI-tools v0.554 (RRID:SCR_017048) and the
default directional method. Deduplicated reads were assigned to GEN-
CODE v37 genes in subread v2.0.155 (RRID:SCR_009803). We excluded
one drug-treated sample from the tumoroid culture of patient C5501m
because input and library quality was low.

Differential gene expression. For the comparison of original tumor
tissue and PD tumoroids expression data was normalized using the
trimmed mean of M values (TMM). Differentially expressed genes were
then determined using limma v3.48.1 with voom precision weights56

(RRID:SCR_010943). The repeated measurements of tumor tissue and
tumoroids from the same patient were modeled using the duplicate-
Correlation function in limma, treating the patient as a random effect.
For drug-treated tumoroids, we determined differential expression with
DESeq2 v1.32.057 (RRID:SCR_000154). Treatment-independent
expression variability was modeled using surrogate variable analysis
(SVA) from sva v3.40.058 (RRID:SCR_002155). All available surrogate
variables were added to the DESeq2model. Log2 expression fold changes
of highly variable genes were shrunkwith the apeglm v1.14.0 algorithm59.

Functional enrichment analysis. UpSetR v1.4.060 was used to visualize
intersections between gene sets. Gene set enrichment analysis (GSEA) on
differential expression results from original tumors vs PD tumoroids or
cisplatin vs DMSO treated PD tumoroids was performed in clusterPro-
filer v.3.18.161 (RRID:SCR_016884). GO terms were obtained from the
human annotation package org.Hs.en.db v3.13.0, Hallmark gene sets
were obtained from MSigDB v7.5.1. Genes were ranked on the test sta-
tistic from the respective differential expression test. Terms smaller than
100 or larger than 400 elements were excluded. Additional functional
analysis on the 327 differentially expressed genes from cisplatin and
DMSO treated PD tumoroids was performed in metascape, data base
update 2022-01-0162. All genes in the genome were used as the enrich-
ment background. Significant pathways (p < 0.01, enrichment factor
>1.5) were clustered by similarity into thematic groups.

Perturbational profiling in cMap.We compared the top and bottom150
genes from drug versus control-treated tumoroids (adjusted p < 0.05,
sorted by the Wald statistic) to the compendium of perturbational
reference signatures from Connectivity Map (L1000, Touchstone v1.0)63

(RRID:SCR_015674) and extracted connectivity map scores (τ) for all
available knock-down (kd), overexpression (oe), and compound per-
turbagens. To estimate the robustness of matching signatures, we rarified
or permutated the input lists of differentially expressed genes.
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Western blotting
BON1 and QGP1 cells were seeded to 6 well plates (800 K cells / well). The
next day cells were treatedwithDMSOorCPI-455 (0.1 uM, 1.6 uM, 40 uM)
for 24 h. Histones were extracted using an acid extraction protocol as
described previously47 and the same Bio-Rad system was used for protein
quantification, Western blotting and imaging. The primary antibodies
histone H3 (1:5000, Abcam ab12079) was diluted in 5% BSA-TBST. The
primary antibody H3K4me3 (1:2000, Abcam ab8580), the secondary anti-
bodies DyLight 650 conjugate goat anti-rabbit (ImmunoReagent, GtxRb-
003-D650NHSX) and HRP-conjugated rabbit Anti-Goat (Abcam, ab6741)
were diluted in 5%Milk-TBST. Band intensity was measured using ImageJ
after background subtraction using a sliding paraboloid with size 100 pixel.
Uncropped and original membranes are shown in Fig. S7.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study have been deposited in
Gene Expression Omnibus (GEO); primary accession code is GSE213504.

Code availability
All code is available from the corresponding author upon request. Data
collection: RNA-Seq data was processed using bcl2fastq v2.20.0.422. Illu-
mina adapter and homopolymer sequences were trimmed and UMIs
extracted with cutadapt v2.5, discarding reads shorter than 65 bp. Reads
were mapped to GRCh38, GENCODE v37 with STAR v2.7.3a, UMI-tools
v0.5 and subread v2.0.1. Data analysis: All data analysis was performed
under R v4.1.0. Differential expression was analyzed using limma voom
v3.48.1 with the duplicate Correlation function or DESeq2 v1.32.0 plus sva
v3.40.0 surrogate variables. Functional analysis was performed with clus-
terProfiler v3.18.1, org.Hs.en.db v3.13.0 and MSigDB v7.5.1 or with
metascape (update 2022-01-01). Drug response was quantified using
GRmetrics v1.16.0. Combination therapies were evaluated with CompuSyn
v1.0. Drug perturbation profiles were scored using ConnectivityMap
(https://clue.io/) v1.0 on the top 150 up- and down-regulated genes.
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