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Transcriptomics-driven metabolic
pathway analysis reveals similar
alterations in lipid metabolism in mouse
MASHmodel and human
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Abstract

Background Metabolic dysfunction-associated steatotic liver disease (MASLD) is a
prevalent chronic liver disease worldwide, and can rapidly progress to metabolic
dysfunction-associated steatohepatitis (MASH). Accurate preclinical models and
methodologies are needed to understand underlying metabolic mechanisms and develop
treatment strategies. Through meta-analysis of currently proposed mouse models, we
hypothesized that a diet- and chemical-induced MASH model closely resembles the
observed lipid metabolism alterations in humans.
Methods We developed transcriptomics-driven metabolic pathway analysis (TDMPA), a
method to aid in the evaluation of metabolic resemblance. TDMPA uses genome-scale
metabolicmodels to calculate enzymatic reaction perturbations fromgene expression data.
We performed TDMPA to score and compare metabolic pathway alterations in MASH
mouse models to human MASH signatures. We used an already-established WD+CCl4-
induced MASH model and performed functional assays and lipidomics to confirm TDMPA
findings.
Results Both human MASH and mouse models exhibit numerous altered metabolic
pathways, including triglyceride biosynthesis, fatty acid beta-oxidation, bile acid
biosynthesis, cholesterol metabolism, and oxidative phosphorylation. We confirm a
significant reduction in mitochondrial functions and bioenergetics, as well as in
acylcarnitines for themousemodel.We identify a wide range of lipid specieswithin themost
perturbed pathways predicted by TDMPA. Triglycerides, phospholipids, and bile acids are
increased significantly in mouse MASH liver, confirming our initial observations.
Conclusions We introduce TDMPA, a methodology for evaluating metabolic pathway
alterations in metabolic disorders. By comparing metabolic signatures that typify human
MASH, we show a good metabolic resemblance of the WD+CCl4 mouse model. Our
presented approach provides a valuable tool for defining metabolic space to aid
experimental design for assessing metabolism.

Metabolic dysfunction-associated steatotic liver disease (MASLD, pre-
viously called NAFLD1) is the most prevalent liver disorder and affects
approximately 25%of theworld’s population2–5.MASLD is characterizedby
excessive accumulation of fat in the absence of a history of alcohol use or

other liver diseases6,7. It can progress to metabolic dysfunction-associated
steatohepatitis (MASH, previously called NASH1), which is a progressive
disease histologically defined by the presence of hepatic fat (steatosis) with
inflammation, and hepatocellular ballooning, and can lead to further liver
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Plain language summary

Steatotic liver disease, in which fat
accumulates in the liver, is one of the most
prevalent liver diseases worldwide and it is
important to develop relevant animal models
to help us understand its mechanisms. We
aimed to assess the suitability of animal
models for studying steatotic liver disease in
humans. We developed an approach that
evaluateshowgenesaffect themetabolismor
the chemical reactions and processes that
occur in the body. We used it to compare a
mouse model of the disease with human
observations. Our results showed that there
are significant changes in fat and energy
metabolism in the mouse model. These
observations match with changes observed
in humans, suggesting it is a good model for
studying human disease. Our findings could
advance our understanding of the disease as
well as help define strategies for its treatment.
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injury, advanced fibrosis, cirrhosis, and hepatocellular carcinoma8–10. The
underlyingmechanisms for the development and progression of the disease
are complex and multifactorial, and a ‘multiple-hit hypothesis’ has been
proposed for its prediction11. Increased lipid synthesis and accumulation,
mainly characterized by an excess of triacylglycerides (TGs), has been
reported to occur fromaugmented de novo lipogenesis and insulin-resistant
adipose tissue12. In turn, persistent steatosis can lead to lipotoxicity, mito-
chondrial dysfunction, and reactive oxygen species (ROS)-induced activa-
tion of immune cells13,14. Associated pro-inflammatory signaling and
metabolic imbalances further aggravate the liver, leading to apoptosis,
scaring, and fibrosis.

To elucidate the underlying pathophysiological mechanisms of
MASLD and MASH, appropriate experimental models need to be
developed. Additionally, preclinical disease models are essential for drug
discovery and testing. However, due to the multifactorial nature of stea-
tohepatitis and its heterogeneity in humans, it is challenging to establish a
preclinical model that closely resembles its pathophysiology and meta-
bolism. Several dietary (nutritional), chemical (toxin-induced), and
genetic mouse models or combinations thereof have been established15–17.
Dietary mouse models include nutrient-deficient approaches such as
methionine and choline-deficient diets (MCD), and high-fat diets (HFD).
HFD-induced MASLD models with the addition of fructose and/or
cholesterol (also called western diet (WD)) lead to a wide spectrum of
conditions that closely resemble human MASLD pathophysiology, such
as insulin resistance, liver inflammation, and fibrosis18–20. However, HFD
mouse models require a fair amount of time to develop the desired his-
tological characteristics and often require a larger sample size to account
for inter-individual response variability21,22. Genetically modified mouse
models usually imply a loss-of-function though a gene knockout, and are
often obesogenic, a known risk factor for liver disease23. Finally, chemi-
cally induced liver damage and fibrosis are typically used in the study of
hepatic fibrosis progression and regression. However, hepatotoxins often
do not reflect the usual phenotype ofMASH, but rather some aspects of it,
unless accompanied by a HFD24,25. These animal models are severe, and
commonly progress to cirrhosis and hepatocellular carcinoma (HCC)26.
Carbon tetrachloride (CCl4) has been shown to decrease induction time
when combined with WD and lead to extensive liver inflammation and
fibrosis27. The findings of this study showed that a CCl4-supplemented
WD-inducedMASH in only 12weeks, and histologicallymatched human
MASH very well. The WD provides a suitable background for inducing
obesity, insulin resistance, andMASLD inmice, which are important risk
factors for the development of MASH. CCl4 then acts as a “fibrosis
accelerator”, allowing for much faster MASH development, while main-
taining the natural course of liver metabolism.

Lipidmetabolism plays a pivotal role inMASLD/MASH development
and progression, thus targeting specific related enzymes/pathways provides
a good strategy for drug development. Metabolomics and lipidomics
approaches to investigate suchmechanisms have beenwidely applied12,28. In
addition, high throughput RNA sequencing has been broadly used to elu-
cidate key mechanisms and pathways typifying MASLD and MASH
progression29–32. A reliable method for the functional interpretation of the
transcriptome is data integration in mechanistic models and subsequent
simulations. Genome-scale metabolic models (GEMs) integrate all known
genetic and biochemical information about an organism, effectively
describing its metabolism in a network reconstruction33. These models can
be used to perform simulations using constraint-based approaches34, or as a
knowledge base of genes and pathways in conjunction with experimental
data35. Over the past years, GEMs have been successfully used in MASLD
research, modeling the metabolism of the human liver in health and
disease36,37. Multiple methods to integrate transcriptomics data in GEMs
have been proposed and extensively reviewed38,39.

Apart from the long-existing questions regarding disease develop-
ment, progression, and treatment, there is an urgent need for the sys-
tematic and accurate evaluation of proposed preclinical models. In this
study, we present a complete workflow to examine and compare the

changes inmetabolic pathways that occur across various stages ofMASLD
andMASH in humans, as well as in a spectrumof differentmousemodels.
To evaluate and interpret these changes, we developed transcriptomics-
driven metabolic pathway analysis (TDMPA), a method that calculates
enzymatic reaction perturbations from gene expression data and uses it to
score metabolic pathway alterations. To demonstrate the capabilities of
TDMPA, we selected a MASH mouse model that resembles closely the
human pathophysiology and used it to investigate the metabolic altera-
tions that occur inMASH.We performed a systematic evaluation of gene
expression through genome-wide RNA sequencing using liver tissues
collected from mice fed a standard chow diet (controls) and the WD
+CCl4 mouse model. Using the gene expression data, we scored and
ranked themetabolic pathways typifyingMASH, andused themas a guide
to define the metabolic space related to the disease. We compared our
results tohumanmetabolic signatures and confirmed that they are in good
agreement. Based on our findings, we performed further lipidomics/
metabolomics and functional analyses and confirmed enzymatic activities
within the identified metabolic pathways. In the future, TDMPA can be
used as a platform to evaluate the suitability of preclinical animal models
and identify the most perturbed metabolic pathways, as well as to study
differential gene expression on the enzymatic reaction level of the meta-
bolic network, thus offering increased granularity and insight on the study
of disease.

Methods
Mouse model description
Eight-week-old male C57Bl6/J mice (Charles River, Freiburg, Germany)
were housed as five animals per cage under controlled temperature
(22 ± 2 °C) and 12 h light-dark cycles. Mice were acclimatized to the
housing facility for oneweek. 26mice were randomly assigned to control
(n = 9) or WD (n = 17) group and fed the respective diets for 18 weeks.
The WD group was injected intraperitoneally with CCl4 (0.32 mg/kg)
every week. The WD includes 42% kcal/fat, sucrose, and 1.25% choles-
terol (catalog number TD.120528, Envigo Teklad). Mice’s health, body
weight, and food intake were monitored weekly. Mice were weighed,
anesthetized with pentobarbital (100 mg/kg, i.p.), and euthanized in the
afternoon. The right lobe of the liver for each mouse was collected and
stored with RNA stabilization solution (Sigma-aldrich) at −80 °C or
fixed in 4% formalin. All experiments were conducted according to the
regulations of the Bern Animal Welfare Committee, Canton of Bern,
Switzerland (BE42/19). Histological analysis was performed by a liver-
specialized pathologist to confirm induced MASH. The tissues were
stained using standard H&E, oil red o, and Sirius red staining protocols.
The histology images were generated using a Panoramic 250 Flash II
slide scanner with a 20x objective (3DHISTECH Ltd.). Activity of ALT
and AST, and total cholesterol were measured using Cobas analyzer-
8000 (Roche Diagnostics GmbH, Mannheim, Germany).

Tissue lysis and immunoblot analysis
Livers were homogenized in RIPA buffer (150mMNaCl, 1% NP-40, 0.5%
Na-deoxycholate, 0.1% SDS, and 50mM Tris-HCl pH 7.4) containing
protease and phosphatase inhibitors (Roche, Rotkreuz, Switzerland). Pro-
tein concentration was measured with the PierceTM BCA assay (Thermo
Fisher Scientific, Rockford, IL, USA). Equal amounts of proteins were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to nitrocellulose membranes, blocked for 1 h
with 5% nonfatmilk or BSA, then incubated overnight at 4 °Cwith primary
antibodies. After incubation with peroxidase-conjugated secondary anti-
body (Thermo Fisher Scientific, Rockford, IL, USA), signals were revealed
with enhanced chemiluminescence (AmershamECLPrime,GEHealthcare,
Glattburg, Switzerland) and a Fusion CCD camera coupled to a computer
equipped with Fusion Capt Fx Software (Vilber-Lourmat, Marne-la-Vallée,
France). Signals were quantified with the Bio-1D Advanced software (Vil-
ber-Lourmat). Uncropped and unprocessed scans of the blots are supplied
as Supplementary Figs. in the Supplementary Information.
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RNA sequencing
Total RNApurification from liver tissueswas performed using the RNeasy®
Mini kit (Qiagen). The tissues were removed from the RNA stabilization
solution, weighed, and homogenized in a buffer. The liver lysate was cen-
trifuged, and the supernatant was collected. Ethanol was added to bind the
RNA to the RNeasy membrane, the contaminants were washed away and
the RNA was eluted with RNAse-free water. Transcriptomics analysis was
performed using bulk RNA barcoding and sequencing (BRB-seq)40. The
RNAwas reverse transcribed with specific barcoded oligo-dT primers. The
samples were pooled and the cDNAwas purified using the DNA clean and
concentrator kit, treated with exonuclease I, and subjected to second-strand
synthesis to generate double-stranded cDNA. The full-length double-
stranded cDNAwaspurifiedandelutedwithwater.The sequencing libraries
were prepared by tagmentation of full-length double-stranded cDNA,
purification with DNA clean and concentrator kit, and then elution with
water. Afterward, the tagmented library was amplified, and the size of
fragments 200–1000 bp was selected and sequenced using the Illumina
NextSeq 500 platform.

Lipidomics analysis
Liver tissues were homogenized in 150mM ammonium bicarbonate by a
Tissue lyser (MM300Tissue LyserMixerMill, Retsch)with ametal bead at a
speed of 25Hz for 2.5min. The total protein content was assessed by BCA
protein assay (Bio-Rad). The homogenates were extracted by methyl tert-
butyl ether/methanol (7:2) containing an internal standard (IS)mixture41,42.
The ISmixture contained 100pmol ofDG17:0/17:0, 1nmolCholesterolD7,
50 pmol of PG 17:0/17:0, 50 pmol of PA 17:0/17:0, 50 pmol of PS 17:0/17:0,
50 pmol of LPC 12:0, 50 pmol of LPS 13:0, 50 pmol of LPG 17:1, 50 pmol of
LPE 17:1, 200 pmol of SM 18:1;2/12:0, 500 pmol of PC 17:0/17:0, 200 pmol
of PE 17:0/17:0, 50 pmol of Cer 18:1;2/17:0, 100 pmol of TG 17:0/17:0/17:0,
200 pmol of CE 17:0. After extraction, 20 µL of the organic phase was
transferred to the 96-well plate, and evaporated using a speed vacuum
(SpeedVac Concentrator, Thermo Fisher Scientific). The dried samples
were re-suspended in 40 µL of 7.5mM ammonium acetate in chloroform/
methanol/propanol (1:2:4, v/v/v).The lipidomics analysiswasperformedon
Orbitrap Exploris 240 mass spectrometer (Thermo Fisher Scientific) cou-
pled with direct infusion, a TriVersa NanoMate ion source (Advion Bios-
ciences). The 5 µL extracted sample was directly infused into the mass
spectrometer using a gas pressure of 1.25 psi and a voltage of 0.95 kV. The
data was acquired in both positive and negative ionization mode in a single
run. The total delivery time was set at 5min 25 s. To avoid initial spray
instability, the closure delay was set at 20 s. The polarity switched from
positive to negative mode 150 s after contact closure time.

For the analysis of BAs, LPLs, and MGs, the liver homogenates were
mixedwith ISmixture and extractedwith ice-coldmethanol. The ISmixture
consisted of 1 µM of CA-d5, CDCA-d4, DCA-d4, GCA-d4, GCDCA-d9,
GDCA-d4, GUDCA-d4, HDCA-d5, LCA-d4, TCA-d4, TCDCA-d4,
TDCA-d4, TLCA-d4, TUDCA-d4, UDCA-d4, 4 µMof LPC 17:0, LPE 17:1,
and 1 µM of LPG 17:1, MG 17:043. The supernatant was collected and dried
under vacuum (SpeedVac Concentrator, Thermo Fisher Scientific). The
dried samples were re-constituted in 40 µL of mobile phases A and B (1:1)
mixture.Metabolite separation and detection were performed by ultra-high
performance liquid chromatography coupled to high-resolution mass
spectrometry (UHPLC-HRMS) usingVanquishUHPLC-OrbitrapExploris
240 (Thermo Fisher Scientific). Mobile phase A was 10mM ammonium
acetate plus 0.01% acetic acid in water and mobile phase B was 10mM
ammonium acetate plus 0.01% acetic acid in methanol. The chromato-
graphic separation was performed on an ACQUITYUPLC BEH Shield RP
18 column (Waters)with aflow rate of 0.35mL/min. The applied ionization
parameters were capillary voltage −2.5 kV, vaporization and ion transfer
tube temperature set up at 300 °C, sheath gas flow rate 55 arbitrary units
(AU), auxiliary gasflowrate 10 AU, and sweepgasflowrate 0 AU.Thehigh-
resolutionmass spectrometry analysiswasperformed innegativemodewith
a mass range of 300-1200m/z, running under full MS-ddMS2

analysis mode.

For the analysis of fatty acid oxidation and ketometabolism, the
homogenates were mixed with IS and extracted with an ice-cold mixture of
isopropanol: acetonitrile (1:1) and 0.1% acetic acid. The IS consisted of
1.5 µM N-acetylaspartic acid-d3, 60 µM acetoacetic acid-13C2, 5 µM
decanoic acid-d19, 15 µM L-glutamic acid-d5, 2.5 µM glutaryl-L-carnitine-
d3, 3 µM 3-hydroxybutyric acid-d4, 0.5 µM L-kynurenine-d4, 10 µM
L-lactic acid-d3, 7.5 µM L-leucine-d3, 1 µM L-methionine-d3, 1 µM L-
phenylalanine-d5, 1 µMpyroglutamic acid-d5, 0.5 µM serotonin-d4, 10 µM
L-tryptophan-13C11,15N2, 20 µM threonine-13C,d2 and 8 µM L-valine-
d844. The supernatant was collected, evaporated under vacuum (SpeedVac
Concentrator, Thermo Fisher Scientific), and re-constituted in 100 µL of
mobile phase A. The analysis was performed on Vanquish UHPLC-
Orbitrap Q-Exactive Plus (Thermo Fisher Scientific). The mobile system
containedmobile phase A, 0.1% acetic acid in aqueous, andmobile phase B,
0.1% acetic acid in acetonitrile: isopropanol (1:1), under the flow rate of
0.35mL/min. ACQUITYUPLCBEHC8 column (Waters) was used for the
chromatographic separation. The high-resolution mass spectrometry ana-
lysis was performed in both positive and negative ionization mode, with a
mass range of 85–600m/z, running under full MS-ddMS2 analysis mode.
The ionization parameters were as follows: capillary voltage +4.0 and
−2.5 kV, heater and capillary temperature set up at 350 °C, sheath gas flow
rate 45 AU, auxiliary gas flow rate 15 AU and sweep gas flow rate 1 AU.

Xcalibur software 4.4 (ThermoFisher Scientific) was used for data
acquisition and spectrum preview.MS chromatograms of intact lipids were
extracted by LipidXplorer software 1.2.8.145. TraceFinder software 5.1
(ThermoFisher Scientific)was used for the analysis of BAs, LPLs,MGs, fatty
acid oxidation, and ketometabolism.

Respiration assay in isolated liver mitochondria
Oxygen flux was measured in liver homogenates by respirometry (Oxy-
graph-2k; Oroboros Instruments, Innsbruck, Austria). The 500 µg of
homogenate was added to 2mL of respiration buffer (110mM sucrose,
60mMK+ -lactobionate, 0.5mM EGTA, 3mM MgCl2, 20mM taurine,
10mM KH2PO4, 20mM HEPES (pH 7.1), at 37 °C). Oxidative phos-
phorylation was estimated with complex I (pyruvate 5mM, malate 2mM,
glutamate 5mM) and complex II (succinate 10mM) substrates in the
presence ofADP (2.5mM). Leak respirationwas recorded after the addition
of oligomycin (2.5 µM). For maximum uncoupled respiration, the proto-
nophore carbonyl cyanidem-chlorophenyl hydrazone (CCCP) was titrated
in0.5 µMincrementsuntilmaximal stimulationof respiration.Theprotocol
was terminated by assessing non-mitochondrial respiration with the com-
plex I and III inhibitors, rotenone (0.5mM), and antimycin A (2.5 mM),
respectively. Finally, the activity at complex IV was recorded with the
artificial substrate N,N,N’,N’-tetramethyl-p-phenylenediamine dihy-
drochloride (TMPD; 0.5mM) and ascorbic acid (2mM), and inhibitedwith
azide (100mM). Respiration states were corrected for non-mitochondrial
respiration, and complex IV activity was corrected for azide inhibition.

Statistical tests
For transcriptomics, RNA-Seq count data was tested for differential gene
expression between control and MASH mice samples using the DESeq2
method46, including a Benjamini andHochbergmultiple testing correction.
The adjusted p-value cutoff was set to 0.05 for further analysis. For lipi-
domics, statistical difference was assessed using the Wilcoxon two-sample
test with false discovery rate (FDR) correction and considered statistically
significant based on a threshold of 0.05.Missing values were imputed to 1/5
of the minimum sample value.

Datasets used in the study
The present analysis included transcriptome data from 12 studies (six
human and sixmousemodels). The analyzed datasets were either generated
in-house (WD+CCl4 vs. CTRL) or available from literature, spanning a
number of different conditions and interventions.We classified the datasets
based on their respective contrast in MASLD/MASH vs. control, and
MASLD/MASH stage X vs. baseline MASLD/MASH for the human cases,
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and in dietary, chemical, or genetic intervention vs. control for the mouse
cases (Table 1).Weperformed analysis on a total number of 11 comparisons
for human and 15 for mouse models.

GEMs used in the study
In order for our results to be consistent and comparable across different
organisms, we aimed to select twoGEMs that are constructed on a homolog
basis and are sufficiently equivalent in terms of encompassing genes, reac-
tions, andmetabolites. To this end,we selected theHuman1 (version 1.12.0)
and Mouse1 (version 1.3.0) metabolic models47,48. With the aim of making

the two models equivalent, we reassigned certain reactions of the mouse
model to other subsystems, namely: “MAR20010” to “Isolated”,
“MAR20007” to “Purinemetabolism”, “MAR20002” to “Glycosphingolipid
biosynthesis-lacto and neolacto series”, and “MAR20005”,” MAR20006”,
and “MAR20016” to “Transport reactions”. For additional consistency, we
reassigned reaction “MAR09933” to “Acylglycerides metabolism” in both
models. All of the gene identifiers provided in both GEMs and all datasets
were matched using g:profiler49 supplemented by manual curation.

To facilitate readability, we grouped certain pathways together for
presentation in the manuscript figures. These groups were defined as fol-
lows: Beta-oxidation of fatty acids: Beta-oxidation of branched-chain fatty
acids (mitochondrial), Beta-oxidation of di-unsaturated fatty acids (n-6)
(mitochondrial), Beta-oxidation of di-unsaturated fatty acids (n-6) (per-
oxisomal), Beta-oxidation of even-chain fatty acids (mitochondrial), Beta-
oxidation of even-chain fatty acids (peroxisomal), Beta-oxidation of odd-
chain fatty acids (mitochondrial), Beta-oxidation of odd-chain fatty acids
(peroxisomal), Beta-oxidation of phytanic acid (peroxisomal), Beta-
oxidation of poly-unsaturated fatty acids (mitochondrial), Beta-oxidation
of unsaturated fatty acids (n-7) (mitochondrial), Beta-oxidation of unsa-
turated fatty acids (n-7) (peroxisomal), Beta-oxidation of unsaturated fatty
acids (n-9) (mitochondrial), Beta-oxidation of unsaturated fatty acids (n-9)
(peroxisomal). Carnitine shuttle: Carnitine shuttle (cytosolic), Carnitine
shuttle (endoplasmic reticular), Carnitine shuttle (mitochondrial), Carni-
tine shuttle (peroxisomal). Cholesterol biosynthesis: Cholesterol biosynth-
esis 1 (Bloch pathway), Cholesterol biosynthesis 2, Cholesterol biosynthesis
3 (Kandustch-Russell pathway). Fatty acid activation: Fatty acid activation
(cytosolic), Fatty acid activation (endoplasmic reticular). Fatty acid bio-
synthesis: Fatty acidbiosynthesis, Fatty acid biosynthesis (even-chain), Fatty
acid biosynthesis (odd-chain), Fatty acid biosynthesis (unsaturated). Fatty
acid desaturation: Fatty acid desaturation (even-chain), Fatty acid desa-
turation (odd-chain). Fatty acid elongation: Fatty acid elongation (even-
chain), Fatty acid elongation (odd-chain). Glycosphingolipid biosynthesis:
Glycosphingolipid biosynthesis-ganglio series, Glycosphingolipid
biosynthesis-globo series, Glycosphingolipid biosynthesis-lacto and neo-
lacto series. It is important to note that TDMPA calculations and scoring
were performed for each pathway separately without this grouping.

Transcriptomics-driven metabolic pathway analysis
The first step of TDMPA is the translation of relative gene expression ratios
to corresponding relative reaction flux ratios, based on the definition of
gene-protein-reaction (GPR) rules, as provided in the selected GEMs. Even
though absolute gene expression does not directly correlate with reaction
flux for all genes, the assumption that relative changes in gene expression
between two conditions correlate with changes in reaction flux profiles has
been shown to perform well50–52. GPRs are commonly not mapped as one
gene to one reaction, meaning that one gene can be potentially associated
with multiple reactions and several genes can be associated with a single
reaction. In the latter case, genes are mapped with “AND” and “OR” rules
-or a combination thereof- to a single reaction, expressing cases of protein
complexes and isoenzymes, respectively. To perform this translation we
used the scheme initially introduced by Fang et al.51 and later also imple-
mented in the REMI method50. According to this assumption, if a single
gene is associated with ametabolic reaction, then the expression ratio of the
gene will be assigned to the reaction ratio. If multiple genes are associated
with a metabolic reaction with an “AND” rule (meaning all of them are
jointly required tobe expressed for the reaction tooccur), then thegeometric
mean of the gene expression ratios is assigned as the reaction ratio. If
multiple genes are associated with a metabolic reaction with an “OR” rule
(meaning that the expressionof any single one is sufficient for the reaction to
occur), then the arithmeticmean of the gene expression ratios is assigned as
the reaction ratio. If the GPR rule is a combination of the above-mentioned
rules, the rule is deconstructed and the reaction ratio is calculated sequen-
tially using the same mathematical relations. For the cases where the gene
expression ratio was eithermissing or not significant, a value of one (or zero
in the logarithmic space) was used.

Table 1 | List of datasets used in this work.

Contrast Cohort size Reference Organism

MASH F2 vs. MASLD MASH = 153
MASLD = 53

64 Human

MASH F3 vs. MASLD

MASH F3 vs. MASH F0/1

MASH F4 vs. MASLD

MASH F4 vs. MASH F0/1

MASLD vs. CTRL MASLD = 27
MASH = 25
CTRL = 39

65

MASH vs. CTRL (1)

MASLD stage 4 vs. CTRL MASLD = 72
CTRL = 6

66

MASLD stage 5 vs. CTRL

MASLD stage 6 vs. CTRL

MASH vs. CTRL (2) MASH = 16
CTRL = 14

42

HFD 30 vs. CTRL HFD = 5
CTRL = 5

65 Mouse

MCD 8 vs. CTRL MCD = 10
CTRL = 5

HFD+STZ 18 vs. CTRL HFD
+STZ = 5
CTRL = 4

WD vs. CTRL WD = 5
CTRL = 5

APAP vs. CTRL APAP = 44
CTRL = 5

66

CCl4 vs. CTRL (Acute) CCl4 = 41
CTRL = 5

CCl4 vs. CTRL (Chronic) CCl4 = 18
CTRL = 18

TM vs. CTRL TM = 4
CTRL = 3

MASH vs. CTRL (1) MASH = 9
CTRL = 4

68

MASH vs. CTRL (2) MASH = 3
CTRL = 3

67

CYP51 LKO vs. CTRL CYP51 = 3
CTRL = 3

69

GLMP KO vs. CTRL GLMP = 4
CTRL = 4

IKBKG LKO vs. CTRL IKBKG = 3
CTRL = 3

RBPJ LKO vs. CTRL RBPJ = 3
CTRL = 4

WD+CCl4 (MASH) vs. CTRL MASH = 17
CTRL = 9

Present study

Numbers after diet (HFD 30, MCD 8) correspond to number of weeks. MASLD stages 4–6 corre-
spond to NAFLD activity score (NAS).
MASLDmetabolic dysfunction-associated steatotic liver disease,MASHmetabolic dysfunction-
associated steatohepatitis, CTRL control, SHH sonic hedgehog, HFD high-fat diet,MCD methio-
nine- and choline-deficient diet, STZ streptozocin,WD western diet, APAP acetaminophen, CCl4
carbon tetrachloride, TM tunicamycin,KO knockout, LKO liver knockout,CYP51 cytochrome P450
lanosterol 14α-demethylase, GLMP glycosylated lysosomal membrane protein, IKBKG inhibitor of
kappa B kinase gamma, RBPJ recombination signal binding protein for immunoglobulin kappa J
region.
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After calculating the reaction ratios, we then score pathways (or sub-
systems as they are denoted in GEMs) based on the amount of perturbed
reactions they encompass. To start with, we select a cutoff value in order to
define which reactions are considered perturbed and which are not. Reac-
tions are considered perturbed if they satisfy either Ri>1þ cutoff or
Ri<1= 1þ cutoff

� �
, where Ri is the reaction flux ratio of reaction i. In order

to illustrate how this selection affects the results, we performed a sensitivity
analysis on the cutoff selection (Supplementary Fig. S1—WD+CCl4mouse
model). When considering all the reaction changes larger than one percent
we observed changes in almost the entiremetabolic network (129 out of 141
metabolic pathways affected). The number of affected pathways dropped
steeply as the cutoff was increased, namely to 96 and 57, for changes larger
than 50 and 100 percent, respectively. For changes larger than 200 percent
the affectedpathwayswere only 26. Sinceno clear argument canbemade for
the choice of a larger cutoff according to our research question, we decided
to keep it as low as one percent to ensure that we do not exclude any
potentially valuable information.

Finally, the Pathway Reaction Score (PRS) is calculated as the per-
centage of perturbed reactions in the pathway, meaning the number of
reactions that have an absolute computed ratio larger than the defined cutoff
over the total number of reactions in the pathway. For each pathway, the
PRS is calculated as:

PRSj ¼
# of perturbed reactions in pathway j
# of total reactions in pathway j

ð1Þ

We additionally computed p-values for each pathway in order to
evaluate their statistical significance. We used the hypergeometric test,
which is based on the hypergeometric distribution, and describes the
discreet probability of k successes in m random draws without repla-
cement, from a population of total size M that contains K objects with
that attribute. In our case, and for a single pathway i, M is the total
number of reactions in all pathways of the GEM, K is the number of
reactions in pathway i, m is the number of reactions calculated to be
perturbed based on the selected cutoff, and k is the subset of m that
belongs to pathway i. The probability for the over-representation of each
pathway is then calculated as:

p kð Þ ¼

K

k

� �
M � K

m� k

� �

M

m

� � ð2Þ

where ð i
j
Þ is the binomial coefficient.

The computed p-values were subjected to a FDR correction, using the
Benjamini and Hochberg procedure53.

It is usual that within one pathway some reactions are upregulated and
others downregulated in disease conditions. In a number of these cases, the
mean value of the pathway’s reaction fold-changes is close to zero, but the
pathway is still very perturbed. Thus, it is not always straightforward to
define if a pathway is up- or downregulated and to avoid the loss of infor-
mation. To this end, we additionally calculated the normalized Euclidean
distance for eachpathway fromhealthy (control) conditions as ameasure of
pathway perturbation (Supplementary Fig. S2).

In order to evaluate the similarity between datasets, we selected
Cohen’s kappa coefficient as a metric54. Cohen’s kappa is a statistic that is
traditionally used to evaluate inter-rater reliability for categorical scales. For
this, we defined three distinct categories for each reaction flux ratio as
calculated by TDMPA, specifically “increased” (Ri>1), “decreased” (Ri<1),
and “unchanged” (Ri ¼ 1). Using these definitions, we constructed the
confusion matrix for each metabolic pathway of the GEM, using the WD
+CCl4model as rater #1 and all the humandatasets sequentially as rater #2,
and then calculated Cohen’s kappa coefficient accordingly.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Histological characterization of WD+CCl4 mouse model
A vital first step in preclinical MASH studies is the selection of the most
suitable animalmodel in order to address the specific research question.We
decided to use aWDmousemodel supplemented byCCl4 (WD+CCl4, see
Methods) that accurately simulates the histological, immunological, and
transcriptional characteristics of human MASH27. The model showed 50-
fold increase in the lipid accumulation, lobular inflammation, 4-fold
increase in fibrosis, and >90% micro- and macro-vesicular steatosis in the
livers of MASH mice as well as the presence of ballooned hepatocytes
(Fig. 1). Liver transaminases (ALT and AST), and total cholesterol were
significantly elevated in the plasma of the WD+CCl4-induced MASH
model compared to the control group (Fig. 1).

Metabolic pathway alteration signatures in various stages of
human MASLD/MASH progression and various liver damage
mouse models
In order to assess theWD+CCl4mouse model’s metabolic resemblance
to humanMASHand its suitability formetabolic intervention design, we
examined the changes in metabolic pathways that occur in MASH. We
investigated multiple publically available datasets covering various
stages of progression of human MASLD to MASH across the full his-
tological range from normal liver tissue to MASH with severe fibrosis
(Supplementary Fig. S3). To evaluate the changes in each pathway, we
used TDMPA to calculate the changes in enzymatic reactions based on
differential gene expression for all datasets (see Methods). Our results
suggest that different aspects of lipid metabolism are severely altered
throughout the various stages of the disease. To assess the similarity of
the WD+CCl4 mouse model to human MASH, we calculated Cohen’s
kappa coefficient54 for each pathway and human dataset (see Methods).
The WD+CCl4 model exhibits a good agreement with the human
MASH vs. control datasets, especially with the human MASH vs. CTRL
(2) dataset. This dataset corresponds to a fibrosis score of F1 (80% F1,
range F0-F2),matching the fibrosis score of themousemodel. It has been
proposed that Cohen’s kappa values should be interpreted as follows:
values ≤ 0 as indicating no agreement, 0.01-0.20 as slight, 0.21-0.40 as
fair, 0.41- 0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as
almost perfect agreement55. According to this scale, 57% of metabolic
pathways between human MASH and the WD+CCl4 mouse model
exhibit moderate to substantial or better agreement, including most
pathways related to lipid metabolism such as acyl-CoA hydrolysis, fatty
acid biosynthesis and elongation, arachidonic acid, eicosanoid, leuko-
triene, prostaglandin, glycerolipid, phospholipid, and sphingolipid
metabolic pathways. Finally, 25% of the pathways exhibit slight agree-
ment and 18% no agreement between the two datasets.

We additionally compared the WD+CCl4 model to other proposed
mouse models spanning various intervention methods to induce liver
damage (Supplementary Fig. S2). We categorized these models into three
distinct classes of interventions, namely dietary, chemical, and genetic. The
majority of them are in good agreement with each other and present
upregulated pathways of phospholipids, nucleotides, keratan sulfate, and
cholesterol esters. All models exhibit altered fatty acid oxidation, and most
result in altered bile acid biosynthesis, and sphingolipid, leukotriene, and
arachidonic acid metabolism. Cholesterol metabolism and biosynthesis are
perturbed prevalently in the most severe dietary models. Overall, the HFD,
WD, streptozotocin intoxication (STZ), and GLMP knockout mouse
models exhibit the least severe metabolic changes. The model resulting in
the most shifts within the metabolic network is the chronic CCl4 intox-
ication model, highlighting the potency of CCl4 as an acute liver
damage agent.
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TDMPA shows substantial alterations in lipid metabolism in WD
+CCl4 model and close resemblance to human MASH
As the next step in TDMPA, we scoredmetabolic pathways based on the
number of altered metabolic reactions in each of them (see Methods).
The results of TDMPA for the WD+CCl4 mouse model reveal multiple

metabolic pathways that are significantly altered and scored highly
(Fig. 2a). Most of the top-ranked pathways are related to lipid meta-
bolism, especially fatty acids (beta-oxidation, biosynthesis, activation,
desaturation, oxidation, metabolism), bile acids (biosynthesis and
recycling), cholesterol (biosynthesis, metabolism, esterification),
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Fig. 1 | Effect of WD+ CCl4 on mouse liver. A Microscopy of hematoxylin and
eosin (H&E)-stained liver sections showing diffuse macro-vesicular steatosis, lob-
ular inflammation, and the presence of ballooned hepatocytes in the WD+CCl4
group.BHistological scoring of theWD+CCl4 group livers, given asmedian values.
Values in parentheses denote the range of values across allmice.COil RedO staining
comparing neutral lipid content of control and WD+CCl4 group (unpaired t-test;

****p < 0.0001). D Microscopy of Sirius Red-stained liver sections showed
increased fibrosis in WD+CCl4 group (unpaired t-test; **p < 0.005). E Liver
transaminases (ALT and AST), and total cholesterol were significantly increased in
WD+CCl4 group (unpaired t-test; ****p < 0.0001). All box plot error bars represent
standard deviation. WD+CCl4: Western diet supplemented by carbon tetra-
chloride. (WD+CCl4 n = 7, control n = 5).
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phospholipids (biosynthesis and metabolism), TGs (biosynthesis), and
the carnitine shuttle, as well as oxidative phosphorylation. We per-
formed the same analysis for human MASH F1 vs. control (corre-
sponding to dataset MASH vs. CTRL (2) in Table 1) and MASH
progression (MASH F3 vs. MASLD) datasets (Fig. 2b, c, respectively). It
is clear that the mouse model matches the human MASH vs. control
results very well, but is less similar to MASH progression results. This
becomes even more apparent when comparing the overlap of sig-
nificantly altered pathways between the three datasets (Fig. 2d). We can
discern a large overlap between altered metabolic pathways in mouse
and humanMASH, but the resemblance of alteredmetabolic pathways is
less in human MASH progression compared to a mouse model. Out of

the identified top-scored pathways, 54% of overall changes in metabolic
pathways are similar in the human MASH and WD+CCl4 mouse
model. This is reduced to 11% when looking into MASLD to MASH
progression. Specifically in terms of metabolic pathways, only five are
commonly predicted as perturbed across all three datasets, namely fatty
acid desaturation, and acylglycerides, estrogen, purine, and pyrimidine
metabolism pathways. Between the mouse model and humanMASH vs.
control, 43 pathways are common, while 18 and 11 are only predicted in
the mouse and human MASH vs. control datasets, respectively. The 43
common pathways include acyl-CoA hydrolysis, acylglycerides meta-
bolism, bile acid biosynthesis and recycling, cholesterol biosynthesis,
metabolism, and esterification, glycerolipid, glycerophospholipid, and

1 Formation and hydrolysis of cholesterol esters
2 Carnitine shuttle
3 Fatty acid activation
4 Beta oxidation of fatty acids
5 Fatty acid biosynthesis
6 Fatty acid desaturation
7 Oxidative phosphorylation
8 Cholesterol biosynthesis
9 Acyl-CoA hydrolysis
10 Glycerolipid metabolism
11 Acylglycerides metabolism
12 Leukotriene metabolism
13 Omega-6 fatty acid metabolism
14 Glycolysis / Gluconeogenesis
15 Keratan sulfate degradation
16 Cholesterol metabolism
17 Bile acid recycling
18 Fatty acid elongation
19 Pyruvate metabolism
20 Nucleotide metabolism
21 Histidine metabolism
22 Glycosphingolipid metabolism
23 Purine metabolism
24 Chondroitin sulfate degradation
25 Pyrimidine metabolism
26 Alanine, aspartate and glutamate metabolism
27 Chondroitin / heparan sulfate biosynthesis
28 TCA cycle and glyoxylate/dicarboxylate metabolism
29 Fructose and mannose metabolism
30 Propanoate metabolism
31 Vitamin E metabolism
32 Fatty acid oxidation
33 Glycerophospholipid metabolism
34 Glycine, serine and threonine metabolism
35 Inositol phosphate metabolism
36 Retinol metabolism
37 Folate metabolism
38 Estrogen metabolism
39 Sphingolipid metabolism
40 Bile acid biosynthesis
41 Xenobiotics metabolism
42 Ether lipid metabolism
43 Arginine and proline metabolism
44 Glutathione metabolism
45 Metabolism of other amino acids
46 Arachidonic acid metabolism
47 Galactose metabolism
48 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
49 Keratan sulfate biosynthesis
50 Glycosphingolipid biosynthesis
51 Cysteine and methionine metabolism
52 Heparan sulfate degradation
53 Nicotinate and nicotinamide metabolism
54 Valine, leucine, and isoleucine metabolism
55 Miscellaneous
56 Phenylalanine, tyrosine and tryptophan biosynthesis
57 Blood group biosynthesis
58 Transport reactions

(a)

(b)

(c)

(p < 0.05)

(d)

Fig. 2 | TDMPA results for the compared cases. aWD+CCl4 mouse model vs.
Control, b human MASH vs. Control, c human MASH F3 vs. MASLD (MASH
progression). d Corresponding Venn diagram of the statistically significant
(FDR < 0.05) altered pathways across the three datasets. Number labels on the left

panels (a, b, c) correspond to the pathways as indicated in the table on the right.WD
+CCl4: Western diet supplemented by carbon tetrachloride, MASLD: Metabolic
dysfunction-associated steatotic liver, MASH: Metabolic dysfunction-associated
steatohepatitis.
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leukotriene metabolism, glycolysis/gluconeogenesis, pyruvate metabo-
lism, oxidative phosphorylation, estrogen metabolism, folate metabo-
lism, purine, and pyrimidine metabolism, inositol phosphate
metabolism, vitamin E metabolism, retinol metabolism, keratin sulfate
degradation, the largest part of fatty acid beta-oxidation, biosynthesis,
activation, and desaturation, and multiple aminoacid metabolic path-
ways. The mouse-only pathways include chondroitin sulfate degrada-
tion, tricarboxylic acid cycle and glyoxylate/dicarboxylate metabolism,
sphingolipid metabolism, and parts of the carnitine shuttle, fatty acid
biosynthesis, elongation, oxidation, and beta-oxidation. Similarly, the
human MASH vs. control-only pathways include nicotinate and nico-
tinamide metabolism, glycosylphosphatidylinositol (GPI)-anchor bio-
synthesis, ether lipid metabolism, heparan sulfate degradation, and
various aminoacid metabolic pathways. The MASH progression dataset

results in three metabolic pathways not predicted in neither mouse nor
human MASH vs. control, namely glycosphingolipid biosynthesis-lacto
and neolacto series, blood group biosynthesis, and transport reactions.

Having identified themost relevant pathways, we then investigated the
changes in the enzymatic reaction level (Fig. 3). Every participating reaction
in de novo acylglyceride biosynthesis, especially TG biosynthesis, was
upregulated. TGdegradationwas also increased, especially in chylomicrons.
Similarly, most reactions in glycerophospholipid biosynthesis were upre-
gulated. In addition, cholesterol biosynthesis as well as the formation and
hydrolysis of cholesterol esters were severely perturbed. These results are in
agreement with previous studies reporting increased de novo lipogenesis
and accumulation of TGs in MASH56, and severely impacted cholesterol
homeostasis57,58. Another part of the metabolic network that showed pro-
minent changes in MASH was mitochondrial metabolism, specifically the
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carnitine shuttle, fatty acid beta-oxidation, and oxidative phosphorylation.
We observed that the carnitine shuttle shows increased activity inMASH in
both binding and transporting fatty acids to the mitochondrial matrix.
Subsequently, fatty acid beta-oxidation is quite affected. Finally, oxidative
phosphorylation is disrupted in both the electron transport chain and ATP
synthase parts. This is in agreement with multiple reports of mitochondrial
dysregulation and oxidative stress playing a substantial part in MASH59,60.

Compromised mitochondrial functions and bioenergetics in
MASH lead to disruption of fatty acid beta-oxidation and
oxidative stress
As we observed substantial alterations related to mitochondrial functions,
we performed two functional assays focusing on mitochondrial bioener-
getics and fatty acid oxidation in order to confirm our findings. Mito-
chondria isolated from the livers ofMASHmice showed reduced complex I
and II-driven respiration as well as maximum respiration. Complex IV was
the most affected in MASH livers as shown by its independent activity
measurement using the artificial substrates (TMPD+ascorbate) (Fig. 4a).
Since pyruvate is the terminal glycolysis product that enters mitochondria
via the mitochondrial pyruvate complex (MPC), we examined whether the
expression of MPC was affected in the MASH mouse liver. In the immu-
noblotting assessment, both subunits of MPC were downregulated in
MASH mitochondria, indicating that not only the activity of the electron
transport chain (ETC) complexes was decreased significantly, but also
pyruvate entry intomitochondriawas lowered inMASH livers compared to
control (Fig. 4b).

We additionally investigated whether fatty acid oxidation was affected
in the MASH mouse livers. Respirometry provided a suitable tool to mea-
sure fatty acid oxidation since completeoxidationof a fatty acid ends inATP
generation and hence oxygen consumption via the ETC. Palmitoyl-
carnitine was used as a substrate whereas malate served as a counter ion. As
expected, mitochondria isolated from the liver of MASH mice had lower
fatty acid oxidation compared to control mitochondria (Fig. 4c). Fatty acid
uptake into the mitochondria occurs via the carnitine shuttle. Carnitine
palmitoyltransferase (CPT)-1 in the outer mitochondrial membrane binds
carnitine to the fatty acids to enable entry into the intermembrane space.
Subsequently, CPT-2, which is located in the inner mitochondrial mem-
brane, removes carnitine and leads the fatty acid to its oxidation in the
mitochondrial matrix. Therefore, we assessed whether the expression of
CPTs was affected in the MASH livers. Although the expression of CPT1α
remained unchanged, CPT2 expression was reduced significantly in the
MASH livers (Fig. 4d). It is interesting to note that while we confirmed a
significant reduction in fatty acid beta-oxidation in themitochondrial assay,
TDMPAhadpredicted an increase of the pathway activity. This is due to the
fact that TDMPA is a direct mapping of transcription-level changes and it
does not always correspond to actual changes on the enzymatic and flux
levels. However, the goal of TDMPA is to provide a first estimation of those
changes and, most importantly, to direct our focus to the most affected
metabolic pathways. In this respect, TDMPA correctly predicted major
disruption in themitochondrial metabolism duringMASH. The occasional
mismatch of the direction of change for each reaction can be attributed to
cellular dynamics andmolecular organization that cannotbe captured solely
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Fig. 4 | Effect ofWD+ CCl4 on (I)mitochondrial bioenergetics and (II) fatty acid
oxidation. a High-resolution respirometry of oxygen consumption (O2 flux) in
mitochondria in liver homogenates of control vs. WD+CCl4 group. b Immunoblot
showing expression of mitochondrial pyruvate carrier MPC1 and MPC2 in liver
homogenates. Vinculin served as the loading control. Both MPC1 and MPC2 were
lower in WD+CCl4 vs. the control group. (unpaired t-test; *p < 0.05; **p < 0.005;
***p < 0.001). c fatty acid oxidation was measured by high-resolution respirometry

of oxygen consumption (O2 flux) in mitochondria in liver homogenates of the
control vs. WD+CCl4 group. d Immunoblot showing expression of carnitine pal-
mitoyltransferase CPT1α and CPT2 in liver homogenates. Vinculin served as the
loading control. CPT-2 was lower in WD+CCl4 vs. the control group. (unpaired t-
test; *p < 0.05). All box plot error bars represent standard deviation. WD+CCl4:
Western diet supplemented by carbon tetrachloride. (a: WD+CCl4 n = 7, control
n = 5, b, d: WD+CCl4 n = 5, control n = 5, c: WD+CCl4 n = 6, control n = 4).
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by the transcriptome and thus needs to be accompanied by assessing
enzymatic activities and functional assays.

Metabolomics and lipidomics confirm observed metabolic
alterations in MASH
We next evaluated the accuracy of TDMPA results to guide our investiga-
tion of the metabolic alteration occurring in MASH. We performed meta-
bolic profiling within the targeted pathways and identified and quantified
over 500 metabolites in mouse liver tissues (see Methods). In total, 252
metabolites were significantly different in the liver between control and
MASH (Supplementary Data 1). Specifically, a large number of lipids were
significantly different between the control and MASH groups (Fig. 5a, b).
Acylcarnitines were decreased significantly in the MASH group compared
to control. This is in agreement with the above-mentioned alterations in the
mitochondrial beta-oxidation pathway and reduction in mitochondrial
CPT2 expression. Conversely, a large number of TGs, diacylglycerides
(DGs), monoacylglycerides (MGs), phosphatidylethanolamines (PEs), and
cholesterol esters (CEs) were increased inMASH.Most bile acids (BAs) and
lysophospholipids (LPLs) were also increased significantly in MASH.
However, phosphatidylcholines (PCs) exhibited a mixed behavior. The
most changes were observed in TGs, LPLs, phospholipids (PLs) (especially
PEs), and acylcarnitines (Fig. 5b, c). Furthermore,we observed alterations of
conjugated bile acids including taurochenodeoxycholic acid (TCDCA),
taurodeoxycholic acid-sulfate (TDCA-S), taurocholic acid 3-sulfate (TCA-
S), taurodeoxycholic acid (TDCA), and tauro-beta-muricholic acid
(TMCA). The majority of the conjugated bile acids were significantly
increased in MASH, which supports the TDMPA prediction of perturbed
bile acid pathways (Fig. 2a).

In accordance with the changes of significant lipids in MASH, we
further assessed the fatty acyl (FA) chain length composition inhepaticTGs,
DGs, MGs, CEs, PLs, and LPLs (Fig. 6). The majority of altered esterified
FAs in MASH were saturated and monounsaturated fatty acids such as FA
18:1, FA 16:0, and FA 16:1 (Fig. 6a). Specifically, oleic acid (FA 18:1) was
increased in all detected lipid species. FA20:3, FA20:4, FA22:4, andFA22:5
within PLs were also increased significantly (Fig. 6b). These fatty acids are
produced via desaturation and elongation of linoleic acid. These findings
support the prediction of upregulated FA desaturation and FA elongation
using the TDMPA approach.

Discussion
MASLD is one of the most prevalent liver diseases worldwide. Despite
several developments in animalmodels, an animalmodel that resembles the
relevant pathophysiology and metabolism needs to be established to better
identify targets for treatment and drug testing. Several mouse models of
MASHand their histological characterizations have been studied.However,
the extent to which their metabolic alterations resemble those in humans
remains poorly described. Further evaluation is needed to assess the
resemblance of metabolic alterations in animal models to human
conditions.

Currently, developed mouse models include dietary, chemically,
and genetically induced MASLD models. HFD/WD-induced models
exhibit the observed metabolic changes across the spectrum of MASLD
and MASH but might require many weeks of feeding to achieve the
desired histopathology22. Chemical intoxication leads to fibrosis much
faster; however, those models typically do not result in obesity, steatosis,
and insulin resistance24,25. Thus, these models are a good way to study

Fig. 5 | Metabolite changes in MASH vs. healthy mouse liver tissue. a PCA plot, b volcano plot, c heatmap of the most changed lipids. MASH metabolic dysfunction-
associated steatohepatitis, PCA principal component analysis. (MASH n = 17, control n = 9).
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physical features of liver damage and fibrosis, but potentially not very
helpful to study the disease onset. A combination of WD and hepato-
toxins to induce fibrosis provides a good alternative for faster disease
development while preserving the phenotype27. We hypothesized that
this approach could lead to similar metabolic changes to humanMASH,
thus we used the already-establishedmousemodel to test our hypothesis.
In order to evaluate the resemblance of this model to human MASH
regarding metabolic alterations, we developed TDMPA using genome-

scale metabolic models and transcriptomics data and further confirmed
our results using functional assays, lipidomics, and metabolomics ana-
lysis. Using TDMPA, we were able to map gene expression changes to
metabolic reaction rate changes, and estimate the changes across the
metabolic pathways. By evaluating the highest-scoring pathways, we
defined the metabolic space where most changes occur in disease
development and progression, obtaining valuable insights into the
metabolic fingerprint of MASH.

TG DG & MG

PL LPL

(a)

(b)

Fig. 6 | Fatty acyl chain lengths of significantly altered lipids inMASH vs. healthy
mouse liver tissue. a Distribution per the direction of change and lipid class, b Box
plots of log2-fold-changes per lipid class. The solid line denotes the median of the
distribution and the upper and lower hinges correspond to the first and third

quartiles, respectively (Tukey representation). MASH metabolic dysfunction-
associated steatohepatitis, TG triacylglyceride, DG diacylglyceride, MG mono-
acylgyceride, PL phospholipid, LPL lysophospholipid, CE cholesterol ester. (MASH
n = 17, control n = 9).
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An essential aspect ofmetabolic pathway analysis is the ability to attain
a certain level of granularity in the interpretationof the results,which isoften
lacking in gene expression analyses. We calculated the changes per meta-
bolic reaction based on gene associations and then scored the metabolic
pathways accordingly. TDMPA for theWD+CCl4-inducedMASHmouse
model revealed that many aspects of lipid metabolism are severely affected,
which can be grouped into roughly ten pathway families for further
investigation. These include bile acid biosynthesis and recycling, fatty acid
beta-oxidation, biosynthesis, and metabolism, cholesterol biosynthesis,
metabolism, and esterification, leukotriene and arachidonic acid metabo-
lism, carnitine shuttle, oxidative phosphorylation, phospholipid biosynth-
esis, sphingolipid biosynthesis, and themetabolism ofmultiple amino acids.
We performed the same analysis for humanMASHvs. control (Fig. 2b) and
MASHprogression (MASHF3 vs.MASLD) datasets (Fig. 2c).We observed
that the mouse model resembles the human MASH results exceptionally
well when compared to control (Fig. 2a vs. b), but the resemblance was less
pronounced when compared to humanMASH progression results (Fig. 2a
vs. c).We candiscern a large overlap between themouse andhumanMASH
vs. control pathways, but the humanMASHprogression pathways are quite
different from both other cases. It is very important to define well the
purpose of using animal models in investigating MASH development or
progression. It is worth mentioning that the focus of this study was on
metabolic alterations that resemble MASH in humans.

Since we observed multiple changes in mitochondrial function, we
performed two assays to evaluate the prediction. We confirmed that
mitochondrial respiration and oxidation processes are disturbed in MASH
mouse liver. These findings support previous hypotheses thatmitochondria
are heavily involved in the pathogenesis of MASLD, and could be a key
player in its progression and regression61,62. It is important to note that
TDMPA predictions in terms of the direction of changes might not always
reflect actual changes in the enzymatic and flux levels, since TDMPA is a
direct mapping of transcription-level changes. Nevertheless, TDMPA’s
value lies in directing our focus to themost affectedmetabolic pathways and
should be accompanied by enzymatic activity assessment and functional
assays. Thus, TDMPA findings were further confirmed by lipidomics and
metabolomics of the liver. More than 250 metabolites related to enzymatic
reactions within the identified pathway families were significantly different
in theMASH liver compared to the control. TGswere shown tobe especially
increased in MASH, thus further confirming the predicted increase of de
novo acylglyceride biosynthesis. The increase of primary bile acids and
conjugated bile acids has been reported in a previous study of MASH63.
Further assessment of the FA chain length composition in hepatic TG,DGs,
MGs, CEs, PLs, and LPLs showed an increase in saturated and mono-
unsaturated fatty acids such as FA 18:1, FA 16:0, and FA 16:1. Specifically,
oleic acid (FA 18:1) was increased in all detected lipid species.

These results taken together shed light on metabolic pathways that
are commonly changed in human and selected mouse models. Our
comprehensive assessment provides additional evidence that WD
+CCl4-induced MASH is an appropriate mouse model for the study of
humanMASH pathophysiology and metabolism, confirming metabolic
and functional resemblance. While TDMPA is limited by GEM anno-
tation and exclusion of several metabolic processes such as signaling, it
demonstratively offers an important level of granularity for the study of
metabolic pathways in metabolic disorders and facilitates the direct
mapping of changes on the gene expression level to metabolic reactions.
Additionally, it is a valuable tool for defining metabolic space and better
experimental design for lipidomics and metabolomics approaches in
both animal models and humans. Finally, TDMPA can be used for the
consistent comparison and evaluation of preclinical models, especially
for targeting specific enzymes/ metabolic pathways. Accurate preclinical
models and suitable methodologies to study them will enable and
facilitate drug discovery and testing, identification of risk factors,
development of better treatment strategies such as drug combination,
and ultimately reduce the global burden of liver disease.

Data availability
RNA-seq data files from the present study have been deposited into the
Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo/) with
accession number GSE230639. Other datasets used in the study can be
found in their respective original publications as listed in Table 142,64–69. The
list of 252 statistically significant (FDR < 0.05) lipids andmetabolites can be
found in Supplementary Data 1. Source data for all figures/graphs are
available in Figshare (https://doi.org/10.6084/m9.figshare.25134470.v1). All
other data is available upon reasonable request from the corresponding
author.

Code availability
All in silico analyseswere performed inR Statistical Software (v4.0.2; RCore
Team 2020) using in-house codes. The following packages were used for
visualization: “ggplot2”, “pheatmap”, “factoextra”, and “ggrepel”, and
package “psych” was used to calculate Cohen’s kappa coefficient. The
relevant R scripts are available upon reasonable request from the corre-
sponding author.
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