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1 Preface

1.1 Abstract

Beisbart, Betz, and Brun (2021) have introduced a formal model of reflective equilibrium based
on the theory of dialectical structures Betz (2013), which they use as a methodological tool to
understand the method of reflective equilibrium better. This report summarizes the findings of
assessing the model thoroughly by numerical investigation. We simulate RE processes for a
broad spectrum of model parameters and initial conditions and use four different model variants
(including the original model). We analyze the dependence of simulation results on different
parameters and assess the models’ consistency conduciveness and ability to reach global optima
and full RE states. The results show that the models’ behaviour depends crucially on the
specifics of the simulation setup (e.g., the sentence pool size and α weights). We can, therefore,
not draw any general conclusions about the overall performance of the model variants. Rather,
the specifics of the context in which an RE model is used must be considered to choose a
specific model. Finally, we identify some critical knowledge gaps we cannot close with this
report that call for further research into RE modelling.

1.2 Content

C
T

In Chapter 2, we introduce the formal model of reflective equilibrium of Beisbart, Betz, and
Brun (2021) together with three variations of the original model that have been included
in this report. We motivate the metrics for model validations that guide our assessment.
Finally, we describe the ensemble of RE simulations that has been generated by the computer
implementation of the formal model of RE.

õ ¡
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In Chapter 3, we present general results about the ensemble of RE simulation that form the
basis of this report. They help to understand the model better, and they ease the interpretation
of aalient results, subsequently.

GO FP

In Chapter 4, we provide results concerning the overlap of two outputs produced by the model:
global optima and fixed points. They represent the static aspect of equilibrium states and the
dynamic aspect of equilibration processes in RE, respectively.

ð(C,T )

In Chapter 5, we present results concerning the attainment of full RE states which meet the
highest standards for RE outputs. Full RE states represent outputs that can be understood to
be justified by RE.

p E ¬p

In Chapter 6, we analyse different aspects of consistency pertaining to the outputs of the formal
model. Commonly, consistency is considered to be a necessary requirement for coherence.

In Chapter 7, we display outcomes regarding maximal values of measures of RE desiderata
that guide the selection of states. This part of the analysis aims to foster understanding about
the trade-offs in the formal model of RE.

� k
In Chapter 8, we summarize the main outcomes of the report and provide an outlook to
promising lines of future research.

Appendices
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αA
=
αF

In Appendix A , we prove analytic results about linear model variants. These results explain
the salient behaviour of linear model variants that occurs throughout the report.

{s} = {s}
In Appendix B, we analyse data with respect to the attainment of “trivial” outcomes, i.e. states
that consist of a single commitment paired with a singleton theory.

§ q
In Appendix C, we discuss alternative systematicity measures by analytical means. In view of
shortcomings of the original systematicity measure, we evaluate the newly proposed measures
in view of various desiderata for such measures.

1.3 Reproducibility

All findings and the underlying data can be reproduced by using the Python implementation
of the model. The data that the model produced can be found here. For each chapter you will
find here a Jupyter notebook whose execution produces all analysis results. For more specific
instructions of how to reproduce all findings, please refer to the github repo of this report.

1.4 Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

Figure 1.1: CC BY 4.0
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2 Introduction

Beisbart, Betz, and Brun (2021) have introduced a formal model of reflective equilibrium based
on the theory of dialectical structures (Betz 2010, 2013), which they use as a methodological
tool to better understand the method of reflective equilibrium and to assess its potential to
yield justified epistemic states. Their discussion of the model is mainly based on an illustrative
example. An assessment of how the model behaves under a broader spectrum of circumstances
went beyond the scope of their work.

This report summarizes findings of assessing the RE model more thoroughly by numerical
investigation. We simulated RE processes for a broad spectrum of model parameters, initial
conditions and with different model variants. We compare simulation outcomes of three model
variants to the ones of the original model and analyze the dependence of simulation results on
different parameters.1

2.1 Modelling Reflective Equilibration

Reflective equilibrium is commonly understood as a method of justification, in which an
epistemic subject iteratively adjusts their epistemic state in a process of equilibration until
a state of reflective equilibrium is reached. In this final state, the agent’s belief system is
supposed to be justified to the extent that it satifies various pragmatic-epistemic objectives,
e.g., (internal) coherence.

Beisbart, Betz, and Brun (2021) model this process of reflective equilibration and the underlying
axiology of equilibrium states in the following way.2

The agent’s epistemic state is modelled as a tuple (C, T ), which comprises their accepted
commitments C and a theory T . Both are represented by sets of sentences from a finite pool of
sentences S, which is closed under negation.

The equilibration process is modelled as a mutual adjustment of the theory and the agent’s
commitments to improve the epistemic state as measured by an achievement function Z (see
Figure Figure 2.1). The agent starts with a set of initial commitments C0. Then, a theory T0

1The results of Beisbart, Betz, and Brun (2021) are based on a Mathematica implementation of the model (see
https://github.com/debatelab/remoma). Here, we rely on a reimplementation in Python (rethon), which
can reproduce the results of the original implementation (see this notebook).

2For a thorough and complete description of the formal RE model, see Beisbart, Betz, and Brun (2021). The
present section is based on condensed material from Freivogel (2023).
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is chosen that systematizes C0. This initial state (C0, T0) is then adjusted by searching for a
new set of commitments that performs better in terms of the overall achievement Z. This
process of adjusting the current epistemic state by choosing a new theory (or new commitments,
respectively) goes on until no further improvement is gained any more.

Figure 2.1: Illustrative diagram of the formal model. The epistemic state, which consists of a
set of commitments and a theory, is subject to operationalized desiderata (F , S and
A) for RE states (bold arrows). Rules for alternating adjustments of commitments
and theory specify a process of equilibration that sets out from initial commitments.
Taken from Freivogel (2023) (CC BY).

The achievement function Z models the underlying axiology and is based on the three different
desiderata faithfulness (F ), systematicity (S) and account (A). Their role is illustrated by bold
arrows in Figure Figure 2.1.3

The desideratum of faithfulness demands that current commitments should not deviate too
much from the initial commitments C0. There are two motivations for this constraint (Beisbart,
Betz, and Brun 2021, 447). A resemblance of the current commitments to C0 contributes
to the justification of the resulting state to the extent that initial commitments have some
independent credibility. Additionally, the sentences in C0 represent a specification of the topic

3For formal details of all measures, see (Beisbart, Betz, and Brun 2021, 464–66).
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under consideration. Deviating too much from C0 courts the danger of changing the topic.
Faithfulness F (C | C0) is operationalized in the model by measuring the distance of the current
commitments to the initial commitments.4

The role of the theory T is to systematize the commitments C. Beisbart, Betz, and Brun (2021)
suggest to explicate this idea by asking whether the theory implies the commitments. The
account A(C, T ) measures how well the commitments C fit to what is implied by the theory
T . More specifically, A(C, T ) is based on measuring the distance between C and the set of T ’s
implications.

To that end, we need to know how the sentences in S are inferentially connected. The inferential
relationships are modelled by dialectical structures based on the theory of dialectical structures
(Betz 2010, 2013). A dialectical structure τ is a set of deductively valid arguments A and their
“inferential” relationships to each other. For instance, an argument with two premises si, sj

(∈ S) and a conclusion sk represents the inferential relationship of sk being implied by the
conjunction of si and sj .5 Each process of reflective equilibration takes place on the background
of one dialectical structure that stays fixed during the process.

The final desideratum demands that a theory does not only perform well in systematizing the
commitments C but is generally able to systematize sentences in S (independent of whether they
belong to the agent’s epistemic state). Systematicity S(T ) measures this general inferential
potential by considering the amount of T ’s implications in relation to the size of the sentence
pool S.

All three desiderata can “pull” in different directions. The resolution of such trade-offs is
modelled by using a convex combination of the three measures as a one-dimensional combined
measure Z for the overall epistemic quality of the agent’s epistemic state:

Z(C, T | C0) = αA · A(C, T ) + αS · S(T ) + αF · F (C | C0),

The weights αA, αS and αF are real-valued numbers between 0 and 1 that sum up to 1. Different
suggestions for balancing the desiderata are represented by choosing different α-weights in the
achievement function Z.

The achievement function assigns to every epistemic state (C, T ) an epistemic value. Epistemic
states that maximize this value are called global optima. The evaluation of epistemic states is
relative to what we can call an epistemic situation of an agent, i.e., a dialectical structure τ ,
a set of initial commitments C0, and a configuration of weights (αA, αS , αF ). The epistemic
situation captures the subject matter of inquiry, its background, and decisions to handle
trade-offs between epistemic desiderata.

4The used distance is a weighted Hamming distance. For details, see Beisbart, Betz, and Brun (2021), 465.
5The arguments of a dialectical structure τ need not be formally valid, but can include “arguments that are

valid given the relevant background theories” (Beisbart, Betz, and Brun 2021, 460). Additionally, τ does not
need to codify all inferential relationships between sentences in S and can, in this way, model some form of
bounded rationality.
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2.2 Model Variations

In this report, we compare the performance of four model variants that result from a combination
of two independent alterations of the original model from Beisbart, Betz, and Brun (2021) (see
Table 2.1). First, we will vary the general shape of the functions A, S and F . In the original
model, these functions have a quadratic form, which will be contrasted with a linear form.
Second, we will compare the semi-global optimization during equilibrations steps, which is used
in Beisbart, Betz, and Brun (2021), with a locally optimizing model variant.

Quadratic shape Linear shape
Global

optimization
QuadraticGlobalRE (in short,
QGRE)

LinearGlobalRE (in short, LGRE)

Local
optimization

QuadraticLocalRE (in short,
QLRE)

LinearLocalRE (in short, LLRE)

Table 2.1: Model variations

2.2.1 Quadratic and Linear Measures

In Beisbart, Betz, and Brun (2021), the functions A, F and S have the following shape:

G(x) = 1 − x2

However, the quadratic term x2 is not motivated. The linear models LGRE and LLRE will be
based on G(x) = 1 − x to examine the repercussions of such a variation.

2.2.2 Semi-globally and Locally Optimizing Equilibration Processes

The mutual adjustment of commitments and theories involves two types of revisions. The agent
will revise their current commitments Ci and their current theory Ti in an alternating fashion.
More specifically, when adjusting their commitments, the agent will search for new commitments
Ci+1 such that the resulting state (Ci+1, Ti) performs better w.r.t. Z. Similarly, when adjusting
their theory, the agent will search for a theory Ti+1 such that Z(Ci, Ti+1 | C0) > Z(Ci, Ti | C0).

The equilibration process in Beisbart, Betz, and Brun (2021) is a semi-global optimization in
the following way: When searching for new commitments Ci+1 that improve Z, the agent can
choose any set of commitments. Similarly, when searching for a new theory Ti+1, the agents
can choose any theory. This search strategy is computationally costly as the search space grows
exponentially with the size of the sentence pool. For the same reason, it is also an unrealistic
assumption about real epistemic subjects.

12



To solve this problem and incorporate some form of bounded rationality into the model, we can
constrain the search space for adopting new commitments and theories. Instead of considering
all commitments and theories, a locally optimizing equilibration process confines the search
space to a neighbourhood of the current state.

The definition of this neighbourhood is based on an edit distance, which measures the number
of changes needed to transform one set of sentences into another. Suppose the sentence pool
S comprises three sentences and their negations—that is, S = {s1, s3, s3, ¬s1, ¬s2, ¬s3}. Let
us now consider two different sets of commitments: C1 = {s1, ¬s2} and C2 = {s1, s2, s3}.
Suppose further that an agent adopts C1 as their commitments. In other words, they accept
s1, refuse s2 and are indifferent towards s3. Consequently, a set of commitments can be
specified by describing the doxastic attitude (acceptance, refusal and indifference) towards each
sentence of half the sentence pool (s1, s2 and s3 in our example). The edit distance we use is
defined by asking how many changes of doxastic attitudes are needed to transform one set of
commitments into another. Consequently, the edit distance between C1 and C2 is 2 since we
would have to change the attitude for s2 from refusal to acceptance and for s3 from indifference
to acceptance.

We can now define the neighbourhood of depth d (in short, the d-neighbourhood) of a set of
sentences Si as the set of all sentence sets that have at most an edit distance of d to Si.6

The local model variants QLRE and LLRE restrict the commitments and theory candidates during
adjustment steps to a neighbourhood of depth d = 1.

To illustrate the difference between global, semi-global and local optimization, think of epistemic
states (C, T ) as cells on an appropriately sized, possibly non-square, chess board.7 The
unbounded, globally optimizing agent can overview the entire board at once (Figure 2.2), while
a semi-globally optimizing agent can evaluate only a single row or column per adjustment step
(Figure 2.3). Finally, only candidates from a small neighbourhood of the current position are
available to the locally optimizing agent only during an adjustment step (Figure Figure 2.4).

2.3 Metrics for Model Validations

At the outset, a plethora of metrics could be used to examine the performance of the formal
model. Let us motivate a small selection of desiderata for model validation, which we will use
in the following chapters.

6For a sentence pool size of 2n, the number of positions in the neighbourhood of a position is
∑d

k=0

(
n
k

)
· 2k,

where d denotes the neighbourhood depth. For d = 1, the number of positions in the neighbourhood grows
linearly with the number of sentences. More specifically, for d = 1, the size of the neighbourhood is 2n + 1.

7Note that the two-dimensional representation of the epistemic states in the subsequent figures is purely
illustrative. There is no inherent linear order among positions, which can be understood as points in an
n-dimensional discrete space. Similarly, the indices in the figures are not supposed to correspond to the order
of commitments and theories in the evolution of the epistemic state.
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Figure 2.2: Global optimization: All epistemic states are available.

Figure 2.3: Semi-global optimization: All sets of commitments and all theories are available in
an alternating fashion while the other component is held fixed.
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Figure 2.4: Local optimization (alternating): Available commitments(row)/theories (column)
are restricted to a neighbourhood of the current state in an alternating fashion
while the other component is held fixed.

The process of reflective equilibration reaches an endpoint, a so-called fixed point, if the agent
arrives at an epistemic state that cannot be further improved (in terms of the achievement
function) by revising their commitments or their theory, respectively (Beisbart, Betz, and Brun
2021, 450). However, such a fixed point is not necessarily a global optimum. In other words,
other epistemic states might perform better w.r.t. Z.

This possible divergence of fixed points and global optima applies to locally optimizing models
(LLRE and QLRE) and the semi-globally optimizing models (LGRE and QGRE). The former can get
stuck in local optima since they are confined to a restricted search area for the improvement
of epistemic states. However, the semi-globally optimizing models can also get stuck in
local optima since they do not adjust their commitments and theories simultaneously but
alternately. Consequently, we must distinguish between the axiology of the RE (as defined
by the achievement function) as a static aspect of RE and the equilibration process as the
procedural aspect of RE.8

Accordingly, several questions concerning the relationship between fixed points and global
optima are relevant to the performance assessment of the model variants. In Chapter 4, we
investigate whether fixed points are global optima and, conversely, whether global optima are
reachable by equilibration processes.

The reached achievement of fixed points and global optima is not the only evaluative perspective
on epistemic states. In other words, there are other aspects of evaluating reflective equilibria
besides the desiderata of account, systemticity and faithfulness (Beisbart, Betz, and Brun 2021,
448–49).

8The fact that the model allows distinguishing static and dynamic aspects makes the model a fruitful foil to
discuss the broader epistemological questions surrounding the method of reflective equilibrium (Beisbart,
Betz, and Brun 2021, 457–58).
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The most ambitious requirement demands that a theory accounts fully and exclusively for
the commitments of an epistemic state. Global optima and globally optimal fixed points
that additionally satisfy this criterion are called full RE states. In Chapter 5, we investigate
whether and under which circumstances fixed points and global optima are full RE states.
We will also analyze whether theories of global optima fully and exclusively account for their
commitments.

Weaker requirements demand that fixed points or, at least, fixed point commitments are
dialectically consistent—that is, consistent with respect to all inferential relationships encoded
in the given dialectical structure τ . Consistency is commonly seen as a necessary condition of
coherence. Achieving consistency is, therefore, of utmost importance for equilibration processes.
In Chapter 6, we will assess the consistency conduciveness of the different model variants.

Finally, we will investigate whether global optima and fixed points yield extreme values in
the normalized measures A, F and S (Chapter 7). The achievement function Z aggregates
these measures by using weights to model trade-offs between the desiderate (e.g., give up on
faithfulness to increase account). Investigating under which circumstances extreme values are
achieved in A, F , and S might improve our understanding of the involved trade-offs and of the
consequences of choosing specific weights.

2.4 Ensemble Description

ñ Note

The results presented in this section can be reproduced with this notebook.

The results of RE processes and their global optima depend on the following inputs:

• the model variant,
• the dialectical structure τ and the sentence pool,
• the α-weights for the achievement function and
• the set of initial commitments

Let us call a specification of these inputs a simulation setup.

Due to the exponential growth of candidate commitments and theories, which all have to be
considered for global optima and semi-global adjustment steps in RE processes, the ensemble
includes only four sentence pools with a small number of sentences (12, 14 , 16, 18). We
generated 50 dialectical structures and 20 sets of random initial commitments for each sentence
pool. We used every resulting configuration of dialectical structures and initial commitments
(out of 4 000 = 4 · 50 · 20 configurations) to run RE processes for every of the described model
variants and for 36 α-weight configurations.
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For each of the resulting 576 000 simulation setups, we calculated global optima. Note also that
one simulation setup does not necessarily determine a fixed point uniquely. For every step of
adjusting a theory (or a set of commitments), the subsequent theory (or set of commitments) is
underdetermined if there is more than one candidate that maximizes the achievement function.
In such cases, the model will randomly choose the next theory (or set of commitments) (Beisbart,
Betz, and Brun 2021, 466). The Python implementation of the model allows us to track each
of the resulting branches, which we did for this report.

However, for some simulation setups (2 765), we do not have simulation results. Due to
reasons of computational feasibility, we had to set a cut-off point for the number of branches
per simulation setup and the number of adjustment steps. Model runs that exceeded these
thresholds were interrupted.9 We chose to limit the number of branches to 400 and set the
maximum number of adjustment steps to 100. Given these restrictions, the resulting ensemble
comprises 4 136 547 branches.

Setups
Model
variants Sentence pool sizes

Dialectical
structures

Initial
commitments

α-weights
(resolution)

576 000 4 12, 14, 16, 18 4 ∗ 50 4 ∗ 20 36 (0.1)

Table 2.2: Ensemble properties

Let us now describe the simulation setups more thoroughly.

2.4.1 α-Weights

Each α-weight was varied between 0.1 and 0.8 in steps of 0.1 (i.e., values from 0.1, 0.2, . . . , 0.8).
Since α-weights have to satisfy αA + αS + αF = 1, there are 36 possible combinations of the
described α-weights.

We excluded extreme values such as αF = 0 or αA = 1 since they “break” the model and lead
to undesirable behaviour. For example, αF = 0 results in global optima that comprise all and
only singleton theories and their closures as commitments.

2.4.2 Initial Commitments

We generated a simple random sample of 20 sets of minimally consistent initial commitments for
every sentence pool. While we allow initial commitments to be dialectically inconsistent—that

9The model runs will always converge within a finite number of steps into a fixed point (see Beisbart, Betz, and
Brun 2021, 467). The same could be shown for the number of branches. However, the number of branches
and the length of processes can still be computationally challenging.
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is, inconsistent w.r.t. the inferential relationships codified in τ— they must be minimally
consistent. In other words, they should not include flat contradictions (e.g., {s1, s2, ¬s1}).

Let 2S be the set of all sets of minimally consistent sets of sentences from S.10 If 2n is the size
of the sentence pool, then there are 3n minimally consistent sets of sentences (|2S | = 3n). For
the generation of the used random sample, every set of commitments has the same probability
of being drawn. Note that this does not translate into a uniform distribution of the number of
initial commitments since the amount of sets with a specific size varies in 2S . In Figure 2.5, you
find the actual distribution of the initial commitments’ sizes for the different sentence pools.
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Figure 2.5: Distribution of initial commitments’ sizes for different n.

102S is a subset of the powerset of S, which is usually denoted by 2S .
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Roughly, 55% of the random initial commitments are dialectically consistent. This value varies
slightly depending on the sentence pool (see Figure 2.6).
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Figure 2.6: Relative share of dialectically consistent initial commitments for different n.

2.4.3 Dialectical Structures

We generated 50 random dialectical structures for each sentence pool, which codify all inferential
relationships on which an RE process is based. A dialectical structure comprises arguments
with an internal premise-conclusion structure and dialectical relationships between arguments.
Arguments can attack or support each other (see Figure 2.7 for an example).11

Inferential relationships are represented in a dialectical structure τ in the following way: If the
sentences P = {si1 , si2 , . . . , sim} are premises of an argument in τ and sj is its conclusion, sj is
(known to be) implied by P .

The support and attack relation are defined as follows: If an argument A supports another
argument B, the conclusion of A is (known to be) equivalent to a premise of B; if an argument
A attacks another argument B, the conclusion of A is (known to be) inconsistent with a premise
of B.

11The illustrated dialectical structure is one from the actual data set (with the name tau-alpha-020). Argument
maps of all used dialectical structures can be found here.
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Figure 2.7: Example of a dialectical structure. Attack relations are indicated by waved-shaped
arrows, and support relations by straight arrows. Numbers represent sentences
from S, and the minus sign denotes the negation of a sentence.
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The inferential density of a dialectical structure τ “can be understood as measure of the
inferential constraints encoded in τ” (Betz 2013, 44) and is defined as

D(τ) = n − lg(σ)
n

where 2n is the size sentence pool and σ the number of complete and consistent positions in
τ

The τ -generating algorithm we used receives the following parameters as constraints:

• the size of the sentence pool (n ∈ {6, 7, 8, 9}),
• an interval for the permissible number of arguments (I|τ | = [n − 2, n + 2]),
• the maximum number of premises per argument (Pnmax = 2),
• probability weights for the number of premises for arguments (i.e., weights for each

1, . . . , Pnmax) and
• an interval for the permissible inferential density (ID = [0.15, 0.5])

The algorithm will generate a dialectical structure by randomly constructing arguments so
that the number of arguments and the inferential density fall in the specified intervals I|τ | and
ID. Both properties correlate inversely: Roughly, the more arguments τ has, the higher its
inferential density.

Besides the specified parameters, the algorithm will satisfy the following constraints:

• The dialectical structure is satisfiable (i.e., there is at least one dialectically consistent
position on τ).

• Every sentence will be used. In other words, for every sentence s ∈ S, there is an
argument in τ such that s or ¬s is either a premise or the conclusion of the argument.

• Arguments are not question-begging (i.e., an argument’s conclusion is not in its premise
set).

• Arguments are not attack-reflexive (i.e., the negation of an argument’s conclusion is not
in its premise set).

Figure 2.8 plots the actual distribution of inferential densities in the generated data set of all
200 dialectical structures. It shows that the inferential density is not uniformly distributed.
Instead, we observe a bias towards dialectical structures with an inferential density on the
lower side of ID. This is an artefact of the τ -generating algorithm, which tries to generate
an arbitrary dialectical structure satisfying the described constraints. Since it is “easier”
to produce a dialectical structure with a lower inferential density, the algorithm produces
dialectical structures with comparably lower values from ID.12

12For specifics, consider the implementation.
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Figure 2.8: Distribution of inferential densities in the used τ -data set.
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All generated dialectical structures have arguments with 1-2 premises. For each sentence pool,
we used five sets of weights for the number of premises such that there are 10 dialectical
structure with an expected number of premises E(|Pτ |) of 1, 10 with E(|Pτ |) = 1.25, 10
with E(|Pτ |) = 1.5, 10 with E(|Pτ |) = 1.75 and 10 with E(|Pτ |) = 2. The resulting actual
distribution of the mean number of premises per argument can be seen in Figure 2.9. The
increased amount of τs with only 1 and 2-premise arguments results from ceiling effects since
all arguments have at least one and at most two premises.
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Figure 2.9: Distribution of the mean number of premises in the used τ -data set.
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3 General Ensemble Properties

ñ Note

The results of this chapter can be reproduced with this notebook.

Before analyzing how the model variants perform with regard to the described performance
criteria, we will analyze some basic features of model runs that help us understand the model
better. The resulting insights will (hopefully) help to understand and interpret some of the
results, we will present in subsequent chapters.

In particular, we assess the overall length of processes, the (mean) step length of commitments
adjustments steps, properties of global optima and the extent of branching.

Here and in the following chapters, we will assess different properties of model runs and their
dependence (mainly) on the chosen model variant, the selection of α weights and the size of
the sentence pool. Admittedly, other dimensions as, for instance, properties of the dialectical
structures (such as inferential density) are also interesting as independent variables to assess
the performance of the different models. However, we had to confine the analysis to some
extent and regard the chosen dimensions as particularly important.

Since we want to compare the performance of different model variants, we have, of course, to
vary the model. The variation of α-weights is important since the modeler has to choose a
particular set of α-weights in a specific context. It is therefore not enough to know how the
different models compare to each other on average (with respect to α-weights) but important
to compare them within different confined spectra of α-weight configurations. The dependence
on the size of the sentence pool is motivated by the practical restrictions to use semi-globally
optimizing model variants. Due to computational complexity the use of semi-globally optizing
models is feasible for small sentence pools only. However, these small sentence pools are
too small to model reflective equilibration of actual real-world debates.1 Accordingly, we are
confined to use locally optimizing models in these cases. It is, therefore, of particular interest
whether the observations of this ensemble study can be generalised to larger sentence pools.

1Note/link about Andreas’ modelling of Tanja’s reconstruction.
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3.1 Process Length and Step Length

In the following, we understand process length (lp) as the number of theories and commitment
sets in the evolution e of the epistemic state, including the initial and final state.

C0 → T0 → C1 → T1 → · · · → Tfinal → Cfinal

In other words, if (T0, C0) is the initial state and (Tm, Cm) the fixed-point state, lp(e) = 2(m+1).
An equilibration process reaches a fixed point if the newly chosen theory and commitments
set are identical to the previous epistemic state—that is, if (Ti+1, Ci+1) = (Ti, Ci) (Beisbart,
Betz, and Brun 2021, 466). Therefore, the minimal length of a process is 4. In such a case, the
achievement of initial commitments and the first chosen theory cannot be further improved.
Accordingly, the initial commitments are also the final commitments.

Figure 3.1 shows the distribution of process lengths, and Figure 3.2 shows the mean process
length (and its standard deviation) for the different model variants dependent on the size of
the sentence pool (2n) over all branches.

Note that Figure 3.1 counts branches of a particular length for each model. One simulation setup
can result in different branches if the adjustment of commitments or theories is underdetermined.
Additionally, the number of branches for a specific simulation setup can vary between different
models. Consequently, the overall number of branches per model can differ. This, in turn,
explains why the sum of bars varies between the subfigures of Figure 3.1 (see Section 3.3 for
details).

The first interesting observation is that the semi-globally optimizing models (QuadraticGlobalRE
and LinearGlobalRE) reach their fixed points quickly. Often, they adjust their commitments
only once (lp(e) = 6); the linear model variant (LinearGlobalRE) will sometimes not even
adjust the initial commitments of processes (lp(e) = 4). In contrast, the locally optimizing
models (QuardraticLocalRE and LinearLocalRE) need significantly more adjustment steps.
This difference is expected if we assume that local and global optima commitments are not
often in the 1-neighbourhood of initial commitments (see Figure 3.4 and Figure 3.9). Under
this assumption, the locally searching models will need more than one adjustment step to
reach a global or local optimum.

Additionally, the models QuardraticLocalRE and LinearLocalRE have a much larger variance
in process lengths than the models QuadraticGlobalRE and LinearGlobalRE.

A third observation concerns the difference in process lengths between semi-globally and locally
optimizing models in terms of their dependence on the sentence pool. Figure 3.2 suggests that
the process length of locally optimizing models increases with the size of the sentence pool.
The semi-globally optimizing models lack such a dependence on the sentence pool size.

A possible explanation is motivated by analyzing the step length during the adjustment of
commitments. Figure 3.3 shows the mean distance between adjacent commitments sets in the
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Figure 3.1: Distribution of process lengths for different models.
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Figure 3.2: Mean process length for different models and sentence pools.

evolution of epistemic states over all branches. For simplicity, we measure the distance between
two commitment sets by their simple Hamming distance, defined as the number of sentences
not shared by both sets. For example, the simple Hamming distance between the commitments
sets {s1, s2} and {s2, s3} is 2 since there are two sentences (s1 and s3) not shared by both
sets.

Unsurprisingly, the locally optimizing models have roughly a mean step length of 1 since
they are confined in their choice of new commitments to the 1-neighbourhood.2 In contrast,
the semi-globally optimizing models take bigger leaps with an increasing sentence pool size.
Figure 3.4 shows why: With the increasing size of the sentence pool, the mean distance between
initial commitments and fixed-point commitments increases. In other words, RE processes
must overcome larger distances to reach their final states. Semi-globally optimizing models can
walk this distance with fewer steps (Figure 3.2) since they can take comparably large steps
(Figure 3.3). Locally optimizing models are confined to small steps (Figure 3.3) and, thus, have
to take more steps (Figure 3.2).

2The mean distance is, for some cases, slightly greater than 1, which can be simply explained: The definition of
the 1-neighbourhood is based on another Hamming distance than the one used here. In particular, there
are sentence sets in the 1-neighbourhood of a sentence set whose simple Hamming distance is greater than
1. For instance, the set C1 = {s1, ¬s2} is in the 1-neighbourhood of the sentence set C2 = {s1, s2} since it
only needs an attitude change towards one sentence (i.e., an attitude change towards s2 from rejection to
acceptance). However, the simple Hamming distance is 2 since both s2 and ¬s2 are not shared by C1 and C2.
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Figure 3.3: Mean step length of adjacent commitments for different models and sentence pools.
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Figure 3.4: Mean distance between initial commitments and fixed points.
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3.2 Global Optima

Global optima are fully determined by the achievement function of the RE model. Accordingly,
global optima might differ between the linear and quadratic model variants but do not depend
on whether the RE process is based on a local or semi-global optimization. In the following,
we will therefore summarize analysis results with respect to global optima for linear models
under the heading LinearRE and for quadratic models under the heading QuadraticRE.3

The mean number of global optima does not differ significantly between linear and quadratic
models (5±26 vs. 5±14) and does not depend on the size of the sentence pool (see Figure 3.5).
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Figure 3.5: Number of global optima for different n.

However, the heatmap in Figure 3.6 shows an interesting dependence on the α-weights.

Here and in the following chapters, we will often rely on such heatmaps. Let us therefore provide
some clarifications of their interpretation. If we are interested in visualising the dependence on
α-weight configurations (i.e., a specific triples of αA, αF and αS), it is sufficient to use two
dimensions (αA and αS in our case) since the three weights αA, αF and αS are not independent.
The diagonals in these heatmaps from southwest to northeast are isolines for the faithfulness
weight (αF ). In the following, we will refer to specific cells in these heatmaps in the typical

3In our data set, the analysis results might differ between semi-globally and locally optimizing models, which
is, however, an artifact of the difference in interrupted model runs (i.e., model runs that could not properly
end (see Section 2.4)). For the subsequent analysis of global optima, we rely on the model results of
QuadraticGlobalRE and LinearGlobalRE since they had fewer interrupted model runs.

29



(x, y) fashion. For instance, we will call the cell with αS = 0.5 and αA = 0.2 the (0.5, 0.2)
cell.

Now, let’s come back to Figure 3.6. For each simulation setup there is not necessarily one global
optimum. Instead, there can be multiple global optima. Each cell in the heatmap provides for
a specific α-weight configuration the mean number of global optima (over all simulation setups
with this α-weight configuration). For the quadratic models, the number of global optima
(and its variance) increases with an increase in αS . For the linear models, on the other hand,
the number of global optima is comparably low (1 − 3) in all cells with the exception of the
three islands (0.4, 0.3), (0.6, 0.2) and (0.8, 0.1). These cells are characterised by αF = αA. For
linear models, there are more ties in the achievement function under these conditions (see
Appendix A), which results in an increase in global optima.
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Figure 3.6: Mean number of global optima for different α-weight configurations.

Besides analysing the number of global optima, it is helpful to get a preliminary grasp on some
topological properties of global optima. How are the commitments of global optima distributed
over the space of all minimally consistent commitments? Are they located in a dense way to
each other, or are they widely distributed in the whole space? What is their distance from
initial commitments?

Figure 3.7 and Figure 3.8 depict the mean distance of global-optimum commitments in
dependence of the sentence pool’s size and αF . We calculated for each configuration setup
that has more than one global optimum the mean (simple Hamming) distance between global-
optimum commitments and took the average of these means with respect to different ensemble
properties. The share of configuration setups that have more than one global optimum is 0.58
over all models, 0.54 for linear models and 0.62 for quadratic models.4

4Note that global optima a process-independent. Hence, semi-globally and locally optimizing models do not
differ with respect to their global optima.
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Figure 3.7: Mean distance of global-optima commitments for different n.
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Figure 3.8: Mean distance of global-optima commitments for different α.
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Figure 3.9 and Figure 3.10, one the other hand, depict the mean distance between initial
commitments and global-optimum commitments. For that, we calculated for each simulation
setup the mean (simple Hamming) distance between initial commitments and all global-optimum
commitments of the simulation setup and, again, took the average of these means with respect
to different ensemble properties.
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Figure 3.9: Mean distance between initial commitments and optimal commitments for different
n.

Figure 3.7 and Figure 3.9 are hard to interpret. The mean distance of global optima does not
seem to depend on the size of the sentence pool; the mean distance of initial commitments
and global-optimum commitments might increase with the size of the sentence pool. However,
without an additional consideration of larger sentence pools, we cannot draw these conclusions
with certainty due to the large variance.

Figure 3.8 and Figure 3.10, one the other hand, show that the mean distance of initial
commitments and global-optimum commitments as well as the mean distance between global-
optimum commitments depend on αF . The smaller αF , the larger the distance. This result
is not suprising. The weight αF determines the extent to what final commitments should
resemble initial commitments. You can think of αF as the magnitude of an attractive force
that pulls the commitments of the epistemic state to the initial commitments. Accordingly, if
αF gets smaller, global optima and fixed points will be distributed more widerspread in the
space of epistemic states.
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Figure 3.10: Mean distance between initial commitments and optimal commitments for different
α.
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3.3 Branching

The choice of a new theory (or a new set of commitments respectively) is underdetermined if
there are different candidate theories (or commitment sets) that maximize the achievement of
the accordingly adjusted epistemic state. In such a case, the model randomly chooses the new
epistemic state. The model we use is able to track all these different branches to assess the
degree of this type of underdetermination and to determine all possible fixed points for each
configuration setup.
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Figure 3.11: Mean number of branches for different models and sentence pools.

Figure 3.11 shows the mean number of branches with their dependence on the model and
sentence pool. It suggests that branching is more prevalent in locally optimizing models. The
large variance can be partly explained by the heat maps in Figure 3.12, which depict mean
values (and standard deviations) for different weight combinations.

For LinearGlobalRE there are, again, islands with many branches (the cells (0.4, 0.3), (0.6, 0.2)
and (0.8, 0.1)) which are characterised by αF = αA. The high number of branches correlates
with a high number of fixed points (compare Figure 3.13) and a high number of global optima
within these cells (compare Figure 3.6). We might, therefore, hypothesize that the model
produces a high number of branches in these cells due to the high number of global optima.5

Interestingly, the identified hotspots of branches (and fixed points) for the LinearGlobalRE
model are not reproduced by its locally optimizing cousin. This suggests that the

5In Chapter 4, we will analyze to what extent the model is able to reach these global optima. The numbers
(7/8/8 branches and fixed points and 11/32/25 global optima) suggest that the number of fixed points are
nevertheless not enough to reach all these global optima (see, e.g., Figure 4.6 and Figure 4.14 in Chapter 4).
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Figure 3.12: Mean number of branches for different models and weights.
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LinearLocalRE model will perform worse than the LinearGlobalRE model to reach the
increased amount of global optima.6

The “αF = αA”-line is, however, also relevant for the LinearLocalRE model. Above that line,
branching is comparably low (roughly 1 − 3) and below that line comparably high (with a high
variance). The high number of branches does, however, not correlate with a high number of
fixed points (see Figure 3.13). In other words, a lot of these branches end up in the same fixed
point. This behaviour is to some extent even observable in the QuadraticLocalRE model.
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Figure 3.13: Mean number of fixed points for different models and weights.

6A hypothesis we will scrutinize in Chapter 4 (see, e.g., Figure 4.6 and Figure 4.14).
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4 Global Optima and Fixed Points

4.1 Background

Global optima are epistemic states (i.e., commitments-theory pairs) that maximize epistemic
desiderata as the achievement function defines it. The models we assess simulate RE processes
by mutually adjusting commitments and theories. Since these models proceed in a semi-globally
or locally optimizing fashion, fixed points of RE processes are not necessarily global optima
(see Section 2.3 for details). It is, therefore, important to assess the performance of the different
models with respect to their ability to reach global optima. Two main questions guide the
following evaluation:

1. GO efficiency: Are fixed points global optima? More specifically, what is the share of
global optima among fixed points?

2. GO reachability: Are global optima reachable by RE processes? More specifically,
what is the share of fixed points that are global optima among global optima?

GO efficiency and reachability might not only differ between model variants but might, addi-
tionally, depend on the specifics of the simulation setups. In the following, we will confine the
consideration to the following dimensions:

• How do GO efficiency and reachability depend on the size of the sentence pool?
• How do GO efficiency and reachability depend on the arguments’ mean number of

premises?
• How do GO efficiency and reachability depend on α weights?

We will answer these questions by calculating different relative shares in the following way.

Let the ensemble E be the entirety of simulation setups we used to simulate RE processes.
Each simulation setup e ∈ E corresponds to a set of RE processes that can evolve with this
specific setup. Remember that the different steps in the evolution can be underdetermined. In
other words, a RE process might branch. We will denote the set of all branches of a specific
simulation setup e with Be. Consequently, a specific setup can have more than one fixed point.
Similarly, there is not necessarily one global optimum for each simulation setup but possibly
many (denoted by GOe).

GO efficiency can be calculated in two different ways. First, we can assess the share of global
optima among all branches. In other words, we count those branches in Be that end up in
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global optima and divide by |Be|. We will refer to this type of GO efficiency as GO efficiency
from the process perspective. However, different branches might end up in the same fixed points.
Another way of calculating GO efficiency—GO efficiency from the result perspective—avoids
a possible “multiple” counting of fixed points by considering the (mathematical) set of fixed
points.

More formally, let {FPGO}e the set of all fixed points of e that are global optima, and let
[FPGO]e the fixed points of all branches in e that are global optima. The latter is formally a
multiset, which can contain one fixed point multiple times. We can now define different types
of GO efficiency—one based on {FPGO}e and one on [FPGO]e. The corresponding share will
be calculated by formulas of the form

GOEproc(E∗) :=
∑

e∈E∗ |[FPGO]e|∑
e∈E∗ |Be|

and of the form

GOEres(E∗) :=
∑

e∈E∗ |{FPGO}e|∑
e∈E∗ |{FP}e|

with respect to different subsets E∗ ⊂ E.

For instance, let EM1 be the set of all simulation setups belonging to the model M1. We can
calculate the overall GO efficiency of M1 from the process perspective by GOEproc(EM1) and
from the result perspective by GOEres(EM1).

How can we interpret these different types of GO efficiency? One idea is to interpret them
probabilistically. According to this suggestion, the ensemble-based model assessment informs
us about the probabilities of catching global optima by means of RE processes. On this view,
GO efficiency from the process perspective is the probability of a process ending up in a global
optimum. On the other hand, GO efficiency, from the result perspective, is the probability of a
fixed point being a global optimum. You can think of the difference in terms of when or under
which conditions to ask about the probability. In contrast to the latter case, you do not know
the fixed point of the process (perhaps the process has not ended yet) in the former case.

It does not make much sense to distinguish GO reachability between the process and result
perspective. GO reachability asks about the share of global optima that are reachable by RE
processes among all global optima. Naturally, the denominator is the (mathematical) set of
all global optima in a simulation setup (GOe), which is a process-independent property of
the simulation setup. Since it might happen that |[FPGO]e| > |GOe| we should define GO
reachability based on {FPGO}e:

GORE∗ :=
∑

e∈E∗ |{FPGO}e|∑
e∈E∗ |GOe|
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4.2 Results

ñ Note

The results of this chapter can be reproduced with this notebook.

4.2.1 Model Overview

Table 4.1 and Figure 4.1 provide an overview of the different models’ overall GO efficiency and
reachability.

Model
GO efficiency (result

perspective)
GO efficiency (process

perspective)
GO

reachability
LinearGlobalRE 0.73 0.73 0.33
LinearLocalRE 0.45 0.54 0.14
QuadraticGlobalRE 0.76 0.75 0.49
QuadraticLocalRE 0.33 0.35 0.27

Table 4.1: Overall GO efficiency and reachability of the different models

The semi-globally optimizing models perform on all measures better than the locally optimizing
models.

GO efficiency is high for the former (0.73 − 0.76) and does not (much) differ between the
process and result perspectives. GO efficiency varies for locally optimizing models between
0.33 and 0.54. We only observe a difference between the process and result perspective for
the LinearLocalRE model (0.45 vs. 0.54). In other words, the extent of branching for the
LinearLocalRE model differs between those processes that end up in global optima and those
which do not.

GO reachability is for all models below GO efficiency and varies between low (0.14 for
LinearLocalRE) and medium (0.49 for QuadraticGlobalRE).

With respect to the overall GO efficiency and reachability, the QuadraticGlobalRE model
performs best since it reaches the highest value in GO reachability and is slightly better than
LinearGlobalRE concerning GO efficiency.

For the locally optimizing models, the comparison between quadratic and linear shaped
G functions is less clear-cut: While LinearLocalRE performs better in GO efficiency than
QuadraticLocalRE (0.45/0.54 vs. 0.33/0.35), it is the other way around concerning GO reach-
ability (0.14 vs. 0.27).
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Figure 4.1: Overall GO efficiency (result perspective) and reachability of the different models.
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4.2.2 GO Efficiency

4.2.2.1 Dependence on Sentence Pool

Figure 4.2 shows that GO efficiency is more or less stable along different sizes of the sentence
pool for semi-globally optimizing models. The locally optimizing models not only perform
worse than the semi-globally optimizing, but GO efficiency decreases for them with an increase
in the size of the sentence pool.
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Figure 4.2: Dependence of GO efficiency (result perspective) on the size (2n) of the sentence
pool.

As we already saw in the model overview, there is no big difference between the result and
process perspective except for the LinearLocalRE model, which performs better from the
process than from the result perspective (see Figure 4.3).

4.2.2.2 Dependence on Mean Number of Premises

Figure 4.4 and Figure 4.5 show the dependence of GO efficiency on the mean number of
argument’s premises. They might be interpreted as suggesting that the locally optimizing
models tend to perform worse with an increasing amount of premises in arguments. At least
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Figure 4.3: Dependence of GO efficiency (process perspective) on the size (2n) of the sentence
pool.
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the difference between semi-globally and locally optimizing models is smaller for lower mean
numbers of premises.

The zigzag shape of the lines suggests that the actual underlying variance is bigger than
the pictured error bars.1 One explanation might be that GO efficiency depends crucially on
properties of the dialectical structures other than the mean number of premises. Since there
are few dialectical structures for individual data points, their calculation is hardly based on a
representative sample. Accordingly, the zigzag might indicate the variation in GO efficiency
more accurately. Consequently, the plots must be interpreted with caution.
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Figure 4.4: Dependence of GO efficiency (result perspective) on the mean number of arguments’
premises.

4.2.2.3 Dependence on α-Weights

In the preceding sections, we aggregated over the spectrum of different α-weight configurations.
The question is to what extent GO efficiency depends on the chosen α weights.

1The error bars are standard deviations, which are calculated by bootstrapping on the used subset E∗ in the
calculation of GOE(E∗).
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Figure 4.5: Dependence of GO efficiency (process perspective) on the mean number of arguments’
premises.
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The heatmaps in Figure 4.6 and Figure 4.7 provide an overview of the α-weight dependence.
In the following, we will refer to specific cells in the typical (x, y) fashion. For instance, we will
call the cell with αS = 0.5 and αA = 0.2 the (0.5, 0.2) cell.

GO efficiency tends to increase with a decrease in αA and with an increase in αS . There are
some exceptions to this pattern, especially in linear models. Most notably, there are four “cold”
islands in the linear models from both perspectives (compare the (0.2, 0.4), (0.4, 0.3), (0.6, 0.2)
and (0.8, 0.1) cells in Figure 4.6 and Figure 4.7). The comparably dinimished magnitude of
GO efficiency can be explained by the comparably high number of global optima in three of
theses cells (compare the (0.4, 0.3), (0.6, 0.2) and (0.8, 0.1) cells in Figure 3.6). Surprisingly, the
locally and semi-globally optimizing model perform similarly bad, although the semi-globally
optimizing model produces much more branches and fixed points in these cells (compare
Figure 3.12 and Figure 3.13).

Additionally, linear models tend to exhibit more extreme values than quadratic models. In
other words, the difference between “hot” and “cold” regions is higher for linear models than
for the quadratic counterparts.

Figure 4.8 and Figure 4.9 can be used to compare semi-globally with locally optimizing
models. It shows for each α cell the difference in GO efficiency between the semi-globally
optimizing model and its locally optimizing variant. As already observed above, the locally
optimizing models perform on average worse than the semi-globally optimizing models. The
difference in performance is smaller between the linear variants than the quadratic variants. The
LinearLocalRE model is for some α-weight combinations even better than the LinearGlobalRE
and for many configurations as good as the latter.

Figure 4.10 and Figure 4.11 show, additionally, the dependence on the mean number of
arguments. The mean number of premises varies between 1 and 2. We divided this interval into
four bins (1 − 1.25, 1.25 − 1.5, 1.5 − 1.75 and 1.75 − 2) and every heatmap row aggregates over
those dialectical structures that have a mean number of premises in the corresponding bin.

Interestingly, there is a difference between quadratic and linear models. For the linear models,
the heatmaps do not change much with an increase in the mean number of premises. However,
heatmaps suggest such a dependence for the quadratic models: The higher the mean number
of premises, the higher the difference between semi-globally and locally optimizing models.

4.2.3 GO Reachability

4.2.3.1 Dependence on Sentence Pool

Figure 4.12 shows that GO reachability drops quickly for the linear models and slightly for the
quadratic ones with increasing size of the sentence pool. For n = 9, a locally optimizing model
(QuadraticLocalRE) even outperforms a semi-globally optimizing model (LinearGlobalRE).
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Figure 4.6: Dependence of GO efficiency (result perspective) from α-weights for the different
model variants.
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Figure 4.7: Dependence of GO efficiency (process perspective) from α-weights for the different
model variants.
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Figure 4.8: Comparing GO efficiency (result perspective) between semi-globally and locally
optimizing models for different α-weights.
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Figure 4.9: Comparing GO efficiency (process perspective) between semi-globally and locally
optimizing models for different α-weights.
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Figure 4.10: Comparing GO efficiency (result perspective) between semi-globally and locally
optimizing models for different α-weights and intervals of the mean number of
arguments’ premises. 49
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Figure 4.11: Comparing GO efficiency (process perspective) between semi-globally and locally
optimizing models for different α-weights and different intervals of the mean
number of arguments’ premises. 50
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Figure 4.12: Dependence of GO reachability on the size (2n) of the sentence pool.
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4.2.3.2 Dependence on Mean Number of Premises

As before, the overall performance in dependence on the mean number of premises is hard to in-
terpret. Figure 4.13 might suggest that the three models LinearGlobalRE, QuadraticLocalRE
and LinearLocalRE perform worse with an increase in the mean number of premises. Only
QuadraticGlobalRE is able to keep its level of performance.
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Figure 4.13: Dependence of GO reachability on the mean number of arguments’ premises.

4.2.3.3 Dependence on α-Weights

The dependence of GO reachability on α weights is somewhat similar to that of GO efficiency.
For the semi-globally optimizing models, GO reachability tends to increase with a decrease in
αA and an increase in αS . Again, there are exceptions to this behaviour. Besides the islands of
the LinearGlobalRE model, the 0.1 αF isoline has particularly low GO reachability values for
the QuadraticGlobalRE model.

The linear model variants’ cold islands can, again, be explained by the comparably high number
of global optima in three of theses cells (compare the (0.4, 0.3), (0.6, 0.2) and (0.8, 0.1) cells in
Figure 3.6).
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The locally optimizing model variants have a comparably non-regular dependence on α weights.
Additionally, the values do not vary that much between different cells as compared to the
globally optimizing models.

The direct comparison between semi-globally and locally optimizing models (Figure 4.15) shows
that locally optimizing models are, for some α-weight combinations, able to outperform the
semi-globally optimizing models (cells with negative values).

By separating dialectical structures according to their mean number of premises (Figure 4.16)
we can see that the advantage of α-weight combinations for which the semi-globally optimizing
models are on average particularly better w.r.t. GO reachability (roughly, the “hot” cells in
the (0.2 − 0.7, 0.1 − 0.2) area in Figure 4.15) is mainly generated by dialectical structures
with a higher mean number of premises. In contrast, cells in which locally optimizing models
outperform semi-globally optimizing models (roughly, the “cold” cells of the 0.1/0.2 αF isolines
in Figure 4.15) are more or less stable for the different bins for the mean number of premises.

4.3 Conclusion

On average, GO efficiency is high for semi-globally optimizing models and medium-high for
locally optimizing models. The fact that GO efficiency drops for locally optimizing models
with the size of the sentence pool is, to some extent, worrisome since they are intended to be
used in scenarios with larger sentence pools, which are computationally too demanding for
semi-globally optimizing models. The question is whether their performance can be improved
by increasing their search depth d.

However, in specific contexts the modeller will choose a specific set of α weights. We already
saw that the performance of the different models varies significantly between different α-weight
configurations. Consequently, the dependence on the sentence pool should be repeated for
those regions of α-weight configurations that are of interest for the modeller. For instance, if
we choose to confine the analysis to α-weight configurations with αA < αS , the LinearLocalRE
model outperforms every other model in GO efficiency (see Figure 4.17).

Surprisingly, GO reachability is low to medium for all models. Additionally, all but the
QuadraticGlobalRE model perform worse with an increase in the size of the sentence pool.
A better understanding of this behaviour requires a more detailed analysis, which should be
based on a more extensive set of dialectical structures.

The QuadraticGlobalRE model outperforms all other models on average. A direct compar-
ison of the locally optimizing models is complicated since it involves a trade-off: While the
LinearLocalRE model reaches a higher GO efficiency than the QuadraticLocalRE model, it is
the other way around with respect to GO reachability.
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Figure 4.16: Comparing GO reachability between semi-globally and locally optimizing models
for different α-weights and different intervalls of the mean number of arguments’
premises. 56
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Figure 4.17: Dependence of GO efficiency (process perspective) on the size (2n) of the sentence
pool for αA < αS .
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5 Full RE States

5.1 Background

RE is commonly understood as an account of justification, and the aspired outcomes of applying
RE are equilibrium states, which are supposed to be justified according to RE.

Consequently, it is interesting to study the formal counterparts in the model that represent, or
at least approximate, equilibrium states: full RE states. A theory-commitment-pair (C, T ) is a
full RE state if and only if they live up to very high standards, namely,

1. if it is a global optimum according to the achievement function and
2. the theory T fully and exlusively accounts for the commitments C.

The second criterion amounts to the requirement that every commitment and no other sentence
of the sentence pool is derivable from the theory, given the arguments of the dialectical structure
in the background.

An RE model is not required to yield a full RE state in every case. However, from the viewpoint
of model evaluation, it may still desirable to have a model that is at least somewhat likely to
reach full RE states. This is especially relevant to the fixed points of locally optimizing model
variants, which have a severely restricted set of options at every adjustment step.

Still, whether the attainment of full RE states is important, will depend on the objectives
pursued with a specific application of RE (or formal models thereof). If, for example, the
objective is making up one’s mind, gaining understanding of a subject matter, or if we take
justification to come in degrees rather than being a yes-or-no matter, less than full RE states
may be completely satisfactory outcomes.

Note that both fixed points and global optima can qualify as a full RE states. Hence, we
present the results for global optima and fixed points separately. For the latter, we distinguish
again between the result and the process perspective.
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5.2 Results

ñ Note

The results of this chapter can be reproduced with the Jupyter notebook located here.

5.2.1 Overall Results

5.2.1.1 Global Optima

Model
Relative share of full RE global

optima
Number of full RE global

optima
Number of global

optima
QuadraticRE 0.115 82318 714584
LinearRE 0.275 192559 700830

Table 5.1: Relative share of full RE states among global optima

Observations

• The relative share of full RE states among global optima is substantially higher for linear
model variants than for quadratic models (Figure 5.1).

• The small differences in Table 5.1 between semi-globally optimizing model variants and
their globally optimizing counterparts are but an artifact of the model implementation.
They can be explained by differences in interrupted model runs (see Section 3.2).

5.2.1.2 Fixed Points

Model
Relative share of full RE fixed

points
Number of full RE fixed

points
Number of fixed

points
QuadraticGlobalRE 0.093 42660 458147
LinearGlobalRE 0.235 73477 312783
QuadraticLocalRE 0.052 30616 588236
LinearLocalRE 0.198 45241 228122

Table 5.2: Relative share of full RE states among fixed points (result perspective)

Observations
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Figure 5.2: Relative share of full RE states among fixed points (result perspective) grouped by
model variant
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• The relative share of full RE fixed points from the result perspective (Figure 5.2) is lower
than the corresponding results for global optima (Figure 5.1). This result is unsurprising
as fixed points are reached through semi-globally or locally optimizing processes, which
cover a restricted search space in contrast to global optimization.1

• From the result perspective, the relative shares of full RE fixed points of quadratic model
variants are substantially lower than those of their corresponding linear model variants.

Model
Relative share of full RE fixed

points
Number of full RE fixed

points
Number of fixed

points
QuadraticGlobalRE 0.088 46644 528616
LinearGlobalRE 0.235 73492 313002
QuadraticLocalRE 0.081 162044 1991852
LinearLocalRE 0.479 623825 1303077

Table 5.3: Relative share of full RE states among fixed points (process perspective)
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Figure 5.3: Relative share of full RE states among fixed points (process perspective) grouped
by model variant

1For the difference between result and process perspective, see Section 4.1.
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Observations

• The relative share of full RE fixed points (process perspective, Figure 5.3) is similar to the
corresponding results from the result perspective (Figure 5.2) for QuadraticGlobalRE,
LinearGlobalRE, and QuadraticLocalRE except for LinearLocalRE.

• For LinearLocalRE, the relative share of full RE fixed points is significantly higher when
considering the fixed points from all branches (process perspective) rather than the set of
fixed points (result perspective). This means that a relatively higher share of branches
leads to full RE fixed points than to non-full-RE fixed points.

• The relative share of full RE fixed points for LinearLocalRE (Figure 5.3) even exceeds
the relative share of full RE global optima for linear model variants (Figure 5.1).

• The number of fixed points in the process perspective (Table 5.3) is only slightly higher
than the number in the result perspective (Table 5.2) for QuadraticGlobalRE and
LinearGlobalRE. In contrast, the number of fixed points from all branches is substantially
higher than the number of fixed points from the result perspective for QuadraticLocalRE,
and even more so for LinearLocalRE.

5.2.2 Results Grouped by Sentence Pool Size

Observations

• The relative share of full RE states among global optima decreases with increasing
sentence-pool size for all model variants (Figure 5.4).

• The relative share of full RE states among the set of fixed points (result perspective)
decreases with increasing sentence-pool size for all model variants (Figure 5.5).

• The relative share of full RE states among the fixed points from all branches
(process perspective) decreases with increasing sentence-pool size for the model
variantsQuadraticLocalRE, QuadraticGlobalRE and LinearGlobalRE (Figure 5.6).

• The relative share of full RE states among fixed points from all branches (process
perspective) is roughly constant with respect to sentence pool sizes for LinearLocalRE
(Figure 5.6).

5.2.3 Results Grouped by Configuration of Weights

Observations

• Linear model variants exhibit a “tipping line” (see Appendix A). For αA > αF , the
relative share of full RE global optima is 1.0, i.e., all global optima are full RE states.

• Quadratic model variants have a smooth transition between low and high relative shares
and have a “hotspot” for very high values of αA. This result is made plausible by the fact
that full RE states require a maximal value for the measure of account (i.e., A(C, T ) = 1).
High values for αA benefit the fulfilment of this requirement.
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Figure 5.4: Relative share of full RE states among global optima grouped by model variant
and sentence pool size
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Figure 5.5: Relative share of full RE states among fixed points (result perspective) grouped by
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Figure 5.7: Relative share of full RE states among global optima grouped by model variant
and configuration of weights

Observations

• Linear model variants do not exhibit the tipping line for fixed points (Figure 5.8 and
Figure 5.9)

• Linear model variants have high relative shares for low faithfulness, moderate account
and high (but non-extreme) weights for systematicity.

• There are only small differences between the relative share of full RE states among sets
of fixed points (result perspective, Figure 5.8) and fixed points from all branches (process
perspective, Figure 5.9).

• QuadraticGlobalRE exhibits its highest relative shares of full RE fixed points for moder-
ately high values for αA and very low values for αS .

5.3 Conclusion

Overall, the relative share of full RE states among global optima and fixed points is not
overwhelming. However, heatmaps reveal combinations of weights for QuadraticGlobalRE,
LinearGlobalRE and LinearLocalRE, where the relative share of full RE states among the
outputs is acceptable. For QuadraticLocalRE, this holds at least for global optima. However,
this is not a strong reason to reject QuadraticLocalRE. Depending on the particular goals of
an RE inquiry, a low relative share of full RE states can be seen as a strength of a model,
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Figure 5.9: Relative share of full RE states among fixed points from all branches grouped by
model variant and configuration of weights.
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as it may not be desirable to render everything into a full RE state, or states satisfying less
demanding requirements may be acceptable.

Concerning the influence of the sentence pool size, there is a negative trend for the relative
shares of full RE states among global optima and fixed points (result perspective). Only the
relative share of full RE fixed points (process perspective) of the LinearLocalRE model is
not affected by the sentence pool size. At this point, we cannot offer an explanation for this
behaviour, which calls for further analysis.
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6 Consistency

6.1 Background

Consistency is commonly seen as a necessary condition of coherence. Achieving consistency in
RE is, therefore, of utmost importance. In contrast to the desiderata of faithfulness, system-
aticity and account (see Section 2.1), the desideratum of consistency is not hard-wired into
the model. Although the agent is not allowed to choose commitments with flat contradictions
(i.e., commitment sets of the form {si, . . . , ¬si}), they can choose dialectically inconsistent
commitments (i.e., commitments that are inconsistent with respect to the inferential relation-
ships encoded in the dialectical structure τ). Or, more formally, a dialectically inconsistent set
of commitments may maximize the achievement during the step of adjusting commitments.
Accordingly, the process might end at a fixed point with dialectically inconsistent commitments.
The question is, therefore, whether the explicitly modelled desiderata and the specification of
the process are sufficiently conducive towards dialectical consistency.1

In this chapter, we analyze the dialectical consistency of inputs and outputs (fixed points and
global optima) of RE simulations, which can be examined from three different perspectives:

1. the consistency of output commitments
2. the “consistency case” that arises from combining the consistency status of initial and

output commitments
3. the consistency of the union of output commitments and theory

Concerning 2., the juxtaposition of initial and output commitments allows for four cases, which
are labelled as follows:

endpoint commitments consistent
endpoint commitment
inconsistent

initial commitments
consistent

consistency preserving (CP) consistency
eliminating (CE)

initial commitments
inconsistent

inconistency eliminating (IE) inconsistency
preserving (IP)

1The main driving force for dialectical consistency is the desideratum of account. Since the choice of new
theories is confined to dialectically consistent theories, account will favour commitments that are dialectically
consistent.
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CP Cases preserve or “transfer” consistency between initial and endpoint commitments. In IE
cases, inconsistent initial commitments are revised for consistent endpoint commitments. IP
cases fail to eradicate initial inconsistencies, and finally, there may be CE cases if inconsistencies
are introduced to initially consistent commitments.

From the viewpoint of model consolidation, the cases are interesting and relevant in various
respects. High shares of IE cases would speak in favour of the model’s revisionary power
and signify progress towards establishing coherence by RE. Frequent IP cases, in turn, would
speak against the model’s revisionary power with respect to inconsistent initial commitments.
Moreover, this could fuel the objection that RE (or the present model thereof) is overly
conservative, such that “garbage in” (inconsistent initial commitments) leads to “garbage out”
(inconsistent fixed point/global optimum commitments). High relative shares of CP cases are a
desirable feature. Finally, frequent CE cases would be a truly worrisome result, as they would
indicate that the model leads to a worsening in terms of consistency.

6.2 Results

ñ Note

The results of this chapter can be reproduced with the Jupyter notebook located here.

6.2.1 Consistent Outputs

6.2.1.1 Overall Results

Model
Relative share of global optima

with consistent commitments
Number of global optima

with consistent commitments
Number of

global optima
QuadraticGlobalRE 0.741 529359 714584
LinearGlobalRE 0.771 540556 700830
QuadraticLocalRE 0.741 525490 709289
LinearLocalRE 0.769 554525 721096

Table 6.2: Relative share of consistent commitments among global optima

Model
Relative share of fixed points
with consistent commitments

Number of fixed points with
consistent commitments

Number of
fixed points

QuadraticGlobalRE 0.728 333436 458147
LinearGlobalRE 0.726 227000 312783
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Model
Relative share of fixed points
with consistent commitments

Number of fixed points with
consistent commitments

Number of
fixed points

QuadraticLocalRE 0.688 404941 588236
LinearLocalRE 0.82 187163 228122

Table 6.3: Relative share of consistent commitments among fixed points (result perspective)

Model
Relative share of fixed points
with consistent commitments

Number of fixed points with
consistent commitments

Number of
fixed points

QuadraticGlobalRE 0.708 374476 528616
LinearGlobalRE 0.726 227097 313002
QuadraticLocalRE 0.735 1463131 1991852
LinearLocalRE 0.952 1240692 1303077

Table 6.4: Relative share of consistent commitments among fixed points (process perspective)

Observations: Consistent Outputs

• Overall, the relative share of consistent output commitments is high for all model variants
and output types, roughly ranging from 0.69 to 0.95

• The overall relative share of consistent global optima commitments is slightly boosted for
linear model variants compared to their quadratic counterparts in Table 6.2.

• The relative shares of consistent commitments among fixed points (result perspective:
Table 6.3, and process perspective: Table 6.4) is slightly lower than the corresponding
results for global optima in Table 6.2 for QuadraticGlobalRE, QuadraticLocalRE, and
LinearGlobalRE

• LinearLocalRE exhibits substantially higher relative shares of consistent commitments
among fixed points (result and process perspective)

• The number of fixed points reached through different branches (process perspective) in
local model variants is substantially higher than for global model variants (Table 6.4)

6.2.1.2 Results Grouped by Sentence Pool Size

Observations

• The relative share of global optima with consistent commitments slighty decrease for
larger sentence pool sizes (Figure 6.4).

• The closeness of results of QuadraticGlobalRE and QuadraticLocalRE, as well as
LinearGlobalRE and LinearLocalRE in Figure 6.4 is due to the fact, that local variants
rely on their global counterparts to determine global optima. Differences arise due to the
exclusion of different erroneous runs.
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Figure 6.1: Relative share of global optima with consistent commitments grouped by model
variant and sentence pool size
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grouped by model variant and sentence pool size
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grouped by model variant and sentence pool size
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• The relative share of fixed points with consistent commitments slightly decreases
for larger sentence pool sizes (both perspectives in Figure 6.5 and Figure 6.6) for
QuadraticGlobalRE, QuadraticLocalRE, and LinearGlobalRE.

• In contrast, for LinearLocalRE, the relative share of fixed points with consistent com-
mitments remains roughly constant (result perspective in Figure 6.5) or sligtly increases
(process perspective in Figure 6.6)

6.2.1.3 Results Grouped by Configuration of Weights
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Figure 6.4: Relative share of global optima with consistent commitments grouped by model
variant and configuration of weights. Note that local variants are omitted due to
almost analogous results.

Observations

• Linear models exhibit a “tipping line” for the relative share of global optima and fixed
points with consistent commitments. For αA > αF , the relative share is consistently 1.0.
See Appendix A for an explanation.

• In contrast, quadratic models show a gradient of smoother transitions between relative
shares, increasing with higher weights for αA, and also to some extent with higher weights
for αA.
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Figure 6.5: Relative share of fixed points (result perspective) with consistent commitments
grouped by model variant and configuration of weights
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Figure 6.6: Relative share of fixed points (process perspective) with consistent commitments
grouped by model variant and configuration of weights

79



6.2.2 Consistency Cases

The results of this section are based on a more fine-grained distinction of cases that depend on
the consistency status of initial and output commitments.

Note that the relative shares of cases have been calculated for consistent and inconsistent initial
commitments separately. For example, the relative share of inconsistency eliminating cases
(inconsistent input, consistent output) among global optima has been calculated with respect
to all global optima that result from inconsistent inital commitments.

Consequently, the relative share of inconsistency eleminating and inconsistency preserving
cases add up to 1.0, and so do the relative shares of consistency preserving and consistency
eliminating cases.

6.2.2.1 Overall Results

Model

Relative
share of

consistency
eliminating

cases

Relative
share of

consistency
preserving

cases

Number of
global optima

from
consistent

initial
commitments

Relative
share of in-
consistency
preserving

cases

Relative
share of in-
consistency
eliminating

cases

Number of
global optima

from
inconsistent

initial
commitments

QGRE 0.053 0.947 386131 0.501 0.499 328453
LGRE 0.024 0.976 366296 0.453 0.547 334534
QLRE 0.053 0.947 384850 0.504 0.496 324439
LLRE 0.023 0.977 372362 0.453 0.547 348734

Table 6.5: Relative share of consistency cases among global optima

Model

Relative
share of

consistency
eliminating

cases

Relative
share of

consistency
preserving

cases

Number of
fixed points

from
consistent

initial
commitments

Relative
share of in-
consistency
preserving

cases

Relative
share of in-
consistency
eliminating

cases

Number of
fixed points

from
inconsistent

initial
commitments

QGRE 0.041 0.959 246823 0.543 0.457 211324
LGRE 0.016 0.984 168946 0.577 0.423 143837
QLRE 0.045 0.955 278450 0.552 0.448 309786
LLRE 0.014 0.986 119476 0.361 0.639 108646

Table 6.6: Relative share of consistency cases among fixed points (result perspective)
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Figure 6.7: Relative share of consistency cases among global optima resulting from consistent
initial commitments
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Figure 6.8: Relative share of consistency cases among global optima resulting from inconsistent
initial commitments
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Figure 6.9: Relative share of consistency cases among fixed points (result perspective) from
consistent initial commitments
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Figure 6.10: Relative share of consistency cases among fixed points (result perspective) from
inconsistent initial commitments
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Model

Relative
share of

consistency
eliminating

cases

Relative
share of

consistency
preserving

cases

Number of
fixed points

from
consistent

initial
commitments

Relative
share of in-
consistency
preserving

cases

Relative
share of in-
consistency
eliminating

cases

Number of
fixed points

from
inconsistent

initial
commitments

QGRE 0.043 0.957 264780 0.541 0.459 263836
LGRE 0.016 0.984 169026 0.578 0.422 143976
QLRE 0.057 0.943 916286 0.443 0.557 1075566
LLRE 0.006 0.994 615748 0.085 0.915 687329

Table 6.7: Relative share of consistency cases among fixed points (process perspective)
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Figure 6.11: Relative share of consistency cases among fixed points (process perspective) from
consistent initial commitments

Observations: Consistency Cases

• The relative share of consistency-preserving cases is high for all model variants and output
types (Figure 6.7,Figure 6.9, and Figure 6.11). Consistency-eliminating cases occur very
rarely.
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Figure 6.12: Relative share of consistency cases among fixed points (process perspective) from
inconsistent initial commitments
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• The relative share of inconsistency preserving cases slightly exceed the inconsis-
tency eliminating cases for global optima and fixed points of QuadraticGlobalRE,
QuadraticLocalRE, as well as LinearGlobalRE (Figure 6.8, Figure 6.10, and Figure 6.12).

• The result perspective makes clear that the linear local model variant reaches inconsistent
output commitments from both consistent and inconsistent initial commitments (Fig-
ure 6.9 and Figure 6.10), but the process perspective reveals that only very few branches
result in these inconsistent output commitments (Figure 6.11 and Figure 6.12).

6.2.2.2 Results Grouped by Sentence Pool Size
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Figure 6.13: Relative share of inconsistency eliminating cases among global optima grouped by
model variant and sentence pool size

Consistency Preserving Cases

Observations

• LinearLocalRE is the only model that tends to perform better with increasing sentence
pool sizes with respect to all output types and conistency cases.
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Figure 6.14: Relative share of inconsistency eliminating cases among fixed points (result per-
spective) grouped by model variant and sentence pool size
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Figure 6.15: Relative share of inconsistency eliminating cases among fixed points (process
perspective) grouped by model variant and sentence pool size
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Figure 6.16: Relative share of consistency preserving cases among global optima grouped by
model variant and sentence pool size
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Figure 6.17: Relative share of consistency preserving cases among fixed points (result perspec-
tive) grouped by model variant and sentence pool size
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Figure 6.18: Relative share of consistency preserving cases among fixed points (process per-
spective) grouped by model variant and sentence pool size
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6.2.2.3 Results Grouped by Configuration of Weights

Due to the fact, that inconsistency eliminating and inconsistency preserving cases, as well as
consistency eliminating and consistency preserving cases are complementary, we confine the
presentation of results to two cases.
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Figure 6.19: Relative share of inconsistency eliminating cases among global optima grouped by
model variant and configuration of weights.

Observations: Inconsistency eliminating cases (IE)

• Linear models exhibit a “tipping line” for IE cases among both global optima and fixed
points. There are no IE cases where αA < αF , i.e. initial inconsistencies are never removed.
In turn, the relative share of IE cases for αA > αF is 1.0, i.e. initial inconsistencies are
always removed. See Appendix A for an explanation.

• The case with non extreme values in linear models occur where αA = αF .
• In contrast, quadratic models have smooth transitions. High weights for account and

systematicity, resulting in low weights for faithfulness, benefit the relative share of IE
cases among global optima and fixed points.

• The relative shares of IE cases among fixed points (process perspective) in local model
variants (Figure 6.21) are slightly boosted in comparison to the consideration of unique
fixed points (result perspectve) (Figure 6.20).

Consistency Preserving Case (CP)

Observations: Consistency Preserving Cases (CP)
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Figure 6.20: Relative share of inconsistency eliminating cases among fixed points (result per-
spective) grouped by model variant and configuration of weights.
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Figure 6.21: Relative share of inconsistency eliminating cases among fixed points (process
perspective) grouped by model variant and configuration of weights.
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Figure 6.22: Relative share of consistency preserving cases among global optima grouped by
model variant and configuration of weights.

• Overall, CP cases occur very frequently for all model variants and output types. In turn,
the relative shares of CE cases (1.0 − CP ) are very low.

• Linear models exhibit a “tipping line” for CP cases among both global optima and fixed
points. For αA > αF , consitency is always preserved. In turn, CE cases occur only for
αA ≤ αF .

• The influence of weight configurations is moderately at best.

6.2.3 Consistent Unions

In this section, we will analyze the dialectical consistency of whole epistemic states—that
is, the union of an epistemic state’s commitments and theory. Since we already analyzed
the consistency of fixed point commitments and global optima commitments in isolation,
we will count only those inconsistencies that arise by combining commitments and theories.
In other words, we will not consider inconsistencies that result from inconsistencies in the
commitments.

6.2.3.1 Overall Results
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Figure 6.23: Relative share of consistency preserving cases among fixed points (result perspec-
tive) grouped by model variant and configuration of weights.
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Figure 6.24: Relative share of consistency preserving cases among fixed points (process per-
spective) grouped by model variant and configuration of weights.
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Model

Relative share of global
optima with a consistent

union

Number of global
optima with a

consistent union

Number of global optima
with consistent

commitments
QuadraticGlobalRE 0.931 492856 529359
LinearGlobalRE 0.966 522055 540556
QuadraticLocalRE 0.932 489618 525490
LinearLocalRE 0.966 535532 554525

Table 6.8: Relative share of global optima with a consistent union of commitments and theory

Model

Relative share of fixed
points with a consistent

union
Number of fixed points
with a consistent union

Number of fixed points
with consistent

commitments
QuadraticGlobalRE 0.915 305081 333436
LinearGlobalRE 0.96 218022 227000
QuadraticLocalRE 0.893 361422 404941
LinearLocalRE 0.973 182164 187163

Table 6.9: Relative share of fixed points (result perspective) with a consistent union of commit-
ments and theory

Model

Relative share of fixed
points with a consistent

union
Number of fixed points
with a consistent union

Number of fixed points
with consistent

commitments
QuadraticGlobalRE 0.908 340059 374476
LinearGlobalRE 0.96 218065 227097
QuadraticLocalRE 0.911 1333612 1463131
LinearLocalRE 0.994 1233142 1240692

Table 6.10: Relative share of fixed points (process perspective) with a consistent union of
commitments and theory

Observations

• The relative shares of consistent unions of commitments and theory among outputs with
consistent commitments is very high for all model variants and output types.
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Figure 6.25: Relative share of global optima with a consistent union of commitments and theory
grouped by model variant and sentence pool size
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Figure 6.26: Relative share of fixed points (result perspective) with a consistent union of
commitments and theory grouped by model variant and sentence pool size
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Figure 6.27: Relative share of fixed points (process perspective) with a consistent union of
commitments and theory grouped by model variant and sentence pool size
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Figure 6.28: Relative share of global optima with a consistent union of commitments and theory
grouped by model variant and configuration of weights
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Figure 6.29: Relative share of fixed points (result perspective) with a consistent union of
commitments and theory grouped by model variant and configuration of weights
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Figure 6.30: Relative share of fixed points (process perspective) with a consistent union of
commitments and theory grouped by model variant and configuration of weights
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6.2.3.2 Results Grouped by Sentence Pool Size

6.2.3.3 Results Grouped by Configuration of Weights

6.3 Conclusion

Overall, the present ensemble study concerning the three perspectives on the consistency of
outputs of RE simulations provides positive results with respect to model variation. The overall
relative shares of consistent outputs, inconsistency-eliminating and consistency-preserving cases,
as well as consistent unions are satisfactorily high for all model variants.

According to analysing the results further with respect to the sentence pool size, LinearLocalRE
seems to have the edge over the other model variants in view of increasing sentence pool sizes.
Nonetheless, the severely restricted sample that forms the basis of this report would make an
extrapolation to even larger sentence pool sizes a highly speculative matter. Further research
in this direction is required.

In the more fine-grained analysis according to weigh configurations, we can observe regions
of weight configurations that yield desirable behaviour. Moreover, these regions are robust
across model variants. This provides at least some motivation to prefer some configurations
over others. In particular, it is beneficial to consistency considerations if αA > αF .

There is a notable difference between quadratic and linear model variants (smooth transitions
vs. tipping line), but on its own, this does not serve as a criterion to prefer some model variants
over others. See the Appendix A for a presentation of analytical results that explain why linear
model variants exhibit tipping lines.
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7 Extreme Values for Account, Systematicity,
and Faithfulness

7.1 Background

In this chapter, we examine the conditions under which the desiderata account (A), systematicity
(S) and faithfulness (F ) yield extreme value (i.e., 0 or 1).

Maximal account (A(C, T ) = 1) means that the theory T fully and exclusively accounts for
the commitments C. Full and exclusive account is a condition for full RE states. Conversely,
A(C, T ) = 0 holds if a theory completely fails to account for commitments—that is, if for every
sentence in the commitments, the theory’s closure does not contain this sentence.

The measure of systematicity for a theory T is defined as follows:

S(T ) = G

(
|T | − 1

|T |

)

with G = 1 − x2 for quadratic models and G = 1 − x for linear models.

Hence, S(T ) = 1 if and only if |T | = 1 (i.e., if and only if T is a singleton theory, e.g., T = {s}).
Note that it does not matter whether G is linear or quadratic. Furthermore, we have S(T ) = 0
if and only if T = ∅ by definition.

F (C|C0) = 1 holds if and only if the initial commitments C0 are a subset of the commitments
C (expansions of the initial commitments are not penalized). F (C|C0) attains the minimal
value of 0 if every sentence of the initial commitments C0 is missing in or contradicted by the
commitments C.

7.2 Results

ñ Note

The results of this chapter can be reproduced with the Jupyter notebook located here.
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7.2.1 Overall Results

7.2.1.1 Minimal Values

There is no simulation setup that resulted in a global optimum or a fixed point with a minimal
value for account, systematicity or faithfulness. Consequently, we can exclude the consideration
of minimal values from the subsequent analysis.

This is a desirable result, as minimal values for A, F and S would constitute quite strange
behaviour of the model variants, at least in the range of weights we considered in this study, for
we omitted α-weight combinations with zero-valued α weights. Take, for instance, faithfulness:
F (C | C0) = 0 would mean that an agent completely departed from their initial commitments
C0, which could be interpreted as changing the subject matter. To the extent that faithfulness
matters to some degree (i.e., αF ̸= 0), we expect that fixed points and global optima take
faithfulness into account (in the sense of F (C | C0) ̸= 0 for fixed point commitments or global
optima commitments respectively).

7.2.1.2 Maximal Values

Model

Relative
share of

global
optima

with
maximal
account

Number
of global

optima
with

maximal
account

Number
of

global
op-

tima

Relative
share of

global
optima with
maximal sys-

tematicity

Number of
global

optima
with

maximal
systematic-

ity

Relative
share of

global
optima with

maximal
faithfulness

Number of
global

optima
with

maximal
faithful-

ness
QRE 0.115 82318 714584 0.727 519496 0.115 82133
LRE 0.275 192559 700830 0.875 613282 0.288 201631

Table 7.1: Absolute and relative numbers of global optima maximizing various desiderata
measures.

Model

Relative
share of

fixed points
with

maximal
account

Number
of fixed
points

with
maximal
account

Number
of

fixed
points

Relative
share of

fixed points
with

maximal sys-
tematicity

Number of
fixed

points with
maximal

systematic-
ity

Relative
share of

fixed points
with

maximal
faithfulness

Number of
fixed

points
with

maximal
faithful-

ness
QGRE 0.166 75903 458147 0.582 266761 0.199 91150
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Model

Relative
share of

fixed points
with

maximal
account

Number
of fixed
points

with
maximal
account

Number
of

fixed
points

Relative
share of

fixed points
with

maximal sys-
tematicity

Number of
fixed

points with
maximal

systematic-
ity

Relative
share of

fixed points
with

maximal
faithfulness

Number of
fixed

points
with

maximal
faithful-

ness
LGRE 0.382 119569 312783 0.724 226486 0.573 179208
QLRE 0.138 81396 588236 0.495 291113 0.083 49095
LLRE 0.639 145846 228122 0.503 114636 0.357 81451

Table 7.2: Absolute and relative numbers of fixed points (resutlt perspective) maximizing
various desiderata measures.

Observations

• Outputs of linear model variants maximize the measures more often than the outcomes
of quadratic models.

• Outputs of all model variants maximize the measure of systematicity more often than
the measures for account or faithfulness, excepting fixed points from LinearLocalRE
(Figure 7.2).

– It may be easier to maximize S due to the fact that the measure does discriminate
singleton theories on the basis of their scope (|T̄ |). Thus, there may be many cases
in which at least somewhat attractive singleton theories significantly shape the
subsequent process of adjustments or the outcome of global optimization.

7.2.2 Results Grouped by Sentence Pool Size

7.2.2.1 Account

7.2.2.2 Systematicity

7.2.2.3 Faithfulness

Observations

• The global optima of both quadratic and linear model variants maximize account (Fig-
ure 7.3) and faithfulness (Figure 7.7) less frequently for larger sentence pool sizes.

• This tendency is less pronounced for fixed points (result perspective) in Figure 7.4 and
Figure 7.8 , respectively.
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Figure 7.1: Relative shares of global optima maximizing the desiderata measures for account,
systematicity and faithfulness
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Figure 7.3: Relative share of global optima maximizing the measure for account grouped by
model variant and sentence pool size.
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Figure 7.4: Relative share of fixed points (result perspective) maximizing the measure for
account grouped by model variant and sentence pool size.
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Figure 7.5: Relative share of global optima maximizing the measure for systematicity grouped
by model variant and sentence pool size.
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Figure 7.6: Relative share of fixed points (result perspective) maximizing the measure for
systematicity grouped by model variant and sentence pool size.
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Figure 7.7: Relative share of global optima maximizing the measure for faithfulness grouped
by model variant and sentence pool size.
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Figure 7.8: Relative share of fixed points (result perspective) maximizing the measure for
faithfulness grouped by model variant and sentence pool size.

116



• The relative share of fixed points (result perspective) that maximize systematcity is not
affected by the sentence pool size for global model variants (Figure 7.6). In contrast this
relative share decreases with increasing sentence pool sizes for local model variants.

7.2.3 Results Grouped by Configuration of Weights

7.2.3.1 Account
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Figure 7.9: Relative share of global optima maximizing the measure for account grouped by
model variant and configuration of weights.

Observation

• Linear model variants exhibit a “tipping line”. For αA > αF global optima and fixed
points always maximize the measure for account. For an explanation, see Appendix A.

• Quadratic model variants exhibit a gradient with increasing relative shares for higher
values of αA.

7.2.3.2 Systematicity

Observations

• For all model variants and outputs, we can observe a gradient of increasing relative shares
of outputs with maximal systematicity for increasing values of αS .
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Figure 7.10: Relative share of fixed points (result perspective) maximizing the measure for
account grouped by model variant and configuration of weights.
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Figure 7.11: Relative share of global optima maximizing the measure for systematicity grouped
by model variant and configuration of weights.

• Moreover, the relative share also increases for decreasing weights for αA. If account does
not receive much weight, the theory can be optimized with respect to systematicity more
independently of the commitments, even if αS is low.

7.2.3.3 Faithfulness

Observations

• Linear model variants exhibit a “tipping line”. For αF > αA global optima and fixed
points always maximize the measure for faithfulness. For an explanation, see Appendix A.

• Quadratic model variants exhibit a gradient with increasing relative shares for higher
values of αF .

7.3 Conclusion

Many observations in this chapter are not surprising. It is to be expected that increasing
the weight results in higher relatives shares of maximized measures. Nonetheless, this is a
reassuring result from the viewpoint of model evaluation, indcating that configuring weights
has forseeable consequences.
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Figure 7.12: Relative share of fixed points (result perspective) maximizing the measure for
systematicity grouped by model variant and configuration of weights.
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Figure 7.13: Relative share of global optima maximizing the measure for faithfulness grouped
by model variant and configuration of weights.

The high relative shares of outputs maximizing the measure for systematicity may be a
consequence of a shortcoming in the measure for systematicity. If |T | = 1, then S(T ) = 1
irrespective of |T |. That is the measure for systematictiy does not discriminate between
singleton theories on the basis of their scope (T ). This renders all singleton theories equally
and maximally attractive according to the measure of systematicity. For another consequence
of frequently maximizing the measure for systematicity, see Appendix B.

Further exploration is required to provide full explanations for the more salient observations.
For example, one could analyze the “evolution” of theories during RE processes.1 Are singleton
theories chosen in the first adjustment step and not altered afterwards? Or do RE processes
set out with larger theories and are elements remove subsequently?

1This information is already available in the data.
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Figure 7.14: Relative share of fixed points (result perspective) maximizing the measure for
faithfulness grouped by model variant and configuration of weights.
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8 Summary

8.1 Overview

This report thoroughly assessed the formal RE model by Beisbart, Betz, and Brun (2021)
by numerical investigation. We ran computer simulations for a broad spectrum of model
parameters and initial conditions and used four different model variants. In this chapter, we
summarize the most important findings with respect to the metrics described in Section 2.3.

Global Optima and Fixed Points

In Chapter 4, we investigated whether fixed points are global optima (GO efficiency) and,
conversely, whether global optima are reachable by equilibration processes (GO reachability).

• Overall, GO efficiency is high for semi-globally optimizing models and medium-high for
locally optimizing models.

• GO efficiency drops for locally optimizing models with the size of the sentence pool.
• For αA < αS , GO efficiency of the LinearLocalRE model is as high as of the models

QuadraticGlobalRE and LinearGlobalRE.
• GO reachability is low to medium for all models.
• All models except the QuadraticGlobalRE model perform worse concerning GO reacha-

bility with an increase in the size of the sentence pool.
• The QuadraticGlobalRE model outperforms all other models on average.
• TheLinearLocalRE model reaches a higher GO efficiency than the QuadraticLocalRE

model, but it is the other way around with respect to GO reachability.

Full RE States

In Chapter 5, we explored whether fixed points and global optima attain full RE states (i.e.,
global optima for which the theory fully and exclusively accounts for the commitments).

• Overall, the relative share of full RE states among global optima and fixed points is
rather low.

• Heatmaps reveal combinations of weights for GlobalQuadraticRE, GlobalLinearRE and
LinearLocalRE, where the relative share of full RE states among the outputs is acceptable.

• There is a slight negative trend for the relative shares of full RE states among global
optima and fixed points (result perspective) for increasing sentence pool sizes.

• The sentence pool size does not affect the relative share of full RE fixed points (process
perspective) ofLinearLocalRE.
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Consistency

In Chapter 6, we assessed different aspects of consistency conduciveness of the model variants.

• The overall relative shares of consistent outputs, inconsistency-eliminating and consistency-
preserving cases, as well as consistent unions, are satisfactorily high for all model variants.

• In view of increasing sentence pool sizes, LinearLocalRE performs best with respect to
all examined aspects of consistency.

• There are regions of weight configurations (αA > αF ) that yield desirable behaviour
concerning consistency across all model variants.

• A salient “tipping line” in heatmaps of linear model variants marks off regions of weight
configurations that yield a fundamentally different behaviour. The analytical results from
Appendix A explain these observations.

Extreme Measure Values

In Chapter 7, we investigated whether global optima and fixed points yield extreme values in
the normalized measures A, F and S.

• Overall, there are no surprising observations: Increasing the weight of a specific measure
leads to more outputs that maximize the corresponding measure.

8.2 Appendices

The appendices include additional material, which can be used to explain some of the simulation
results and which motivates suggestions for further research.

The Tipping Line of Linear Model Variants

In Appendix A, we provide analytical results concerning a “tipping line” in linear model variants
that help to explain various observations in the report.

• For αA > αF , global optima of linear model variants always achieve full and exclusive
account (A(C, T ) = 1).

• For αF > αA, the commitments of global optima of linear model variants are always
maximally faithful to the initial commitments (F (C | C0) = 1).

• These results can be generalized to fixed points of the linear model variants.

Note that the “tipping-line behaviour” we observed in the simulation results for the linear
model variants concern their performance with respect to the various validation metrics and not
which global optima and fixed points are reached. In other words, in each of the two regions
(αA > αF and αF > αA), global optima and fixed points will generally depend on the α-weight
combinations. Otherwise, we would have observed the tipping-line behaviour in all results for
the linear model variants, which we didn’t.
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The described restriction of the tipping-line behaviour is essential because, without this
restriction, we could formulate a substantive objection against using the linear model variants.
If global optima (and fixed points, respectively) would only depend on whether αA > αF or
αF > αA, and, accordingly not change within these regions, the model would fail to represent
different decisions as how to balance account and faithfulness in reaching reflective equilibria—at
least, the decision would be trivialized into a binary decision. However, the whole idea of
using the proposed achievement function with α weights on a continuous scale is to allow for a
fine-grained spectrum of balancing the different desiderata.

Trivial Endpoints

In Appendix B, we analyzed whether the model variants yield “trivial” outputs—that is, global
optima or fixed points that consist of singleton theories and commitments.

• Overall, the relative share of trivial global optima and fixed points (result perspective) is
very low for the quadratic model variants.

• Linear model variants exhibit substantially more trivial global optima, but the relative
shares are still low.

• LinearLocalRE exhibits a substantial share of trivial fixed points from the process
perspective but not from the result perspective.

• The relative shares of trivial global optima or fixed points tend to decrease with increasing
sentence pool sizes.

• In quadratic model variants, the α weights have only a small impact on the relative shares
of trivial endpoints.

Alternative Systematicity Measures

In Appendix C, we motivated alternative systematicity measures in view of shortcomings of
the original systematicity measure in Beisbart, Betz, and Brun (2021). We discussed their
advantages and disadvantages in terms of various desiderate for such measures (see Table C.1
for an overview).

One sophisiticated systematicity measure (Section C.3.1) is able to satisfy five out of six
desiderata, but no proposed measure is able to satisfy all six of them. In view of the only
intuitively motivated desiderata and the lack of simulation data, we conclude that these
results are preliminary. In particular, they do not prescribe to replace the original measure of
systematicity.

8.3 Conclusion

The results we arrived at are insufficient to draw general conclusions about the overall perfor-
mance of the four analyzed model variants. Neither did we find conclusive evidence to exclude
one model as generally inadequate, nor did we identify one model that outperforms the others
in all aspects. Instead, each model variant meets some of the validation criteria to a sufficient
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degree within some ranges of simulation setups. In cases where a model variant performs poorly
on average (over the spectrum of simulation setups), the others did as well. In other words,
the performance of a model depends crucially on the specifics of the simulation setup (e.g., the
chosen dialectical structure, sentence pool size, α weights and initial commitments) and the
evaluation criterion at hand.

This does not mean there are no differences between the model variants. Instead, in a specific
context of using the RE model, there might be good reasons to prefer some model variant
over the other. This is because the context might fix certain specifics of the simulation
setup and provide independent reasons for them. Similarly, the context might give us a more
nuanced picture of the relative importance of the different validation criteria. In light of such
specifications, the results we presented can be used (possibly in combination with additional
analyses) to choose a specific model (or at least exclude some).

For instance, the context might prescribe a limited range of α-weight combinations. In
other words, there might be independent reasons of how to balance account, faithfulness and
systematicity. We already saw that a model’s performance is often highly sensitive to the
chosen α weights. Within this region, one might repeat all those dependency analyses we only
averaged over all α-weight configurations (e.g., a model’s performance in dependence of the
sentence pool size). Then, it can (and will) still happen that the models perform differently
with respect to the different validation criteria (consistency, reaching global optima and full
RE states). However, that only means that there is a trade-off between these metrics. In other
words, in addition to balancing account, faithfulness and systematicity, there is a balancing of
those desiderata that are connected to the used validation criteria.

From this perspective, it is perhaps not that surprising and worrisome that the described
results are mixed but in perfect agreement with central ideas about RE.

8.4 Outlook

In many ways, this technical report is but a starting point for future lines of research. In the
following, we describe some promising and pressing issues that call for further research.

Note that the current Python implementation of the model is designed to facilitate extending the
model (as demonstrated by the three model variants used in this report). Various components
of the formal model, for instance, the measures account, faithfulness, and systematicity can be
changed with a few lines of code (source).

8.4.1 The Neighborhood Depth and the Search Strategy of Locally Optimizing
Model Variants

The local model variants examine available candidate positions for adjustments during RE
processes in a small neighborhood of the current position. For this report, the search depth
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was confined to adjusting one single sentence per adjustment step. A particular shortcoming
of such small neighborhood depths is that they may “miss” sensible adjustments that involve
arguments with more than one premise.1 In particular, the adjustment of theories might be
severely restricted.

It is important to note that considering larger neighborhood depths reintroduces an exponential
growth of the search space depending on the size of the sentence pool. One might, therefore,
worry that enlarging the neighborhood depth defies the original motivation to use locally
optimizing models—namely, providing a model that works computationally feasible with larger
sentence pools.

In view of this and additional reasons, it is worthwhile to devise and analyze locally optimizing
models that implement other search strategies for finding subsequent epistemic states. For
instance, the process might mimic a random walk, or we might allow the model to “backtrack”
different branches, enabling them to avoid dead-ends (i.e., mere local optima).

8.4.2 Alternative Systematicity Measures

The measure of systematicity in the original formal model of Beisbart, Betz, and Brun (2021)
has a shortcoming, as it does not discriminate between singleton theories on the basis of their
scope (for formal details, see Section 7.1).

In Appendix C, we discussed several alternative suggestions to define systematicity and began
to analyze them with respect to some intuitive criteria. These preliminary considerations
should be complemented with the exploration of simulation results of corresponding model
variants.

8.4.3 The Inferential Density of Dialectical Structures

We did not analyze the performance of the model variants in dependence on the inferential
density of the randomly generated dialectical structures (for the definition, see Section 2.4.3).
One reason for this omission was the worry that the generated 50 dialectical structures per
sentence pool hardly correspond to a representative sample of dialectical structures. Accordingly,
we did not analyze whether and to what extent model outcomes depend on properties of the
dialectical structure other than the sentence pool size. Hence, it may be interesting to treat, for
instance, inferential density as an independent variable to gain new insights about the model’s
behaviour.

1Results that might suggest such a shortcoming of local model variants can be found in Figure 4.4 and
Figure 4.5.
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8.4.4 Extrapolation to Larger Sentence Pools

We considered only a confined range of sentence pools with few sentences (12, 14, 16 and 18).
As it stands, the results of this report provide no solid basis to extrapolate our findings to
larger sentence pools. Such results are, however, needed since it is pretty clear that applications
of the formal RE model to somewhat realistic cases will involve much more sentences.2 It
is, in particular, important to know whether and under which conditions locally optimizing
model variants can reach global optima since a semi-global optimization is computationally
infeasible with larger sentence pools. In these cases, some form of local optimization has to
take over. However, the prospects of using locally optimizing models have to be evaluated
carefully beforehand. To arrive at better estimates, one would need dedicated ensembles of
simulations comprising larger sentence pools that simultaneously allow the calculation of global
optima as reference points.

2For instance, the reconstruction of Thomson’s famous “The Trolley Problem” (2008) by Rechnitzer (2022)
involves 25 (unnegated) sentences. This would amount to the daring task of considering 325 (roughly 850
billion) candidates per commitment adjustment step in an RE process with a semi-globally optimizing model
variant.
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A The Tipping Line of Linear Model Variants

Linear model variants involve a linear function G(x) = 1 − x in the calculation of account (A),
faithfulness (F ) and systematicity (S) instead of the quadratic function G(x) = 1 − x2 used in
Beisbart, Betz, and Brun (2021). For the linear models, we observed a tipping line in ternary
plots that marks off configurations of weights that lead to drastically different behaviour with
respect to the attainment of full RE states (see, e.g., Figure 5.7) consistency considerations
(see, e.g., Figure 6.4 and Figure 6.5), or the maximization of measures such as account or
faithfulness (see, e.g., Figure 7.9 and Figure 7.10).

This tipping line is characeterized by the following equation:

αA = 1 − αS

2 (A.1)

The boundary condition αA + αS + αF = 1 allows us to rewrite Equation A.1 in an even simpler
form:

αA = αF

Consequently, the tipping line splits the space of weight configurations into the two regions
αA < αF and αA > αF .

There are interesting analytical results for both regions. The following propositions and their
corollaries help to explain the salient change in the behaviour of linear model variants when
crossing the tipping line.1

• Proposition 1: For the linear model variants all global optima are full RE states if
αA > αF .

• Proposition 2: For the linear model variants all global-optimum commitments maximize
faithfulness if αF > αA.

1We follow the notation used in Beisbart, Betz, and Brun (2021). Definitions of terms we neither introduced
here nor in the introduction (Chapter 2) can be found in Beisbart, Betz, and Brun (2021).
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A.1 Proposition 1

Let τ be a dialectical structure and C0 some initial commitments. Moreover, assume αA > αF

for a configuration of weights (αA, αS , αF ) in a linear model variant. Then, all global optima
(relative to C0) are full RE states.

Corollaries The linear model variants exhibit the following behaviour for αA > αF .

• For global optima, there are no inconsistency-preserving cases.
• Consistency-eliminating cases do not occur for global optima.

Proof sketch

Intuitively, αA > αF means that account trumps faithfulness. Accordingly, the process
can maximize account during the adjustment step of commitments without caring about
faithfulness.

Assume that an epistemic state (C, T ) is a global optimum according to the achievement
function Z given some initial commitments C0 and a configuration of weights (αA, αS , αF ) such
that αA > αF . We need to show that (C, T ) is a full RE state, i.e., that T fully and exclusively
accounts for C, or equivalently, A(C, T ) = 1.

For a proof by contradiction, assume that

A(C, T ) = G

(
D0, 0.3, 1, 1(C, T )

n

)
< 1

This holds only if D0, 0.3, 1, 1(C, T ) > 0. In other words, there is at least one sentence s (negated
or unnegated) for which there is a positive contribution to the Hamming distance (penalty). In
particular, we have the following cases:

1. T extends C with respect to s: There is s ∈ T , but s and ¬s are not in C.

• penalty: 0.3

2. T contracts C with respect to s: There is s ∈ C, but s and ¬s are not in T .

• penalty: 1

3. T and C contradict each other with respect to s: Either s ∈ T and ¬s ∈ C or ¬s ∈ T
and s ∈ C

• penalty: 1

131



Each case of changing C with respect to s, yielding new commitments C′, impacts the contribu-
tions to the Hamming distances for account and faithfulness. Note that systematicity is not
affected by changing the commitments.

The complete linearity of the achievement function allows us to distribute (“push in”) the
weights αA and αF over the individual contributions of the hamming distances.

Z(C, T |C0)
= αA · A(C, T ) + αF · F (C|C0) + αS · S(T )

= αA · (1 − D0, 0.3, 1, 1(C, T )
n

) + αF · (1 − D0, 0, 1, 1(C0, C)
n

) + αS · (1 − |T | − 1
|T |

)

= αA − αA · D0, 0.3, 1, 1(C, T )
n

+ αF − αF · D0, 0, 1, 1(C0, C)
n

+ αS − αS · (|T | − 1)
|T |

= 1 − αA · D0, 0.3, 1, 1(C, T ) + αF · D0, 0, 1, 1(C0, C)
n

− αS · (|T | − 1)
|T |

Changing the commitments has no effect on

αS · (|T | − 1)
|T |

,

and n is fixed. Consequently, Z can be optimised by changing the commitments such that the
following term is minimized:

αA · D0, 0.3, 1, 1(C, T ) + αF · D0, 0, 1, 1(C0, C)

= αA ·
n∑

i=1
d0, 0.3, 1, 1(C, T , {si, ¬si}) + αF ·

n∑
i=1

d0, 0, 1, 1(C0, C, {si, ¬si})

=
n∑

i=1
αA · d0, 0.3, 1, 1(C, T , {si, ¬si}) + αF · d0, 0, 1, 1(C0, C, {si, ¬si})

Since the achievement function is optimized for minimal contributions and αA > αF , it is
always more attractive to change the commitments to increase account rather than faithfully
respecting the initial commitments. To see this, consider the change in contributions multiplied
by the corresponding weights in the table below. This argument can be repeated for every
sentence for which C and T differ.

account penalty faithfulness penalty (worst case)
adjusted
commitmetments

d0, 0.3, 1, 1(C′, T , {s, ¬s}) d0, 0, 1, 1(C0, C′, {s, ¬s})

-old commitments −d0, 0.3, 1, 1(C, T , {s, ¬s}) −d0, 0, 1, 1(C0, C, {s, ¬s})
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account penalty faithfulness penalty (worst case)
change difference difference
remove contradicting
element from C

-1 +1

revise contradicting
element in C

-1 +1

add missing element
to C

-0.3 0

remove additional
element from C

-1 +1

In summary, if (C, T ) is a global optimum but A(C, T ) < 1, then there is a position (C′, T )
such that A(C, T ) < A(C′, T ) contradicting (C, T ) being a global optimum. Consequently, we
must have A(C, T ) = 1, i.e., T accounts fully and exclusively for S. This shows that (C, T ) is a
full RE state.

Remark: Note that this argument does not work for quadratic model variants, and in particular,
the default model of Beisbart, Betz, and Brun (2021). The Hamming distance D is a summation
of penalties. Consequently, squaring the hamming distance yields a polynomial expression
where every contributing penalty “interferes” due to multiplication with the others. The
resulting multiplicative terms block the above strategy of comparing the contributions and
distributing the weights αA or αS over these expressions. This is why the quadratic models’
share of full RE states among global optima changes gradually with a change in α-weights (see
Chapter 5).

A.2 Proposition 2

Assume that a dialectical structure τ and some initial commitments C0 are given. Moreover,
assume αA < αF for a configuration of weights (αA, αS , αF ) in a linear model variant. Then,
for all global optima:

F (C | C0) = 1.

Corollaries

The linear model variants exhibit the following behaviour for αA < αF :

• The relative share of inconsistency-eliminating cases among global optima is 0.0.

– Explanation: Removing or revising an initial inconsistency requires deviating from
the initial commitments, which is incompatible with maximal faithfulness.

133



• Similarly, the relative share of inconsistency-preserving cases in this region of weight
configurations corresponds to the relative share of inconsistent initial commitments.

• In turn, the relative share of global optima with maximal value for faithfulness is 1.0.

Proof sketch of Proposition 2

The proof of Proposition 2 is highly similar to that of Proposition 1.

For a proof by contradiction, assume that (C, T ) is a global optimum according to Z, but
F (C | C0) < 1.

This holds only if G
(

D0,0,1,1(C0,C)
n

)
< 1, i.e. only if D0,0,1,1(C0, C) > 0. In other words, there is

at least one sentence for which there is a positive contribution to the Hamming distance. In
particular, there are two cases:

1. C contracts C0 with respect to s: +1 (there is s ∈ C0, but s and ¬s are not in C)
2. C and C0 contradict each other with respect to s: +1

Consider the impacts on individual contributions to the Hamming distances for account and
faithfulness of changing C with respect to s, yielding new commitments C′, in particular the
difference d(C0, C′, {s, ¬s}) − d(C0, C, {s, ¬s}). In the following subcases, (*) will denote the
worst cases.

Case 1

There is an s in C0, but s and ¬s are not in C. We can now define a new C′ by C′ := C ∪ {s}

Faithfulness

• agreement (new) - contraction (old): -1

Account

• Case: s ∈ T : agreement (new) - expansion (old): -0.7
• Case ¬s ∈ T : contradiction (new) - expansion (old): + 0.7
• Case s and ¬s /∈ T (*): contraction (new)- agreement (old): +1

That is, adding s to C yields a +1 contribution to the account penalties in the worst case. This
is counterbalanced by a -1 improvement in the faithfulness penalties.

Case 2

Without loss of generality, we can assume that s ∈ C0 and ¬s ∈ C. We can now either remove
¬s from C (Subcase A) or revise C with s (Subcase B).

Subcase A: C′ := C \ {¬s}

Faithfulness

• contraction (new) - contradiction (old): +0
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Account

• s ∈ T : expansion (new) - contradiction (old): -0.7
• Case ¬s ∈ T (*): expansion (new) - agreement (old): +0.3
• Case s and ¬s /∈ T : agreement(new) - contraction(old): -1

Now, removing ¬s from C leads to a worsening in the account penalties of +0.3 in the worst
case. This is contrasted with no differences in the contributions to faithfulness.

Subcase B: C′ := (C \ {¬s}) ∪ {s}

Faithfulness

• agreement (new) - contradiction (old): -1

Account

• Case: s ∈ T : agreement (new) - contradiction (old): -1
• Case ¬s ∈ T (*): contradiction (new) - agreement (old): +1
• Case s and ¬s /∈ T : contraction (new) - contraction (old): +0

In this case, revising C with s leads to a +1 contribution to the account penalties in the worst
case. This is counterbalanced by an improvement of -1 in the faithfulness penalties.

The complete linearity of the achievement function allows us to distribute (push in) the weights
αA and αF over the individual contributions of the hamming distances in Z. Hence, the
weights also apply to the individual contributions considered above. Moreover, changing the
commitments does not affect the systematicity of the theory, i.e. S(T ) is identical for (C, T )
and (C′, T ). Hence, the achievement function is optimized for minimal contributions in the
measures for account and faithfulness and αF > αA.

Consequently, it is always (Case 1, Case 2 (A and B)) more attractive to stay faithful to the
initial commitments rather than to change the commitments in order to increase account.

This argument can be repeated for every sentence, for which C0 and C differ.

In summary, if (C, T ) is a global optimum but it is assumed that F (C | C0) < 1, then there
is a position (C′, T ) such that Z(C, T | C0) < Z(C′, T | C0), contradicting (C, T ) being a global
optimum. Consequently, we must have F (C | C0) = 1.
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A.3 Generalization to Fixed Points

The results we prooved for the linear model variants hold not only for global optima but also for
fixed points, which requires but a slight modification of the above proofs. The following proof
sketch shows howto generalize Proposition 1 to fixed points for the semi-globally optimizing
model variant LinearGlobalRE. Proposition 2 can be generalized similarly.

Proof sketch

Let τ be a dialectical structure and C0 some initial commitments. Moreover, assume αA > αF

for a configuration of weights (αA, αS , αF ).

For a proof by contradiction, we assume that (Ci, Ti) is a fixed point with A(Ci, Ti) < 1.

(Ci, Ti) being a fixed point implies that (Ci−1, Ti−1) = (Ci, Ti) and hence that A(Ci−1, Ti−1) < 1
as well. However, during the last adjustment step (from i − 1 to i), all minimally consistent
positions were available as candidates. Since A(Ci−1, Ti−1) < 1, the process could have found
other commitments C′

i which would have resulted from changing Ci−1 with respect to s following
the same line of reasoning we used to prove Proposition 1. Again, there would have been at
least one sentence s for which there is a positive contribution to the Hamming distance in the
measure of account. Hence, there would have been (C′

i, Ti) with C′
i ≠ Ci−1 that would have

performed better than (Ci, Ti) according to the achievement functon. This shows that (Ci, Ti)
cannot be a fixed point (contradicting the assumption).

Local Model variants

Finally, we can also generalize Proposition 1 and Proposition 2 to fixed points of the
LinearLocalRE model variant. The difference to the semi-globally optimizing RE process of
LinearGlobalRE is that locally optimizing models (with a neighborhood depth of 1) proceed
by changing at most one sentence per adjustment step. But this is all we need to get the above
proofs by contradiction off the ground, where we only considered hypothetical adjustments of
the commitments with respect to a single sentence. Accordingly, the propositions will also hold
if we enlarge the d-neighborhood to more than one sentence.
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B Trivial Endpoints

B.1 Background

A “trivial” endpoint is a fixed point or a global optimum that consists of a singleton theory
(e.g. T = {s1}) and a singleton commitment (e.g. C = {s1}).

Such outcomes are not bad per se, but they may be indicative of the model exploiting short-
comings in the underlying measures. In particular, “trivial” endpoints may be a consequence
of the original model’s shortcoming concerning the measure of systematicity, which and does
not discriminate between singleton theories on the basis of the scope of theories. Note that the
same shortcoming also applies to the model variants explored in this report.

B.2 Results

ñ Note

The results of this chapter can be reproduced with the Jupyter notebook located here.

B.2.1 Overall Results

Model
Relative share of trivial global

optima
Number of trivial global

optima
Number of global

optima
QuadraticGlobalRE 0.009 6625 714584
LinearGlobalRE 0.081 56635 700830
QuadraticLocalRE 0.009 6625 709289
LinearLocalRE 0.07 50256 721096

Table B.1: Relative share of trivial global optima
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Model
Relative share of trivial fixed

points
Number of trivial fixed

points
Number of fixed

points
QuadraticGlobalRE 0.008 3698 458147
LinearGlobalRE 0.08 25111 312783
QuadraticLocalRE 0.009 5189 588236
LinearLocalRE 0.063 14443 228122

Table B.2: Relative share of trivial fixed points (result perspective)

Model
Relative share of trivial fixed

points
Number of trivial fixed

points
Number of fixed

points
QuadraticGlobalRE 0.007 3700 528616
LinearGlobalRE 0.08 25111 313002
QuadraticLocalRE 0.006 11652 1991852
LinearLocalRE 0.323 421058 1303077

Table B.3: Relative share of trivial fixed points (process perspective)

Observations

• Overall, the relative share of trivial gobal optima (Table B.1) and fixed points (result
perspective Table B.2) is very low for quadratic model variants

• Linear model variants exhibit substantially more trivial global optima, but the relative
shares are still low.

• LinearLocalRE exhibits a substantial share of trivial fixed points in the process per-
spective (Table B.3), but not for the result perspectve (Table B.2). This indicates that
relatively many branches lead to trivial fixed points.

B.2.2 Results Grouped by Sentence Pool Size

Observations

• The relative shares of trivial global optima or fixed points tend to decrease with increasing
sentence pool sizes.

• A notable exception to this trend is LinearLocalRE in the process perspective (Figure B.3)

B.2.3 Results Grouped by Configuration of Weights

Observations

138



6 7 8 9
Sentence pool size

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e 
sh

ar
e 

of
 tr

iv
ia

l g
lo

ba
l o

pt
im

a

Model
LinearGlobalRE
LinearLocalRE
QuadraticGlobalRE
QuadraticLocalRE

Figure B.1: Relative share of trivial global optima grouped by model variant and sentence pool
size
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Figure B.6: Relative share of trivial fixed points (process perspective) grouped by model variant
and weight configuration
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• In quadratic model variants, the configuration of weights have a small impact on the
relative shares of trivial endpoints.

• Linear model variants tend to produce higher relative shares of trivial endpoints for low
values of αF (tipping line?) and high values of αS .
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C Alternative Systematicity Measures

In this appendix, we will point to some shortcomings of the systematicity measure used in
Beisbart, Betz, and Brun (2021) and discuss several alternative measures.1

C.1 Desiderata for systematicity measures

C.1.1 D1 – Content

The achievement function models the trade-off between the three desiderata account, faithfulness
and systematicity. The latter is supposed to measure the extent of a theory’s ability to
systematize sentences from the given sentence pool S. The formulation is admittedly in need
of explication. Beisbart, Betz, and Brun (2021) used the following definition for their RE
model:

SBBB(T ) = 1 −
(

|T | − 1
|T |

)2

(C.1)

with T being a set of sentences representing the principles of the theory and T being the
dialectical closure of T (i.e., all implications of T according to some dialectical structure τ).

The underlying idea is simple. The more content a theory has (as, for instance, measured by
the amount of its implications), the more sentences it systematizes. Hence, we should require:

Content (D1): Everything else being equal, systematicity should (monotonically) increase
with increasing content.

1The considerations and suggestions we present in this appendix are based on different project-internal drafts
and were discussed and further developed on several occasions within our project group of the project
‘How far does Reflective Equilibrium Take us? Investigating the Power of a Philosophical Method’. The
considerations presented here are, in particular, not our original ideas.
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C.1.2 D2 – Simplicity

This simple suggestion is, however, in need of refinement. The systematizing power of a theory
should be evaluated in relation to its size. If a theory implies many sentences only because it
contains many sentences as its principles, its systematizing power should be considered low.
The reason is that systematization is usually thought of as somehow summarising a lot with
little. Theories in physics systematize empirical facts to the extent that they imply a lot of
these facts by using but few physical laws (as, for instance, Newton’s three laws of motion).

These considerations motivate:

Simplicity (D2): Everything else being equal, systematicity should (monotonically) increase
with decreasing theory size.

How does the suggested measure SBBB conform to these constraints? In our modelling context,
a theory is simply a set of sentences, which you can think of as its principles or some axiomatic
basis. Accordingly, the size of a theory can be measured by |T | in Equation C.1. There are
different possibilities for conceptualizing the notion of content. One suggestion is to equate the
dialectical closure of a theory (T ) with its content.

Since the sentence pool is finite, so is the dialectical closure of a theory.2 Accordingly, we can
measure the size of a theory’s content by |T |.

The bracketed term in Equation C.1 can be considered as a penalizing contribution, which
increases with the theory’s size (|T |) and decreases with the theory’s content size (|T |).
Figure C.1 illustrates systematicity values calculated by SBBB for a sentence pool of size 14.3

By following vertical lines (constant theory closure size), you can see that everything else
being equal, “smaller” theories receive higher systematicity values. Hence, SBBB satisfies D2
(simplicity). By following the plotted lines (constant theory size), you can see that SBBB

satisfies D1 (content) for all theory sizes except for |T | = 1. As noted before (see Chapter 7),
these singleton theories receive the maximal systematicity value of 1.0 independent of their
content.

How problematic is this violation of D1? After all, D1 is only violated for singleton theories
and only violated in a “weak” sense. While it is true that systematicity does not monotonically
increase with increasing content for singleton theories, systematicity does at least not decrease
with increasing content. In Chapter 7, we observed that fixed points and global optima
frequently maximize the standard measure of systematicity (with singleton theories). In
Appendix B, we presented a preliminary analysis of how pervasive fixed points and global
optima are that consist of a singleton theory and a single commitment. The sparse emergence

2The closure T is defined by {s ∈ S|T |=τ s}, where |=τ denotes the relation of dialectical implication. In other
words, this closure only contains “atomic” sentences from the sentence pool; it does not include any other
logical consequences (such as conjunctions, for example).

3In the RE Model, theories are dialectically consistent and therefore minimally consistent (see Chapter 2).
Hence, a theory can have at most n principles if 2n is the size of the sentence pool.
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of such “trivial” endpoints suggests that singleton theories (with extremely low content) do not
have a significant advantage over other theories. But this does not mean that the violation of
D1 could not lead to problematic behavior of the model in other contexts. We should, therefore,
consider and analyze other systematicity measures, which we intend in this appendix.

C.1.3 D3 – Minimal Systematicity

There are other constraints as well: Due to the assumption that the sentence pool is finite,
there are lower bounds and upper bounds for systematicity. The systematicity measure SBBB

is normalized to yield values within the unit interval [0, 1]. We will follow this convention.

So, under which conditions should systematicity be minimal? The above formulated intuitions
that led to D1 and D2 suggest that

Minimal systematicity (D3): Systematicity should be minimal if a theory does not imply
anything besides its principles.

We might say that theories that do not imply anything in addition to their principles are
vacuous in the sense of being ineffective in their aim to systematize sentences. We will call
such theories ineffective theories. Similarly, we will call theories that imply more than their
principles effective theories.

The formulation D3 is imprecise or even ambiguous. If we read it strongly, we might require:

Minimal systematicity (D3.1): Theories that do not imply anything besides their principles
(ineffective theories) receive lower systematicity values than other theories.

In other words, the systematicity values of ineffective theories are lower bounds for effective
theories. One way of satisfying D3.1 is to let S(T ) = 0 if T is an ineffective theory. But there
are other possibilities. In particular, D3.1 allows it to distribute different systematicity values
to ineffective theories.

The measure SBBB does not satisfy D3.1—not only because of its preferential treatment of
singleton theories. In the following, we will refer to points in figures such as Figure C.1 by
using tuples of the form (|T |, |T |). For instance, the point (3, 4) denotes the equivalence class
of theories of size three with a dialectical closure of size four. Ineffective theories are points of
the form (n, n), which are the left (lower) end points of lines in Figure C.1. You can see in this
figure that for 2n = 14, there are only four theories that are lower bounds for effective theories
(namely, (4, 4), (5, 5), (6, 6), (7, 7)). For the other ineffective theories, we can find effective
theories that receive lower systematicity values (e.g., SBBB(3, 3) > SBBB(6, 7)). Hence, SBBB

violates D3.1.

There is, however, a weaker interpretation of D3. We might only demand that ineffective
theories receive the lowest systematicity value in comparison to effective theories with the same
amount of principles (e.g., S(3, 3) < S(3, 4) < · · · < S(3, n)). This weaker criterion is satisfied
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by SBBB. Since this weak version of D3 is already implied by D1 (content), we will not list it
as an additional criterion.

If ineffective theories are, in some sense, the least systematizing, we might ask which theories
are most systematizing. According to the above-formulated intuitions, we might suggest that
theories with the least number of principles and the largest number of implications should
receive maximum systematicity values. For a sentence pool of size 14, these are singleton
theories that imply seven sentences. Similar to the weak version of D3, this criterion is satisfied
by SBBB and already implied by D1 and D2.

C.1.4 D4 – Non-Ad-Hocness

Are there other reasonable constraints we should put on systematicity measures? Consider
a theory T with one sentence (T = {s1}) that has an additional sentence s2 in its closure
(T = {s1, s2}). Suppose further we add another sentence s3 to construct a new theory
T ∗ = {s1, s3}. If, now, the dialectical closure T ∗ is not expanded as compared to T besides
the added sentence (i.e., T ∗ = {s1, s2, s3}), we will say that we constructed T ∗ by adding ad
hoc principles to T .

One could argue that adding ad hoc principles should not lead to an increase in systematicity.

First, while the dialectical closure does increase by one sentence, the size of the theory is
also increased by one. What we win in content, we lose in simplicity. In other words, the
introductory intuitions that led to D1 (content) and D2 (simplicity) might be used to argue
that adding ad hoc principles should not increase its systematicity.

Second, there is another intuition we have not used so far. Usually, we think of a theory’s
principles as working together in their sytematizing activity. For many, or at least for some
implications, we have to combine principles. By definition, ad hoc principles do not work
together with other principles to imply other sentences. Accordingly, they do not add something
to the systematization efforts of the other principles. They work on their own.

Hence, we should require:

D4 (non-ad-hocness): Extending a theory with ad hoc principles (i.e., principles that do not
expand the theory’s content besides the added principles) should not increase its systematicity.

In the context of modelling RE, D4 is even too weak to allow the model to penalize the addition
of ad hoc principle in every case (independent of the chosen weights). Suppose two theories T
and T ∗ where the latter is constructed by adding an ad hoc principle to the former. Suppose
further a set of commitments that coincide with the closure of T ∗. Additionally, we assume that
there are no other theories that compare better with respect to the summation of account and
systematicity. In such cases, the achievement function will always prefer T ∗ over T if we don’t
strengthen D4. The problem is that T ∗ performs better than T with respect to account since
account is maximized if the theory’s closure matches the commitments. We must, therefore,
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counterbalance the advantage in account of T ∗ over T by penalizing the addition of ad hoc
principles within the systematicity measure.4 This might suggest that the extension of ad hoc
principles should decrease a theory’s systematicity.

However, that might be too strong since one might want to satisfy D3.1 by letting S = 0 for
ineffective theories. But then, one cannot further reduce systematicity for ad hoc extensions of
ineffective theories. Hence, D.3 might conflict with the requirement that systematicity should
decrease with ad hoc extension. Fortunately, there is a simple solution. The described case is
only relevant for effective theories. Hence, an appropriate strengthening of D4 is:

D4.1 (non-ad-hocness): Extending a effective theory with ad hoc principles should (mono-
tonically) decrease its systematicity; extending an ineffective theory with ad hoc principles
must not increase its systematicity.

Figure C.1 illustrates that SBBB complies with D4.1. This requirement is satisfied if S(n, m) >
S(n + i, m + i) (with n the theorie’s size, m its closure’s size and i the amount of added ad
hoc principles). In Figure C.1, you see, for instance, SBBB(1, 4) > SBBB(2, 5) > SBBB(3, 6) >
SBBB(4, 7).

C.1.5 D5 – Internal Connectedness

One rationale for D4 (non-ad-hocness) was the intuition that ad hoc principles are loners in
some way. They do not work together with other principles in implying other sentences than the
theory’s principles; they do not add something to the inferential potential of a theory besides
themselves. The requirement D4 is, therefore, a special case of a more general requirement
that demands:

D5 (internal connectedness): Everything else being equal (content and size), a theory in
which principles work together is more systematic than a theory in which principles do not
work together (so much).

At this point, we do not further explicate the notion of working together but simply offer two
illustrating examples.

Example C.1 (First example for D5 ). Consider the dialectical structure depicted in Figure C.2
and the theories T1 = {1, 2} and T2 = {7, 8}. Both theories have the same size (2) and the
same size of their dialectical closure (6). The principles of T1 work together in the following
sense: We need both principles to deduce the other sentences of its dialectical closure (3 − 6).
In contrast, the principles of T2 do not work together. Instead, the inferential workload is
distributed among its principles: The principle 7 implies 3 and 4, and principle 8 implies 5 and
6. According to D5, we should expect that S(T2) < S(T1)

4There, of course, other possibilities to adapt the model to achieve this goal.
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Figure C.2: First illustration of principles (not) working together.

Example C.2 (Second example for D5 ). A similar case is depicted in Figure C.3. Here, you
do not need all principles of the theory T1 = {1, 2, 4} to deduce sentence 3 or 5 on their own.
However, the principles of T1 still work together since you need sentence 1 in either case. In
contrast, the principles of the theory T2 = {1, 6, 7} work alone to deduce 3 and 5. (Here, 1 is
even an ad hoc principle.) Again, D5 requires that S(T2) < S(T1)
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Figure C.3: Second illustration of principles (not) working together.

The measure SBBB cannot satisfy D5 for the simple reason that the measure is blind to the
differences in the given examples. This measure calculates systematicity based on the theory’s
size and the size of its dialectical closure without considering any other inferential properties of
the dialectical structure.

C.1.6 D6 – External Connectedness

So far, we have only considered the inferential potential of a theory based on what is implied
by the principles alone (D1 ) and how the principles work together in producing their content
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(D5 ). It might, additionally, be relevant to consider what the theory implies with the help of
other sentences.

Example C.3 (Example for D6 ). For instance, the theory T1 = {1} does not imply anything
on its own (besides its principle) and is thus on par with other singleton theories according to
the original measure of systematicity.However, in contrast to, let’s say, the theory T2 = {4}, T1
does imply sentences if it is combined with other sentences, in particular 2 or 3. We might,
therefore, expect that the systematicity of T1 is higher than the systematicity of T2.
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Figure C.4: Illustration of principles working together with other sentences.

This motivates:

D6 (external connectedness): Everything else being equal, if the content of a theory T1 is
larger with some auxiliary assumptions as compared to another theory T2, then T1 has a larger
systematicity than T2.

Again, SBBB cannot satisfy D6 since it is confined to calculate systematicity based on |T | and
|T |.

C.2 Simple Systematicity Measures

The measure SBBB uses only the size of a theory and the size of its dialectical closure to
calculate systematicity. We will call systematicity measures that follow this recipe simple
systematicity measures. In the following, we will suggest alternative systematicity measures
and analyze their performance concerning D1-D6. We will begin with simple systematicity
measures.

C.2.1 Minimal Mutation Systematicity

The measure SBBB violates D1 (content) due to the numerator |T | − 1 in Equation C.1,
which becomes zero for singleton theories. Accordingly, singleton theories receive maximum
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systematicity independent of their content. One simple suggestion to fix this behaviour is to
adapt the numerator such that it does not become zero for theories of size one. A minimal
adaption would be to subtract smaller values than one:

Smm(T |γ) := G

(
|T | − γ

|T |

)

with γ < 1.

Figure C.5 plots the systematicity measure for different values of the parameter γ. By
construction, the measure satisfies D1 (content). Similar to SBBB, it also satisfies D2 (simplicity)
and D4.1 (non-ad-hocness). It is even possible to comply with D3.1 (minimal systematicity)
if we set γ high enough. In our case (sentence pool of size 14 ), γ = 0.1 is able to push the
systematicity values of (m, m) theories (i.e., ineffective theories) such that they are lower
bounds for effective theories.

C.2.2 Effective Content Systematicity

The basic idea of the measure SBBB to satisfy D1 (content) and D2 (simplicity) is to employ
the “penalizing” term |T |−1

|T | , which gets bigger with an increase in theory size (|T |) and a
decrease in the size of the closure (|T |). There are, however, other ideas to implement a similar
behaviour. A straightforward suggestion is to use the non-trivial content—that is, a theory’s
dialectical implications besides its principles (T \ T )—to measure systematicity. In this way,
an increase in the amount of principles leads to a decrease in systematicity and an increase in
the content to an increase.

What remains is a proper normalization of the measure:

Sec(T ) = |T \ T |
n − 1 = |T | − |T |

n − 1

Maximally systematizing theories are singleton theories that are able to imply for every sentence
s outside of their domain either s or its negation.5 For such theories, we have |T | − |T | = n − 1,
which motivates the denominator. Worst cases are ineffective theories for which |T | = |T |
holds, which yields Sec = 0.

Sec is linear. An alternative would be to use a quadratic term that is more akin to the quadratic
form of SBBB:

Sec2(T ) = 1 −
(

1 − |T | − |T |
n − 1

)2

5If S is the sentence pool, the domain of a theory T is defined by {s ∈ S|s ∈ T or ¬s ∈ T }.
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(b) γ = 0.7
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(c) γ = 0.5
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(d) γ = 0.1

Figure C.5: Minimal mutation systematicity of theories in dependence of their size and closure’s
size.
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(b) Quadratic effective content systematicity

Figure C.6: Effective content systematicity of theories in dependence of their size and closure’s
size.

Both measureses satisfy D1, D2, D3.1. However, they fail to account properly for ad hoc
principles (D4.1 ) and similar to all simple measures, they do not satisfy D5 and D6.

C.2.3 Content-Simplicity Weighted Systematicity

The measure Sec can be motivated in an additional way, which will not only explain why it
violates D4.1 (non-ad-hocness) but which will allow us to construct other measures which will
satisfy D4.1.

The basic idea is to formulate separate penalizing terms for simplicity and content:

• Simplicity penalties: |T | − 1
• Content penalties: n − |T |

Note that theories that are optimal according to simplicity and content receive no penalties.

We can now aggregate them and introduce an additional parameter α that can be used to
balance the penalizing contributions:

α · (|T | − 1) + (1 − α) · (n − |T |) (C.2)

Thus, if α > 1
2 , then a loss in simplicity is penalized more severely than a loss in content.
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Using |T | ≥ |T | ≥ 0, one can show that

α · (|T | − 1) + (1 − α) · (n − |T |) ≤ |T | · (2 · α − 1) + n · (1 − α) − α

Accordingly, we define

c := |T | · (2 · α − 1) + n · (1 − α) − α

and use it to normalize the penalizing term. We will define the new weighted measure by:

Scswα(T |α) = 1 − α · (|T | − 1) + (1 − α) · (n − |T |)
c

One can show that Scswα(T |0.5) = Sec. In other words, if we balance the penalizing terms
for content and size similarly, the new measure Scswα reduces to Sec, which explains why the
latter is not able to satisfy D4.1 (non-ad-hocness). Adding an ad hoc principle to a theory will
increase its size by one and similarly increase its content by one. What is gained in content is
lost in simplicity.

If we want that systematicity decreases with the addition of ad hoc principles (D4.1 ), we must
penalize an increase in size more than a decrease in content (i.e., α > 1

2 .) This is illustrated in
Figure C.7. For α = 0.1 and α = 0.5 D4.1 is violated. If, however, we set α > 0.5 (e.g., 0.7 or
0.9), the measure satisfies D4.1.

Similarly to Sec, the new measure Scswα complies with D3.1 (minimal systematicity). They do
so in a very specific way: The systematicity values for ineffective theories are not only lower
bounds for effective theories, but they also receive the same and lowest systematicity value
possible, namely 0.

Surely, for a fixed |T |, systematicity should be minimised for |T | = |T | and vice versa. However,
it is not clear that all cases of |T | = |T | should have equal systematicity of 0. Especially if we
conceive systematicity to be a weighted combination of simplicity and content, we might think
that cases of larger |T | = |T | are better or worse than cases of smaller ones. In particular, if
simplicity has more weight than content (α > 0.5), then smaller ones should be (a little) more
systematic than larger ones (because they are simpler).

This suggests an alternative normalization. For α > 0.5, the worst case would be |T | = |T | = n
(minimal simplicity). Plugging this into the penalty function Equation C.2 gives us a normalizing
denominator of α·(n−1). For α < 0.5, the worst case would be |T | = |T | = 1 (minimal content).
Plugging this into the penalty function gives us the normalizing denominator (1 − α) · (n − 1).
The denominator that covers both cases is (|α − 0.5| + 0.5) · (n − 1).

To better distinguish the resulting alternative measure from Sswα , we rename the parameter α
to β. This gives:
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(b) α = 0.5
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(c) α = 0.7
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(d) α = 0.9

Figure C.7: Content-simplicity weigthed systematicity (alpha) of theories in dependence of
their size and closure’s size.
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Sswβ
(T ) = 1 − β · (|T | − 1) + (1 − β) · (n − |T |)

(|β − 0.5| + 0.5) · (n − 1)

Similar to Sswα , Sswβ
satisfies D1, D2. The desiderata D3.1 and D4.1 are satisfied for certain

valus of α (in our case for α == 0.525) as illustrated in Figure C.8.

C.2.4 Relative Effective Content Systematicity

The formulation of another solution starts by framing the problem of Sec in the following way:
Sec simply measures the number of implied sentences outside the theory’s principles (|T | − |T |).
Consequently, Sec cannot distinguish between theories that are expanded by ad hoc principles,
that is, principles that do not expand the theory’s content besides the added principles.

However, if a theory is expanded by ad hoc principles, its content measured relative to its size
( |T |−|T |

|T | ) will decrease.

This suggests to measure |T |−|T |
|T | instead of simply measuring |T | − |T |, e.g., as follows:

S(T ) = |T | − |T |
|T |(n − 1)

Alternatively, we can conceptuali7e |T |−|T |
|T | as a multiplicative correction factor for Sec which

can lead to the following:

S(T ) = Sec
|T | − |T |
|T |(n − 1)

This quadratic form might, however, decrease S(T ) unnecessarily, which motivates us to take
the square root of the latter expression:

Srec(T ) :=
√

Sec
|T | − |T |
|T |(n − 1) = |T | − |T |√

|T |(n − 1)

Figure C.9 illustrates that Srec(T ) satisfies D1, D2, D3.1 and D4.1.
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(b) β = 0.525
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(d) β = 0.9

Figure C.8: Content-simplicity weighted systematicity (beta) of theories in dependence of their
size and closure’s size .
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Figure C.9: Relative effective content systematicity of theories in dependence of their size and
closure’s size.
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C.3 Sigma-Based Systematicity Measures

All simple systematicity measures are not able to account for D5 (internal connectedness) and
D6 (internal connectedness) for the simple reason that they evaluate systematicity based on
|T | and |T | alone. The problem, in particular, is that the dialectical closure as defined by
T = {s ∈ S|T |=τ s} will miss those dialectical implications that are relevant for D5 and D6.
The dialectical closure T enumerates only atomic sentences as implications. While it is clear
that arbitrary conjunctions of these atomic sentences are also implications, T is blind to other
complex implications of T . It can, in particular, not distinguish between theories T1 and T2 for
which T1 ̸= T2 but which differ with respect to certain disjunctions implied by the theories (i.e.,
extensional if-then clauses or “conditional implications”).

If we want to account for D5 and D6, we have to use a more ambitious concept of content. In
the following, we will draw on the theory of dialectical structures (Betz 2013) to explicate such
a notion of content.

The inferential density of a dialectical structure τ “can be understood as measure of the
inferential constraints encoded in τ” (Betz 2013, 44) and is defined as

D(τ) = n − lg(σ)
n

with σ being the number of complete and dialectically consistent positions on a dialectical
structure τ and 2n the size of the sentence pool S.

A position is a set of sentences from S (e.g., the commitments of an epistemic state in our RE
model). A dialectical structure will render some of these positions dialectically inconsistent.
For instance, an argument with one premise s1 and the conclusion s2 renders the position
{s1, ¬s2} dialectically inconsistent.

A complete position is a position that includes for each s ∈ S either s or ¬s. Hence, complete
positions do not include flat contradictions (s and ¬s), i.e. they are minimally consistent.
If a dialectical structure is ineffective, and thus does not render any position dialectically
inconsistent, then there are 2n complete and consistent positions. In this case, D(τ) = 0. On
the other hand, if τ allows for exactly one complete and consistent position, and hence renders
all other complete positions dialectically inconsistent, then we have D(τ) = 1.

It is straightforward to generalize the concept of inferential density to a notion of content. The
inferential density D(τ) measures how many complete positions are dialectically inconsistent
given the dialectical structure alone. We can now ask which complete positions are rendered
additionally inconsistent if we further assume the truth of sentences from a theory T . In
other words, if σT is the number of complete consistent positions that extend a theory T , the
term σ − σT can be taken to measure the (σ-based) content size |Cσ(T )| of a theory. Proper
normalization leads to the following:
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|Cσ(T )| = lg(σ − σT + 1)
n

(C.3)

If σ = 2n (minimal inferential density) and σT = 1 (maximal content), |Cσ(T )| = 1. If, on the
other hand, the theory cannot render anything inconsistent that is not already inconsistent by
τ alone (i.e., σ = σT ), |Cσ(T )| = 0.

The more implications T has, the more complete positions are (additionally) rendered dialec-
tically inconsistent. In this way, the expression Equation C.3 is a natural generalization of
|T |.6

C.3.1 Generalizing Relative Effective Content Systematicity

There are surely different possibilities to introduce systematicity measures based on the (σ-based)
content size |Cσ(T )|. Here, we discuss but one measure, which is based on the considerations
we used to devise the measure Srec in Section C.2.4. The basic idea of this measure was to
take the effective content size |T \ T | in relation to the size of the theory.

Hence, the first step is to find a generalization of the expression |T \ T |. Similar to Srec, we are
interested in what a theory inferentially accomplishes besides implying its principles. To that
end, we might consider those positions that are complete and dialectically consistent outside
the domain of the theory. That is, we consider a restriction of the sentence pool S to those
sentences that are neither principles nor negations of a theory’s principles.

More formally, let ST be the domain of T , and let S \ T = S \ ST be the domain outside the
principles of T , 2m the size of the restricted sentence pool and σ

S\T
T the number of positions

that are dialectically consistent given T and complete on the restricted domain S \ T . Then,
we can define the effective content size on S \ T as

|Cσ(T , S \ T )| = lg(σS\T − σ
S\T
T + 1)

m
. (C.4)

Similar to Srec, systematicity should measure the effective content size relative to the size of
the theory—that is, something like:

S ∝ lg(σS\T − σ
S\T
T + 1)

|T | · m

What remains is a proper normalization.

6In fact, Equation C.3 is more akin to |T | minus the amount of τ truths (i.e., sentences that are tautologically
true with respect to the dialectical structure τ).
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Maximal effective content is reached by singleton theories that render all but one position incon-
sistent. Under this assumption we have σ

S\T
T = 1 and |T | = 1. The value of σS\T will depend

on the singleton theory in question. One suggestion is, therefore, to take max({σS\{s})|s ∈ S}
to normalize the measure.

For simplicity, we will use another estimation. σS\T will be maximal if the dialectical structure
is silent on the domain S \ T ; that is, if it doesn’t render anything dialectically inconsistent
on S \ T . In this case, σS\T will be 2n−1 for singleton theories. This motivates the following
normalization:7

Sgrec(T ) = lg(σS\T − σ
S\T
T + 1)

|T | · (n − 1) (C.5)

How does this measure perform with respect to the different desiderata?

For the simple measures, we equated content with T . Since we adopted a more ambitious
concept of content for the generalized measure, we have to assess its performance with respect
to this explication of content.

The desiderata D1 (content) and D2 (simplicity) are trivially satisfied. The numerator of
Equation C.5 is proportional to the size of the generalized content; the denominator is propor-
tional to the theory size. Accordingly, if we keep the size of the theory constant, systematicity
increases with increasing content (D1 ). Similarly, if we keep the theory’s content constant,
systematicity increases with a decrease in theory size (D2 ). Figure Figure C.10 illustrates this
behaviour.8

Ineffective theories do not imply anything besides their principles that is not already tauto-
logically true (with respect to τ). Accordingly, they do not render any positions inconsistent
on σS\T that are not already dialectically inconsistent according to τ alone. Hence, we have
σS\T = σ

S\T
T , which implies that Sgrec(T ) = 0 for ineffective theories. Effective theories, on

the other hand, do imply something additional on σS\T . Hence, we have σS\T > σ
S\T
T and

accordingly Sgrec(T ) > 0 for effective theories. Taken together, this implies that systematicity
values of ineffective theories are lower bounds for those of effective theories (D3.1 ).

It is difficult to assess the desideratum D4.1 visually (as we did with the simple measures)
since we cannot identify ad hoc extensions of theories in Figure C.10. However, similar to D3.1,
we can provide a proof that Sgrec conforms to D4.1.

7Admittedly, Sgrec will under this construction never reach the value one, because σS\T = 2n−1 means that
the theory won’t imply anything on S \ T . However, Sgrec will still have maximal systematicity values for
singleton theories that have maximal content on S \ T .

8The figure is plotted based on a data set of 100 randomly generated dialectical structures and all possible
theory candidates for each τ . This dataset is not needed to plot the function Sgrec. However, it contains all
information of τ -theory pairs to assess σ-based systematicity measures in detail (e.g., it contains for each
pair σS\T and σ

S\T
T ).
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Figure C.10: Generalized relative effective content size systematicity of theories in dependence
of their size and closure’s size.
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Lemma C.1. The generalized relative effective content systematicity satisfies D4.1.

Proof. We have to show that Sgrec(T ∗) < Sgrec(T ) if T ∗ is an extension of T with mere ad
hoc principles. So let us assume that T ∗ is the result of adding an ad hoc principle p ∈ S to a
theory T .

We have to show that

lg(σS\T ∗ − σ
S\T ∗

T ∗ + 1)
|T ∗| · (n − 1) <

lg(σS\T − σ
S\T
T + 1)

|T | · (n − 1)

The corresponding comparison for simple systematicity measures is more or less trivial. In
these cases, we could simply use that |T \ T | = |T ∗ \ T ∗|. Adding one ad hoc principle to a
theory increases its closure and size by one. If we compare the change of size and σ-based
content, the comparison is not so straightforward any more.

Basically, we have to compare σS\T ∗ − σ
S\T ∗

T ∗ with σS\T − σ
S\T
T . Clearly, σS\T ∗ ≤ σS\T

(since S \ T ∗ ⊂ S \ T ). Additionally, we can use the definition of ad hoc principles: Adding
ad hoc principles to a theory T does not do anything in addition to T on S \ T ∗. Hence,
σ

S\T ∗

T ∗ = σ
S\T ∗

T . Considering this equation, we have to compare σ
S\T ∗

T with σ
S\T
T and, again,

we have σ
S\T ∗

T ≤ σ
S\T
T . But this simple estimation does not help to get us any further with

comparing σS\T ∗ − σ
S\T ∗

T ∗ and σS\T − σ
S\T
T .

What we need is a more precise estimation of the forms σS\T ∗ +a = σS\T and σ
S\T ∗

T +b = σ
S\T
T .

In other words, we need to know the extent to which σ
S\T
(T ) increases when further restricting

the sentence pool.

Let’s start with σS\T ∗ and σS\T . We will search for an additive expression for both terms. Let
Γ be the set of all complete and consistent positions on τ (hence, σ = |Γ|). In analogy to σS′ ,
we will define ΓS′ as the set of consistent positions that are complete on the subdomain S ′ ⊂ S.
More formally, we can define:

ΓS′ = {A ∩ S ′|A ∈ Γ}

We will now partition ΓS\T ∗ . Since, S \ T ∗ ⊂ S \ T , we have

ΓS\T ∗ = {A ∩ S \ T ∗|A ∈ ΓS\T } (C.6)

In other words, elements in ΓS\T ∗ result from reducing elements in ΓS\T to the domain outside
T ∗. Since the domains S \ T and S \ T ∗ only differ with respect to the principle p and its
negation (i.e., S \T −S \T ∗ = {p, ¬p}), there are three (exclusive) possibilities of how elements
from ΓS\T are mapped to elements from ΓS\T ∗ : For all A ∈ ΓS\T ∗ either
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1. A ∪ {p} ∈ ΓS\T and A ∪ {¬p} /∈ ΓS\T , or
2. A ∪ {p} /∈ ΓS\T and A ∪ {¬p} ∈ ΓS\T , or
3. A ∪ {p} ∈ ΓS\T and A ∪ {¬p} ∈ ΓS\T .

The corresponding sets are denoted by ΓS\T ∗

1 , ΓS\T ∗

2 and ΓS\T ∗

3 and represent a partitioning of
ΓS\T ∗ :

ΓS\T ∗ = ΓS\T ∗

1 ∪ ΓS\T ∗

2 ∪ ΓS\T ∗

3

Similar to the definition of σT , let ΓT the set of complete positions that extend T . Using this
definition, we can partition ΓS\T into

ΓS\T = ΓS\T
{p} ∪ ΓS\T

{¬p}

We can now use the above defined sets to rewrite ΓS\T
{p} and ΓS\T

{¬p} in the following way:

ΓS\T
{p} =

(
ΓS\T ∗

1 ∪ {p}
)

∪
(
ΓS\T ∗

3 ∪ {p}
)

ΓS\T
{¬p} =

(
ΓS\T ∗

2 ∪ {¬p}
)

∪
(
ΓS\T ∗

3 ∪ {¬p}
)

This leads to

σS\T ∗ = σ
S\T ∗

1 + σ
S\T ∗

2 + σ
S\T ∗

3

and

σS\T = σ
S\T ∗

1 + σ
S\T ∗

2 + 2σ
S\T ∗

3

and hence

σS\T = σS\T ∗ + σ
S\T ∗

3 (C.7)

An analogical partitioning of ΓS\T ∗

T and ΓS\T
T yields

σ
S\T
T = σ

S\T ∗

T + (σT )S\T ∗

3 (C.8)

We will now use Equation C.7 and Equation C.8 to show that Sgrec(T ∗) < Sgrec(T ).
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Clearly, (σT )S\T ∗

3 ≤ σ
S\T ∗

3 . Equation C.7 and Equation C.8 can now be used to deduce

σ
S\T
T − σ

S\T ∗

T ≤ σS\T − σS\T ∗

Since T ∗ is an ad hoc extension of T , we have σ
S\T ∗

T ∗ = σ
S\T ∗

T , which leads to

σ
S\T
T − σ

S\T ∗

T ∗ ≤ σS\T − σS\T ∗

which can be rewritten as

lg(σS\T ∗ − σ
S\T ∗

T ∗ + 1)
(n − 1) ≤ lg(σS\T − σ

S\T
T + 1)

(n − 1) (C.9)

Since |T ∗|
|T | > 1 we have also

lg(σS\T − σ
S\T
T + 1)

(n − 1) <
|T ∗|
|T |

lg(σS\T − σ
S\T
T + 1)

(n − 1) (C.10)

Using both estimations Equation C.9 and Equation C.10 we arrive at:

lg(σS\T ∗ − σ
S\T ∗

T ∗ + 1)
|T ∗|(n − 1) <

lg(σS\T − σ
S\T
T + 1)

|T |(n − 1)

Hence, Sgrec(T ∗) < Sgrec(T ) if T ∗ is an ad hoc extension of T . This concludes the proof of
Lemma C.1.

How does Sgrec performs with respect to D5 (internal connectedness) and D6 (external conenect-
edness)? Since we did not provide any explications of these desiderata, we only calculated Sgrec

for the given illustrations.

In example Example C.1, we considered two theories T1 = {1, 2} and T2 = {7, 8} and expect
according to D5 that S(T2) < S(T1). However, the calculated values (S(T1) = 0.32 and
S(T2) = 0.40) yield the exact opposite: S(T2) > S(T1). Surprisingly, these results can be
explained by the same reasoning we used to motivate D5 (compare Figure C.2). Since the
sentences of S(T1) (1 and 2) only imply other sentences in their combination and the sentences
of S(T2) (7 and 8) imply other sentences on their own, there are, for instance, more complete
consistent positions given 1 than complete consistent positions given 7. In consequence,
σS\T1 < σS\T2 (25 vs. 49). Additionally, σ

S\T1
T1

= σ
S\T2
T2

(4) and accordingly S(T2) > S(T1).
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The same happens in Example C.2 (Figure C.3). There we expected S(T2) < S(T1) for the
given theories. However, the calculation of Sgrec yields: S(T2) > S(T1) (0.20 vs. 0.14)—again
due to σS\T1 < σS\T2 (9 vs. 16).

In consequence, principles working together is a disadvantage in terms of systematicity measured
this way. The examples were intentionally constructed to yield σ

S\T1
T1

= σ
S\T2
T2

since we wanted
to compare theories that differ to each other only in whether their principles work together.
However, the only remaining relevant quantity in (σS\T ) will induce systematicity values in
conflict with D5.

Example C.3 (Figure C.4) was used to motivate D6 (external connectedness). According to
the formulated intuitions, everything else being equal, a theory’s systematicity should exceed
another’s if the former implies more in combination with other sentences than the latter.
The simple measures cannot satisfy D6 since they are insensitive to the non-trivial content
(i.e., the content outside T ). On the other hand, the effective content size |Cσ(T , S \ T )| was
conceptualized to account for these implications. Accordingly, it is not surprsing that Sgrec

satisfies D6.9 In the example, we expected that S(T2) < S(T1), which is confirmed by the
corresponding calculations (0 vs. 0.78).

C.4 Conclusion

We motivated the desiderata D1-D6 by arguing that the systematicity measure SBBB used
in Beisbart, Betz, and Brun (2021) has some shortcomings and by alluding to some general
intuitions concerning the concept of systematicity (Section C.1). We moved on to motivate
some alternative measures and discussed their advantages and disadvantages in terms of D1-D6
(see Table C.1 for an overview).

Simple systematicity measures calculate their values based on the two quantities |T | and
|T |. Accordingly, all simple measures cannot account for D5 and D6, which demands the
consideration of additional properties of theories.

SBBB does not (fully) satisfy D1 and does not satisfy D3.1. The most simple adaption of SBBB

(Smm) satisfies D1-D4.1. The measures Sec and Sec2 are also able to fix the shortcomings of
SBBB but do not satisfy D4.1. We suggested three adaptions of Sec that satisfy D1-D4.1, two
of which incorporate an additional parameter to model the balancing between content and
simplicity.

Sigma-based measures draw on a more sophisticated notion of content (Section C.3), which can
be used to devise additional systematicity measures. We suggested one systematicity measure
that is able to account for D1-D4.1 and D6 but which does not satisfy D5 (Section C.3.1).

9At least, if ‘everything else being equal’ includes σS\T .
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Systematicity measure D1 D2 D3.1 D4.1 D5 D6

Standard measure (SBBB)
Minimal mutation systematicity (Smm)
Effective content systematicity (Sec)
Quadratic effective content systematicity (Sec2)
Weighted systematicity (Scswα)
Weighted systematicity (Scswβ

)
Relative effective content systematicity (Srec)
Generalized effective content systematicity (Sgrec)

Table C.1: Overview of how the different measures conform to the suggested requirements
content (D1), simplicity (D2), minimal systematicity (D3.1), non-ad-hocness (D4.1),
internal connectedness (D5) and external connectedness (D6).

The described results are preliminary in that they do not prescribe to replace the measure
SBBB.

First of all, we did not provide any simulation results of model variants using these alternative
measures. Hence, we do not know how these model variants perform with respect to the
described evaluation criteria (Section 2.3).

Second, we formulated but a few intuitions in favour of these desiderata without systematically
arguing for them. Hence, it is undecided which of them are important (and to what extent).

Finally, even if these desiderata are important, there are other possibilities to account for them.
Instead of threading them into one complex systematicity measure, they might be separated into
different measures that are used to extend the given achievement function. For the measures
Scswα and Scswβ

we already suggested that content (D1 ) and simplicity (D2 ) might be weighted
against each other. The considerations concerning how Sgrec performs with respect to D5 and
D6 also suggest that D5 and D6 might be in conflict with each other. Accordingly, making
the corresponding balancing explicit (by parametrization) might be appropriate.
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