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Abstract: In this paper we investigate an abstract Klein–Gordon equation by means
of indefinite inner product methods. We show that, under certain assumptions on the
potential which are more general than in previous works, the corresponding linear oper-
ator A is self-adjoint in the Pontryagin space K induced by the so-called energy inner
product. The operator A possesses a spectral function with critical points, the essential
spectrum of A is real with a gap around 0, and the non-real spectrum consists of at most
finitely many pairs of complex conjugate eigenvalues of finite algebraic multiplicity; the
number of these pairs is related to the ‘size’ of the potential. Moreover, A generates a
group of bounded unitary operators in the Pontryagin space K. Finally, the conditions
on the potential required in the paper are illustrated for the Klein–Gordon equation in
R

n ; they include potentials consisting of a Coulomb part and an Lp-part with n ≤ p<∞.

1. Introduction

The motion of a relativistic spinless particle of mass m and charge e in an electrostatic
field with potential q is described by the Klein–Gordon equation((

∂

∂t
− i eq

)2

−� + m2
)
ψ = 0, (1.1)

where the velocity of light has been normalized to 1; hereψ is a complex-valued function
of t ∈ R and of x ∈ R

n . An abstract model for this equation is obtained if we replace the
strictly positive self-adjoint operator generated by the differential expression −� + m2

in the function space L2(R
n) by a strictly positive self-adjoint operator H0 in a Hilbert

space H with scalar product (·, ·) and the operator of multiplication by the function eq
in L2(R

n) by a symmetric operator V in H:((
d

dt
− i V

)2

+ H0

)
u = 0; (1.2)
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here u is a function of t with values in H. The abstract Klein–Gordon equation (1.2) can
be transformed into a first order differential equation for a vector function x with two
components in an appropriate product Hilbert space G and a linear operator A in G:

dx
dt

= i Ax. (1.3)

This can be achieved by different substitutions leading to different operators A; however,
in general this is not possible with a self-adjoint operator A in a Hilbert space G.

The operator considered in the present paper arises from the abstract Klein–Gordon
equation (1.2) by means of the substitution

x = u, y = −i
d

dt
u, (1.4)

which leads to a first order differential equation for x = (x y)t of the form

dx
dt

= i Âx, Â =
(

0 I
H0 − V 2 2V

)
. (1.5)

Since both operators H0 and V are in general unbounded, the block operator matrix Â in
(1.5) may not even be densely defined nor closed. To this end, suitable assumptions have
to be imposed on the potential V so that we can associate a closed operator A with the
block operator matrix Â. If the potential V is not small, Â does not exhibit symmetry in
any Hilbert space. However, formally, if we introduce the so-called energy inner product
〈·, ·〉 which, for suitable elements x = (x y)t, x′ = (x ′ y′)t of H ⊕ H, is given by

〈x, x′〉 =
((

H0 − V 2 0
0 I

)
x, x′

)
=

(
(H0 − V 2)x, x ′) + (y, y′), (1.6)

then it is not difficult to see that Â is symmetric with respect to 〈·, ·〉:
〈
Âx, x′〉 =

((
0 H0 − V 2

H0 − V 2 2V

)
x, x′

)
.

The inner product 〈·, ·〉 is in general indefinite; under our assumptions on the potential
V , it is negative definite on a subspace of finite dimension so that the space G equipped
with 〈·, ·〉 becomes a so-called Pontryagin space.

For the Klein–Gordon equation in R
n , the operator Â in the energy inner product

〈·, ·〉 has been studied in a number of papers, see, e.g., [SSW40, Lun73a, Lun73b, Eck76,
Eck80, Sch76, Kak76, Wed77, Wed78, Jon79, Naj80a, Naj80b, Naj83, Bac04], and the
unpublished manuscript [LN96]1; some of these works also consider the corresponding
abstract operator Â in a Pontryagin space, but under more restrictive assumptions on the
potential V .

The operator A and the energy inner product 〈·, ·〉 studied in this paper are related
to other operators associated with the abstract Klein–Gordon equation (see [LNT06]).
They arise from the second order differential equation (1.2) by means of the substitution

x = u, y =
(

−i
d

dt
− V

)
u, (1.7)

1 This manuscript was the starting point for the present paper; unfortunately, Professor Branko Najman
died in August 1996.
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which leads to a first order differential equation (1.3) for x = (x y)t of the form

dx
dt

= i

(
V I
H0 V

)
x. (1.8)

The operator A1, for example, is obtained from (1.8) as the closure of the block oper-
ator matrix therein in the Hilbert space G1 = H ⊕ H; it turns out to be symmetric
with respect to the so-called charge inner product [·, ·], which is defined on elements
x = (x y)t, x′ = (x ′ y′)t of G1 = H ⊕ H by a relation of the form

[x, x′] =
((

0 I
I 0

)
x, x′

)
= (x, y′) + (y, x ′). (1.9)

Independently of the potential V , the charge inner product is in general negative on an
infinite dimensional subspace and hence leads to a so-called Krein space. The energy
inner product is related to the charge inner product as follows:

〈x, x′〉 = [A1W̃ x, W̃ x′], W̃ =
(

I 0
−V I

)
, (1.10)

for suitable elements x, x′ of the Pontryagin space
(G, 〈·, ·〉); under our assumptions on

V , the operator W̃ : G → G1 is bounded. The spectral properties of the operator A1
and of another operator A2 associated with (1.8) in the charge inner product and their
relations to the operator A are investigated in a separate paper (see [LNT06]).

The present paper is organized as follows: In the next Sect. 2 we briefly review results
from the theory of self-adjoint operators in Pontryagin spaces. In Sect. 3 we associate
the operator A with (1.5); it acts in the space G = H1/2 ⊕ H, where H1/2 is the Hilbert

space given by D(
H1/2

0

)
with norm ‖H1/2

0 · ‖. We show that if

(i) D(
H1/2

0

) ⊂ D(V ) (i.e., S = V H−1/2
0 is bounded) and

(ii) I − S∗S is boundedly invertible,

then the operator

A =
(

0 I
H 2V

)
, D(A) = D(H)⊕ H1/2,

is closed and boundedly invertible in G; here H is the self-adjoint operator in H given by
H = H1/2

0 (I − S∗S)H1/2
0 . In Sect. 4 we introduce the indefinite inner product 〈·, ·〉 on G

and we prove that under the above assumptions (i) and (ii) the space G equipped with this
inner product is a Krein space K and A is a self-adjoint operator in K with non-empty
resolvent set. In addition, we study the relation (1.10) of the energy inner product 〈·, ·〉
with the operator A1 and the corresponding charge inner product [·, ·]. Section 5 contains
the main result about the spectral properties of A. Under the additional assumption

(iii) S = V H−1/2
0 = S0 + S1 with ‖S0‖ < 1 and a compact operator S1,

we show that K is a Pontryagin space of index κ , where κ is the number of negative
eigenvalues of I − S∗S, the operator A possesses a spectral function with at most finitely
many critical points, the non-real spectrum of A consists of at most κ pairs of complex
conjugate eigenvalues, and the essential spectrum of A is real and has a gap of size at
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least 2(1 − ‖S0‖)m around 0. Moreover, the operator A generates a strongly continu-
ous group

(
exp(iAt)

)
t∈R

of unitary operators in the Pontryagin space K and hence the
Cauchy problem

dx
dt

= iAx, x(0) = x0,

has a unique solution for all initial values x0 ∈ H1/2 ⊕H. Since ∞ is not a critical point
for a self-adjoint operator in a Pontryagin space, the group

(
exp(iAt)

)
t∈R

is uniformly
bounded in K; therefore the time-asymptotic behaviour of the solution x and hence of the
solution of the abstract Klein–Gordon equation (1.2) is the same as in a Hilbert space.
This is not the case for the self-adjoint operator A1 in the Krein space G1 since there ∞
is a critical point (see [LNT06]).

Finally, in Sect. 6, we consider the Klein–Gordon equation in R
n and present sufficient

conditions for the above assumptions. In particular, we show that our results apply to
potentials V of the form V = V0 +V1 with a Coulomb part V0(x) = γ /|x |, x ∈ R

n \{0},
with γ < (n − 2)/2 and V1 ∈ L p(R

n) with n ≤ p < ∞.

2. Preliminaries

1. Notations and definitions from spectral theory. For a closed linear operator A in a
Hilbert space G with domain D(A) we denote by ρ(A), σ (A), and σp(A) its resolvent
set, spectrum, and point spectrum (or set of eigenvalues), respectively. For λ ∈ σp(A) the
algebraic eigenspace of A at λ is denoted by Lλ(A). The operator A is called Fredholm
if its kernel is finite dimensional and its range is finite codimensional (and hence closed),
see, e.g., [GGK90, Chapter IV, §5.1]. The essential spectrum of A is defined by

σess(A) := {λ ∈ C : A − λ is not Fredholm}.
An eigenvalue λ0 ∈ σp(A) is called of finite type if λ0 is isolated (i.e., a punctured
neighbourhood of λ0 belongs to ρ(A)) and A − λ0 is Fredholm or, equivalently, the
corresponding Riesz projection is finite dimensional.

2. Linear spaces with inner products. A Krein space (K, [·, ·]) is a linear space K which
is equipped with an (indefinite) inner product (i.e., a hermitian sesquilinear form) [·, ·]
such that K can be written as

K = G+[�]G−, (2.1)

where (G±,±[·, ·]) are Hilbert spaces and [�] means that the sum of G+ and G− is direct
and [G+,G−] = {0}. The norm topology on a Krein space K is the norm topology of
the orthogonal sum of the Hilbert spaces G± in (2.1). It can be shown that this norm
topology is independent of the particular decomposition (2.1); all topological notions in
K refer to this norm topology and ‖ · ‖ denotes any of the equivalent norms.

Krein spaces often arise as follows: In a given Hilbert space (G, (·, ·)), every bounded
self-adjoint operator G in G with 0 ∈ ρ(G) induces an inner product

[x, y] := (Gx, y), x, y ∈ G, (2.2)

such that (G, [·, ·]) becomes a Krein space; here, in the decomposition (2.1), we can
choose G+ as the spectral subspace of G corresponding to the positive spectrum of
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G and G− as the spectral subspace of G corresponding to the negative spectrum of G.
A subspace L of a linear space K with inner product [·, ·] is called non-degenerated if
there exists no x ∈ L, x �= 0, such that [x,L] = 0, otherwise L is called degener-
ated; note that a Krein space K is always non-degenerated, but it may have degenerated
subspaces. An element x ∈ K is called positive (non-negative, negative, non-positive,
neutral, respectively) if [x, x] > 0 (≥ 0, < 0, ≤ 0, = 0, respectively); a subspace
of K is called positive (non-negative, etc., respectively), if all its nonzero elements are
positive (non-negative, etc., respectively). For the definition and simple properties of
Krein spaces and linear operators therein we refer to [Bog74, Lan82, AI89].

3. Self-adjoint operators in Krein spaces. For a closed linear operator A in a Krein space
K with dense domain D(A), the (Krein space) adjoint A+ of A is the densely defined
operator in K given by

D(A+) := {y ∈ K : [A · , y] is a continuous linear functional on D(A)}
and the relation

[Ax, y] = [x, A+ y], x ∈ D(A), y ∈ D(A+).

The operator A is called symmetric if A ⊂ A+ and self-adjoint if A = A+. The spectrum
of a self-adjoint operator A in a Krein space K is always symmetric to the real axis; note
that both the spectrum σ(A) or the resolvent set ρ(A) may be empty. An orthogonal
projection P in a Krein space K is a self-adjoint projection in K; note that orthogonal
projections in a Krein space may have norm > 1.

If for a self-adjoint operator A in a Krein space K with λ0 ∈ σp(A) all the eigenvec-
tors at λ0 are positive (negative, respectively), then λ0 is called an eigenvalue of positive
(negative, respectively) type. A positive or negative eigenvector x0 of A at λ0 does not
have any associated vectors. Consequently, if for an eigenvector x0 at λ0 there exists an
element x1 such that (A − λ0)x1 = x0, then x0 is neutral.

4. Self-adjoint operators in Pontryagin spaces. If in some decomposition (2.1) one of
the components G± is of finite dimension, it is of the same dimension in all such decom-
positions, and the Krein space (K, [·, ·]) is called a Pontryagin space. For the Pontryagin
spaces K occurring in this paper, the negative component G− is of finite dimension, say
κ; in this case, K is called a Pontryagin space with negative index say κ . If K arises from
a Hilbert space G by means of a self-adjoint operator G with inner product (2.2), then
K is a Pontryagin space with negative index κ if and only if the negative spectrum of
the invertible operator G consists of exactly κ eigenvalues, counted according to their
multiplicities. In a Pontryagin space K with negative index κ each non-positive subspace
is of dimension ≤ κ , and a non-positive subspace is maximal non-positive (that is, it is
not properly contained in another non-positive subspace) if and only if it is of dimension
say κ .

If L is a non-degenerated linear space with inner product [·, ·] such that for a κ-
dimensional subspace L− we have

[x, x] < 0, x ∈ L−, x �= 0,

but there is no (κ + 1)-dimensional subspace with this property, then there exists a Pon-
tryagin space K with negative index κ such that L is a dense subset of K. This means
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that L can be completed to a Pontryagin space in a similar way as a pre-Hilbert space
can be completed to a Hilbert space.

The spectrum of a self-adjoint operator in a Pontryagin space is real with the possible
exception of at most κ non-real pairs of eigenvalues λ, λ of finite type; this estimate
can be improved by taking multiplicities into account (see (2.3) below). According to
a theorem of Pontryagin, a self-adjoint operator A in a Pontryagin space with negative
index κ has a κ-dimensional invariant non-positive subspace Lmax− :

Lmax− ⊂ D(A), ALmax− ⊂ Lmax− ;
the subspace Lmax− can be chosen such that Im

(
σ(A|Lmax− )

) ≥ 0. Then the points of
σ(A|Lmax− ) are the eigenvalues of A in the closed upper half plane with a non-positive
eigenvector. We denote the set of all eigenvalues of A with a non-positive eigenvector
by σ0(A); for a point λ ∈ σ0(A), the maximal dimension of a non-positive subspace of
Lλ(A) is denoted by κ−

λ (A). Concerning the non-real spectrum of A, the closed linear
span of all the algebraic eigenspaces Lλ(A) corresponding to the eigenvalues λ of A
in the open upper (or lower) half plane is a neutral subspace of K; for all such points
λ the algebraic eigenspaces Lλ(A), Lλ(A) are skewly linked, that is, to each nonzero
x ∈ Lλ(A) there exists a y ∈ Lλ(A) such that [x, y] �= 0 and to each nonzero y ∈ Lλ(A)
there exists an x ∈ Lλ(A) such that [x, y] �= 0. In particular, dim Lλ(A) = dim Lλ(A)
and the Jordan structure of A in Lλ(A) and in Lλ(A) is the same. Further, the relation

κ =
∑

λ∈σ0(A)∩R

κ−
λ (A) +

∑
λ∈σ(A)∩C+

dim Lλ(A) (2.3)

holds, which yields estimates for the number of points of σ0(A). All (real) points λ ∈
σ(A) \ σ0(A) are spectral points of positive type, by which we mean that they are either
eigenvalues of positive type or, if they belong to the continuous spectrum, that for each
sequence (xn) ⊂ D(A),

‖xn‖ = 1, (A − λ)xn → 0 =⇒ lim inf
n→∞ [xn, xn] > 0.

5. Spectral functions of self-adjoint operators in Pontryagin spaces. If q denotes the
minimal polynomial or the characteristic polynomial of the restriction A|Lmax− , and q∗ is
the polynomial given by q∗(z) = q(z), z ∈ C, then the polynomial q∗q is independent
of the particular choice of the invariant subspace Lmax− , and it is not hard to show that
[q∗(A)q(A)x, x] ≥ 0, x ∈ D(A2κ). As a consequence, a self-adjoint operator A in a
Pontryagin space possesses a spectral function with possible critical points (see [KL63]
and also [Lan82]). In order to introduce it, we call a bounded or unbounded real interval

 ⊂ R admissible for the operator A if the end points of 
 do not belong to σ0(A).
Then, for every admissible interval 
, there exists an orthogonal projection E(
) in K
such that the range E(
)K is invariant under A and

σ
(

A
∣∣E(
)K) ⊂ 
, σ

(
A
∣∣(I − E(
))K) ∩ R ⊂ R \ 
.

Moreover, the mapping 
 �→ E(
) from the semiring RA of all admissible intervals
into the space of all bounded linear operators in K is a homomorphism, that is, for

1, 
2 ∈ RA,

E(
1 ∩ 
2) = E(
1)E(
2), E(
1 ∪ 
2) = E(
1) + E(
2)− E(
1 ∩ 
2),



Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces 165

and

E(∅) = 0, E(R)K =
( ∑
λ∈σ(A)\R

Lλ(A)
)[⊥]

;

here [⊥] denotes the orthogonal complement with respect to the indefinite inner product.
The critical points of the spectral function E are those points λ ∈ R for which the inner
product [·, ·] is indefinite on E(
)K for each 
 ∈ RA containing λ; all critical points of
E belong to σ0(A).

If an interval 
 ∈ RA does not contain points of σ0(A), then the range E(
)K is a
positive subspace of K and hence a Hilbert space. Therefore, with the exception of the
points of σ0(A) ∩ R, the spectral behaviour of A is that of a self-adjoint operator in a
Hilbert space. In particular, for an admissible interval 
 with 
 ∩ σ0(A) = ∅,

AE(
) =
∫



λE(dλ);

here, if A is an unbounded operator and 
 is an unbounded interval, the expressions on
either side coincide as unbounded operators.

Given a point λ0 ∈ σ0(A) ∩ R, we choose an admissible interval 
 = [α, β] such
that [α, β] ∩ σ0(A) = {λ0}. If Lλ0(A) is non-degenerated (e.g., if λ0 is an eigenvalue of
negative type), then the strong limits

lim
µ↗λ0

E([α,µ]), lim
µ↘λ0

E([µ, β])

exist. They can be considered as spectral projections E([α, λ0)) and E((λ0, β]) of A
corresponding to the intervals [α, λ0) and (λ0, β], respectively, and the decomposition

E(
)K = E([α, λ0))K [�] Lλ0(A) [�] E((λ0, β])K (2.4)

holds. If, however, Lλ0 is degenerated, then at least one of the quantities

lim sup
µ↗λ0

‖E([α,µ])‖ or lim sup
µ↘λ0

‖E([µ, β])‖

is infinite and the subspace Lλ0(A) cannot be split off as in (2.4).
If A is an unbounded self-adjoint operator in a Pontryagin space K, we choose a

bounded admissible interval 
 which contains all the real points of σ0(A) and we con-
sider the space

L1 := E(
)K [�]
∑

λ∈σ(A)\R

Lλ(A).

It is a Pontryagin space with negative index κ that reduces A and the restriction A1 :=
A|L1 is a bounded operator. The orthogonal complement L0 of L1 in K is a Hilbert
space with respect to the inner product [·, ·] and the decomposition

K = L1 [�] L0

yields a corresponding orthogonal decomposition of the operator A:

A = A1 [�] A0. (2.5)
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Here A1 is a bounded self-adjoint operator in the Pontryagin space L1 with negative
index κ and A0 is a self-adjoint operator in the Hilbert space L0. Thus, the study of
an unbounded self-adjoint operator in a Pontryagin space can always be reduced to the
study of a bounded self-adjoint operator in a Pontryagin space and of an unbounded
self-adjoint operator in a Hilbert space.

A bounded operator in a Pontryagin space K is called unitary if it maps K onto itself
and

[U x,U y] = [x, y], x, y ∈ K.
Using the decomposition (2.5), it readily follows that a self-adjoint operator A in a Pon-
tryagin space generates a group (exp(it A))t∈R of unitary operators in K and that this
group is exponentially bounded, that is,

‖exp(it A)‖ ≤ C eγ |t |, t ∈ R,

with positive constants C and γ . This was first proved by M.A. Naı̆mark in [Naı̆66].

3. An Operator Associated with the Abstract Klein–Gordon Equation

Let
(H, (·, ·)) be a Hilbert space with corresponding norm ‖ · ‖, H0 a strictly positive

self-adjoint operator in H, H0 ≥ m2 > 0, and V a symmetric operator in H. By means
of the operator H0 we introduce the Hilbert space

(H1/2, (·, ·)1/2
)

as

H1/2 := D(
H1/2

0

)
, (x, y)1/2 := (

H1/2
0 x, H1/2

0 y
)
, x, y ∈ H1/2. (3.1)

In the orthogonal sum G := H1/2 ⊕ H with norm

‖x‖G =
(
‖H1/2

0 x‖2 + ‖y‖2
)1/2

, x = (x y)t ∈ G,

we consider the block operator matrix Â, formally given by

Â :=
(

0 I
H0 − V 2 2V

)
, (3.2)

which arises from the differential equation (1.2) by means of the substitution (1.4) (see
(1.5)).

In order to associate a well-defined operator with the entry H0 − V 2 in Â, we make
the following assumption:

Ass. (i) D(
H1/2

0

) ⊂ D(V );
this condition implies that the operator

S := V H−1/2
0 (3.3)

is everywhere defined and bounded on H.
In the next section we need that the operator associated with the formal expression

H0 − V 2 is boundedly invertible. In order to assure this we also assume

Ass. (ii) 1 ∈ ρ(S∗S), that is, the operator I − S∗S is boundedly invertible.
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In this case the operator H−1/2
0 (I − S∗S)−1 H−1/2

0 is everywhere defined, injective,
bounded and self-adjoint in H; therefore the operator

H := H1/2
0 (I − S∗S)H1/2

0 , D(H) = {x ∈ H1/2 : (I − S∗S)H1/2
0 x ∈ H1/2} (3.4)

is self-adjoint and boundedly invertible in H. The operator H can also be considered as
a densely defined closed operator from H1/2 to H, for which we use the same symbol
H : it is densely defined because D(H) is dense in H and the inclusion H1/2 ↪→ H is
continuous; it is closed since the middle factor is closed in H, the left factor is boundedly
invertible in H and the right factor is boundedly invertible as an operator from H1/2 to
H (see [Kat66, Sect. III.5.2]).

Remark 3.1. The operator H in H (from H1/2 to H, respectively) can also be defined
by means of quadratic forms if we replace the conditions (i) and (ii) by
Ass. (i′) V is H1/2

0 -bounded with relative bound less than 1.

In fact, Assumption (i) is equivalent to the fact that V is H1/2
0 -bounded, that is,

D(
H1/2

0

) ⊂ D(V ) and there exist constants a, b ≥ 0, such that

‖V x‖ ≤ a ‖x‖ + b ‖H1/2
0 x‖, x ∈ D(H1/2

0 ). (3.5)

In Assumption (i′) it is required, in addition, that (3.5) holds with b < 1, or, equivalently
(see [Kat82, Sect. V.4.1]), there exist constants a′, b′ ≥ 0, b′ < 1, such that

‖V x‖2 ≤ a′2 ‖x‖2 + b′2 ‖H1/2
0 x‖2, x ∈ D(H1/2

0 ). (3.6)

If we introduce the forms

h[x, y] := (
H1/2

0 x, H1/2
0 y

)
, x, y ∈ D(

H1/2
0

)
,

v2[x, y] := (V x, V y), x, y ∈ D(V ),

then (3.6) (and hence (i′)) implies that the form v2 is h–bounded with relative form-
bound less than 1. Then, according to [Kat82, Theorem VI.3.9], the form sum h + v2 is
closed and symmetric, and the entry H0 − V 2 in (3.7) can be defined by means of the
self-adjoint operator in H induced by the form sum h + v2. Our choice of the conditions
(i) and (ii) rather than (i′) is due to the fact that Assumption (ii) is needed in the next
section for other reasons.

With the formal matrix Â in (3.2) we now associate the block operator matrix A in
G = H1/2 ⊕ H defined by

A =
(

0 I
H 2V

)
, D(A) = D(H)⊕ D(

H1/2
0

)
. (3.7)

Lemma 3.2. If D(
H1/2

0

) ⊂ D(V ) and 1 ∈ ρ(S∗S), then the operator A from (3.7) is
boundedly invertible, and hence closed in G, with

A−1 =
(−2H−1V H−1

I 0

)
. (3.8)
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Proof. By the assumptions, H is a boundedly invertible operator from H1/2 to H. Hence
formally the inverse of A is given by (3.8). It remains to be shown that A−1 is a bounded
operator in G = H1/2 ⊕ H.

This follows from the facts that H−1 is a bounded operator from H to H1/2, the
identity I is bounded as an operator from H1/2 to H since the inclusion H1/2 ↪→ H is

continuous, and H−1V = H−1/2
0 (I − S∗S)−1 H−1/2

0 V is a bounded operator in H1/2.
For the latter, we observe that V is bounded from H1/2 to H by the first assumption,

(I − S∗S)−1 H−1/2
0 is bounded in H by the second assumption, and H−1/2

0 is bounded
from H to H1/2. ��

The operator A is related to another operator associated with the Klein–Gordon equa-
tion (1.2) which is formally given by (1.8) and arises from the substitution (1.7): In the
orthogonal sum G1 := H ⊕ H we consider the operator

Â1 :=
(

V I
H0 V

)
(3.9)

with domain

D( Â1) :=
{(

x

y

)
∈ H ⊕ H : x ∈ D(V ) ∩ D(H0), y ∈ D(V )

}
.

It has been shown in [LNT06, Thm. 3.1] that Assumption (i) implies that Â1 is closable
with closure A1 given by

D(A1) =
{(

x

y

)
∈ H ⊕ H : x ∈ D(

H1/2
0

)
, H1/2

0 x + S∗y ∈ D(
H1/2

0

)}
, (3.10)

A1

(
x

y

)
=

(
V x + y

H1/2
0 (H1/2

0 x + S∗y)

)
. (3.11)

In order to establish the relation between A and A1, we introduce the unbounded
operator W from G1 = H ⊕ H to G = H1/2 ⊕ H as

W :=
(

I 0
V I

)
, D(W ) := H1/2 ⊕ H.

Its inverse

W −1 =
(

I 0
−V I

)

(denoted by W̃ in (1.10)) is a bounded operator from G = H1/2 ⊕ H to G1 = H ⊕ H
since V is a bounded operator from H1/2 to H by Assumption (i).

Lemma 3.3. If Assumptions (i) and (ii) are satisfied, then

A = W A1W −1. (3.12)
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Proof. Using the description of the domain of A1 from (3.10) and the fact that for

y ∈ H1/2 ⊂ D(V ) we have S∗y = H−1/2
0 V y = H−1/2

0 V y ∈ H1/2, we find

D(W A1W −1)

=
{(

x

y

)
∈ H1/2 ⊕ H :

(
x

−V x + y

)
∈ D(A1), A1

(
x

−V x + y

)
∈ H1/2 ⊕ H

}

=
{(

x

y

)
∈ H1/2 ⊕ H : H1/2

0 x +S∗(−V x +y) ∈D(
H1/2

0

)
, V x−V x +y ∈H1/2

}

=
{(

x

y

)
∈ H1/2 ⊕ H : H1/2

0 x − S∗V H−1/2
0 H1/2

0 x ∈ D(
H1/2

0

)
, y ∈ H1/2

}

=
{(

x

y

)
∈ H1/2 ⊕ H : (I − S∗S)H1/2

0 x ∈ D(
H1/2

0

)
, y ∈ H1/2

}

= D(H)⊕ H1/2 = D(A).
That the operators A and W A1W −1 coincide is seen as follows: for x ∈ D(H) and
y ∈ H1/2 = D(

H1/2
0

)
we have, observing (3.11) and (3.4),

(
I 0
V I

)
A1

(
x

−V x + y

)
=

(
I 0
V I

) (
V x − V x + y

H1/2
0

(
H1/2

0 x + S∗(−V x + y)
)
)

=
(

y

H1/2
0

(
H1/2

0 x + S∗(−V x + y)
)

+ V y

)

=
(

y

H x + H1/2
0 S∗y + V y

)
=

(
y

H x + 2V y

)

= A

(
x

y

)
,

where we have used that y ∈ H1/2 ⊂ D(V ) and H1/2
0 S∗ = (SH1/2

0 )∗ = V ∗ ⊃ V . ��

4. Indefinite Inner Products

In this section we always suppose that Assumptions (i) and (ii) are satisfied and we
consider the operator A from (3.7). Obviously, A is not symmetric with respect to the
Hilbert space inner product of G = H1/2 ⊕ H. However, it exhibits symmetry with
respect to another inner product which is, in general, indefinite. This so-called energy
inner product on G is defined as

〈x, x′〉 := (
H1/2

0 x, H1/2
0 x ′) − (V x, V x ′) + (y, y′)

for x = (x y)t, x′ = (x ′ y′)t ∈ G, which, using S = V H−1/2
0 , can also be written as

〈x, x′〉 = (
(I − S∗S)H1/2

0 x, H1/2
0 x ′) + (y, y′). (4.1)

Lemma 4.1. Under Assumptions (i) and (ii), the space K := (G, 〈·, ·〉) is a Krein space.
If, additionally, the number of negative eigenvalues of the operator I − S∗S in H is
finite, say κ , then K is a Pontryagin space with negative index κ .
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Proof. Due to Assumptions (i) and (ii), the operator I − S∗S is bounded and self-adjoint
in H with 0 ∈ ρ(I − S∗S). Hence H equipped with the inner product

(
(I − S∗S) ·, ·)

is a Krein space (see Sect. 2.2); if, in addition, the number of negative eigenvalues of
I − S∗S in H is finite, say κ , it is a Pontryagin space with negative index κ . Now the
claim follows since H1/2

0 : H1/2 → H is an isomorphism. ��
Remark 4.2. If ‖S‖ < 1, that is, κ = 0, then K is a Hilbert space.

Theorem 4.3. Suppose that D(
H1/2

0

) ⊂ D(V ) and that 1 ∈ ρ(S∗S). Then A is a self-
adjoint operator in the Krein space K with ρ(A) �= ∅.

Proof. For x = (x y)t ∈ D(A) = D(H)⊕ D(
H1/2

0

)
, we obtain, using (4.1),

〈Ax, x〉 =
〈(

y

H x + 2V y

)
,

(
x

y

)〉

=
(
(I − S∗S)H1/2

0 y, H1/2
0 x

)
+ (H x + 2V y, y)

= (y, H x) + (H x, y) + 2(V y, y),

which is real. Thus the operator A is symmetric in K. In order to prove that A is self-
adjoint in K, it remains to be shown that ρ(A) contains a real point µ (then (A − µ)−1

is bounded and symmetric in K and hence self-adjoint in K). Hence, to complete the
proof, it suffices to show that 0 ∈ ρ(A). For f = ( f g)t ∈ H1/2 ⊕ H, the equation
Ax = f with x = (x y)t ∈ D(A) = D(H)⊕ H1/2 is equivalent to

y = f,

H x + 2V y = g.

Since 1 ∈ ρ(S∗S), H is boundedly invertible (see (3.4)) and so the second equation with
y = f has a unique solution x ∈ D(H), whence Ax = f has the unique solution

x =
(

H−1(−2V f + g)

f

)
∈ D(H)⊕ H1/2 = D(A),

which proves that 0 ∈ ρ(A). ��
The energy inner product 〈·, ·〉 on G = H1/2 ⊕ G is related to the so-called charge

inner product [·, ·] on G1 = H ⊕ H which is given by

[x, x′] := (x, y′) + (y, x ′) = (
Gx, x′) (4.2)

with

G :=
(

0 I
I 0

)
.

Obviously, the space K1 := (G1, [·, ·]) is a Krein space for which the positive and neg-
ative components in the decomposition (2.1) have the same dimension; in particular, if
H is infinite dimensional (as it is the case for the Klein–Gordon equation), then both
components are infinite dimensional.
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The operator Â1 given by (3.9) is symmetric with respect to the charge inner product
in K1 since, for x = (x y)t ∈ D( Â1) = D(H0)⊕ D(V ),

[ Â1x, x] = (
G Â1x, x

) = (H0x, x) + (V y, x) + (x, V y) + (y, y),

which is real. Moreover, it has been shown in [LNT06] that, under Assumption (i), the
closure A1 of Â1 given by (3.10), (3.11) is self-adjoint in K1 with ρ(A1) �= ∅.

Proposition 4.4. Between the indefinite inner products 〈·, ·〉 of G and [·, ·] of G1 the
following relations hold:

i) 〈x, x′〉 = [A1W −1x,W −1x′], x ∈ WD(A1), x′ ∈ G,
ii) 〈Ax, x′〉 = [A2

1W −1x,W −1x′], x ∈ D(A), Ax ∈ WD(A1), x′ ∈ G.

Proof. i) Let x = (x y)t ∈ WD(A1), x′ = (x ′ y′)t ∈ G = H1/2 ⊕ H, and set

u =
(

u

v

)
:= W −1x =

(
x

−V x + y

)
∈ D(A1).

Then we have

x = W u =
(

x

y

)
=

(
u

V u + v

)
,

and the left-hand side of i) becomes

〈x, x′〉 = (H1/2
0 x, H1/2

0 x ′)− (V x, V x ′) + (y, y′)
= (H1/2

0 u, H1/2
0 x ′)− (V u, V x ′) + (V u + v, y′).

Using (3.11) and the fact that x ′ ∈ H1/2, we can rewrite the right hand side of i) as

[
A1W −1x,W −1x′]=

[
A1

(
u

v

)
,

(
x ′

−V x ′ + y′

))
=

[(
V u + v

H0(u + T ∗v)

)
,

(
x ′

−V x ′ + y′

)]

= (
V u + v,−V x ′ + y′)+

(
H1/2

0 (u +T ∗v), H1/2
0 x ′)

= (V u + v,−V x ′ + y′)+
(
H1/2

0 u, H1/2
0 x ′)+

(
H1/2

0 T ∗v, H1/2
0 x ′).

Since T = V H−1
0 , the last summand equals (v, T H0x ′) = (v, V x ′) and i) follows.

ii) Let x ∈ D(A) be such that Ax ∈ WD(A1) and hence W −1 Ax ∈ D(A1). Since, by
the operator equality (3.12), we have W −1 Ax = A1W −1x , it follows that A1W −1x ∈
D(A1) and further, by i),

〈Ax, x′〉 = [A1W −1 Ax,W −1x′] = [A2
1W −1x,W −1x′]

for arbitrary x′ ∈ G. ��

Lemma 4.5. Let D(
H1/2

0

) ⊂ D(V ). Then the set WD(A1) is dense in G.



172 H. Langer, B. Najman, C. Tretter

Proof. By (3.10), we have

WD(A1) =
{(

x

V x + y

)
: x ∈ D(V ), x + T ∗y ∈ D(H0)

}
.

Hence if (x0 y0)
t ∈ G is orthogonal to WD(A1) with respect to the Hilbert space inner

product in G = H1/2 ⊕ H, then
((

x

V x + y

)
,

(
x0

y0

))
G

= (H1/2
0 x, H1/2

0 x0) + (V x + y, y0) = 0 (4.3)

for all (x y)t ∈ WD(A1). If we choose x = 0 and y ∈ D(V ), then T ∗y = H−1
0 V y =

H−1
0 V y ∈ D(H0) and hence (0 y)t ∈ WD(A1). Now (4.3) shows that y0 is orthogonal

in H to the dense subset D(V ) and thus y0 = 0. If we choose x ∈ D(H0) and y = 0,
then (x 0)t ∈ WD(A1) because D(H0) ⊂ D(

H1/2
0

) ⊂ D(V ) by assumption. Since H0
is bijective, (4.3) implies that x0 is orthogonal to H and hence x0 = 0. ��
Remark 4.6. If the operator I − S∗S has only finitely many, say κ , negative eigenvalues,
the Pontryagin space K and the operator A can also be introduced by means of the oper-
ator A1 in the space G1 as follows. By Proposition 4.4 i), the indefinite inner product
〈·, ·〉 is defined on the dense subset WD(A1) of G. Since I − S∗S has only κ nega-
tive eigenvalues, the form [A1·, ·] on D(A1) ⊂ G1, and hence 〈·, ·〉 on WD(A1), has
κ negative squares (see [LNT06]). Therefore K is the Pontryagin space completion of
WD(A1) ⊂ G with respect to the inner product 〈·, ·〉; the operator A can now be defined
by the relation in Proposition 4.4 ii).

5. Spectral Properties of the Operator A

In this section we exploit the self-adjointness of the operator A with respect to the
indefinite inner product 〈·, ·〉. We show that A possesses a spectral function with at
most finitely many critical points, we investigate the structure of the spectrum of A
and consider the solvability of an abstract Cauchy problem for A (and hence for the
Klein–Gordon equation).

In order to guarantee that K is a Pontryagin space, in addition to the Assumptions (i)
and (ii), we suppose that

Ass. (iii) S = V H−1/2
0 = S0 + S1 with ‖S0‖ < 1 and a compact operator S1.

To study the spectrum and essential spectrum of A under Assumption (iii), the fol-
lowing lemma for the particular case ‖S‖ < 1 is useful.

Lemma 5.1. Suppose that D(
H1/2

0

) ⊂ D(V ) and 1 ∈ ρ(S∗S). Define the quadratic
pencil L of bounded operators in H by

L(λ) := I − S∗S + λ
(
S∗ H−1/2

0 + H−1/2
0 S

) − λ2 H−1
0 , λ ∈ C. (5.1)

If ‖S‖ < 1, then ρ(A) = ρ(L) and, with α := (1 − ‖S‖)m,

(−α, α) ⊂ ρ(A).
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Proof. By Lemma 3.2, the operator A has a bounded inverse A−1. By the spectral map-
ping theorem (see [EE87, Thm. IX.2.3]), we have

λ ∈ ρ(A) ⇐⇒ µ := λ−1 ∈ ρ(
A−1).

If ‖S‖ < 1, then the operator 
 := I − S∗S is uniformly positive. Hence, by (3.4),
we can write H = H1/2

0 
H1/2
0 , H−1 = H−1/2

0 
−1/2
−1/2 H−1/2
0 , and thus we can

factorize the inverse A−1 given by (3.8) as

A−1 =
(−2H−1V H−1

I 0

)

=
(

H−1/2
0 
−1/2 0

0 I

)(
−2
−1/2 H−1/2

0 V 
−1/2 H−1/2
0

I 0

)
;

here the right factor is an operator from G = H1/2 ⊕ H to H ⊕ H and the left factor is
an operator from H ⊕H back to G = H1/2 ⊕H. If we exchange the order of the factors
and define the auxiliary operator B in H ⊕ H by

B : =
(
−2
−1/2 H−1/2

0 V 
−1/2 H−1/2
0

I 0

) (
H−1/2

0 
−1/2 0
0 I

)

=
(
−
−1/2S∗ H−1/2

0 
−1/2 − 
−1/2 H−1/2
0 S 
−1/2 
−1/2 H−1/2

0
H−1/2

0 
−1/2 0

)
,

then ρ
(

A−1
) \ {0} = ρ(B) \ {0}; here we have used that H−1/2

0 V H−1/2
0 = S∗ H−1/2

0 =
H−1/2

0 S. For µ ∈ C, µ �= 0, we have µ ∈ ρ(B) if and only if for every ( f g)t ∈ H⊕H
there exists a unique (x y)t ∈ H ⊕ H such that(−
−1/2S∗ H−1/2

0 
−1/2 − 
−1/2 H−1/2
0 S 
−1/2 − µ

)
x + 
−1/2 H−1/2

0 y = f,

H−1/2
0 
−1/2x − µ y = g.

If we divide both equations by µ ( �= 0) and insert the second into the first, we see that
this is equivalent to

−
−1/2
( 1

µ

(
S∗ H−1/2

0 + H−1/2
0 S

)
+ 
 − 1

µ2 H−1
0

)

−1/2x = 1

µ
f +

1

µ2

−1/2 H−1/2

0 g,

y = 1

µ

(
H−1/2

0 
−1/2x − g
)
.

Since 
−1/2 is bounded and boundedly invertible, the latter is equivalent to the fact that
µ belongs to the resolvent set of the operator pencil given by

1

µ

(
S∗ H−1/2

0 + H−1/2
0 S

)
+ 
 − 1

µ2 H−1
0

or, equivalently, λ = µ−1 ∈ ρ(L) with L given by (5.1). This completes the proof of
ρ(A) = ρ(L). Finally, for λ ∈ R, |λ| < (1 − ‖S‖)m, the estimate

‖S∗S − λ(S∗ H−1/2
0 + H−1/2

0 S) + λ2 H−1
0 ‖

< ‖S‖2 + 2
(
1 − ‖S‖)m

1

m
‖S‖ +

(
1 − ‖S‖)2

m2 1

m2 = 1

and (5.1) show that λ ∈ ρ(L) = ρ(A). ��
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Theorem 5.2. Suppose that D(
H1/2

0

) ⊂ D(V ), that S = V H−1/2
0 = S0 + S1 with

‖S0‖ < 1 and a compact operator S1, and that 1 ∈ ρ(S∗S). Then we have:

i) K is a Pontryagin space with finite negative index κ , where κ is the number of
negative eigenvalues of the operator I − S∗S.

ii) The self-adjoint operator A in K has a spectral function with at most finitely many
critical points.

iii) The non-real spectrum of A is symmetric with respect to the real axis and consists
of at most κ pairs of eigenvalues λ, λ of finite type; the algebraic eigenspaces
corresponding to λ and λ are isomorphic.

iv) The linear span of all the algebraic eigenspaces corresponding to the eigenvalues
of A in the upper (or lower) half plane is a neutral subspace of K and

κ =
∑

λ∈σ0(A)∩R

κ−
λ (A) +

∑
λ∈σ(A)∩C+

dim Lλ(A);

here σ0(A) denotes the set of all eigenvalues of A with non-positive eigenvector.
v) The points of σ(A) \σ0(A) (which are all real ) are spectral points of positive type.

vi) The essential spectrum σess(A) is real and

σess(A) ∩ (−α, α) = ∅,
where α := (1 − ‖S0‖)m.

vii) The operator A generates a strongly continuous group
(
exp(iAt)

)
t∈R

of unitary
operators in K and hence the Cauchy problem

dx
dt

= iAx, x(0) = x0,

has the unique solution x(t) = exp
(
iAt

)
x0, t ∈ R, for all initial values x0 ∈ K.

Proof. i) Assumption (iii) on S implies that

I − S∗S = I − S∗
0 S0 + K ,

where I − S∗
0 S0 is uniformly positive and K is a compact operator in H. Thus I − S∗S

has only a finite number κ of negative eigenvalues and hence K is a Pontryagin space
of finite negative index κ by Lemma 4.1.

ii), iii), iv), v), and vii) are immediate consequences of Theorem 4.3 and of i) by
[Lan82] (see also Sects. 2.4 and 2.5).

vi) We define an operator A0 in G by

A0 :=
(

0 I
H1/2

0 (I − S∗
0 S0)H

1/2
0 2V

)
. (5.2)

By the spectral mapping theorem (see [EE87, Thm. IX.2.3]), we have

λ ∈ σess(A) ⇐⇒ µ := λ−1 ∈ σess
(

A−1
)
,

λ ∈ σess(A0) ⇐⇒ µ := λ−1 ∈ σess
(

A−1
0

)
.

(5.3)
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The difference A−1 − A−1
0 is compact since S1 is compact by assumption; in fact,

A−1 − A−1
0 = A−1(A0 − A

)
A−1

0 = A−1
(

0 0
H1/2

0

(
S∗

1 S0 + S∗
0 S1

)
H1/2

0 0

)
A−1

0 ,

which is compact since S∗
1 S0 + S∗

0 S1 is compact and

A−1
(

0 0
0 H1/2

0

)
=

(
0 H−1 H1/2

0
0 0

)
=

(
0 H−1/2

0 (I − S∗S)
0 0

)
,

(
H1/2

0 0
0 0

)
A−1

0 =
(
−2(I − S∗

0 S0)
−1 H−1/2

0 V (I − S∗
0 S0)

−1 H−1/2
0

0 0

)

are bounded. By iii), σ(A) has empty interior as a subset of C. In addition, part iii)
applied to A and A0 shows that each of the at most two components of C \ σ(A) con-
tains a point in ρ(A0). Hence, by [RS78, Lemma XIII.4], σess

(
A−1

) = σess
(

A−1
0

)
and

thus, by (5.3),

σess(A) = σess(A0). (5.4)

Now Lemma 5.1 applied to A0 shows that (−α, α) ⊂ ρ(A0) and, consequently,σess(A)∩
(−α, α) = σess(A0) ∩ (−α, α) = ∅. ��

The special cases that S is compact or that ‖S‖ < 1 in Theorem 5.2 have been
considered before (see, e.g., [LN96] and [Naj79], respectively):

Remark 5.3. Suppose that D(
H1/2

0

) ⊂ D(V ) and 1 ∈ ρ(S∗S).

i) If V is H1/2
0 -compact, then

σess(A) = {
λ ∈ C : λ2 ∈ σess(H0)

}
.

ii) If
∥∥V H−1/2

0

∥∥ < 1, then κ = 0, K is a Hilbert space, A is self-adjoint in this Hilbert
space, and

σ(A) ∩ (−α, α) = ∅
with α = (

1 − ∥∥V H−1/2
0

∥∥)
m.

Proof. i) If V is H1/2
0 -compact, we can choose S0 = 0 and S1 = V H−1/2

0 in Assumption
(iii). Then (5.4), (5.3), and (5.2) show that

λ ∈ σess(A) ⇐⇒ λ−1 ∈ σess
(

A−1
0

) = σess

((−2H−1
0 V H−1

0
I 0

))
.

If we define

D :=
(

0 H−1
0

I 0

)
,

then

A−1
0 − D =

(−2H−1
0 V H−1

0
I 0

)
−

(
0 H−1

0
I 0

)
=

(−2H−1
0 V 0

0 0

)
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is compact by assumption. Moreover, by Theorem 5.2 iii) and v), σ(A−1
0 ) has empty

interior as a subset of C and C \ σ(A−1
0 ) consists of only one component containing

points in ρ(D) (e.g., all non-real points of C \ σ(A−1
0 )). Hence [RS78, Lemma XIII.4]

shows that σess(A
−1
0 ) = σess(D). Now the fact that

λ−1 ∈ σess(D) ⇐⇒ λ−2 ∈ σess
(
H−1

0

)
,

which is not difficult to check (see, e.g., [HM01]), completes the proof.
ii) is immediate from Theorem 5.2 v) if we choose S0 = V H−1/2

0 and S1 = 0 in
Assumption (iii). ��
Remark 5.4. If, under Assumption (iii), Assumption (ii) is not satisfied, that is, 1 ∈
σp(S∗S), then 0 is an isolated eigenvalue of finite multiplicity of the self-adjoint opera-

tor H and, with N0 := ker H = ker(I −S∗S)H1/2
0 , the subspace N0⊕{0} is the isotropic

subspace of the inner product space (K, 〈·, ·〉). Then the factor space K̃ = K/N0 is a
Pontryagin space with negative index again given by the number of negative eigenvalues
of I − S∗S. Since ker A = N0 ⊕ {0}, the operator A induces a self-adjoint operator Ã
in this Pontryagin space K̃. Then all claims of Theorem 5.2 remain true for Ã.

6. Assumptions for the Klein–Gordon Equation in R
n

In this section we consider the example of the Klein–Gordon equation in R
n for which

H = L2(R
n) with norm ‖ · ‖2 and scalar product (·, ·)2, H0 = −� + m2, and V stands

for the operator of multiplication by a function V : R
n → R. In this case, sufficient

conditions on the potential V will be established that guarantee the assumptions

Ass. (i) D(
H1/2

0

) ⊂ D(V ) or, equivalently, V : H1/2 → H is bounded,

Ass. (iii) S = V H−1/2
0 = S0 + S1 with ‖S0‖ < 1 and a compact operator S1,

which were used in the previous sections. Obviously, (iii) is stronger than (i). Note
that, according to Remark 5.4, Assumption (ii), that is, 1 ∈ ρ(S∗S), is not an essential
restriction and thus will not be considered here.

It is well-known (see [Tri92, Sects. 1.3.1, 1.3.2]) that for H0 = −� + m2 the space
H1/2 = D(

H1/2
0

)
is the Sobolev space of order 1 associated with L2(R

n):

H1/2 = W 1
2 (R

n).

Hence Assumption (i) holds if and only if W 1
2 (R

n) ⊂ D(V ) or, equivalently, if there
exist constants a, b ≥ 0 such that

‖V u‖2 ≤ a‖u‖2 + b‖(−� + m2)1/2u‖2, u ∈ W 1
2 (R

n); (6.1)

this is equivalent to the (−� + m2)-form boundedness of V 2, that is,

(V 2u, u)2 ≤ a(u, u)2 + b((−� + m2)u, u)2, u ∈ W 1
2 (R

n).

Assumption (iii) holds if V = V0 + V1, where W 1
2 (R

n) ⊂ D(Vi ) for i = 0, 1, V0 satisfies
(6.1) with a, b ≥ 0 such that

a

m
+ b < 1, (6.2)



Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces 177

that is, S0 = V0(−� + m2)−1/2 is a strict contraction, and S1 = V1(−� + m2)−1/2 is
compact.

Many different sufficient conditions for the relative boundedness as well as for the
relative compactness of a multiplication operator with respect to (−� + m2)1/2 have
been established (see, e.g., [Kat82, RS75, Sim71] and the more specialized references
therein). In the following we formulate two well-known sufficient conditions in terms of
L p-spaces and Rollnik classes. We start with a well-known relative compactness result,
which, for p = 3, goes back to Brezis and Kato (see [BK79]).

Theorem 6.1. If n ≥ 3 and V ∈ L p(R
n) with n ≤ p < ∞, then V is (−� + m2)1/2-

compact.2

Proof. The operator of multiplication with V in L2(R
n) is (−�+m2)1/2-compact if and

only if V (−� + m2)−1/2 is compact, that is, if (um) is a sequence in the form domain
W 1

2 (R
n) of −�+ m2 that converges weakly to 0, then (V um) converges strongly to 0 in

L2(R
n). Now let n ≤ p < ∞ and W ∈ L p(R

n), and set q := p/(p − 2). By Hölder’s
inequality and the boundedness of the embedding of the Sobolev space W 1

2 (R
n) into

L2q(R
n) (which holds since p ≥ n, see [EE87, Theorem V.3.7]), we have

‖W u‖2
2 ≤ ‖W‖2

p‖u‖2
2q ≤ c2‖W‖2

p‖u‖2
2,1, u ∈ W 1

2 (R
n); (6.3)

here c is the norm of the embedding of W 1
2 (R

n) into L2q(R
n). Assume now that (um) ⊂

W 1
2 (R

n) converges weakly to 0 and let ε > 0. Since C∞
0 (R

n) ⊂ L p(R
n) is dense, there

exists a function Vε ∈ C∞
0 (R

n) such that ‖V − Vε‖p < ε. Let �ε := supp Vε and
choose Cε ≥ 0 such that |Vε| ≤ Cε. Then we obtain, using (6.3) with W = V − Vε,

‖V um‖2 ≤ ‖(V − Vε)um‖2 + ‖Vεum‖2 ≤ c ε‖um‖2,1 + Cε‖um |�ε‖2. (6.4)

Since (um) converges weakly in W 1
2 (R

n), it is a bounded sequence in W 1
2 (R

n). Hence,
choosing ε sufficiently small, the first term can be made arbitrarily small. The second
term becomes arbitrarily small for sufficiently large m: in fact, W 1

2 (�ε) is compactly
embedded in L2(�ε) since�ε is bounded (see [EE87, Theorem V.3.7]) and thus (um |�ε)
converges to 0 strongly in L2(�ε). ��

For n = 3, a criterion for the relative form-boundedness of V 2 with respect to −�+m2

can be formulated in terms of Rollnik potentials, see [RS75], [Sim71]: A measurable
function W : R

3 → R is said to belong to the class R of Rollnik potentials if

‖W‖2
R :=

∫
R3

∫
R3

|W (x)||W (y)|
|x − y|2 dx dy < ∞.

Theorem 6.2. If n = 3 and V : R
3 → R is a measurable function such that V 2 ∈

R + L∞(R3), then V is (−� + m2)1/2-bounded (with relative bound 0). In particular,
if V 2 ∈ R, we have

∥∥V (−� + m2)−1/2
∥∥ ≤

√
‖V 2‖R

4π
.

2 We thank W.D. Evans for communicating this result to us.
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Proof. The first statement may be found in [RS75, Theorem X.19], for the proof see
[Sim71, Theorem I.21]. For the second claim, we note that, by [Sim71, (I.13)],

(|V |(−� + m2)−1|V |u, u
)

2 ≤ 1

4π

(∫
R3

∫
R3

|V 2(x)| e−m|x−y||V 2(y)|
|x − y|2 dx dy

)1/2

‖u‖2
2

≤ 1

4π
‖V 2‖R ‖u‖2

2, u ∈ D(|V |) = D(V ),

which implies that ‖(−� + m2)−1/2|V | ‖ ≤ √‖V 2‖R/(4π). Hence the densely defined
operator (−� + m2)−1/2|V | is bounded and∥∥V (−� + m2)−1/2

∥∥ = ∥∥ |V |(−� + m2)−1/2
∥∥ = ∥∥(|V |(−� + m2)−1/2)∗

∥∥

= ∥∥(−� + m2)−1/2|V | ∥∥ ≤
√

‖V 2‖R

4π
,

follows. ��
Remark 6.3. For n = 3, Theorem 6.1 shows that every V ∈ L p(R

3)+ L∞(R3)with 3 ≤
p < ∞ is (−�+m2)1/2-bounded (with relative bound 0). This condition is more restric-
tive than the condition V 2 ∈ R+L∞(R3) in Theorem 6.2. Indeed, V ∈ L p(R

3)+L∞(R3)

with p ≥ 3 implies that V 2 ∈ L p/2(R
3) + L p(R

3) + L∞(R3) ⊂ R + L∞(R3) since
Lq(R

3) + L∞(R3) ⊂ R + L∞(R3) for q ≥ 3/2 (see [Sim71, Corollary I.2]).

The Coulomb potential V (x) = γ /|x |, x ∈ R
n \ {0}, does not have relative bound 0

with respect to (−� + m2)1/2; therefore neither Theorem 6.1 nor Theorem 6.2 apply
to it. In this case, however, Assumption (i) is an immediate consequence of the Hardy
inequality.

Proposition 6.4. The Coulomb potential V (x) = γ /|x |, x ∈ R
n \ {0}, with γ ∈ R

satisfies Assumption (i) for n ≥ 3; in fact,

‖V (−� + m2)−1/2‖ ≤ 2|γ |
n − 2

.

Proof. The classical Hardy inequality (see [HLP88, Theorem 330]) shows that, for
u ∈ W 1

2 (R
n),

‖V u‖2
2 ≤ 4γ 2

(n − 2)2
‖∇u‖2

2 ≤ 4γ 2

(n − 2)2
‖(−� + m2)1/2u‖2

2,

which yields the desired estimate. ��
As a consequence of Theorems 6.1, 6.2, and Proposition 6.4, we obtain:

Example 6.5. Let n ≥ 3. Assumption (iii) (and hence (i)) is satisfied if

V = V0 + V1,

where V1 ∈ L p(R
n) with n ≤ p < ∞, and for V0 one of the following holds:

i) V0 ∈ L∞(Rn) with ‖V0‖∞ < m,
ii) V0(x) = γ /|x |, x ∈ R

n \ {0}, with γ ∈ R such that |γ | < (n − 2)/2,
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and, in the particular case n = 3,

iii) V 2
0 ∈ R with ‖V 2

0 ‖R < 4π .

Note that the admission of the relatively compact part V1 of V , which is not subject to
any relative norm bound, gives rise to complex eigenvalues. This was avoided in earlier
papers by assuming that V1 = 0 (see, e.g., [SSW40] for case i) and [Ves83] for case ii)).
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