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ABSTRACT

Context. The number of exoplanets with precise mass and radius measurements is constantly increasing thanks to novel ground- and
space-based facilities such as HARPS, ESPRESSO, CHEOPS, and TESS. The accuracy and robustness of the planetary characteri-
zation largely depends on the quality of the data, but also requires a planetary structure model, capable of accurately modeling the
interior and atmospheres of exoplanets over a large range of boundary conditions.
Aims. Our goal is to provide an improved characterization model for planets with masses between 0.5 and 30 Earth masses, equilib-
rium temperatures below <2000 K, and a wide range of planetary compositions and physical phases.
Methods. In this work, we present the Bayesian Interior Characterization of ExoPlanetS (BICEPS) model, which combines an adaptive
Markov chain Monte Carlo sampling method with a state-of-the-art planetary structure model. BICEPS incorporates many recently
developed equations of state suited for large ranges of pressures and temperatures, a description for solid and molten planetary cores
and mantles, a gaseous envelope composed of hydrogen, helium, and water (with compositional gradients), and a non-gray atmospheric
model.
Results. We find that the usage of updated equations of state has a significant impact on the interior structure prediction. The impact
varies, depending on the planetary composition. For dense rocky planets, BICEPS predicts radii a few percent different to prior internal
structure models. For volatile rich planets, we find differences of 10% or even larger. When applying BICEPS to a particular exoplanet,
TOI-130 b, we inferred a 25% larger water mass fraction and a 15% smaller core than previous models.
Conclusions. The presented exoplanet characterization model is a robust method applicable over a large range of planetary masses,
compositions, and thermal boundary conditions. We show the importance of implementing state-of-the-art equations of state for the
encountered thermodynamic conditions of exoplanets. Hence, using BICEPS improves the predictive strength of the characterization
process compared to previous methods.

Key words. planets and satellites: interiors – planets and satellites: composition – methods: numerical – methods: statistical –
equation of state

1. Introduction

The determination of an exoplanet’s composition and internal
structure is one of the key challenges in planetary sciences.
Knowing an exoplanet’s composition not only informs us about
the properties of the studied exoplanet, but it also helps for for-
mation and evolution to be constrained (Venturini et al. 2020a;
Adibekyan et al. 2021). In this work we present an improved
method to characterize core-dominated exoplanets with masses
between 0.5 mE and 30 mE.

Characterizing an exoplanet is a challenging task, given the
very limited information available. For most exoplanets we only
know their orbital period and either their mass or radius, but not
both. We also have mostly no observational evidence for their
elemental composition, besides for some gas-rich, short period
exoplanets where one can use spectroscopy to determine the
atmospheric composition (e.g., Benneke & Seager 2012; Chubb
et al. 2020; Khalafinejad et al. 2021). However, only when both
the mass and radius of an exoplanet are known can one calculate
the exoplanet’s mean density, which is a direct consequence of a

planet’s composition1. In order to relate the exoplanet’s mass,
radius, and composition, one needs a model of the planetary
interior. In the literature one can find a vast number of internal
structure models for various types of exoplanets and of different
physical complexity (see, e.g., Valencia et al. 2006; Seager et al.
2007; Sotin et al. 2007; Vazan et al. 2013; Unterborn et al. 2016;
van den Berg et al. 2019; Boujibar et al. 2020; Acuña et al. 2021;
Huang et al. 2022).

Most approaches found in the literature use a Bayesian infer-
ence method for calculating this conditional probability, that
is, Markov chain Monte Carlo (MCMC) sampling (Dorn et al.
2015, 2017, hereafter called D15 and D17; Acuña et al. 2021)
or nested sampling (Otegi et al. 2020). Recently some authors
also proposed various machine learning techniques instead (e.g.,
Baumeister et al. 2020; Zhao & Ni 2021; Haldemann et al. 2023).

The number of exoplanets for which both the mass and radius
are known is rapidly increasing. Large observational efforts

1 It is important to remember that this relation is not unique, since
many different compositions can lead to the same mean density.
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are undertaken using both ground-based facilities such as the
High Accuracy Radial velocity Planet Searcher (HARPS; Mayor
et al. 2003) or the Echelle SPectrograph for Rocky Exoplan-
ets and Stable Spectroscopic Observations (ESPRESSO; Pepe
et al. 2014), as well as space-based instruments such as the
Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014)
and the CHaracterising ExOPlanet Satellite (CHEOPS; Benz
et al. 2021). In addition to increasing the number of exoplanets
that can be characterized, these missions also help to drasti-
cally reduce the observational uncertainties as to the mass and
radius (see, e.g., Sozzetti et al. 2021). Reducing the observa-
tional uncertainty as to the mass and radius ultimately leads to
better constraints on an exoplanet’s composition. However, even
with very accurate data, the inherent degeneracy that multiple
compositions can lead to the same mean density remains.

It was shown that using the ratios of the refractory elements
Mg, Si, and Fe in the host star’s photosphere as a proxy for
the composition of the exoplanet can help this degeneracy be
reduced (D15; D17). As the refractory elements Mg, Si, and Fe
condense out from the protoplanetary disk at similar tempera-
tures, it is expected that the growing planets that accrete from
this condensed material retain the relative elemental abundances
of the refractory elements. This assumption is also supported
by numerical simulations (e.g., Thiabaud et al. 2015) as well
as Solar System observations (e.g., Sotin et al. 2007), although
studies of observed exoplanets that attempted to test this assump-
tion statistically are not yet conclusive (Plotnykov & Valencia
2020; Schulze et al. 2021; Adibekyan et al. 2021). This approach
works best for planets that have a high mean density, that is to
say they are dominated by a rocky mantle and an iron core. How-
ever, for exoplanets with mean densities between 2 and 4 g cm−3

that contain more volatile elements, the degeneracy between a
different composition is harder to overcome (Otegi et al. 2020).

To fully leverage the exquisite observational data, it is there-
fore important to reduce the theoretical uncertainties introduced
by the planetary structure model. In the past years, considerable
progress has been made in the description of matter under the
extreme thermodynamic conditions of exoplanets, resulting in
improved equations of state for many of the key building blocks
of exoplanets (e.g., Mazevet et al. 2019; Musella et al. 2019;
Ichikawa & Tsuchiya 2020; Haldemann et al. 2020; Kuwayama
et al. 2020; Stewart et al. 2020).

In this work we include these recently developed equations
of state to build a robust and efficient tool for exoplanet char-
acterization, hereafter called Bayesian Interior Characterization
of ExoPlanetS (BICEPS). BICEPS follows the basic concepts
of previous planet characterization methods (D15; D17; Otegi
et al. 2020; Acuña et al. 2021), combining an interior structure
model with a Bayesian framework. Compared to these works, we
updated the used equations of state and include the following:
descriptions for solid and molten core and mantle layers (similar
to Dorn & Lichtenberg 2021; Noack & Lasbleis 2020); the non-
gray analytical atmosphere model of Parmentier & Guillot (2014)
and Parmentier et al. (2015) together with the compositional
dependent opacities of Freedman et al. (2014); a description of a
compositional gradient of water in the envelope, such that water
is not present past its saturation point; as well as many smaller
improvements such as a more efficient sampling of the target
posterior probability distribution by the MCMC method.

To demonstrate the performance of BICEPS, we compared
our model to the original version of D17. While the structure
model of D17 has been employed for planet characterizations,
its original version has been adapted over the years to include
molten mantle and core phases, numerous improved equations

of state (see Haldemann 2021), and also the possibility of water
dissolution in magma oceans (Dorn & Lichtenberg 2021). For
simplicity, we used its original version for comparison purposes.

This work is structured as follows: in Sect. 2 we describe
the internal structure model and the Bayesian method which
together make up the BICEPS model. In Sect. 3, we explain how
we performed a structure model comparison between BICEPS
and the original model from D17. This model comparison was
performed for all major model constituents as well as for a full
characterization of the exoplanet TOI-130 b. In Sect. 4, we dis-
cuss the findings and also present a set of iso-composition curves
useful for interpreting mass versus radius diagrams of exoplan-
ets. Finally, in Sect. 5, we summarize the key aspects of our
work.

2. Method

In this section we describe the BICEPS model, which consists
of two major parts: First, a planetary structure model, which
calculates for a given mass and composition of the exoplanet
its structure and total radius, hereafter also called the forward
model. Second, a MCMC method to calculate the posterior prob-
ability distribution over all forward model parameters, given
prior information on the model parameters and observed mass,
radius, orbital period of the exoplanet and refractory composi-
tion of the host star. This general approach was also used in other
work (see D15; D17; Acuña et al. 2021).

2.1. General assumptions

The structure of an exoplanet is the result of a variety of physical
and chemical processes acting on various temporal and spatial
scales. This means one needs various interlinking descriptions
to accurately model the internal structure of an exoplanet, which
can result in very computationally expensive descriptions. At the
same time, one needs a statistical method, such as an MCMC
sampler, to infer an exoplanet’s composition. Given the many
free parameters, a typical MCMC run requires 105–106 forward
models to be calculated. In order to be computationally efficient,
one has to make some simplifying assumptions when setting up
the used planetary structure model. For BICEPS we make the
following general assumptions.

The interior structure model describes a 1-D spherical sym-
metric sphere in hydrostatic equilibrium, which is made up of
distinct layers of different composition (see Fig. 1). The major
elemental constituents which we consider are: H, He, O, Fe, Si,
Mg and S. In the center of the planet there is an iron core of mass
mCore which can contain some less dense iron alloys, that is, FeS.
The core is surrounded by a silicate mantle of mass mMantle made
up of Fe, Mg, Si and O which form different minerals. The out-
ermost volatile layer of mass mVol is made up of H, He and H2O.
Depending on the thermal boundary conditions, the material in
each layer can be in different phases, for instance, the core and
mantle can be molten or the water can be liquid or in one of
its many ice phases. More details on the considered phases are
given in the corresponding paragraphs of each layer.

2.2. Planetary structure equations

The differential equations which are used to describe the
thermal and mechanical structure of an exoplanet are simi-
lar to the ones used for stellar structure models (see, e.g.,
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Fig. 1. Schematic representation of the interior structure model. The
modeled exoplanet consists of three main layers: an iron core in the
center, surrounded by a silicate mantle, below an envelope made out of
volatile elements, irradiated by the host star.

Kippenhahn et al. 2012): the equation of mass conservation

∂r
∂m
=

1
4πr2ρ

, (1)

the equation of hydrostatic equilibrium

∂P
∂m
= −

Gm
4πr4 , (2)

the thermal transport equation

∂T
∂m
= −

GmT
4πr4P

∇, (3)

and the energy conservation equation

∂L
∂m
= ϵ. (4)

The variables r, m, P, T , ρ, L, G, ϵ, and ∇ used in Eqs. (1)–(4)
are the radius, mass inside radius r, pressure, temperature, den-
sity, luminosity, gravitational constant, energy generation rate
per unit mass, and the dimensionless temperature gradient

∇ ≡
d ln(T )
d ln(P)

. (5)

Depending on the layer and its composition, we use a different
temperature gradient.

Solving the structure equations is a so-called two-point
boundary value problem. We solve this two-point boundary
value problem, by integrating Eqs. (1)–(4) for a given mass
and composition, using a fifth order Cash-Karp Runge–Kutta
method (Press et al. 1996). The structure equations are integrated
both from the outside inward, and from the inside outward until
reaching the core mantle boundary. Then the total radius and
central boundary conditions are iterative adapted until the two
integrations intersect at the core mantle boundary.

2.3. Core layer model

Iron is thought to be the dominant constituent in planetary cores,
given its abundance compared to other refractory elements and
its relative large density. It is also thought, that iron core forma-
tion is efficient enough that already moon sized objects likely
host iron cores (Ricard et al. 2009). Thus, most exoplanets will
likely host an iron core. In case of the Earth’s core, a lower
density than pure Fe is inferred from seismic measurements
(Dziewonski & Anderson 1981). Additional lighter elements
than iron are needed to explain the density of Earth’s core. Dur-
ing core formation, other lighter elements can sink to the core,
diluting the core with less dense iron-alloys. The nature and
amount of the lighter core elements is unknown to this day, but
likely candidates are S, Si, O, C and Ni (Ichikawa & Tsuchiya
2020).

In BICEPS, we consider a core made out of Fe and S (as in
e.g., Sotin et al. 2007; Valencia et al. 2007). In the case of pure
Fe we consider the phases ϵ-Fe, γ-Fe, δ-Fe and α-Fe, that is, the
hexagonal close packed (hcp), face-centered cubic (fcc) and the
two body-centered cubic (bcc) configurations as well as liquid
Fe. For each phase we use a different EoS, that is, Hakim et al.
(2018) and Fei et al. (2016) for ϵ-Fe, Dorogokupets et al. (2017)
for γ-Fe, δ-Fe and α-Fe and for liquid-Fe we use the EoSs of
Ichikawa & Tsuchiya (2020) and at pressures below 100 GPa
(Kuwayama et al. 2020). For ϵ-Fe the EoS of Hakim et al.
(2018) cannot be used at low pressures, hence as recommended
in their publication we use Fei et al. (2016) below 234.4 GPa.
The location of each phase boundary is based on empirical data,
combining various sources. The melting curve of pure Fe is
calculated following Anzellini et al. (2013), that is,

T Fe
m (P) =

T0

(
P−P0

27.39 GPa + 1
)1/2.38

P < Pt

Tt

(
P−Pt

161.2 GPa + 1
)1/1.72

P ≥ Pt

(6)

with the pressure P having units of Pa, the reference point set at
(P0 = 5.2 GPa, T0 = 1991 K) and the ϵ–γ–liquid-triple point set
at (Pt = 98.5 GPa, Tt = 3712 K). The various phase transition
curves between the low pressure iron phases are taken from
Fig. 1 of Dorogokupets et al. (2017). The four phase transition
curves are then given by:

Tγϵ(P) = 575 K + 18.7 K
( P
GPa

)
+ 0.213 K

( P
GPa

)2

− 8.17 × 10−4 K
( P
GPa

)3

, (7)

Tα1γ(P) = 1120 K + (820 K − 1120 K)
( P
7.3 GPa

)
, (8)

Tα2γ(P) = 1580 K + (1998 K − 1580 K)
( P
5.2 GPa

)
, (9)

Tαϵ(P) = 820 K + (300 K − 820 K)
(

P − 7.3 GPa
15.8 GPa − 7.3 GPa

)
.

(10)

We note that this approach is not fully thermodynamic consis-
tent, but necessary, since there is no set of publicly available iron
EoS which covers the necessary phase space and is formulated
as a thermodynamic potential necessary to calculate the phase
transitions in a more consistent manner. In Fig. 2, we show an
overview over the resulting phase diagram of pure Fe.

As in Valencia et al. (2007), we assume that the sulfur alloy
in the core will be FeS and that FeS will mix uniformly through-
out the core. We neglect the various solid FeS phases and their
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Fig. 2. Phase diagram of pure Fe as it is used in the core model of
BICEPS. The solid lines are the phase transition curves of Anzellini
et al. (2013) and Dorogokupets et al. (2017). The dotted line illustrates
the possible shift of the melting curve due to additional FeS in the core,
using Eq. (11) to calculate the depression in the melting temperature.

stability regions (Bazhanova et al. 2017), but only consider one
solid and one liquid FeS phase. We also assume, that the pres-
ence of sulfur only affects the location of the melting curve but
not the solid to solid phase transitions of any pure iron phases.
To incorporate the effect of S onto the melting curve, we intro-
duce a correction factor which lowers the melting temperature
proportional to the sulfur fraction (Stixrude 2014)

T Fe-S
m (P) = T Fe

m (P) · (1 − ln xFe|Core)−1 (11)

where xFe is the molar fraction2 of Fe in the core, that is,

xFe|Core = 1 − xS|Core. (12)

The reasons why we forwent to implement a more complex
phase diagram of the Fe–S system, are: that it is still unknown
which lighter elements are present in the cores of exoplan-
ets, that iron is the most abundant ingredient, and to reduce
computational cost.

The EoS for the solid FeS phase is taken from the appendix
of Hakim et al. (2018). Besides their EoS of hcp-Fe they also
refit data of Sata et al. (2010) for FeS. For the liquid phase we
use the EoS of Ichikawa & Tsuchiya (2020). The maximum con-
centration of FeS considered in Ichikawa & Tsuchiya (2020) is a
molar fraction of 19% S, equivalent to 23.4% FeS. We therefore
put this value as the upper limit of the FeS content of the core. A
similar concentration of 20% FeS was chosen in Valencia et al.
(2007). The stoichiometric relations that relate the core compo-
sition with the amount of the end members, Fe and FeS, can be
found in Appendix B.1.

For a given composition the results from the EoSs for Fe and
FeS are combined according the additive-volume rule, which in
terms of density ρ is written as

ρmix =

(
wFe

ρFe
+
wFeS

ρFeS

)−1

. (13)

The thermal structure of the core is assumed to be fully adi-
abatic with a thermal boundary layer between core and mantle.

2 Throughout this work we use the convention that xi denotes the molar
fraction of species i and wi is used for weight fractions.

The thermal gradient within the core is3

∇Core = ∇Ad =
γ · P
KS

(14)

where γ is the Grüneisen parameter and KS is the isentropic bulk
modulus. Both quantities can be calculated from the used EoS.
When solving the structure Eqs. (1)–(3), we check at every point
if the core is below or above the melting curve. This results in
three possible configurations: (i) a fully molten core, (ii) a two-
layer core with a solid inner and liquid outer core, and (iii) a fully
solid core.

2.4. Mantle layer model

The constituents of the mantle layer considered in the BICEPS
model are the simple oxides of the major refractory elements,
that is, SiO2, MgO and FeO. These oxides are the most important
rock forming elements found in the solar system, for example
they account for ∼92% of Earth’s mantle mass (Workman &
Hart 2005). However, there are other common rock forming ele-
ments such as CaO, Al2O3 or NaO2, which were considered in
the mantle model used in D17. Regarding the BICEPS model,
we neglect their presence since their impact on the mantle den-
sity is low, they are not very abundant and they would add large
computational complexity to the mantle model. Also only very
little thermodynamic data at high pressures is available for these
species. Already the FeO-MgO-SiO2 (FMS) system shows a rich
phase diagram with various stable phases, especially at lower
pressures, rendering it a challenge to model.

2.4.1. Equations of state in the FeO–MgO–SiO2 system

D15 and D17 used the Perple_X code by Connolly (2009),
together with the thermodynamic model of Stixrude & Lithgow-
Bertelloni (2011) to calculate the stable minerals at a given
pressure, temperature and composition. However, the thermody-
namic model of Stixrude & Lithgow-Bertelloni (2011) has two
main limitations: First, since it was intended to model mantle
minerals under Earth like conditions, it is accurate only in a
pressure regime similar to Earth like conditions, second, it does
not include molten phases. However, when considering more
massive rock dominated exoplanets (with masses >10 mE), the
pressures at the core mantle boundary (CMB) can reach orders
of TPa (Umemoto et al. 2017), far beyond Earth like condi-
tions4,5. Further, planetary equilibrium temperatures of more
than 1000 K, together with a significant volatile layer, already
lead to temperatures much larger than the liquidus of rock at
the mantle/volatile boundary layer, resulting in partially molten
mantle layers (Lopez & Fortney 2014; Dorn & Lichtenberg
2021). Indeed Vazan et al. (2018) argued that most sub-Neptune
sized exoplanets with volatile envelopes > 0.02 mE will host a
magma ocean below the volatile envelope.

In absence of a general thermodynamic model of the FMS
system, which would be valid at pressures up to the TPa regime
3 As defined in Eq. (5), ∇ is the dimensionless temperature gradi-
ent, hence ∇Ad has to be written as ∇Ad = γ · P/KS instead of the also
commonly used dimensionful quantity γ · T/KS.
4 We tried extrapolating the thermodynamic model of Stixrude &
Lithgow-Bertelloni (2011) to pressures larger than 1 TPa together with
using Perple_X, but the equilibrium calculations often resulted in
nonphysical phase combinations.
5 Note that the proposed upper limit of 630 GPa CMB pressure for
super-Earths by Unterborn & Panero (2019) is only valid for exoplanets
with radii smaller than 1.5 RE respectively ≲5 mE.
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Fig. 3. Schematic representation of the considered mantle model. Illus-
trating the wide range of thermal conditions covered by the used EoS.
The fluid and the solid phases are separated by the MgSiO3 melt-
ing curve (solid line) of Eq. (16), including a correction factor for
additional MgO, SiO2 and FeO. The two dashed lines represent the
perovskite/post-perovskite transition (lower) and dissociation pressure
(upper). The dotted line illustrates the approximate location of the vapor
curve, calculated using M-ANEOS and the parameters for pure SiO2.

and which includes solid and liquid phases, we propose the fol-
lowing mantle model. In a first step the P–T space is divided into
a solid and a fluid region, where each a different set of EoSs is
used. To determine where to switch the two sets of EoSs we use
the melting curve of Belonoshko et al. (2005; P < 199.5 GPa)
and Stixrude (2014; P ≥ 199.5 GPa) for pure MgSiO3

T MgSiO3
m (P) =

1831 K ·
(
1 + P

4.6 GPa

)0.33
, P < 199.5 GPa

5400 K ·
(

P
140 GPa

)0.48
, P ≥ 199.5 GPa

(15)

including a correction for additional MgO, SiO2 or FeO com-
pared to the pure MgSiO3 composition

T FMS
m (P) = T MgSiO3

m (P) · (1 − log(xMgSiO3 |Mantle))−1. (16)

Throughout both liquid and solid region we assume that the
temperature follows an adiabat, thus the temperature gradient is
similar to the one in the core

∇Mantle = ∇Ad =
γ · P
KS
, (17)

with γ being the Grüneisen parameter and KS the isentropic bulk
modulus. Numerical modeling of mantles of Earth like plan-
ets and Super-Earths showed, that the thermal profiles in the
deep mantle tend to be super adiabatic (Tackley et al. 2013). But
since the thermal expansivity of the solid mantle phases at high
pressures is very small, the effect of assuming an adiabatic tem-
perature gradient instead of a super adiabatic one is expected to
be small.

2.4.2. Solid mantle

In the solid region we expand the method of using Perple_X
together with Stixrude & Lithgow-Bertelloni (2011) toward
larger pressures. As shown in Fig. 3, we divide the solid phase
into three regions. The first region (region 1) extends from ambi-
ent pressures up to the perovskite (pv)–postperovskite (ppv)

transition given by the Clapeyron relation as in Boujibar et al.
(2020)

Ppv/ppv = 124 GPa + 0.008
GPa
K
· (T − 2500 K). (18)

In this region, we use as in D17 the Perple_X code6 by Connolly
(2009) together with the thermodynamic model of Stixrude &
Lithgow-Bertelloni (2011). The second region (region 2) extends
from Ppv/ppv up to the dissociation pressure of ppv. The min-
eralogy in this region is dominated by ppv (i.e., [Fe,Mg]SiO3).
Depending on the composition, some amounts of FeO, MgO and
SiO2 can also be present. Because Perple_X together with the
thermodynamic model of Stixrude & Lithgow-Bertelloni (2011)
starts to give inconsistent results at these conditions, we do not
use any more Perple_X to determine the stable mineralization
in this region. Rather we define the stable minerals a pri-
ori, considering the aforementioned pure SiO2, post-perovskite
([Mg,Fe]SiO3) and wustite ([Mg,Fe]O). The EoS of MgSiO3-
ppv is taken from Sakai et al. (2016), while for FeSiO3-ppv
we continue using the thermodynamic model of Stixrude &
Lithgow-Bertelloni (2011), in absence of a better model. The
EoSs of the other minerals are given by Fischer et al. (2011)
for FeO, Musella et al. (2019) for MgO and Faik et al. (2018)
for SiO2. For a given mantle composition, the relative amount
of each mineral is calculated using the stoichiometric relations
shown in Appendix B.2.

It is still debated if ppv undergoes further phase transitions
before dissociating into the basic oxides (Boujibar et al. 2020;
Umemoto et al. 2017; Tsuchiya & Tsuchiya 2011). We follow
Tsuchiya & Tsuchiya (2011) and assume that at a pressure of

PD = 1.06 TPa −
12 MPa

K
· T, (19)

ppv dissociates into the basic oxides, without additional interme-
diate phase transitions. The parameters of the Clapeyron relation
Eq. (19) are taken from Boujibar et al. (2020). At pressures above
the dissociation pressure (region 3), given by Eq. (19), we only
consider the basic oxides SiO2, MgO and FeO. The EoS used for
the basic oxides are the same as in the second region (Fischer
et al. 2011; Faik et al. 2018; Musella et al. 2019).

The various used EoSs in region 2 and region 3 are combined
using the additive volume law, which should be sufficient for the
scope of this work (Bradley et al. 2018). An overview over all
used EoS is shown in Table 1. We later discuss the impact of the
proposed mantle model onto the calculated planetary radii.

2.4.3. Liquid mantle

For the liquid mantle we assume that it consists of a combina-
tion of SiO2, FeO and Mg2SiO4 (similar to Dorn & Lichtenberg
2021). Forsterite (Mg2SiO4) was chosen instead of MgO, since
Stewart et al. (2020) recently published an updated version of the
modified analytical equation of state (M-ANEOS) with parame-
ters for Forsterite, which covers consistently a very large range in
pressure and temperature. For SiO2 we use the EoS of Faik et al.
(2018; except at pressures lower than 20 GPa we use Melosh
2007 since the EoS in Faik et al. 2018 does not properly model
the region below the critical point). While for FeO we use the
same EoS as in the liquid core, though with parameters for FeO
(Ichikawa & Tsuchiya 2020). As the EoS parameters were not
provided directly, we fit the EoS parameters from the available

6 Perple_X: version 6.8.9, http://www.perplex.ethz.ch/
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Table 1. Overview over all used EoS in the BICEPS model.

Layer Sublayer Composition (ElementEoS)

Atmosphere Irradiated atmosphere H (1), He (1), H2O (2)

Deep atmosphere H (1), He (1), H2O (2)

Pure water layer H2O(2)

Mantle Upper mantle Various minerals made up of (MgO, SiO2, FeO) (3), (4)

Lower mantle FeSiO (4)
3 , MgSiO (5)

3 , FeO (7), MgO (8), SiO (9), (10)
2

Dissociated mantle FeO (7), MgO (8), SiO (10)
2

Liquid mantle Mg2SiO (6)
4 , FeO (11), SiO (9), (10)

2

Core Outer core (liquid) Fe (11), (12), FeS (11)

Inner core (solid) Fe (13), (14), (15), FeS (13)

References. (1)Saumon et al. (1995); (2)Haldemann et al. (2020); (3)Connolly (2009); (4)Stixrude & Lithgow-Bertelloni (2011); (5)Sakai et al.
(2016); (6)Stewart et al. (2020); (7)Fischer et al. (2011); (8)Musella et al. (2019); (9)Melosh (2007); (10)Faik et al. (2018); (11)Ichikawa & Tsuchiya
(2020); (12)Kuwayama et al. (2020); (13)Hakim et al. (2018); (14)Fei et al. (2016); (15)Dorogokupets et al. (2017).

data, see Appendix C. Again, the EoSs are combined assuming
ideal mixing with the additive volume law.

2.5. Volatile layer

The outermost layer in the BICEPS structure model is the
volatile layer, made up of H, He and H2O. These three species
offer a large range of atmosphere compositions which can be
modeled, that is, from H, He dominated primary atmospheres
to water dominated secondary atmospheres. While other volatile
species are most likely present in a planet, we often lack addi-
tional information on the atmospheric composition, and some-
times even a proper EoS which covers the needed pressures and
temperatures. Thus we constrain BICEPS to consider H, He and
H2O for which we have reliable EoS and which are key ingre-
dients in most planetary atmospheres (Nettelmann et al. 2013;
Lopez & Fortney 2014; Venturini et al. 2020c).

The incoming stellar flux together with the remaining heat
from the planet’s formation have a large impact onto the structure
of the volatile layer and the distribution of water within the layer.
Thus the volatile layer can be split into three distinct sublayers:
an irradiated outer atmosphere (i), an envelope where almost all
incoming flux was absorbed in the layer above (ii) and a poten-
tial layer of pure H2O below the H/He (iii). The presence of
these sublayers depends on the given boundary conditions and
the composition of the volatile layer. The model parameters of
BICEPS related to the volatile layer are the combined H and He
mass mH/He, the water mass mH2O, the internal luminosity of the
planet Lint and the planetary equilibrium temperature Teq.

2.5.1. Calculation of the internal luminosity

The volatile layer is heated both from the top, that is, from the
host star, as well as from below. The remaining heat of forma-
tion and the heat of radiogenic elements are the main sources of
an exoplanet’s internal luminosity Lint. As we do not calculate
the evolution of the observed exoplanet over its full history, but
rather look at a static snapshot in the exoplanet’s history, we cal-
culate the internal luminosity using the age–luminosity relation
presented in Mordasini (2020).

This relation estimates the intrinsic luminosity Lint of an
exoplanet given its mass, age and composition. Lint is thus

calculated using

Lint

LJ
= a0 + b1

(
mCore + mMantle

mE

)
+ b2

(
mCore + mMantle

mE

)2

+ c1

(
mH2O + mH/He

mE

)
+ c2

(
mH2O + mH/He

mE

)2 (20)

where the parameters a0, b1, b2, c1 and c2 depend on the planets
age7 and are given in Table A.1 of Mordasini (2020). Further
quantities are mCore, mMantle, mH2O, LJ, that is, the mass of
the planet’s iron core, rocky mantle, water content, hydrogen
and helium content and the luminosity of Jupiter respectively.
The fit of Mordasini (2020) was made from a series of plan-
etary evolution calculations for planets with a total mass of
1 mE ≤ mtot ≤ 40 mE. The simulations include the contribution
of the cooling and contraction of the core, mantle and envelope,
together with the radiogenic luminosity from a chondritic
abundance of radionucleides (Mordasini et al. 2012). The simu-
lations of Mordasini (2020) were performed for a limited set of
compositions. Indeed it would be preferential to have a fit based
on a wider range of compositions. But the planets luminosity
is most sensitive to the planets age, while the composition is a
second order effect, as shown in Fig. A.2 of Mordasini (2020).

Using this description of the internal luminosity allows us to
simplify the calculation of Eq. (4) to

∂L
∂m
= 0, (21)

as L = Lint is calculated for the whole planet at once.

2.5.2. Irradiated atmosphere

The stellar flux is deposited in the outermost sublayer of the
volatile layer, which we call the irradiated atmosphere. The
temperature structure within the irradiated atmosphere is cal-
culated using the non-gray analytical atmosphere model of
Parmentier & Guillot (2014) and Parmentier et al. (2015). From

7 Since planet formation takes place during the first few Myr of a
stars lifetime (Venturini et al. 2020c), the formation timescale is orders
of magnitudes shorter than the estimated lifetime of most host stars
(∼Gyr), thus the age of the host star is a very good proxy for the age
of the planet.
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Table 2. Model input and output parameters.

Model input Label

Total mass(†) mtot
Core mass fraction wCore
H2O mass fraction wH2O
H/He mass fraction wH/He
Mantle FeO content xFeO|Mantle
Mantle SiO2 content xSiO2|Mantle
Core S content xS|Core
Age of the system age
Equilibrium temperature Teq
Maximal water fraction mixed into H/He fmix

Model output Label

Planet Si/Fe ratio(†) xSi/xFe|Planet
Planet Mg/Si ratio(†) xMg/xSi|Planet
Transit radius(†) rtot
Volatile layer radius rVol
Mantle radius rMantle
Core radius rCore
Central pressure PCentral
Pressure at CMB PCMB
Pressure at MVB PMVB
Central temperature TCentral
Temperature at CMB TCMB
Temperature at MVB TMVB

Notes. (†)These parameters are also the data variables used to calculate
the log likelihood function.

Parmentier et al. (2015) we use in particular the parameters of
model D, which is a fit to radiative transfer models of solar com-
position atmospheres. We also use their fit of the Bond albedo AB
for solar composition atmospheres, from the same publication.

In order to evaluate model D, the effective temperature of
the atmosphere needs to be calculated first. Given Tint and Teq
we calculate the zero albedo effective temperature

T 4
eff0
= 4 · f · T 4

eq + T 4
int. (22)

Here Tint is the temperature associated with the heat flux from
the interior

Tint =

( Lint

4π · σ · r2

) 1
4

, (23)

σ is the Stefan-Boltzmann constant, Teq the planetary equilib-
rium temperature and f is the same scaling parameter of the
incoming flux as already used in, for example, Guillot (2010).
The variable f is thus 1/2 for the day-side average and 1/4 for
an average over the whole planet. Next, the Bond albedo AB
is calculated given Teff0 and the set of equations in Table 2 of
Parmentier et al. (2015). This allows us to then calculate

T 4
eff = 4 · (1 − AB) · f · T 4

eq + T 4
int. (24)

Given the effective temperature the parameters for model D are
calculated. Then we calculate the derivative from Eq. (98) from
Parmentier & Guillot (2014) in respect of the optical depth τ, that

is,

∂T
∂τ
=

1
4 · T 3

[
3
4

T 4
int

(
1 −

B
τlim

e−τ/τlim

)
+

3∑
i=1

3 · βvi · T
4
eq · µ∗

(
−

Di

τlim
e−τ/τlim − Ei · γvi · e

−γvi τ

) ]
(25)

and multiply it with

∂τ

∂m
= −

κ

4πr2 , (26)

to get the temperature gradient ∇irr in the irradiated atmosphere

∇irr =

(
∂τ

∂m

) (
∂T
∂τ

)
. (27)

The variables of Eqs. (25), that is, τlim, B, Di, Ei, βvi , γvi and µ∗
are the parameters calculated with model D of Parmentier et al.
(2015). In Eq. (26), the variable κ is the gas opacity of the atmo-
sphere, for which we use the Rosseland mean opacity values of
Freedman et al. (2014). The density at a given pressure and tem-
perature is calculated using the SCvH-EoS for H/He by Saumon
et al. (1995) and the AQUA-EoS for any present H2O (see Sect.
2.5.4). Knowing the temperature gradient and density as a func-
tion of pressure and temperature, we can solve the structure Eqs.
(1)–(3).

The transition between the irradiated atmosphere layer hap-
pens when essentially all stellar flux was absorbed by the atmo-
sphere above, that is, τv ≫ 1. Determining the exact location
is hard when no full radiative transfer calculation is performed.
Thus, we tested multiple optical depths and pressures and found
that when transitioning at 100 bar, results in smooth transitions
along the temperature profile. Note that even at such pressures
and large optical depths, model D of Parmentier et al. (2015) is
still in agreement with radiative transfer calculations.

2.5.3. Envelope

The sublayer below the irradiated atmosphere we call the enve-
lope. In the envelope the contribution of the incoming stellar
flux to the temperature profile can be neglected, since it was
already absorbed in the irradiated atmosphere above. The main
difference between the envelope sublayer and the irradiated
atmosphere is the calculation of the temperature gradient. In
the envelope we use the Ledoux criterion for an ideal gas
(Kippenhahn et al. 2012)

∇env =

{
∇rad, ∇rad < ∇ad + ∇µ

∇ad, ∇rad ≥ ∇ad + ∇µ
(28)

to decide if a parcel of gas is in the adiabatic or radiative thermal
transport regime. Where the three gradients in Eq. (28) are the
radiative temperature gradient

∇rad =
3

16πacG
κLintP
mT 4 , (29)

the adiabatic temperature gradient

∇ad =

(
d ln(T )
d ln(P)

)
S
=
α · P
ρ · cP

, (30)
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and the spatial compositional gradient

∇µ =
d ln(µ)
d ln(P)

. (31)

The variables of Eqs. (29)–(31) are the radiation density con-
stant a, speed of light c, mean opacity κ, luminosity Lint, thermal
expansion coefficient α, the specific isobaric heat capacity cP
and the mean molecular weight µ. The gradients are calculated
using the Rosseland mean opacities by Freedman et al. (2014)
while ρ, α, cP and µ are taken again from the SCvH-EoS for
H/He by Saumon et al. (1995) and the AQUA-EoS for H2O.

2.5.4. Atmosphere enrichment and water condensation

As already mentioned, BICEPS considers a volatile layer made
out of H, He which can be enriched in H2O. As water is one
of the main absorbers in the optical wavelengths, its distribution
within the volatile layer strongly affects the observed radius of a
planet (Baraffe et al. 2008). While enriched envelopes are likely
one of the key ingredients for the formation of certain types of
planets (i.e., mini-Neptunes Venturini et al. 2015; Venturini &
Helled 2017) it remains unknown how strong water will be mixed
after Gyrs of a planet’s formation and evolution. Since we do
not know a priori how much of a planet’s water is mixed within
the envelope, we introduce an additional model parameter fmix ∈

[0, 1]. It sets the maximal fraction of the planet’s water which is
mixed with the H/He:

mmix
H2O = fmix · mH2O. (32)

The remaining water which is not mixed with the H/He, will
form a pure water layer at the bottom of the envelope

mpure
H2O = (1 − fmix) · mH2O. (33)

But note, that not every combination of Teq, fmix, mH2O and
mHHe is physical. When the local temperature within the enve-
lope is below the critical temperature of water and the partial
pressure of water is above its vapor pressure, then water will
condense and eventually rain out, further altering the distribu-
tion of water. Ideally, a global climate model would calculate
the many feedbacks related with a planet’s water cycle. But the
computational restrictions by the MCMC scheme do not allow
for such expensive calculations. We use instead the following
simple condensation scheme to account for this effect.

At a given pressure and temperature the H/He gas can only
contain a certain amount of water before it is fully saturated and
the water would condense and possibly rain out. The H/He gas
is saturated when the partial pressure of water is higher than the
vapor pressure of water. The partial pressure of water is defined
as

PH2O = xH2O · Ploc =
wH2O

MH2O
·

Ploc
wH2O

MH2O
+ wH

MH
+
wHe
MHe

(34)

where xH2O is the molar fraction of water in the gas, the wi are the
mass fractions of the volatile species i, Mi the respective molar
masses and Ploc is the local pressure. The vapor pressure is given
by the vapor curve (see Wagner et al. 2011). Above the criti-
cal point of H2O the H/He gas cannot be saturated any more,
and we assume that water is well mixed with H/He under these
conditions.

This means that if the atmosphere is always warmer than
the critical temperature of water, we assume that the water is

uniformly mixed throughout the whole volatile layer. The water
mass fraction at each pressure is in this case given by the average
water mass fraction mixed in the envelope

wH2O(P) = w̄H2O =
mH2O · fmix

(mH2O · fmix + mH/He)
. (35)

If the atmosphere is colder than the critical temperature, we
check where potentially condensation could occur. Since the
determination of the partial pressure requires to know the local
composition of the gas, we need to iterate over the composi-
tional gradient until we find a physical solution. We start by
assuming a uniform distribution of water as in Eq. (35). If
throughout the volatile layer the condensation criterion is never
fulfilled, then the water mass fraction remains constant again as
in Eq. (35). Otherwise at any point where the condensation cri-
terion is fulfilled we use the CEA package (Gordon & McBride
1994; McBride & Gordon 1996), to calculate the water mass
fraction wsat that can be contained at these conditions. The excess
in water ∆w which rains out, is then given by

∆w = max(0, wH2O − wsat). (36)

This excess water will be redistributed deeper into the volatile
layer increasing wH2O proportional to the mass of the atmosphere
layer for which Eq. (36) is evaluated.

At the same time, we need to make sure that the compo-
sitional gradient is monotonically increasing with depth, since
any decreasing gradient would be dynamically unstable over
longer timescales. We therefore also remove water from above
the saturated layers until we have a monotonically increasing
compositional gradient. This leads to the two possible distribu-
tion scenarios depicted in Fig. 4. Either a uniform distribution of
H2O throughout the atmosphere (i) or a compositional gradient
which shows two concentrations with a sharp transition between
them (ii). If we would not remove water above the saturated lay-
ers, the method outlined above would lead to a gradient, with a
u-shaped drop around the saturated region. Such a configuration
would not be stable over time.

If a sufficient amount of water is redistributed, it can happen
that at the end of the integration of the structure equations over
the mixed layer, some water is left remaining. In this case we add
that amount to the pure water layer below.

The EoS used for H2O is the AQUA EoS by Haldemann et al.
(2020). The AQUA EoS is a combination of the EoS by Mazevet
et al. (2019) with EoS more suitable at low pressures (Gordon
& McBride 1994; McBride & Gordon 1996; Wagner & Pruß
2002; Brown 2018) or describing the various ice phases of water
(Feistel & Wagner 2006; French & Redmer 2015; Journaux et al.
2020). The EoS of the mixture of H/He and H2O is calculated as
in Baraffe et al. (2008).

Note that the presented condensation model is still a basic
approximation to the real situation where cloud formation and
other dynamical processes would further impact the distribution
of water. But it offers the advantage to exclude at least some non-
physical cases compared to a model where the water is always
uniformly distributed.

2.6. Transit radius

The so-called transit radius is commonly defined to be the radius
where the chord optical depth is τch = 2/3 (Guillot 2010). This
puts the transit radius often at significant larger radii than the
photosphere radius which is defined as the radius where the
optical depth in radial direction is τ = 2/3.
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Fig. 4. Different compositional gradients in the volatile layer of a 5 mE
planet with wVol = 0.4 and water mass fractions in the volatile layer
which span from 5% to 95%. Dashed lines: H2O and H/He do not
mix. Dotted lines: all of the H2O is mixed into the H/He but without
condensation. Solid lines: all of the H2O is mixed into the H/He but
condensates are removed as described in Sect. 2.5.4.

The chord optical depth is given by the path integral, along
a photon’s path between the stellar photosphere and the observ-
ing instrument, with the photon passing through the exoplanet’s
envelope

τch(ν, r) =
∫ +∞

−∞

ρ · κν ds, (37)

where ds is an infinitesimal element along this path and κν is the
wavelength dependent opacity at radius r. Note that the chord
optical depth is in its general definition not only a function of
radius, but also a function of wavelength ν. As proposed in
Parmentier & Guillot (2014), we use for κν the Rosseland mean
opacity κR(T ∗eff) weighted with the stellar effective temperature
T ∗eff. The values of κR(T ∗eff) are taken from Freedman et al. (2014).

2.7. Thermal boundary layers

We assume that all our planets contain still enough heat from for-
mation to sustain convection within the mantle and the core. This
leads to the formation of two thermal boundary layers, one at the
core mantle boundary (CMB) and one at the boundary between
mantle and volatile layer (MVB). Due to the release of gravita-
tional energy during core formation, the iron core remains likely
hotter than the surrounding mantle. Stixrude (2014) argued that
the temperature difference at both the CMB and the MVB are
governed by the melting temperature of the silicates in the man-
tle. Following Stixrude (2014) this means that if the temperature
just above the CMB or the MVB is lower than the melting tem-
perature of the mantle, we have a temperature jump at the CMB
or the MVB up to the melting temperature T FMS

m of Eq. (16). If
the temperature is already above the melting temperature, then
there will be no rise in temperature at the CMB or MVB. Given
the assumed vigorous convection we neglect the physical extent
of the boundary layers. Hence the temperature jump will occur
instantaneous at the MVB or the CMB.

As in Stixrude (2014) the temperature difference at the
thermal boundary layers can then be written as

∆TCMB = max
(
T FMS

m (PCMB),TMantle(PCMB)
)
− TMantle(PCMB)

(38)

and

∆TMVB = max
(
T FMS

m (PMVB),TMantle(PMVB)
)
− TMantle(PMVB).

(39)

2.8. Input and output parameters

Before we turn to the statistical part of the model, let us sum-
marize the input and output parameters of the structure model.
BICEPS takes as input the total mass of the planet mtot, together
with some layer mass fractions. The layer mass fractions are
defined as

wLayer =
mLayer

mtot
. (40)

Since we distinguish between the water and hydrogen helium
mass we use wCore, wH2O and wH/He as input parameters
while

wMantle = 1 − (wCore + wH2O + wH/He) (41)

is calculated internally. In a similar fashion, the composition of
each layer is handled. To calculate the composition of the core
it is enough to specify xS|Core. xFe|Core can then be calculated
using

xFe|Core = 1 − xS|Core. (42)

The mantle composition is similarly given by xFeO|Mantle and
xSiO2 |Mantle, while

xMgO|Mantle = 1 − (xSiO2 |Mantle + xFeO|Mantle). (43)

In the volatile layer we assume a solar ratio of H to He, since
our opacity tables are calculated for solar composition. Thus the
composition of the volatile layer is given by the ratio between
wH2O and wH/He. We also define using fmix up to how much water
is mixed into the H/He gas. In order to model the effects of the
irradiation from the host star, we require the equilibrium temper-
ature of the planet Teq and the effective stellar temperature T ∗eff.
The internal luminosity of the planet is calculated from the age
of the system (see Sect. 2.5.1).

For this set of input parameters, BICEPS calculates the total
radius rtot, the thickness of each layer (rCore, rMantle and rVol), as
well as the Mg/Si and Si/Fe elemental ratios of the planet. We
also save the pressure and temperature at every interface between
the model layers. The Mg/Si and Si/Fe values are used in the
inverse method to relate the photospheric composition of the host
star to the planets bulk composition. A summary of the model
input and output parameters is shown in Table 2.

2.9. The inverse method

In order to characterize a planet, we want to know which distribu-
tion of the model input parameters explains best some measured
data of the planet. Formally, we use Bayesian inference, as in
D15 and D17, to compute the posterior probability density func-
tions (pdf) of a set of model parameters m given observed data d

A96, page 9 of 26



Haldemann, J., et al.: A&A, 681, A96 (2024)

and prior information p(m) on m. According to Bayes theorem
the pdf of m given d can be computed from

p(m|d) =
p(m) · p(d|m)

p(d)
, (44)

where p(d|m) is called the likelihood function, while p(d) is
called Bayes integral or sometimes just the evidence. The like-
lihood function is a measure of how well the model fits the
observed data, while the evidence can be seen as a normaliza-
tion factor. In BICEPS we mostly represent the likelihood with a
multivariate normal distribution

p(d|m) =
1

(2π)N/2
(∏N

i=1 σ
2
i

)1/2 exp

−1
2

N∑
i=1

(g(m)i − di)2

σ2
i

 .
(45)

However, depending on the target, other likelihood functions are
also possible. Here g(·) is the so-called forward model which cal-
culates, for a set of parameters, the model prediction in the data
space. Further, σ2

i is the variance of the data in the ith dimension
of the data space. We assume that independent measurements
are used for the various data parameters, hence the covariance
matrix is diagonal.

Depending on the problem, the Bayes integral is often much
harder to calculate than the prior or the likelihood. A com-
mon solution in order to avoid calculating Bayes integral is to
use MCMC methods. MCMC methods are a class of sampling
methods, which allow to draw samples from a target distri-
bution p(x), which might be otherwise difficult to be directly
sampled. Over the years many different flavors of MCMC algo-
rithms have emerged (Metropolis et al. 1953; Hastings 1970;
Geman & Geman 1984; Haario et al. 2001; Foreman-Mackey
et al. 2013; Betancourt 2017), including some publicly avail-
able implementations: for example emcee8 or JAGS9. For this
work we implemented an adaptive Metropolis-Hastings MCMC,
which will be shortly introduced in the following subsection. A
similar method was already used in D15 and D17.

2.10. Markov chain Monte Carlo method

To calculate the posterior probability p(m|d) of Eq. (44) it is
common to use either MCMC sampling (D15; D17; Acuña et al.
2021) or nested sampling methods (Otegi et al. 2020). We follow
D17 and use a Metropolis-Hastings MCMC method (Metropolis
& Ulam 1949; Metropolis et al. 1953; Hastings 1970), which
follows a simple algorithm. Given the ith sample m(i) in
the space of model parameters perform the following steps:
(i) propose a new point m(p) using the symmetric transition ker-
nel q(m(p)|m(i)), (ii) calculate the prior probability P(m(p)) of the
proposed point and evaluate the likelihood functionL(d|m(p), g)
given the observed data d and a forward model g(·) which
maps m(p) into the space of d, (iii) accept the proposed point
with probability

α = min
(
1,
P(m(p))L(d|m(p), g)
P(m(i))L(d|m(i), g)

)
(46)

and add it to the Markov chain as (i + 1)th element, other-
wise add m(i) to the Markov chain as (i + 1)th element. It

8 https://github.com/dfm/emcee
9 https://mcmc-jags.sourceforge.net/

was shown in Metropolis et al. (1953), that this algorithm
will return samples from a stationary distribution π which is
proportional to p(m|d).

It is important to note, that the samples generated from a
Markov process such as the one above, are not fully indepen-
dent, instead they are autocorrelated (Hogg & Foreman-Mackey
2018). The stronger the autocorrelation of the generated samples,
the more samples are needed to converge to the desired station-
ary distribution. In order to have a small autocorrelation, it is
important that the Markov chain has a good “mixing”, that is to
say that the Markov chain does not remain too long at one point
but moves throughout the parameter space. Gelman et al. (1996)
showed that for many Metropolis Hastings variants there is an
optimal acceptance rate of 0.234, which assures optimal mixing
and thus minimizes the autocorrelation. In order to achieve this
optimal mixing behavior we periodically tune the proposal dis-
tribution q(·|·) according to Haario et al. (2001) and Atchadé &
Rosenthal (2005). The numbers of samples necessary until the
Markov chain converges to the stationary distribution can only
be estimated. The number varies depending on the correlation
between subsequent samples and the complexity of the prob-
lem. For BICEPS we found that generating ∼ 5 × 105 samples is
enough, that key statistics such as median, 1-σ intervals, etc. of
the marginalized posterior distributions do not change anymore
significantly.

Given that the computation of a single planetary struc-
ture model takes on the order of seconds to compute, we
added another modification to speed up the computation of
BICEPS. We leverage the fact that some data variables (i.e., mtot,
xSi/xFe|Planet and xMg/xSi|Planet) can be evaluated very fast from
the model input parameters. Thus we precompute these param-
eters with a separate forward model gfast(·). Then we test if the
model would be rejected, in the optimal case where the remain-
ing data variables would match the observations. If so we skip
the evaluation of the total radius since it would not change the
outcome of the acceptance process.

To sample compositional parameters10 on a simplex, we use
the self-adjusting logit transform (SALT) proposal by Director
et al. (2017) to propose the next move of the Markov chain in this
dimension. The MCMC algorithm used in BICEPS is summa-
rized in the scheme of Fig. 5. In order to test the proper behavior
of the MCMC implementation we performed a simple validation
which is shown in Appendix A.

A strength of the Bayesian inference method is the possi-
bility to include prior information in the inference process. In
Table 2, we show an overview over the used model input param-
eters. For every input parameter we assign a prior distribution.
This prior distribution should incorporate the prior knowledge
we have about this particular parameter for a given target. For
some parameters this information is not known, or we just do not
want to favor a particular configuration. In this case, we choose
the priors to be as un-informative as possible. For example the
composition of the core and the mantle, as well as the layer mass
fractions each sum up to one by definition. Hence they each form

10 Compositional parameters are parameters which have the supplemen-
tary condition that they sum to a constant, that is,

a1 + · · · + ak = c. (47)

This linear dependence requires special sampling techniques
(Aitchison 1982). Compositional parameters for which c = 1 lie
on the k-dimensional probability simplex.
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Fig. 5. Schematic of the adaptive MCMC algorithm used in BICEPS.

a probability simplex11. All these parameters are then sampled

11 The regular (k − 1)-probability-simplex is a polyhedron given by the
set of points which fulfill

{a ∈ Rk : a0 + · · · + ak−1 = 1, a1 ≥ 0 for i = 0, . . . , k − 1}. (48)

For example the 2d probability simplex is the equilateral triangle in the
3d space with edges at (1, 0, 0), (0, 1, 0) and (0, 0, 1).

at uniform density on the respective probability simplex. Due to
the used core model in BICEPS, the parameter xS|Core has a max-
imum value of 0.19. Thus we assign a prior probability of zero
to all cases with xS|Core ≥ 0.19.

When inferring a planetary composition, multiple combi-
nations of input parameters can lead to the same predicted
planetary radius. Thiabaud et al. (2015) showed that ratios of
the refractory elements Mg, Si and Fe of the host star may be
a good proxy for the ratios of the bulk planet. Thereafter D17
showed, that including alongside rtot and mtot also xSi/xFe|Planet
and xMg/xSi|Planet as data variables, helps reducing the degen-
eracy of the interior parameters. BICEPS can therefore include
xSi/xFe|Planet and xMg/xSi|Planet as data variables, if they are
available for a target.

3. Results

In this section, we show the impact of the planetary structure
model described in the previous section onto the radius of a
planet with a given mass. We show comparisons for each of the
three main layers of the structure model and finally apply the full
BICEPS model to characterize the exoplanet TOI-130 b.

3.1. Core layer model comparison

As a first comparison, we solved the structure equations for a
pure iron sphere in order to compare our core model against other
models used previously. We compare against the EoS of Bouchet
et al. (2013), which was used in D17 and the EoS of Hakim et al.
(2018). The later case should illustrate the effect of adding the
additional Fe-phases (α-Fe, γ-Fe, δ-Fe and liquid Fe) to the plan-
etary core model. For the comparison, we calculated the radii of
iron spheres with a range of masses starting at 0.01 mE up to
50 mE. We repeated the calculations for three different boundary
conditions at the surface of the iron sphere i) 10 GPa and 1000 K,
resembling a small and rather cold mantle layer above the core;
ii) 100 GPa and 3000 K, resembling the conditions below an
Earth like mantle; iii) 500 GPa and 104 K, resembling a mas-
sive and hot mantle layer above the core. The cases (i) and (ii)
always result in a solid iron sphere, while in case (iii) the core
can be partially to fully molten, depending on the total mass of
the sphere. In Fig. 6, we show the relative difference in radius
of the iron spheres calculated with the BICEPS core model
and the EoS listed before. The relative difference is calculated
always with respect to the radius calculated with BICEPS, that
is, using

δRadius = 100 ·
(
1 −

rEoS

rBICEPS

)
. (49)

We report that compared to the EoS of Bouchet et al. (2013)
the radius of the iron core differs between –2.7% to +2%. Since
no liquid Fe model was considered, all radii of case (iii) are
smaller than calculated with BICEPS. The kink at around 18 mE
is due to the transition of the BICEPS core model from the liq-
uid to the solid phase. In case (ii), the radii are similar up to
3 mE after which the structures calculated with BICEPS are more
compressed. In case (i), the differences at masses above 3 mE are
the same as in case (ii), but at lower core masses the radii is
significantly smaller (down to −2.7%).

The effect of including the fcc phase at low pressures, as
well as including a model for liquid iron can be seen in the
comparison against the EoS of Hakim et al. (2018). Through-
out the pressure range of case (ii) BICEPS only uses the EoS of

A96, page 11 of 26



Haldemann, J., et al.: A&A, 681, A96 (2024)

Fig. 6. Relative differences when calculating the radius of a pure
iron sphere for different EoS. The reference radii are calculated using
BICEPS. Dark blue lines: relative radius difference compared to the
EoS of Hakim et al. (2018). Pink lines: relative radius difference using
the EoS of Bouchet et al. (2013). Light blue lines: relative radius differ-
ence when adding to the core the maximum amount of sulfur considered
in BICEPS.

Hakim et al. (2018), hence the results are identical. Though in
case (i) we see the effect of the fcc phase. Which has the biggest
effect for very small cores, thought for planets larger than Earth
the effect will be small. In contrary to case (iii) where we see
an even bigger effect than in the comparison to Bouchet et al.
(2013), with a difference in radius of up to 3.2%.

In Fig. 6, we also show the maximum effect of adding sulfur
to the core. For this comparison we calculated the relative differ-
ence in radius between a core with xS|Core = 0.19 and xS|Core = 0,
using the BICEPS core model. For the solid cases, the results are
very similar with differences in radii between 1.8% at low core
masses and 3.2% at large core masses. For the liquid EoS, the
radii are considerably different especially at large core masses,
that is, when the EoS is evaluate up to higher pressures. At low
core masses the difference in radius is around 2.8%, while it goes
up to even 10.5% at 40 mE.

3.2. Mantle layer model comparison

As for the core in the previous section, we perform here a simi-
lar model comparison for the mantle. To quantify the difference
to D17, we use a mantle model where solely Perple_X and the
thermodynamic model of Stixrude & Lithgow-Bertelloni (2011)
is used. As a second case we also compare against the man-
tle model used in Sotin et al. (2007) which considers only four
minerals in the mantle, that is, enstatite ([Mg2,Fe2]Si2O6) and
olivine ([Mg2,Fe2]Si2O4) in the upper mantle and perovskite
([Mg,Fe]SiO3) and wustite ([Mg,Fe]O) in the lower mantle. For
the three models, we compare the radii of pure rocky spheres
without any core. The choice of using a pure rocky model is
only for the sake of comparing the different models, in reality
such exoplanets would likely host a core.

We use three sets of surface boundary conditions, one with
Earth-like conditions of PMVB = 1 atm and TMVB = 300 K and
two with the same surface pressure as the Earth like case but
a temperature above the melting curve of TMVB = 2000 K and

Table 3. Mantle compositions for mantle model comparison.

Cases: Earth like C1 C2

xMg/xSi|Mantle 1.22 0.5 0.5
xSi/xFe|Mantle 7.37 ∞ 2
xSiO2 |Mantle 0.423 2

3
1
2

xMgO|Mantle 0.519 1
3

1
4

xFeO|Mantle 0.058 0 1
4

TMVB = 2500 K. To also include the effect of composition, we
consider three sets of SiO2, FeO, and MgO mantle abundances
for each boundary condition. The first composition resembles
an Earth-like composition with xSiO2 = 0.423, xFeO = 0.058 and
xMgO = 0.519. For the two other cases we use compositions with
lower Mg to Si abundance ratios, one iron free (xSiO2 = 2/3,
xFeO = 0, xMgO = 1/3) and one with a Si to Fe abundance ratio
of two (xSiO2 = 0.5, xFeO = 0.25 and xMgO = 0.25). The resulting
mantle compositions are also listed in Table 3.

For all of these cases we calculated the radius of these rocky
spheres over a range of masses, spanning from 0.01 mE to 20 mE.
In Fig. 7, we show the relative difference in radii of the calculated
rocky spheres. Note that when comparing against Perple_X and
the thermodynamic database of Stixrude & Lithgow-Bertelloni
(2011), only spheres up to 10 mE could be calculated, since at
higher pressures the Gibbs minimization scheme did not always
converge onto a stable mineralization. But even at this masses
the sampled pressures exceed the range for which the thermo-
dynamic database of Stixrude & Lithgow-Bertelloni (2011) was
intended.

When comparing the resulting radii calculated with solely
using Perple_X against the radii calculated with the mantle
model of BICEPS, one can see that the largest differences appear
for the two high temperature boundary conditions up to 1 mE.
This is due to the impact of the liquid phases used in the man-
tle model of BICEPS. Over all compositions the differences are
below 2%. Nevertheless one sees that toward higher masses the
differences in radii start to diverge again. Since for this compar-
ison low surface pressures were used, it is likely that when the
mantle is under a considerable volatile layer, the difference seen
here, at large masses, will shift toward smaller mantle masses.

The simple EoSs which are used in Sotin et al. (2007)
allowed to evaluate the mantle model over a larger pressure range
than when using Perple_X. Similar to the case of Perple_X, we
see a large variability in the observed radius differences. Over
all compositions the differences range from –5.5% to +1% and
are rarely in agreement to Perple_X or the mantle model used
in BICEPS. The best agreement is found for the Earth like com-
position where the relative difference is often less than 1% and
very similar to the Perple_X model. For composition C2, which
contains the most iron of all three tested compositions, the dif-
ferences are largest. It seems that using the model of Sotin et al.
(2007) to characterize exoplanets is only justified when assuming
Earth like compositions and low mantle temperatures.

3.3. Volatile layer model comparison

As for the mantle and the core, we show in this section the effect
of the BICEPS volatile layer model on the calculation of the
planetary radius. Since there are many effects to compare, we
split the comparison into four parts: one regarding the used atmo-
sphere irradiation model, one regarding the used water equation
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Fig. 7. Relative radius difference between pure rocky spheres calculated
with different EoS and different mineral compositions. The reference
model is the one presented in this work. All cases have the boundary
conditions 1 bar and either 300 K (solid lines), 2000 K (dashed lines)
or 2500 K (dot dashed lines).

of state, one regarding the condensation model and one testing
the sensitivity of the luminosity-age relation.

3.3.1. Atmosphere model

In Fig. 8, we show the comparison between the atmosphere struc-
ture calculated using model D of Parmentier et al. (2015) against
the atmosphere model used in D17, that is, the atmosphere model
presented in Jin et al. (2014). The atmosphere structures are
calculated for a 5 mE planet at various equilibrium tempera-
tures. One can see, that the non-gray atmosphere model used
in BICEPS predicts a temperature inversion around 0.1 bar for

Fig. 8. Thermal structure of the volatile layer of a 5 mE exoplanet with
1 wt% of H/He, for various equilibrium temperatures. The coldest equi-
librium temperature Teq was chosen to be 50 K, then from Teq = 100 K
a profile was calculated every 200 K until Teq = 1500 K. Solid lines:
the structure calculated using model D by Parmentier & Guillot (2014).
Dashed lines: the atmosphere structure calculated using the model of
Jin et al. (2014), which is also used in D17.

Fig. 9. Relative difference in transit radius between the model of Jin
et al. (2014) and model D of Parmentier & Guillot (2014) used in
BICEPS, as a function of planetary equilibrium temperature. The rela-
tive difference was calculated as in Eq. (50) for three different planetary
volatile mass fractions of 10−2 (dark blue), 10−3 (blue) and 10−5 (light
blue) and two exoplanet masses: 5 mE (solid) and 10 mE (dashed).

low equilibrium temperatures (Teq ≤ 100 K), while the model of
Jin et al. (2014) remains isothermal. Besides the temperature
inversions, the temperature profiles appear to be shifted espe-
cially at lower pressures. This shift will impact the location of the
transit radius, which occurs typically at these lower pressures.

In Fig. 9, the difference in transit radii between the two con-
sidered atmosphere models varies strongly with the equilibrium
temperature of the exoplanet. The relative difference in transit
radius was calculated for six different combinations of exoplanet
mass (5 mE and 10 mE) and weight fraction of volatiles (1 wt.%,
0.1 wt.% and 0.001 wt.%). The relative difference in transit
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Fig. 10. Relative difference in transit radius as a function of equilibrium
temperature using different methods calculating the transit radius. The
reference transit radius is calculated at τchord = 2/3, which is compared
as in Eq. (50) to the transit radius fixed at 20 mbar (see, e.g., Lopez &
Fortney 2014). The same cases as in Fig. 9 are considered.

radius was calculated using

δRtransit [%] = 100 ·
rJin − rBICEPS

rBICEPS
, (50)

where rJin is the transit radius calculated with the model of Jin
et al. (2014) and rBICEPS is the transit radius calculated using the
BICEPS model. For this comparison the volatile layer was solely
made out of H and He. At increasing exoplanet mass, the results
for the different H/He mass fractions get more and more similar,
thus for 20 mE only the wvol = 10−2 case is shown. The amplitude
of the differences varies between –5% and +5% for equilibrium
temperatures below 1400 K. At higher equilibrium temperatures
the differences start to diverge. For the case of the lightest con-
sidered exoplanet with the most H/He, the difference becomes
10% and more.

Another key factor is the determination of the transit radius
itself. As in D17 the transit radius in BICEPS is calculated from
the mean opacities of the gas in the volatile layer. Other authors
set the transit radius at a fixed pressure (Lopez & Fortney 2014).
One can see in Fig. 10 that depending if the transit radius is
calculated from the chord optical depth or simply taken at a
fixed pressure, has a significant impact on the location of the
transit radius. This effect is enhanced toward higher equilibrium
temperatures of the exoplanet, for which the outer atmosphere
becomes more extended.

3.3.2. Liquid water equation of state

In Fig. 11, we show the impact of choosing a different water
EoS when calculating the radius of an exoplanet of given com-
position. For this comparison we calculated the radius of a
water dominated exoplanet made out of 50 wt.% H2O, 30 wt.%
Mg2SiO4 and 20 wt.% Fe, over a wide range of exoplanet masses
(from 0.01 mE to 50 mE). We then calculated the radius of such
exoplanets for four different outer boundary temperatures Tout
given a particular water EoS. The boundary pressure Pout was
chosen at the pressure of the vapor curve for the corresponding
temperature

Pout = PVapor(Tout). (51)

The thermal gradient in the water layer was chosen to be adi-
abatic. The EoS used for this comparison were the AQUA EoS

Fig. 11. Relative difference in radii of water dominated exoplanets
(50 wt.% H2O, 30 wt.% Mg2SiO4, 20 wt.% Fe) using different water
EoS. The light blue lines show the relative difference between QEOS
(Vazan et al. 2013) and AQUA (Haldemann et al. 2020), while the blue
lines show the relative difference between ANEOS (Melosh 2007) and
AQUA. The results are shown for four different outer boundary temper-
atures, while the outer boundary pressure is equal to the pressure of the
vapor curve at the corresponding boundary temperature.

(Haldemann et al. 2020) as used in this work, the quotidian equa-
tion of state (QEOS) of Vazan et al. (2013) as used in D17 and the
analytical equation of state (ANEOS) by Melosh (2007) using
parameters for water as in Mordasini (2020), which is another
often used EoS for water in planetary science. For all cases we
used the mantle and core model of BICEPS in order to calculate
the layers below the water layer in the same fashion.

In Fig. 11, we show the relative differences in terms of plan-
etary radius between the different EoS. To calculate the relative
difference, the same approach as in Eq. (50) was used, thus
QEOS and ANEOS are compared against the reference radii
calculated using AQUA.

The comparison between AQUA and QEOS shows that for
Tout < 500 K, the relative difference in radius is between -5%
and 10%. For higher boundary temperatures the radii calculated
with QEOS can be more than 20% smaller for small water layers.

When using ANEOS instead of AQUA, the water layers are
less dense for Tout < 300 K. As in the case for QEOS the radii
are vastly different at higher outer boundary temperatures. In
both cases the amplitude of the relative differences decreases
toward larger water layers, converging around 5%. Nevertheless
the relative differences over the range of considered masses and
conditions due to the choice of EoS is very large. Note that this
is in line with the results of Haldemann et al. (2020), where a
similar comparison for isothermal water layers was performed.

3.3.3. Water condensation model

Next, we compare the effect of the simple water condensation
model used in BICEPS to distribute water within the volatile
layer. In Fig. 12, we show the relative difference in radius
comparing the two cases with or without using the water con-
densation model for a 5 mE exoplanet with 40 wt.% volatile
composition. One can clearly see, that the condensation model
only impacts exoplanets with low equilibrium temperature. This
was expected since as soon as the local temperature in the
volatile layer is always above the critical temperature of water,
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Fig. 12. Effect of the condensation model on the transit radius of an
exoplanet, shown as the relative difference in radius as a function of Teq.
Calculated for an exoplanet of 5 mE, made up of 22 wt.% Fe, 38 wt.%
MgSiO3|Mantle and 40 wt.% volatiles, and for three different volatile layer
compositions, i.e.,

wH2O

wH/He
= 0.1,

wH2O

wH/He
= 0.5 and

wH2O

wH/He
= 0.9.

no further condensation occurs, as the surrounding gas will not
become saturated any more.

There is also a clear correlation between the relative differ-
ence in the transit radius and the relative amount of water in the
volatile layer. Increasing the water mass fraction also enhances
the effect of the condensation model. As an example the relative
difference in radius, at a water mass fraction of 4 wt.%, is on
the order of -2% to +2%. Though for a water dominated volatile
layer with a water mass fraction of 36 wt.% the usage of the
condensation model results in a up to 10% larger exoplanet.

3.3.4. Age-luminosity relation

In this paragraph, we show the outcome of a sensitivity analy-
sis of the age-luminosity relation of Mordasini (2020) used to
calculate Lint as in Eq. (20). For the analysis, we varied each of
the variables used in Eq. (20) by +100%, +10%, -10% and -50%
and calculated for various ages, the luminosity of a 10 mE exo-
planet made out of 22 wt.% Fe (core), 38 wt.% MgSiO3 (mantle),
10 wt.% (H2O) and 40 wt.% (H/He). We then used BICEPS to
calculate the radius of the exoplanet, with a fixed equilibrium
temperature of 300 K and also setting fmix = 0. The range of
considered ages spanned from 0.1 Gyr to 10 Gyr. In Fig. 13, we
show the relative difference in the transit radius compared to the
case when using the unchanged Eq. (20).

One can see in Fig. 13, that the transit radius of the calcu-
lated exoplanets is almost not affected by the value of a0, b1 and
c2. Even if the values of the parameters are doubled or halved,
the transit radius does not change more than ±1%. Of the five
parameters, the age-luminosity relation is most sensitive to the
value of c1 and b2. But even for these two variables, when the
change is between ±10%, the relative difference for b2 is always
smaller than ±1%, and for c1 always smaller than ±1.5%. Fur-
ther one can see that the overall sensitivity of all parameters gets
reduced with increasing the age of the exoplanet. The reason is
that at young ages the luminosities are orders of magnitude larger
than at old ages. Thus altering the age-luminosity relation by a
given factor, has a much larger effect on the luminosity at young
ages (and hence on the exoplanet’s radius) than at old ages.

In comparison, the radius of the modeled exoplanets of this
analysis are at 1 Gyr on average 25% smaller than at 0.1 Gyr,

Table 4. Key parameters of TOI-130 b and its host star, based on
Sozzetti et al. (2021).

TOI-130 b parameter Value

Planet mass (mE) 7.8+1.5
−1.4

Planet radius (rE) 2.45+0.05
−0.05

Teq (K) 943 ± 13
Orbital semi-major axis (au) 0.1202 ± 0.0013

Host star parameter Value

Teff (K) 6203 ± 64
[Fe/H] (dex) −0.12 ± 0.04
[Mg/H] (dex) −0.13 ± 0.08
[Si/H] (dex) −0.13 ± 0.04
m∗ (m⊙) 1.126+0.036

−0.035

r∗ (r⊙) 1.194+0.017
−0.016

Age (Gyr) 3.0 ± 1.1

while at 10 Gyr they are even 35% smaller. This shows that while
Eq. (20) depends on an exoplanet’s composition, for the deter-
mination of the luminosity and hence the exoplanet’s radius, the
composition is only of secondary importance.

3.4. Characterization of TOI-130 b

In order to showcase the developed model we ran the full
BICEPS method for the exoplanet TOI-130 b (Sozzetti et al.
2021). For comparison we also ran the same case with the orig-
inal model used in D17 and compared the outcome of the two
inference methods. The observed properties of the star TOI-130
and the detected planet TOI-130 b are given in Table 4.

3.4.1. Setup

Before we can start with the inference method, some parameters
need to be determined and the prior and likelihood function need
to be chosen. The used data for this comparison are the mass,
radius and equilibrium temperature of TOI-130 b, the xSi/xFe|Star
and xMg/xSi|Star abundance ratios of the host star. Following the
arguments in D17, Thiabaud et al. (2015), and Adibekyan et al.
(2021) that the abundance ratios of these refractory elements are
likely the same or similar between the exoplanet and its host star,
we use these abundance ratios to better constrain the possible
planetary compositions. Note that this assumption that the host
star composition in terms of refractory elements resembles the
planetary composition is still debated, (see, e.g., Carter et al.
2015; Plotnykov & Valencia 2020; Adibekyan et al. 2021).

The abundances of these three refractory elements in the
photosphere were determined in Sozzetti et al. (2021). These
abundances are commonly reported as differences in the deci-
mal exponent (dex) in respect to the solar composition. Thus,
in order to calculate xSi/xFe|Planet and xMg/xSi|Planet one can use
the following approach: Given the values from Lodders et al.
(2009) for the solar reference abundances ALodders [dex] and
their standard deviation σLodders [dex] as well as the observed
abundances of TOI-130, one can draw multiple times from the
random variables:

log10 xSi ∼ N (ALodders(Si), σLodders(Si))
+ N ([Si/H]TOI-130, σTOI-130(Si)) ,

(52)
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Fig. 13. Sensitivity analysis of the age-luminosity relation by Mordasini (2020). Each variable in the fit of Eq. (20) was varied by +100% (solid
line), +10% (dotted), −10% (dot dashed) and −50% (dashed). For each case, the transit radius of a 10 mE exoplanet made out of 22 wt.% Fe (core),
38 wt.% MgSiO3 (mantle), 10 wt.% (H2O) and 40 wt.% (H/He) was calculated. The boundary condition was set to be Teq = 300 K and Pout = 1 Pa.
In each panel the relative difference to the transit radius calculated with the unchanged Eq. (20) is shown.

log10 xMg ∼ N
(
ALodders(Mg), σLodders(Mg)

)
+ N

(
[Mg/H]TOI-130, σTOI-130(Mg)

)
,

(53)

log10 xFe ∼ N (ALodders(Fe), σLodders(Fe))
+ N ([Fe/H]TOI-130, σTOI-130(Fe)) .

(54)

Here N(µ,σ) is the univariate normal distribution of mean µ
and standard deviation σ. This allows to calculate quantiles of
the resulting distribution, such as the median Mdn(·) of the
abundance ratios, that is,

Mdn
(

xMg

xSi

∣∣∣∣∣
Planet

)
=

10Mdn(log10 xMg)

10Mdn(log10 xSi)
, (55)

and

Mdn
(

xSi

xFe

∣∣∣∣∣
Planet

)
=

10Mdn(log10 xSi)

10Mdn(log10 xFe) . (56)

In a similar way also the 1-sigma interval can be calculated.
This gives us the distribution of the model variables based on
the observed data: xSi/xFe|Planet = 1.15±0.27 and xMg/xSi|Planet =
1.02 ± 0.27.

Since the orbital semi-major axis is already very accurately
determined, we do not vary the equilibrium temperature and set
it to Teq = 943 K. This leaves us with four observed data vari-
ables [mtot, rtot, xSi/xFe|Planet, xMg/xSi|Planet]. We assume that the
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Table 5. Used prior distribution for TOI-130 b.

Model input Prior distribution

mtot U(2, 15) mE
wCore Uniform on 3-Probability Simplex
wH2O Uniform on 3-Probability Simplex
wH/He Uniform on 3-Probability Simplex
xFeO|Mantle Uniform on 2-Probability Simplex
xSiO2 |Mantle Uniform on 2-Probability Simplex
xS|Core U(0, 0.19)
age logU(1.9, 4.1) Gyr
Teq constant 943 K
fmix constant 0.0

Fig. 14. Corner plot of the posterior distribution of the data variables of
TOI-130 b. In blue are shown the posteriors generated using BICEPS,
while in black are shown the posteriors generated using the original
model of D17. For the 2D pair wise marginalized posterior distribu-
tions the 68%-HDR (light shaded) and the 89%-HDR (dark shaded) are
shown.

observed data can be represented by a four dimensional mul-
tivariate normal distribution, with mean µobs and covariance
matrix Σobs and that the data variables are uncorrelated (see, e.g.,
Crida et al. 2018, for a case with correlated data variables). The
likelihood function is then the one given in Eq. (45) with k = 4.
The prior distribution of the model input parameters are listed in
Table 5.

3.4.2. Comparison with Dorn et al. (2017)

The Markov chains for both models were then generated using
the MCMC sampler of BICEPS. The MCMC sampler ran until
it generated 5000 times more samples than the auto correla-
tion time τ f ≈ 60 of the data variables (i.e., 3 · 105 samples for
each of the two models). In Fig. 14, we show the corner plot
of the two posterior distributions over the data variables. The
results in blue in this section are always generated using BICEPS
while the results in black are generated using the original version

of the structure model from D17. One can see that both poste-
rior distributions seem to have converged onto the same target
distribution.

In Fig. 15, we then show the corner plot of the posterior dis-
tribution for a selection of the model input/output parameters.
For readability we forgo to plot all model parameters in a sin-
gle corner plot, the key statistics of all parameters are instead
listed in Table D.1. The 1D marginalized histograms in Fig. 15
show that there is a clear difference for the mass fraction of
the mantle, water and H/He layers as well as the pressure at
the MVB. In the case of the structure model of D17 a bimodal
distribution in the water mass fraction can be seen. Also the
BICEPS model has a slight bimodal distribution, but it is much
less pronounced than the one using (D17). The reason for this
bimodal distribution is related to the chosen EoS of water. The
QEOS used in D17 has a strong change in the adiabatic gradi-
ent between 1 g cm−3 and 2 g cm−3 even at temperatures larger
than the critical temperature. Depending if the condition at the
outer boundary of the pure water layer is above or below this
abrupt change in the adiabatic temperature gradient, the water
layer will have a considerable different density structure. While
this change in adiabatic temperature gradient is also present in
the AQUA EoS used in BICEPS, it is much smaller compared to
QEOS.

Instead of the pairwise scatter plots, one can also show the
distribution of the compositional variables directly on a sim-
plex. In Fig. 16 we show both the ternary diagram of the layer
mass fractions as well as the ternary diagram of the mantle
composition. Note that since the simplex of the layer mass
fractions is four dimensional, we combined wH2O and wH/He
into wvol = wH2O + wH/He. The white solid lines in the ternary
diagrams indicate contours of the 68%-Highest density region
(HDR) and 95%-HDR of the posterior distribution generated
using BICEPS. The dashed white lines indicate the same con-
tours for the posteriors generated with the model of D17. The
colored background always corresponds to the posterior density
of the BICEPS model. We report that the posterior distribu-
tion of the mantle composition is almost identical (Fig. 16a),
while the posterior distribution of the layer mass fractions shows
considerable differences especially at low core mass fractions
(Fig. 16b).

We report that for the layer mass fractions, the relative differ-
ence in the median increases going from the core (–15%), to the
mantle (–13%) to the volatile layer (water: 25%, H/He: ∼ 550%),
see Table D.1. A similar trend is also seen in the median of the
pressure and temperatures at the layer boundaries. As for the
median, the 1-σ intervals show differences of a similar pattern.
In the case of the 2-σ intervals overall smaller differences can be
seen, except for the temperatures at the layer boundaries which
change similar to the 1-σ intervals.

In summary, while there are overall considerable differences
between the two methods, it is important to note that this is
a single result for a particular exoplanet. When characterizing
other exoplanets, the differences can be very different. Regarding
specifically the case of TOI-130 b, one can state that the poste-
rior distributions generated with BICEPS indicate a more water
rich planet (+25% difference in the median) with a smaller core
(–15% difference in the median) and smaller mantle (–13% dif-
ference in the median). Other compositional variables, such as
the mantle composition, are unaffected by the choice of structure
model. A notable difference appears in the marginalized distri-
bution of the water mass fraction and the pressure at the mantle
water boundary: the original model of D17 results in a strongly
bimodal distribution, as explained above.
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Fig. 15. Corner plot of the posterior distribution of some interior structure model variables for TOI-130 b. In blue are shown the posteriors generated
using BICEPS, while in black are shown the posteriors generated using the original model of D17. For the 2D pair wise marginalized posterior
distributions the 68%-HDR (light shaded )and the 89%-HDR (dark shaded) are shown.

4. Discussion

4.1. Composition of TOI-130 b

TOI-130 b is a sub-Neptune lying in the second peak of the
bimodal size distribution of exoplanets (Fulton et al. 2017). Plan-
ets of this type present an intrinsic compositional degeneracy:
both a rocky core surrounded by a H-He atmosphere and a
water-rich planet can account for the mass and radius.

We used BICEPS to study the possible compositions of TOI-
130 b allowing for the presence of a water layer. We found that
the water mass fraction is highly unconstrained, and could have
all possible ranges. Dry solutions are possible, and in this case,

the H-He mass fraction would have an upper limit of ∼ 2.5×10−3

(Fig. 15). This is a very small amount of gaseous atmosphere, but
which is very extended due to the high equilibrium temperature
of 945 K. TOI-130 b is not a typical sub-Neptune in the sense that
it is closer to its star (period of 14 days) than the mean of sub-
Neptunes (periods of ∼40 days, Martinez et al. 2019). This means
that H-He is more prone to be lost by photoevaporation compared
to typical sub-Neptunes. Indeed, the maximum fraction of H-
He that we find for TOI-130 b could be too low to be retained
according to classical evaporation models (Owen & Wu 2017,
their Fig. 1), although evaporation models should be computed
for this specific planet to gain further constraints.
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(a) (b)

Fig. 16. Kernel density estimates (KDE) of the posterior probability distribution of compositional parameters of TOI-130 b inferred using BICEPS.
The KDEs were calculated using a Gaussian Kernel with standard deviation of 0.2. Panel a: KDE of the layer mass fractions of TOI-130 b. Panel b:
KDE of the mantle composition of TOI-130 b. White solid lines: indicate the contours of the 68%-HDR and 95%-HDR. White dashed lines:
indicate the 68%-HDR and 95%-HDR of the posterior distribution calculated with the original model of D17.

From a formation point of view, sub-Neptunes are expected
to originate beyond the ice line (Venturini et al. 2020b), and
hence be water-rich, with typical ice-to-rock ratios of 1:1
(Venturini et al. 2020a). For TOI-130 b, cases with such ice-
to-rock ratio would correspond to a planet having a negligible
median H-He mass fraction of ∼10−8.

Lifting the compositional degeneracy for TOI-130 b will be
possible with the determination of atmospheric abundances.
This planet would indeed be an excellent candidate for atmo-
spheric characterization with the James Webb Space Telescope
(Sozzetti et al. 2021).

TOI-130 b was also characterized in Sozzetti et al. (2021)
using a slightly different method than described in this work
(see Mortier et al. 2020). They calculated the posterior proba-
bility using a four layered structured as done in this work and
one scenario without a H/He envelope. They inferred for the
scenario with H/He envelope that TOI-130 b would be water
rich, with a core mass fraction of wcore = 0.13+0.08

−0.09, a man-
tle mass fraction of wrock = 0.56+0.08

−0.09, a water mass fraction of
wH2O = 0.30+0.015

−0.17 and a H2/He atmosphere mass fraction of
wH/He = 0.0039+0.015

−0.0031. The layer mass fractions of wcore, wrock
and wH2O are similar to the results we showed in this work,
when running the EoS used in D17, but inferring a much more
massive atmosphere. Compared to BICEPS the inferred H/He
is also much larger, while the water mass fraction is inferred
to be smaller, compensated by a larger core and mantle. The
reason for the inferred larger H2/He atmosphere mass fraction
in Sozzetti et al. (2021) is most likely twofold, first the atmo-
sphere radius was calculated as in Lopez & Fortney (2014) which
provide a fit of the atmosphere radii based on models which
have a lowermost H/He mass fraction of 0.001%, second the
H/He layer does not affect the temperature/pressure conditions
at the transition to the water layer which can affect the radius
of the underlying water layer. The differences in the other layer
mass fractions are harder to explain as Mortier et al. (2020)
used a mixture of EoS (priv. comm.), some EoS are used in
BICEPS (e.g., the AQUA-EoS of H2O), while the mantle was

calculated as in Sotin et al. (2007). One would have to perform a
separate analysis for the particular set of EoS to find the cause of
the differences. This problem of exactly attributing differences
in the inference of planetary compositions is discussed in the
following section.

4.2. A general note on BICEPS

In the preceding sections, we introduced the physical models
used in BICEPS and performed a model comparison for the
major features of the planetary structure model. For most of
these comparisons we calculated the relative radius difference
for a particular test case, while varying the boundary conditions.
These comparisons illustrate the impact various components of
the physical model can have on the calculation of the planetary
radius. As the differences occur in many different parts of the
model, it is unlikely that all of these effects occur at the same
time when using BICEPS. Depending on the composition, the
mass of the exoplanet and its host star, some aspects will have
a bigger impact than others. However, it is nearly impossible to
make a priori general statements regarding which effect will have
the most significant impact.

We also need to emphasize that BICEPS and any other cur-
rently used model to infer planetary compositions includes many
simplifying assumptions. Any characterization method has to
balance the physical complexity of the internal structure model
with the numerical complexity, as the inference should be per-
formed in a useful time. Thus it is necessary to not always choose
the best physical description, for example, one could use global
climate models, combined with a chemistry model to calculate
the distribution of water in the volatile layer. But any such com-
plex model would strongly increase the numerical complexity
and make it not feasible to perform an inference in a useful time
frame. There are other more conceptual simplifications, such as
the choice of having three main layers (core, mantle, volatile
layer). While BICEPS is able to model the absence of any of
these three main layers, it is possible that some exoplanets have

A96, page 19 of 26



Haldemann, J., et al.: A&A, 681, A96 (2024)

Fig. 17. Mass radius diagram and isocomposition curves calculated with
BICEPS (solid lines) or taken from Zeng et al. (2019; dashed lines). The
boundary conditions are set as in Zeng et al. (2019) to 300 K and 1 mbar.
The Earth like composition corresponds to a two layer structure of
32.5 wt% of Fe and 67.5 wt% of MgSiO3. The data for the background
exoplanets were taken from the NASA Exoplanet Archive (downloaded
the 17.02.2022). Bottom panel: Relative difference between the shown
isocomposition curves in the top panel.

for example a mixed ice and rock layer (Vazan et al. 2022), or a
silicate vapor atmosphere (Kite et al. 2016).

4.3. On the interpretation of a planet’s water content

Recently a series of authors studied how water and rock interact
under high pressure and temperatures in the interiors of super-
Earths and mini-Neptunes. Vazan et al. (2022) concluded that
the total water content of a planet cannot be inferred from the
atmospheric mass and abundance alone, as a large fraction of
the water may be stored in the interior where it is mixed with the
rock. Similarly Dorn & Lichtenberg (2021) found that the molten
silicates in the mantle can contain a large fraction of water. These
considerations affect the interpretation of the water mass fraction
wH2O. The parameter wH2O as used in BICEPS describes the mass
fraction of water in the surface reservoir only.

4.4. An updated mass radius diagram

In Fig. 17, we show a mass radius diagram with over plotted iso-
composition curves. In the background all confirmed exoplanets
with an accuracy in mass and radius better than 50% are shown.
This kind of mass radius diagram is often used when report-
ing the detection of an exoplanet, since it gives a fast indication
about the possible planetary composition and how common an
exoplanet is. As BICEPS has all the necessary ingredients to cal-
culate such isocomposition curves, we provide with this work a
set of publicly available isocomposition curves12, calculated for
the compositions listed in Table 6.

12 https://github.com/mnijh/BICEPS_mass_radius

Besides the isocomposition curves of BICEPS we show in
Fig. 17 for comparison the often used isocomposition curves of
Zeng et al. (2019). To generate the isocomposition curves with
BICEPS the same boundary conditions as in Zeng et al. (2019)
were used. For the case of a pure water composition Zeng et al.
(2019) provides multiple curves for various surface temperatures,
for better readability we only compare the case of 300 K. In the
bottom panel of Fig. 17, we also show the relative difference in
radius compared to the radius calculated by Zeng et al. (2019).
We report that the biggest differences are seen for the pure Fe
case, where BICEPS has in average a 6% smaller radius. Both
cases which contain rock are generally less dense as the results
of Zeng et al. (2019), with radius differences between −0.5% and
−2%. The radii of the pure water spheres are in agreement up to
1 mE, afterward the radius difference increases toward 2%.

5. Conclusions
In this work we have presented the BICEPS model, which
incorporates recent developments in high pressure equations
of state and thereby provides a strong tool to characterize the
interiors of intermediate-mass exoplanets. BICEPS combines
an internal structure model for exoplanets with an adaptive
Metropolis-Hastings method, to calculate the posterior proba-
bility distribution of planetary structure parameters. The main
features of BICEPS are as follows:

– robust internal structure calculations for planets between
0.5 mE and 30 mE,

– a non-gray analytical atmosphere model of the irradiated
atmospheres,

– an updated set of equations of state, spanning a large range
in pressure and temperature (including equations of state to
model a molten mantle and/or a molten core), and

– an adaptive Metropolis-Hastings method capable of effi-
ciently sampling compositional variables.

We compared each part of the internal structure model of
BICEPS to other commonly used structure models. Even though
the relative differences in radius due to the changes in the core or
mantle descriptions are on the order of a few percent, the changes
in the description of the volatile layer can be on the order of 10%.
The choice of the water equation of state does indeed have a large
impact on the calculated radius of water-rich planets. For a par-
ticular planet, these effects might not be cumulative but instead
be of varying importance depending on the planet’s composition,
mass, and equilibrium temperature. We showed with the exam-
ple of TOI-130 b the magnitude of the effect of using BICEPS,
compared to using the original model of D17. We demonstrated
that for this particular case BICEPS predicts a more water-rich
planet (+25% in the median of the water mass) with a smaller
core (–15% in the median of the core mass). For planets of a
different mean density and/or different insolation, these results
might change.

Our work shows the importance of continuously improving
the used internal structure models used to characterize exoplan-
ets. However, even with up-to-date equations of state, and with
a robust model of the planetary interior and accurate measure-
ments of the planets’ mean density, the intrinsic degeneracies in
terms of planetary composition are very hard to overcome. This
is mostly due to the large uncertainty related to the composition
and structure of the volatile layer. Namely, depending on whether
there is a compositional gradient in the volatile layer or not,
the radius of the volatile layer differs substantially. It is there-
fore of great importance to gain further insight into the possible
structures and composition of planetary atmospheres, both from
a theoretical and observational point of view.
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Table 6. Available iso-composition curves to generate mass radius diagrams.

Label wCore wRock wH2O wH/He xFe|Core xS|Core xMgO|Mantle xSiO2 |Mantle xFeO|Mantle

C0 1 0 0 0 1 0 0 0 0
C1 1 0 0 0 0.87 0.13 0 0 0
R0 0 1 0 0 0 0 1 0 0
R1 0 1 0 0 0 0 0.5 0.5 0
R2 0 1 0 0 0 0 0.519 0.423 0.058
E0 0.32 0.68 0 0 0.87 0.13 0.519 0.423 0.058
W0 0 0 1 0 0 0 0 0 0
W1 0.3168 0.6732 0.01 0 1 0 0.5 0.5 0
W2 0.304 0.646 0.05 0 1 0 0.5 0.5 0
W3 0.288 0.612 0.1 0 1 0 0.5 0.5 0
W4 0.16 0.34 0.5 0 1 0 0.5 0.5 0
D0 0.319968 0.679932 0 0.0001 1 0 0.5 0.5 0
D1 0.31968 0.67932 0 0.001 1 0 0.5 0.5 0
D2 0.3168 0.6732 0 0.01 1 0 0.5 0.5 0
D3 0.288 0.612 0 0.1 1 0 0.5 0.5 0
D4 0.256 0.544 0 0.2 1 0 0.5 0.5 0
N0 0.316768 0.673132 0.01 0.0001 1 0 0.5 0.5 0
N1 0.31648 0.67252 0.01 0.001 1 0 0.5 0.5 0
N2 0.3136 0.6664 0.01 0.01 1 0 0.5 0.5 0
N3 0.2848 0.6052 0.01 0.1 1 0 0.5 0.5 0
N4 0.2528 0.5372 0.01 0.2 1 0 0.5 0.5 0
N5 0.287968 0.611932 0.1 0.0001 1 0 0.5 0.5 0
N6 0.28768 0.61132 0.1 0.001 1 0 0.5 0.5 0
N7 0.2848 0.6052 0.1 0.01 1 0 0.5 0.5 0
N8 0.256 0.544 0.1 0.1 1 0 0.5 0.5 0
N9 0.224 0.476 0.1 0.2 1 0 0.5 0.5 0

Notes. The iso-composition curves were calculated for an outer boundary pressure of 1 mbar and each of the following outer boundary temperatures:
50 K, 300 K, 800 K, 1500 K, 2000 K. The data are available at https://github.com/mnijh/BICEPS_mass_radius.

As a final note, we highlight that early versions of the inter-
nal structure model of BICEPS were already used to characterize
various exoplanets that were observed with CHEOPS, TESS,
and ground-based facilities; for more details, readers can refer
to K2-111 b (Mortier et al. 2020), TOI-130 b (Sozzetti et al.
2021), TOI-178 b-g (Leleu et al. 2021), TOI-824 b (Burt et al.
2020), TOI-1064 b (Wilson et al. 2022), ν2-Lupi d (Delrez et al.
2021), and L98-59 b (Demangeon et al. 2021), for example. To
fully leverage the possibilities of these observational facilities,
BICEPS provides a robust structure inference method applicable
to a wide range of planet types.
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Appendix A: MCMC validation

To validate the MCMC method discussed above, we performed
two basic tests as proposed in Hogg & Foreman-Mackey (2018).
In the first test we directly sampled several prior distributions
with the MCMC method. To do so the likelihood function
returned unity for any input it got, therefore the posterior distri-
bution as given by Bayes rule in Eq. (44) should always be equal
to the prior distribution. In Fig. A.1 we show an uniformly sam-
pled 3D probability simplex, after the MCMC method sampled
105 points directly from an uniform distribution on the sim-
plex. In Fig. A.2 we show the pdf of four 1D priors sampled
by our MCMC (blue) and over plotted the analytical predic-
tion (black). For illustrative purposes we added the top panel of
Fig. A.2. It shows a common problem of basic Metropolis Hast-
ings MCMCs, where the pdf of the sampled prior drops close to
the domain boundary. This behavior is caused by the fact, that
the probability of a move closer toward the domain boundary
decreases, the closer the chain is to the boundary. To avoid this
issue we choose to use continuous domains for all variables on
a compact support, connecting the domain borders such that the
chain can move freely across them. As shown in the second panel
of Fig. A.2 we do not see this effect for continuous domains.

As a second test we sampled a three dimensional multivari-
ate normal distribution N3(µ,Σ) with mean µ and covariance Σ,
arbitrarily set to

µ =

 0.1
−1.0
−0.13

 , Σ =
1.0 0.1 0.0
0.1 0.1 0.1
0.0 0.1 0.2

 . (A.1)

In Fig. A.3 we show the results obtained with 106 points given
uniform priors in the domain [-3,3] for the model variables x1,
x2 and x3. We show in black the analytical predictions over the
results of the MCMC in blue. One can see that the MCMC
converged to the analytical solution in all three dimensions.

Fig. A.1. Results of the first MCMC validation test, where the MCMC
sampled directly from the prior distribution. Uniform sampling of a
compositional variable on the simplex ∆2.

Fig. A.2. Results of the first MCMC validation test, where the MCMC
sampled directly from the prior distribution. The pdf of the resulting
posterior distributions of a run of 105 points for various priors are shown
in blue, while the analytical prediction are shown in black.

Fig. A.3. Corner plot of the second MCMC validation test. The multi-
variate normal distribution with mean and covariance matrix given in
Eq. (A.1), was sampled with 106 points. In black we show the analytical
predictions, while in blue we show the results of the MCMC.
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Appendix B: Stoichiometric relations

When calculating the internal structure of an exoplanet, a num-
ber of stoichiometric relations are needed. In this section we
derived the key stoichiometric relations which are used in the
BICEPS model. As in the rest of the work wi denotes the mass
fraction of species i, while xi denotes the molar fraction of
species i. Further, the molar mass of a species is written as Mi,
while the number of particles of said species is given by Ni. One
can relate the mass and mole fractions using the following two
equations

wi = xi ·
Mi

M̄
, M̄ =

∑
i

xi · Mi (B.1)

and

xi = wi ·
M̄
Mi
, M̄ =

1∑
i
wi
Mi

. (B.2)

Where the sum in the calculation of the average molar mass M̄
goes over all species of the considered sample.

B.1. Core composition

The core layer in BICEPS consists of Fe and S, which form
the four end members: solid Fe, solid FeS, liquid Fe and liq-
uid Fe0.81S0.19. From the elemental core composition [xFe, xS]
the phase composition of [x̃s

Fe, x̃s
FeS] for the solid phase and [x̃l

Fe,
x̃l

Fe0.81S0.19
] for the liquid phase can be calculated. The composition

of the solid phase is calculated using the following relations:

x̃s
Fe = 1 −

xS

xFe
, x̃s

FeS =
xS

xFe
, xFe ≥ 0.5. (B.3)

To calculate the phase composition of the liquid phase, we first
consider that 81 iron atoms per 19 sulfur atoms are needed to
form Fe0.81 S0.19. Therefore, the number of iron atoms not bound
to a sulfur atom are given by

ÑFe =

(
NFe −

81
19

NS

)
, (B.4)

while the number of Fe0.81 S0.19 is simply given by

ÑFe0.81S0.19 = NS. (B.5)

The phase composition is then calculated by dividing ÑFe and
ÑFe0.81S0.19 by the sum of ÑFe and ÑFe0.81S0.19 , that is,

x̃l
Fe =

ÑFe

ÑFe + ÑFe0.81S0.19

, x̃l
Fe0.81S0.19

=
ÑFe0.81S0.19

ÑFe + ÑFe0.81S0.19

. (B.6)

Since the number of iron and sulfur atoms in the core are pro-
portional to the molar fraction of the corresponding atom, that
is,

NFe = xFe · NCore, NS = xS · NCore (B.7)

one can simplify Eq. (B.6), which results in

x̃l
Fe =

(xFe −
81
19 xS)

(xFe + (1 − 81
19 )xS)

, x̃l
Fe81S19

=
xS

(xFe + (1 − 81
19 )xS)

. (B.8)

Because of the choice of liquid EoS used in the core layer, an
upper limit of xS < 0.19 on the maximal amount of sulfur has
to be imposed on what cases can be modeled with the BICEPS
model.

B.2. Mantle composition

The mantle layer in BICEPS is split into four distinct sublayers.
For two of them stoichiometric relations are needed to calculate
the phase composition.

B.2.1. Lower mantle

The lower mantle layer in the BICEPS consist of Fe, Mg, Si
and O, which form the solid end members FeO, MgO, SiO2,
MgSiO3 and FeSiO3. From the elemental mantle composition
[xFeO, xMgO, xSiO2 ] the phase composition of [x̃s

FeO, x̃s
MgO, x̃s

SiO2
,

x̃s
MgSiO3

,x̃s
FeSiO3

] can be calculated. We define first the magnesium
number,

#Mg ≡
xMgO

xFeO + xMgO
=

NMgO

NFeO + NMgO
. (B.9)

If xSiO2 ≤ xFeO + xMgO we assume that all SiO2 is contained
in the post-perovskite phases MgSiO3 and FeSiO3. The relative
amount of the end members of post-perovskite is given by the
magnesium number, hence one can write:
If xSiO2 ≤ xFeO + xMgO:

x̃s
SiO2
= 0, (B.10)

x̃s
FeO =

NFeO − (1 − #Mg) · NSiO2

NFeO + NMgO
(B.11)

=
xFeO − (1 − #Mg) · xSiO2

xFeO + xMgO
, (B.12)

x̃s
MgO =

NMgO − #Mg · NSiO2

NFeO + NMgO
(B.13)

=
xMgO − #Mg · xSiO2

xFeO + xMgO
, (B.14)

x̃s
MgSiO3

=
#Mg · NSiO2

NFeO + NMgO
=

#Mg · xSiO2

xFeO + xMgO
, (B.15)

x̃s
FeSiO3

=
(1 − #Mg) · NSiO2

NFeO + NMgO
=

(1 − #Mg) · xSiO2

xFeO + xMgO
, (B.16)

If xSiO2 > xFeO + xMgO:

x̃s
SiO2
=

NSiO2 − NMgO − NFeO

NSiO2

=
xSiO2 − xMgO − xFeO

xSiO2

, (B.17)

x̃s
FeO = 0, (B.18)

x̃s
MgO = 0, (B.19)

x̃s
MgSiO3

=
NMgO

NSiO2

=
xMgO

xSiO2

, (B.20)

x̃s
FeSiO3

=
NFeO

NSiO2

=
xFeO

xSiO2

. (B.21)
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B.2.2. Liquid mantle

The liquid mantle layer in the BICEPS consist of Fe, Mg, Si
and O, which form the liquid end members FeO, Mg2SiO4 and
SiO2. From the elemental mantle composition [xFeO, xMgO, xSiO2 ]
the phase composition of [x̃l

FeO, x̃l
Mg2SiO4

, x̃l
SiO2

] can be calcu-
lated. The composition of the liquid mantle is calculated using
the following relations:

ÑFeO = NFeO, (B.22)

ÑMg2SiO4 =
1
2

NMgO, (B.23)

ÑSiO2 = NSiO2 −
1
2

NMgO (B.24)

and

x̃l
FeO =

NFeO

NFeO + NSiO2

=
xFeO

xFeO + xSiO2

, (B.25)

x̃l
Mg2SiO4

=

1
2 NMgO

NFeO + NSiO2

=

1
2 xMgO

xFeO + xSiO2

, (B.26)

x̃l
SiO2
=

NSiO2 −
1
2 NMgO

NFeO + NSiO2

=
xSiO2 −

1
2 xMgO

xFeO + xSiO2

. (B.27)

Due to the fact that the only magnesium bearing phase in the
liquid mantle is Mg2SiO4 an additional constraint arises. The
BICEPS mantle model requires that NMgO/NSiO2 ≤ 2. As MgO
and SiO2 only appear in the mantle layer of BICEPS, the plane-
tary Mg to Si ratio is equal to the ratio in the mantle. Thus if we
assume that the ratios of refractory elements in the photosphere
of the host star are equal to the one in the planet, this constraint
affects the possible targets for which BICEPS can be used. For-
tunately most FGK-stars have NMg/NSi ratios below two (Hinkel
et al. 2014).

Appendix C: Determining EoS parameters for FeO

In the liquid mantle we use the EoS of Ichikawa & Tsuchiya
(2020) for liquid FeO. Ichikawa & Tsuchiya (2020) provide the
P-V-T data including best fit values for the Mie-Grüneisen EoS
combined with a cold Vinet EoS, for various mixtures of Fe, S,
O, Ni and Si. Though for FeO only the P-V-T data, but no best fit
values of the eight EoS parameters are provided. Hence we refit it
from the data provided in Fig. S1 of the supplementary material
of Ichikawa & Tsuchiya (2020), using the lmfit-python package
(Newville et al. 2014). To reduce the number of free parame-
ters we kept the values of the EoS parameters V0 = 1.51 · 10−5

m3/mol, γ0 = 1.5, a = 0.0 and b = 1.0 constant, as it was also
done for the other mixtures in Ichikawa & Tsuchiya (2020).
Using the method of least squares and 35 P-V-T data points, the
best fit values of KT0 = 1.91 GPa, K

′

T0
= 8.01, e0 = 0.077 J/mol,

and g = −0.139 were determined. In Fig. C.1 the best fit values
were used to calculate the volume of FeO as a function of pres-
sure and temperature and compare it against the data of Ichikawa
& Tsuchiya (2020).

8.0 4000K 
5000 K

S 
7.5 6000K 

7000K � 7.0 05 8000 K
S 6.5 • I&T 2020 

� 6.0 

5.5 

so 100 150 200 250 300 350 400 450 
Pressure [GPa] 

Fig. C.1. Volume of liquid FeO as a function of pressure and temper-
ature calculated using the best fit values (solid lines) and compared
against the values (red points) taken from Ichikawa & Tsuchiya (2020).

Appendix D: Summary statistics for TOI-130 b

In Table D.1, we summarize the statistical characteristics of the
posterior pdf calculated using BICEPS and using the model of
D17. For each variable and each model we calculated the median,
the boundaries of the centered 1-σ intervals (which contain 68%
of all samples) and the centered 2-σ intervals (which contain
95% of all samples) of the 1D marginalized posterior distribu-
tions. Further we also calculated the relative difference between
the interval boundaries of each variable when calculated using
BICEPS or using D17:

[∆A1, ∆A2] = [100
ADorn+17

1 − ABICEPS
1

ABICEPS
1

, 100
ADorn+17

2 − ABICEPS
2

ABICEPS
2

]

(D.1)

where A1, A2 are the interval boundaries.
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