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Abstract
Objective SGLT-2i are increasingly recognized for their benefits in patients with cardiometabolic risk factors. Additionally,
emerging evidence suggests potential applications in acute illnesses, including COVID-19. This systematic review aims to
evaluate the effects of SGLT-2i in patients facing acute illness, particularly focusing on SARS-CoV-2 infection.
Methods Following PRISMA guidelines, a systematic search of PubMed, Scopus, medRxiv, Research Square, and Google
Scholar identified 22 studies meeting inclusion criteria, including randomized controlled trials and observational studies.
Data extraction and quality assessment were conducted independently.
Results Out of the 22 studies included in the review, six reported reduced mortality in DM-2 patients taking SGLT-2i, while
two found a decreased risk of hospitalization. Moreover, one study demonstrated a lower in-hospital mortality rate in DM-2
patients under combined therapy of metformin plus SGLT-2i. However, three studies showed a neutral effect on the risk of
hospitalization. No increased risk of developing COVID-19 was associated with SGLT-2i use in DM-2 patients. Prior use of
SGLT-2i was not associated with ICU admission and need for MV. The risk of acute kidney injury showed variability, with
inconsistent evidence regarding diabetic ketoacidosis.
Conclusion Our systematic review reveals mixed findings on the efficacy of SGLT-2i use in COVID-19 patients with
cardiometabolic risk factors. While some studies suggest potential benefits in reducing mortality and hospitalizations, others
report inconclusive results. Further research is needed to clarify optimal usage and mitigate associated risks, emphasizing
caution in clinical interpretation.

Keywords Acute Illness ● COVID-19 ● Diabetic Ketoacidosis ● Intensive Care Unit ● Mechanical Ventilation ● SGLT-2
Inhibitors

Introduction

SGLT2i represents a novel category of oral agents designed to
lower glucose levels in individuals with DM-2. Additionally,
they serve as adjunct therapy for individuals with DM-1 who
are overweight and not adequately responsive to insulin.
Gliflozins operate by inhibiting SGLT-2, a transporter
expressed in the early segment of the proximal renal tube,

thereby diminishing renal glucose reabsorption. The intro-
duction of this drug class has transformed the landscape of
diabetes management. This transformation is not only attrib-
uted to their efficacy in reducing blood glucose levels with
minimal hypoglycemic risk but is primarily underscored by
their noteworthy cardiorenal protective properties. Compel-
ling evidence from recent comprehensive cardiovascular
outcome trials has firmly linked SGLT2i treatment to sub-
stantial decreases in the risk of major cardiovascular (CV)
events, hospitalization due to heart failure (HF), CV mortality,
and renal complications [1–3]. Indeed, in 2019, the DAPA-
HF trial elucidated a significant clinical advantage associated
with dapagliflozin in individuals with heart failure and
reduced ejection fraction, irrespective of the concomitant
presence or absence of diabetes resulting to a pivotal juncture
for many, culminating years of conjecture [4, 5].

The first documented infections with the novel SARS-
CoV-2 occurred in December 2019 [6–8], approximately
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six months following the publication of the DAPA-HF
study. Since the beginning of the pandemic, intensive
research has been conducted, on the one hand on risk fac-
tors for a severe course, and on the other hand on therapy
during Coronavirus Disease 2019 (COVID-19). The clinical
spectrum of the disease ranges from asymptomatic to severe
courses with pneumonia, respiratory failure to acute
respiratory distress syndrome (ARDS), multiple organ
failure (MODS), and fulminant myocarditis [6–8]. Risk
factors of the disease include older age and co-existed
comorbidities such as cardiovascular diseases and hyper-
tension, diabetes mellitus (DM) type 1 and DM-2, obesity,
and chronic kidney disease (CKD) with these conditions
being independently associated with increased in-hospital
mortality [9–12]. Multiple pathways have been postulated
to be involved in severe COVID-19 including systemic
inflammation and dysregulation of pro-inflammatory cyto-
kines (e.g., interleukin (IL)-1, IL-2, IL-6), which can cul-
minate in a cytokine storm [6], increased production of free
radicals, and enhanced oxidative stress [13].

In addition to the primary injury, the pathophysiology of
severe COVID-19 involves systemic inflammation-
associated secondary events such as hypotension, left ven-
tricular dysfunction, arrhythmia, thromboembolic compli-
cations, and destabilization of vascular plaques [6, 14].
Hence, given that inflammation constitutes a pathophysio-
logic mechanism amenable to modification, a fundamental
objective in the management of COVID-19 is to minimize
or inhibit systemic inflammation and the release of pro-
inflammatory cytokines.

DKA is an infrequent yet severe complication of type 2
diabetes, characterized by a notably high case fatality rate
[15]. The absolute risk of DKA in extensive, prospective
randomized clinical trials involving individuals with type 2
diabetes using SGLT-2i has been demonstrated as minimal.
However, the relative risk is elevated in those assigned to
SGLT-2i compared to those receiving a placebo. In indi-
viduals without diabetes but prescribed SGLT-2i for con-
ditions such as heart failure or CKD, the risk of DKA
mirrors that of the placebo group [16]. Consensus guide-
lines, however, advise against the use of SGLT-2i in cases
of serious illness and do not recommend their routine in-
hospital administration [17]. Throughout the COVID-19
pandemic, instances of DKA have been documented in
individuals hospitalized with COVID-19 [18]. This strategy
was based on the risk of DKA in critically ill patients
[17, 19] and the findings that COVID-19 is associated with
hyperglycemic emergencies, including DKA and long-
lasting ketosis, in people with DM-2 and COVID-19 [18].
Moreover, the increased expression of angiotensin-
converting enzyme 2 (ACE-2) in lungs, brain, heart, kid-
ney, and veins in patients taking SGLT-2i [20, 21], which,
as a receptor for SARS-CoV-2, could, in theory, lead to

higher risk of infection [22], represent further counter-
arguments. Nevertheless, recent data propose potential
favorable effects of SGLT-2i in the context of acute illness
with COVID-19, indicating no increase in adverse events
and low rates of non-severe DKA [23, 24].

Indeed, several meta-analyses have demonstrated a
potential benefit regarding morbidity and mortality in
patients suffering from COVID-19 in SGLT-2i users with
DM-2 [25–29]. Moreover, as indicated by experimental
models, treatment with SGLT-2i offers a beneficial
approach in order to blunt systemic inflammation and
immune responses, reduce oxidative stress and obesity-
associated inflammation, and modulate renin-angiotensin
system activity [30–33]. Therefore, based on the encoura-
ging study results and given the beneficial effects of SGLT-
2i, discontinuation of SGLT-2i during acute illness should
be further evaluated [34, 35].

The existing meta-analyses have primarily focused in
patients with DM-2. However, the indications for SGLT-2i
are becoming broader due to the encouraging study situa-
tion with more and more patients being treated with this
class of drugs. In addition to the blood glucose-lowering
effect, the nephroprotective [1], cardioprotective [4, 36],
and antiinflammatory effects [37, 38] seem also essential.
Given the low incidence of DKA in cardiovascular outcome
trials and in hospitalized patients with DM-2 [16], coupled
with the abundance of pertinent, recently published studies
and existing uncertainties surrounding the administration of
SGLT-2 inhibitors during acute illness, this systematic
review seeks to furnish evidence on the utilization of
SGLT-2i in patients experiencing acute illness, with a par-
ticular focus on SARS-CoV-2 infection.

Methodology

Protocol and registration

The present systematic review adheres to the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses statement [39]. Our protocol was pre-registered
with PROSPERO (CRD42023457993) and is accessible
online.

Inclusion and exclusion criteria

We included randomized controlled trials and observational
cohort studies in our analysis, encompassing data related to
the use of SGLT-2i in patients with COVID-19 and pro-
viding information on all-cause mortality and/or morbidity
outcomes. Both peer-reviewed papers and preprints were
deemed eligible, while case reports and case series invol-
ving fewer than five patients were excluded.

Endocrine



Outcomes of interest

The primary outcome was to investigate the mortality of
patients with COVID-19 while receiving SGLT-2i. Sec-
ondary outcomes included the effect of SGLT-2i use in
patients with SARS-CoV-2 on systemic inflammation,
hospitalization, ICU admission, need for mechanical ven-
tilation, effect on renal function, and prevalence of adverse
events, particularly AKI and DKA.

Search strategy

Two authors (CT and MZ) independently conducted the
literature search. We systematically searched PubMed
and Scopus in order to explore all available clinical
studies on the topic with the search phrase: (“SARS-
CoV-2” OR “COVID-19” OR “Corona Virus”) AND
(“SGLT-2” OR “Sodium-glucose transporter-2” OR
“antidiabetic*” OR “anti‐diabetic*” OR “medication*”
OR “treatment” OR “drug*”) AND (“diabetes” OR
“T2DM”). We also conducted a search in the gray lit-
erature (i.e., preprint serversmedRxiv and Research
Square and Google Scholar) by using the same search
phrase. Another search was conducted in the reference
lists of all identified reports and articles for additional
studies We retrieved all relevant articles on adult human
subjects up to October 30th, 2023, with no language
restrictions.

Data extraction

The titles and abstracts of studies acquired through the
search strategy and additional sources underwent indepen-
dent screening by three authors (CT, EX, and MZ) to
identify those potentially aligning with the aforementioned
inclusion criteria. Data extraction from each study was
independently conducted by two authors (CT and MZ)
using a customized format. Any disagreements regarding
the eligibility of studies were resolved through discussions
among the authors.

A standardized form was employed for the systematic
extraction of data from the encompassed studies, facil-
itating the evaluation of study quality and the synthesis
of evidence. The extracted information encompassed
publication particulars (authors, year), geographical
location, study type, clinical attributes (comorbidities
such as DM, hypertension, ischemic cardiac disease,
heart failure, kidney injury, DKA), and outcomes. Dis-
crepancies were addressed through dialog or, when
required, through consultation with other authors. Cor-
respondence with the original study authors was initiated
to seek clarifications or obtain supplementary
information.

Assessment of methodological quality

The articles selected for retrieval underwent evaluation by
two independent authors (CT, EX) for methodological
quality using the Newcastle-Ottawa Quality Assessment
Scale for Cohort Studies [40] before inclusion in the review.
Any discrepancies between the authors during the appraisal
process were resolved through discussion involving all the
authors. Further details are available in the Supplementary
Material.

Results

Out of the 5160 pertinent citations identified and screened,
22 studies were chosen for a comprehensive review fol-
lowing an assessment of their abstracts. These 22 studies
were included in the final evaluation for potential data
extraction (Fig. 1). The baseline characteristics of the stu-
dies investigating the use of SGLT-2i in patients with
COVID-19 incorporated into the systematic review are
detailed in Table 1. A summary of the results from the risk
of bias assessment for the included studies can be found in
the supplementary appendix (Table S1).

Diabetes mellitus patients

Mortality

Four studies [34, 41–43] reported that DM-2 patients taking
SGLT-2i had a lower total mortality risk than those not

Fig. 1 The PRISMA flow diagram for the study selection
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prescribed. One study [44] could demonstrate a trend in risk
reduction for total mortality and hospitalization for DM
patients with COVID-19 under SGLT-2i compared with
nonusers without however reaching statistical significance.
One study [44] highlights that DM infected with COVID-19
patients using SGLT-2i have a significantly lower in-
hospital mortality compared to nonusers. Moreover, one
study [45] showed a lower in-hospital death rate in DM-2
patients under combined therapy of metformin plus SGLT-
2i. Furthermore, six studies found no elevated mortality in
COVID-19 DM patients while taking SGLT-2i [16, 46–50].

Hospitalization

Two studies [43, 44] found a reduced risk of hospitalization
in COVID-19 patients with DM-2 while taking SGLT-2i.
However, the study of Foresta et al. [44] does not reach
statistical significance regarding risk of hospitalization [44].
Three studies [47, 51, 52] demonstrated a neutral effect on
risk of hospitalization.

Susceptibility to COVID-19 infection

In a retrospective cohort study, Sainsbury et al. (2021)
found that the use of SGLT-2i in DM-2 patients did not
elevate the risk of developing COVID-19 [53].

Intensive care unit admission and mechanical ventilation

In patients with DM-2, prior use of SGLT-2i was not
associated with intensive care unit (ICU) admission and
need for mechanical ventilation (MV) [50]. Similarly,
combined therapy with metformin and empagliflozin
showed no significant association to ICU admission and
MV [45]. In contrast, the study of Dalan et al. [54] high-
lighted that SGLT-2i use was associated with a marginally
lower risk MV in patients with DM [54].

Use of SGLT-2i in patients with cardiometabolic risk
factors and/or heart failure

One multicenter, prospective, double-blind, event-driven
clinical study found that dapagliflozin reduced cardiovas-
cular death/worsening heart failure events in patients with
chronic heart failure with HFmrEF/HFpEF when censoring
participants at COVID-19 diagnosis [24]. Moreover, the
combination of metformin and empagliflozin exhibited
protective effects against COVID-19 hospitalization in
patients with cardiometabolic risk factors. However,
empagliflozin alone was not associated with a lower risk of
hospitalization [52]. Likewise, the use of dapagliflozin
before contracting SARS-CoV-2 did not demonstrate an
elevated risk of severe outcomes. While an increased

susceptibility to COVID-19 was noted, dapagliflozin
showed a trend in reducing the risk of progressing to severe
COVID-19, although this trend did not reach statistical
significance [55]. These findings are further supported by
experimental evidence showing that downregulation of
apelin and ACE2 and upregulation of SGLT-2, endothelin-
1, and pro-inflammatory cytokines contribute to SARS-
CoV-2-mediated cardiorenal injury in post-myocardial
infarction heart failure rats, acute kidney injury (AKI),
and diabetic mice [56]. In contrast, the DARE-19 study
failed to demonstrate a benefit in patients with cardiome-
tabolic risk factors. Specifically, dapagliflozin intake during
COVID-19 in patients with cardiometabolic risk factors
showed no significant effect on organ dysfunction or death
[23]. Similarly, in a multicountry randomized controlled
study, there was no association found between empagli-
flozin and reductions in 28-day mortality, duration of hos-
pital stay, or the risk of advancing to invasive MV or death
in adults hospitalized with COVID-19 [57].

SGLT-2i and acute kidney injury in patients with
COVID-19

Only a few studies reporting the effects of SGLT-2i on renal
function in patients with COVID-19 could be identified.
The DARE-19 study demonstrated that dapagliflozin intake
during COVID-19 in patients with cardiometabolic risk
factors was associated with the development AKI in 3.4%
of the study population [23]. Moreover, the RECOVERY
trial did not identify any discernible difference in the
occurrence of acute kidney injury, defined as an increase in
the pre-randomization creatinine concentration of ≥50%, or
the requirement for renal dialysis or haemofiltration
between the treatment groups (empagliflozin vs. standard
care, 6.3 vs. 6.1%, respectively) [57].

However, a significantly higher AKI occurrence is
reported by Min and co-workers [47] in a retrospective
cohort study on patients with DM-2 (43.4%) [47]. Never-
theless, experimental findings indicate that the down-
regulation of apelin and ACE2, coupled with the
upregulation of SGLT-2, endothelin-1, and pro-
inflammatory cytokines, play a contributory role in the
cardiorenal injury mediated by SARS-CoV-2 in rats with
post-myocardial infarction heart failure, as well as in mice
with AKI and diabetes [56].

SGLT-2i and diabetic ketoacidosis in patients with
COVID-19

Based on the provided studies, the association between the
use of SGLT-2i and the risk of DKA in patients with DM-2
and in patients with cardiometabolic risk factors and/or
heart failure during COVID-19 was assessed. Three studies
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collectively indicate a consistent finding that the prescrip-
tion of SGLT-2i, such as dapagliflozin and empagliflozin, is
not linked to an elevated risk of DKA in individuals with
DM-2 and in patients with cardiometabolic risk factors and/
or heart failure as well [23, 24, 35, 57]. Furthermore, the
studies suggest that SGLT-2i do not contribute to a
higher likelihood of in-hospital mortality in individuals
with DM-2 during COVID-19, as evidenced by the
findings of Khunti et al. [35]. In the RECOVERY trial,
the occurrence of metabolic complications was compar-
able between the empagliflozin and standard care groups,
with reported cases of DKA in five (0.2%) versus two
(0.1%) patients, respectively [57]. However, the study of
Min et al. [47] demonstrates an incidence of DKA asso-
ciated with the use of SGLT-2i in 9.4% of DM-2 patients
with COVID-19 [47].

Discussion

Observations derived from good structured randomized
controlled trials indicate that SGLT-2i inhibitors exhibit a
mitigating effect on the progression of cardiovascular and
kidney diseases, irrespective of the presence or absence of
diabetes [58]. Furthermore, in individuals with CKD and
notable albuminuria, the administration of the SGLT-2i
dapagliflozin has demonstrated a reduction in the risk of
precipitous declines in kidney function, characterized by a
twofold increase in serum creatinine levels between two
consecutive study visits with a median time-interval of
100 days [59]. However, typically, the control of elevated
blood glucose levels in hospitalized patients relies on
insulin therapy. The abstention from oral agents during
hospitalization is grounded in their diminished hypogly-
cemic efficacy relative to insulin, potential interactions with
concurrently prescribed medications, and various safety
concerns associated with altered pharmacokinetics, parti-
cularly in instances of renal or hepatic dysfunction [60].
Issues of concern encompass identified correlations between
SGLT-2i and an elevated risk of DKA, hypovolaemia [60],
disruptions in electrolyte and acid–base balance [61], urin-
ary tract infections [62], as well as an early decrease in
glomerular filtration rate induced by tubuloglomerular
activation and reduced intraglomerular pressure [63].
Indeed, observational data from real-world settings indicate
that the occurrence of DKA continues to be a point of
concern in the context of using SGLT-2i [64] especially if
specific medical conditions as for example acute infectious
illness, urgent surgical procedures, or extended periods of
fasting, co-exist [3].

Cytokine storm observed in patients with SARS-CoV-2
denotes an aberrant hyperactivation of the immune system
characterized by dysregulated proinflammatory cytokine

production. This dysregulation precipitates an excessive
infiltration of immune cells into pulmonary tissues, inducing
consequential tissue damage. Furthermore, this immune cell
infiltration may extend to diverse tissues and organs, thereby
engendering dysfunction across multiple organ systems. Key
cytokines implicated in disease severity encompass tumor
necrosis factor α (TNF-α), interferon γ (IFN-γ), IL-6, IL-1β,
granulocyte-macrophage colony-stimulating factor, and
granulocyte colony-stimulating factor indicating that the
judicious management of the hyperinflammation assumes
paramount importance in the therapeutic intervention for
COVID-19 disease [65]. Demonstrating efficacy in patients
with severe COVID-19, corticosteroids, IL-6 inhibitors, and
Janus kinase inhibitors [66] have been established as agents
capable of reducing mortality [57] underscoring the modifi-
able nature of inflammation and the potential for improvement
in clinical outcomes through anti-inflammatory therapeutic
interventions.

In addition to their glucose-lowering properties,
SGLT-2i have been observed to contribute to the estab-
lishment of an anti-inflammatory environment through
various physiological mechanisms as for example the
attenuation of the activation of nucleotide-binding
domain-like receptor protein 3 (NLRP3) inflammasome
leading to elimination of the production and expression
of proinflammatory cytokines, including IL-1β [38], IL-
1, IL-6, and TNF-α [67]. Additionally, they hinder gly-
colysis, a pathway utilized by respiratory pathogens, and
promote lipolysis, diminish oxidative stress, alongside
enhancing endothelial function and oxygen-carrying
capacity and tissue hypoxia through elevation of the
erythropoietin concentrations [3]. The beneficial effects
of SGLT-2i on inflammatory cascades may be of sig-
nificant importance in patients underwent MV, which is
also associated with the development of severe inflam-
matory reactions [68–70]. Furthermore, SGLT2i appears
to enhance the expression of ACE2 receptors, conse-
quently elevating Angiotensin 1–7 levels, known for
their protective effects against COVID-19-related
ARDS. Moreover, these inhibitors may potentially
mitigate myocarditis, reduce the risk of arrhythmias,
impede heart failure progression, and attenuate kidney
injury in affected individuals [71]. Nevertheless, con-
sidering the potential adverse events such as DKA,
hypotension and hypovolaemia, along with genital
mycotic infections that may be exacerbate during acute
illness [72], and given the wealth of pertinent recently
published studies and the prevailing uncertainties
regarding the use of SGLT-2i during acute illness, this
systematic review aims to provide evidence regarding
the application of SGLT-2i in patients undergoing acute
illness, using as model patients with SARS-CoV-2
infection.
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COVID-19-induced cytokine storm and SGLT-2
Inhibitors

Especially patients with DM-2, but also those with CKD as
well as cardiovascular disease, experience an increase in IL-
6 levels due to low-grade inflammation [73]. Low-grade
systemic inflammation is associated with elevated uric acid
and therefore linked with elevation of IL-6, C-reactive
protein and TNF-α in the bloodstream [74]. All three
underlying diseases are associated with an increased risk of
severe COVID-19 progression [75]. Indeed, Chia et al [76]
demonstrated that individuals from the general population
with elevated IL-6 levels were significantly more likely to
develop HFpEF than those with normal levels [76]. How-
ever, as is well known, all are also indications for SGLT-2i
use. SGLT-2i are thought to decrease lactate accumulation
by reversing the acid-base cytokine balance and preventing
decrease of cytosolic pH. This results in inhibition of
inflammatory pathways and subsequent cytokine storm,
which in turn could damage the cells [77].

It has already been scientifically shown that SGLT-2i-
induced lowering of the low-grade inflammation leads to a
subsequent lowering of IL-6 and TNF-α levels in the blood
[78–81]. Thus, the guideline-appropriate use of SGLT-2i in
patients also appears reasonable in the acute phase of Sars-
Cov-2 infection in the synopsis of the available studies.
After searching large databases, no studies could be found
that examined cytokine-levels when SGLT-2i were taken in
critically ill patients. Given the available data, lower levels
and thus a lowered inflammatory response would be con-
ceivable. However, this effect has not been clinically
demonstrated at this time.

A single prospective in vitro study was identified,
focusing on the potential anti-inflammatory and protective
properties of empagliflozin in the context of patients suf-
fering from COVID-19. The central hypothesis of this study
postulated that the inflammatory response observed in
COVID-19 patients may contribute to endothelial dys-
function by means of upregulated, redox-sensitive SGLT-2
expression. Consequently, the investigation aimed to scru-
tinize the protective effects of inhibiting SGLT-2 with
empagliflozin. This research entailed the collection of
human plasma samples from three distinct cohorts, namely,
patients with acute, subacute, and chronic COVID-19 con-
ditions (n= 100), individuals without COVID-19 but
exhibiting cardiovascular risk factors (n= 50), and a control
group comprising healthy volunteers (n= 25). Porcine
coronary artery endothelial cells were subjected to plasma
exposure at a concentration of 10%. To evaluate the study’s
outcomes, a suite of analyses was conducted, including
Western blot assessments and immunofluorescence staining
to gauge protein expression levels, quantitative reverse
transcription-polymerase chain reaction to measure mRNA

expression, and dihydroethidium staining to quantify oxi-
dative stress. The research also encompassed the assessment
of platelet adhesion, aggregation, and thrombin generation.
The findings from this investigation unveiled heightened
plasma levels of key proinflammatory cytokines, including
interleukin IL-1β, IL-6, TNF-α, monocyte chemoattractant
protein-1, and soluble intercellular adhesion molecule-1 in
COVID-19 patients. Notably, exposure of ECs to COVID-
19 plasma characterized by elevated proinflammatory
cytokine levels (specifically, IL-1β, IL-6, and TNF-α) pre-
cipitated a redox-sensitive upregulation of SGLT-2
expression. This molecular response, in turn, fostered
endothelial dysfunction, senescence, NF-κB activation,
inflammation, platelet adhesion and aggregation, von
Willebrand factor secretion, and thrombin generation.
Crucially, the study demonstrated that the stimulatory effect
of COVID-19 plasma could be attenuated through the use of
neutralizing antibodies against proinflammatory cytokines
and empagliflozin. In conclusion, the authors deduced that,
in patients afflicted with COVID-19, proinflammatory
cytokines induced the redox-sensitive upregulation of
SGLT-2 expression in endothelial cells [82], which subse-
quently led to endothelial injury, senescence, platelet
adhesion, aggregation, and thrombin generation. Conse-
quently, the inhibition of SGLT-2 via empagliflozin pre-
sents itself as a promising strategy for restoring vascular
homeostasis in the context of COVID-19 [83].

SGLT-2 inhibitor in patients with diabetes mellitus
and COVID-19

Individuals with DM-2 exhibit an elevated likelihood of
hospitalization and face an augmented risk of severe out-
comes and mortality [82] associated with COVID-19, as
outlined by Zhang and co-workers [84]. Specifically, the
risk for severe pneumonia is amplified by 2.3-fold, with a
corresponding 2.5-fold increase in mortality [85]. This
heightened susceptibility can be primarily attributed to two
interconnected mechanisms: Firstly, a substantial proportion
of patients with DM-2 are characterized by overweight.
This adiposity contributes to an increased prevalence of
cytokines, released by resident macrophages, adipocytes,
and endothelial cells [86]. Consequently, the preexisting
state of chronic inflammation is exacerbated during SARS-
CoV-2 infection, culminating in a cytokine storm [87].
Importantly, the administration of SGLT-2i has been asso-
ciated with a reduction in body weight [88], which, in turn,
contributes to the amelioration of chronic inflammation in
obese patients [89]. Conversely, heightened blood glucose
concentrations prompt heightened expression of ACE2 in
the pulmonary system [87] facilitating the internalization of
the virus into the body [90]. To mitigate the potential
severity of a COVID-19 infection, precise control of blood
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glucose levels is strongly recommended. On the other hand,
elevated blood glucose levels stimulate increased expres-
sion of ACE-2 in the lung [87], which mediates the inter-
nalization of the virus to the body [90]. To avoid severe
COVID-19 courses as far as possible, a tight adjustment of
blood glucose levels is strongly recommended. Notably, the
association between elevated HbA1c levels and increased
mortality during COVID-19 has been established [91]. The
higher the HbA1c-levels, the higher the mortality during
COVID-19 with the levels of HbA1c presenting a linear
correlation with mortality [91].

Existing evidence indicates that individuals with DM-2
undergoing treatment with SGLT-2i while suffering from
COVID-19 manifest reduced mortality rates [28, 34,
41, 42]. According to Shestakova’s et al. [42], the favorable
impact of SGLT-2i on the course of COVID-19 is ascribed
to their capacity for diminishing oxidative stress, imparting
an antioxidant effect, and modulating endothelial function
[42]. Khunti et al. [34] observe a more pronounced bene-
ficial effect in patients with diabetes mellitus and elevated
body mass index or a history of cardiovascular disease
during COVID-19, attributing this effect to the heightened
cardio- and renoprotective properties intrinsic to this drug
class [34].

We found that individuals with DM-2 taking SGLT-2i
exhibit a lower risk of mortality, as reported by multiple
studies [34, 41–43]. Foresta et al. (2023) suggests a trend
towards reduced mortality and hospitalization for DM
patients with COVID-19 under SGLT-2i, with significant
in-hospital mortality reduction, particularly when combined
with metformin [44]. Hospitalization risk reduction in DM-
2 patients with COVID-19 under SGLT-2i was noted in
studies by Wander et al. [43] and Foresta et al. [44] (not
statistically significant) [43, 44]. However, three studies
[51, 52] showed a neutral effect on hospitalization risk. The
susceptibility to COVID-19 infection in DM-2 patients
using SGLT-2i was not elevated [53]. Regarding ICU
admission and MV, Yeh et al. [50] and Perez-Belmonte
et al. [45] found no significant associations with prior use of
SGLT-2i in DM-2 patients [45, 50]. Dalan et al. [54] sug-
gested a marginally lower risk of MV in DM patients using
SGLT-2i [54].

Nevertheless, counterarguments against the wide-
spread utilization of SGLT-2i during the acute phase of
infection include the following considerations: SGLT-2i
may instigate volume depletion, arterial hypotension,
and euglycaemic DKA. The emergence of the latter
complication appears notably evident in patients with
diminished carbohydrate intake due to acute illness and
in those experiencing dehydration from fever, vomiting/
diarrhea, and the osmotic/diuretic influences of COVID-
19 [92]. Therefore, a judicious evaluation of the appro-
priateness of SGLT-2i usage is imperative, particularly

in individuals with impaired glucose tolerance and sub-
sequent insulin resistance, potentially leading to
hyperinsulinism.

SGLT-2 inhibitors in patients with cardiometabolic
risk factors and/or heart failure

SGLT-2i are recognized for their diverse applications,
encompassing not only DM-2 but also heart failure,
whether with preserved or reduced ejection fraction
[4, 93]. Viral diseases, such as COVID-19, have been
identified as potential triggers for heart failure [94].
Autopsy studies indicate that SARS-CoV-2 can directly
invade cardiomyocytes, leading to direct cardiomyocyte
damage [95]. Beyond the virus itself, the inflammatory
response, characterized by elevated cytokine levels,
contributes to myocardial damage [94].

Hospitalized COVID-19 patients often exhibit ele-
vated levels of creatine kinase (CK) and lactate dehy-
drogenase (LDH) or increased troponin, indicative of
myocardial damage [96–98]. Studies suggest that up to
62.3% of hospitalized COVID-19 patients experience
myocardial damage, detectable through elevated high-
sensitive cardiac troponin T (Weber). Patients with car-
diac injury also demonstrate elevated IL-6 levels, with
fulminant myocarditis attributed to a cytokine storm as a
potential cause [10]. Preventing cytokine storm appears
crucial, given its impact on cardiac function and, con-
sequently, survival.

In addition, COVID-19 may contribute to cardiac
remodeling, particularly with a right-dominant pattern. Left
ventricular (LV) function is less frequently affected [99].
Viral infections, known to cause subacute myocarditis with
limited ventricular function, underscore the importance of
SGLT-2 inhibitors in guideline-based heart failure therapy,
potentially preventing or reversing cardiac remodeling [75].
However, the impact of COVID-19-induced cardiac remo-
deling and the potential benefits of SGLT-2i in this context
remain to a large extend unclear.

We found that dapagliflozin demonstrates a reduction
in cardiovascular events in heart failure patients, and its
use before contracting COVID-19 did not elevate severe
outcomes. The combination of metformin and empagli-
flozin protected against COVID-19 hospitalization in
those with cardiometabolic risk factors, but empagliflozin
alone did not reduce the risk. Experimental evidence
suggested dapagliflozin’s potential in mitigating SARS-
CoV-2-mediated cardiorenal injury. However, the
DARE-19 study found no significant benefits in patients
with cardiometabolic risk factors, and a multicountry
study reported no association between empagliflozin and
COVID-19 outcomes in hospitalized adults [23, 24, 33,
52, 55, 57].
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SGLT-2 inhibitors and acute kidney injury in
patients with COVID-19

2021 McMurray and colleagues demonstrated the beneficial
effects of SGLT-2i on chronic renal failure progression. In
both patients with and without DM, the use of SGLT-2i
reduced the risk of progression to chronic renal failure and
significantly reduced mortality [4]. Causes of chronic renal
failure are diverse. Among others, however, repeated AKI is
a possible trigger. Patients with renal function impairment
and COVID-19 have increased risk for adverse clinical
outcomes, severe disease and higher in-hospital mortality
compared to those with normal renal function [100]. In a
large veterans’ study from the U.S. in 2021, Al-Aly et al.
[101] showed that even 30 days after the initial diagnosis of
COVID-19, there was an increased likelihood that renal
function was still impaired [101].

The effects leading to improved preservation of residual
renal function in chronic renal failure are still unclear [4]. It
is suspected that via tubuloglomerular feedback, triggered
by the increased, SGLT-2i-induced, flow of sodium through
the nephron via adenosine, vasoconstriction of the glo-
merular arterioles occurs. This leads to protection of the
glomeruli by lowering intraglomerular pressure [102]. Sta-
bilization of eGFR occurred during therapy with SGLT-2i
and was significantly reduced during follow-up, compared
to patients on ACE inhibitors [103]. By stabilizing the
progression of chronic renal failure, patients who develop
COVID-19 are at less risk of mortality: CKD is associated
with higher risk of severe COVID-19 [104].

The relationship between AKI and SGLT-2i in the con-
text of COVID-19 remains less clear. From a pathophy-
siological perspective, a dual effect is conceivable. The
potential protective effect arises from the amelioration of
CKD and chronic heart failure. Conversely, the SGLT-2 i-
induced volume depletion, leading to an elevated risk of
dehydration in infected individuals, may contribute to an
increased susceptibility to acute renal injury [105].

We found limited studies on the impact of SGLT-2i on
renal function in COVID-19. Dapagliflozin use during
COVID-19 in individuals with cardiometabolic risk factors
was associated with a 3.4% incidence of AKI in the DARE-
19 study [23]. Furthermore, the RECOVERY trial observed
no significant difference in AKI occurrence between
empagliflozin and standard care groups (6.3% vs. 6.1%,
respectively) [57]. However, in a retrospective cohort study,
Min et al. [47] reported a notably higher AKI occurrence of
43.4% in patients with type 2 diabetes [47]. Further research
is warranted to elucidate the intricate interplay between
SGLT-2 inhibitors, COVID-19, and acute kidney injury.
The reported variations in AKI incidences among studies
examining COVID-19 can be attributed to several factors.
Indeed, the differences in COVID-19 severity reflect

variations in patient populations across studies. Hospita-
lized patients, experiencing more advanced disease stages,
may significantly impact the observed AKI incidence.
Additionally, the inclusion of patients with diverse baseline
characteristics and comorbidities contributes to overall
variability. Finally, experimental evidence suggests that
SARS-CoV-2 induces cardiorenal injury in rats with post-
myocardial infarction heart failure and mice with AKI and
diabetes by downregulating apelin and ACE2, while upre-
gulating SGLT-2, endothelin-1, and pro-inflammatory
cytokines [56].

SGLT-2i and diabetic ketoacidosis in patients with
COVID-19

The infection with SARS-CoV-2 has the potential to
directly or indirectly disturb the endocrine system, leading
to endocrine dysfunction and dysregulation of glycaemic
control. The existing literature on the intricate interplay
between COVID-19 and endocrine dysfunctions is con-
tinuously evolving and remains incompletely understood
[106]. Characterized by hyperglycemia, ketone body accu-
mulation, and resulting acidosis, diabetic DKA is a life-
threatening metabolic disturbance. While more prevalent in
DM-1, it can also manifest in individuals with DM- 2
during viral infections. Research suggests that COVID-19
can expedite lipolysis, promoting ketosis, particularly in
diabetes patients with inadequate glycemic monitoring
[107]. Moreover, euglycaemic DKA represents one of the
side effects of SGLT-2i, a risk highlighted by FDA drug
safety warnings in 2015 [108]. Certainly, observational data
emphasize ongoing concerns regarding the incidence of
DKA in the use of SGLT-2i [64], particularly in the pre-
sence of specific medical conditions such as acute infectious
illnesses, urgent surgical procedures, or extended periods of
fasting [3]. However, the incidence of DKA in SGLT-2i
users during COVID-19 remain unclear.

We found that SGLT-2i, such as dapagliflozin and
empagliflozin, are consistently not associated with an
increased risk of DKA in patients with DM-2 or those with
cardiometabolic risk factors or heart failure during COVID-
19, based on four studies [23, 24, 35, 57]. Khunti et al. [35]
also reported no higher in-hospital mortality risk with
SGLT-2i in DM-2 patients during COVID-19 [35]. How-
ever, Min et al. (2022) observed a 9.4% incidence of DKA
associated with SGLT-2 inhibitor use in DM-2 patients with
COVID-19 [47].

As mentioned above, one significant factor contributing
to the disparity in reported DKA incidences is the severity
spectrum of COVID-19 within the studied populations. The
study of Min et al. [47] specifically focused on hospitalized
patients [47]. Severe cases requiring hospitalization may
inherently carry a higher risk of metabolic complications,
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including DKA. This contrasts with studies encompassing a
broader spectrum of COVID-19 severities, where the inci-
dence of DKA might be lower due to the inclusion of milder
cases managed in outpatient settings. Variations in the
severity of COVID-19 can reflect differences in patient
populations across studies. Hospitalized patients may
exhibit more advanced disease stages, potentially influen-
cing the observed incidence of DKA. Additionally, the
inclusion of patients with diverse baseline characteristics
and comorbidities can contribute to the variability. More-
over, variations in study designs, including whether the
study is retrospective or prospective, and the methods used
for data collection, can influence the reported incidence
rates. Finally, the focus on hospitalized patients in specific
studies may introduce a selection bias toward more severe
cases, impacting the overall estimate.

Area for further research: potential impact
of SGLT-inhibitors in the prevention of
thrombotic complications in SARS-CoV-2
infection

Initially categorized as primarily affecting the respiratory
system, COVID-19 is distinguished by an aberrant immune
response and irregular release of cytokines and chemokines,
which serve not only to attract immune cells to the site of
injury but also to initiate activation of the complement and
clotting pathways impacting various organs including the
circulatory system [109–111]. Immunothrombosis, a fun-
damental defense mechanism, involves interactions between
the innate immune system, platelets, and endothelial cells,
leading to activation of the coagulation system to contain
invading pathogens [112], an interplay that appears to be
significant in the pathophysiology of severe cases of
COVID-19 [113, 114]. Indeed, elevated levels of coagula-
tion factors detected in individuals with COVID-19 likely
represent an aspect of hyperinflammatory response [115].
Neutrophils and monocytes release procoagulant substances
like IL-1 or tissue factor, as well as serine proteases such as
elastase and cathepsin G, which contribute to the augmen-
tation of clot formation [112, 116, 117]. Moreover,
enhanced production of tissue factor and diminished func-
tionality of tissue factor pathway inhibitor (TFPI), induced
directly by proinflammatory cytokines, resulting in elevated
tissue factor levels [118, 119]. In addition, inflammatory
molecules have the ability to activate platelets and stimulate
their aggregation [120, 121]. The potential role of the kal-
likrein‐kinin system in driving thrombo‐inflammation in
COVID‐19 has also been highlighted arising from its ability
to trigger inflammation and coagulation activation through
the contact pathway [122–125]. In addition to reducing the
levels of thromboregulatory proteins, inflammatory

mediators directly hinder the synthesis, activation, and
effectiveness of protein C, while promoting its consump-
tion, ultimately leading to immunothrombosis [119].
Among the recognized pathophysiological mechanisms
implicated in COVID-19-related coagulopathy, there are
hypo-fibrinolytic changes typified by increased production
of plasminogen activator inhibitor-1 (PAI-1) by inflamma-
tory agents process, which is accompanied by impaired
degradation of PAI-1 due to inhibition of protein C
[119, 126]. Conversely, clotting factors, specifically
thrombin, have the capability to activate immune cells
directly and induce the release of inflammatory mediators
[127].

It is assumed that elevated circulating insulin levels with
insulin resistance in type 2 diabetes underpins increased
ACE-2 expression in lung epithelial cells and, hence, con-
tributes to severe disease associated with COVID-19
infection. Insulin resistance, a hallmark feature of type 2
diabetes, is known to elevate inflammatory cytokines [128],
endothelial dysfunction [129] and procoagulant state [128]
in this high-risk subgroup even before SARS-CoV-2
infection. Hence, as a result, insulin resistance potentially
contributes to the severity of COVID-19 and is associated
with poorer outcomes among patients with pre-existing
diabetes.

Indeed, in response to SARS-CoV-2, excessive immu-
nothrombosis may precipitate pathological thrombosis in
both large and small blood vessels, culminating in sig-
nificant organ damage and increased mortality rates
[130, 131]. The latest is supported by studies showing that
critically ill patients exhibit the highest serum concentra-
tions of cytokines, including IL-6, TNFα, IL-1β, IL-8, and
IL2R, correlating with the development of ARDS, hyper-
coagulation, and disseminated intravascular coagulation.
This combination could lead to manifestations such as
thrombosis, thrombocytopenia, and gangrene of the extre-
mities [132].

Considering the emerging anti-inflammatory properties
of SGLT-2 inhibitors with a notable reduction in inflam-
matory biomarkers, such as C-reactive protein, ferritin, and
interleukin-6 and their favorable influence on vascular
endothelial function, their utilization may hypothetically
confer an advantageous effect in attenuating excessive
cytokine production and inflammatory response observed in
severe cases of COVID-19 infection with potential rele-
vance in prophylaxis against thrombotic complications
associated with SARS-CoV-2 infection [14]. Indeed, in-
vitro investigations have revealed that the proinflammatory
cytokines TNF-α and IFN-γ induce a significant increase in
IL-6 expression in Human Cardiac Microvascular Endo-
thelial cells (HCMEC). This response is markedly sup-
pressed by clinically relevant concentrations of
canagliflozin, dapagliflozin, and empagliflozin [14].
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Additional experimental studies highlight that the stimula-
tory effects of TNF-α and IFN- γ on IL-6 expression in
Human Umbilical Vein Endothelial cells were significantly
attenuated by canagliflozin [14]. Further experimental and
clinical studies are needed to explore the potential of
attenuating excessive cytokine production and inflammatory
response in severe cases of COVID-19 infection, relevant to
prophylaxis against thrombotic complications associated
with SARS-CoV-2.

Limitations

Despite our initial intention to conduct a meta-analysis,
several challenges were encountered that rendered this
approach unfeasible. These challenges primarily stemmed
from the heterogeneity observed among the included stu-
dies, spanning variations in methodologies, populations,
and interventions. The diverse nature of these studies made
it challenging and, in some instances, inappropriate to
aggregate their findings through a meta-analytical frame-
work. In order to ensure a rigorous and contextually rele-
vant synthesis of the available evidence we adapted our
approach to a systematic review.

Conclusion

In summary, our investigation reveals that individuals using
SGLT-2i, both with and without diabetes mellitus, and
experiencing COVID-19, demonstrate a noticeable trend
towards reduced mortality and hospitalization. Moreover,
our findings contribute significant insights into the safety
profile of these drugs, suggesting a low risk of adverse
events, such as AKI and DKA, even in acute settings when
appropriately administered. Additionally, our results may
serve as a foundation for potential future applications of this
drug class in preventing organ damage and reducing car-
diovascular events among hospitalized patients, irrespective
of their diabetes status and COVID-19 presence. Never-
theless, it is imperative to acknowledge that this hypothesis
necessitates rigorous testing through adequately designed
and powered clinical studies.
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