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Abstract. We consider horizontal iterated function systems in the Heisenberg group H
1,

i.e. collections of Lipschitz contractions of H
1 with respect to the Heisenberg metric.

The invariant sets for such systems are so-called horizontal fractals. We study questions
related to connectivity of horizontal fractals and regularity of functions whose graph lies
within a horizontal fractal. Our construction yields examples of horizontal BV (bounded
variation) surfaces in H

1 that are in contrast with the non-existence of horizontal Lipschitz
surfaces which was recently proved by Ambrosio and Kirchheim (Rectifiable sets in metric
and Banach spaces. Math. Ann. 318(3) (2000), 527–555).

1. Introduction
In this paper we study connectivity of horizontal fractals in the Heisenberg group and
regularity of selection maps into horizontal fractals.

Analysis of the Heisenberg group is motivated by its appearance in the analysis
of several complex variables and in quantum mechanics. In addition, as the simplest
non-Abelian example, the Heisenberg group serves as a testing ground for questions
and conjectures on more general Carnot groups and sub-Riemannian spaces.
Geometric measure theory and rectifiability play an important role in these settings in
connection with sub-elliptic PDE’s and control theory. For further information, we refer
to [25, Ch. XIII and XIV] and [14]. For more recent results in the subject we refer to
[3, 5, 12, 13, 18].

Let us recall that the (first) Heisenberg group H = H
1 is the unique non-Abelian Carnot

group of rank two and dimension three. Explicitly, H = R
3 with the group law

(x, t) ∗ (x ′, t ′) = (x + x ′, t + t ′ + 2〈x, Jx ′〉), (1.1)
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622 Z. M. Balogh et al

where J : R
2 → R

2 denotes the map

J (x1, x2) = (−x2, x1)

and 〈·, ·〉 is the standard inner product in R
2.

The sub-Riemannian nature of H is reflected in the so-called horizontal distribution
HH, which is the distinguished subbundle of the full tangent bundle T H defined by

HpH := span{Xp, Yp}.
Here X and Y denote the left-invariant vector fields in H whose values at a point p =
(x1, x2, t) are

Xp = ∂x1 + 2x2∂t , Yp = ∂x2 − 2x1∂t .

Equivalently, HpH can be characterized as the kernel of the canonical contact form
dτ = dt + 2x1dx2 − 2x2dx1 on H at the point p.

We denote by τp0 : H → H, p0 ∈ H, the left translation τp0(p) = p0 ∗ p, and by
δε : H → H, ε > 0, the dilation

δε(x, t) = (εx, ε2t).

Two natural and equivalent metrics occupy a central role in the sub-Riemannian geometry
of H. The first is the so-called control metric dC or Carnot-Carathéodory metric
(CC metric). This metric is defined as a length metric using the horizontal vector fields
X,Y . The second goes by several names in the literature (gauge metric or Korányi metric).
We will refer to this latter metric as the Heisenberg metric and denote it by dH. Explicitly,

dH(p, q) = |p−1 ∗ q|H, p, q ∈ H, (1.2)

where ∗ denotes the group law from (1.1) and | · |H denotes the Heisenberg norm given by

|(x, t)|H = (|x|4 + t2)1/4. (1.3)

In this paper we will work entirely with the metric dH. The simple form of the expressions
in (1.2), (1.3) makes this metric suitable for the computations which we will carry out.

Each of the metrics dC and dH is homogeneous, that is, d(δεp, δεq) = εd(p, q) for
d = dC or d = dH. It follows that dC and dH are globally bi-Lipschitz equivalent. In fact,

1√
π

dC(p, q) ≤ dH(p, q) ≤ dC(p, q) (1.4)

for any two points p, q ∈ H. The constant 1/
√

π in (1.4) may be explicitly calculated
using the structure of the CC-geodesics in H, see for example Bellaı̈che [7].

The principal objects of study in this paper are invariant sets for iterated function
systems in (H, dH). Recall that an iterated function system (for short, an IFS) on a complete
metric space (X, d) is a finite collection

F = {f1, . . . , fM }
of contraction maps of (X, d) (i.e. Lipschitz maps with Lipschitz constant strictly less than
one). The invariant set for F is the unique non-empty compact set in X which is invariant
under the action of the elements of F .
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Iterated function systems were studied by Hutchinson [16] as a convenient language
for describing the character of fractal objects and have since been used repeatedly in this
context. The case of similarity maps on X = R

n gives rise to many of the standard
examples of self-similar fractals such as the Cantor set, the von Koch snowflake curve and
the Sierpinski gasket and carpet. See Falconer [10, 11] for additional information.

In order to ensure that our study of iterated function systems in the Heisenberg group
has non-trivial content, it is necessary to begin with results guaranteeing the existence of
suitable Lipschitz self-maps of H. Our first theorem provides such a result. It asserts that
every Lipschitz map of the plane, which preserves area up to a constant factor, may be
lifted to a Lipschitz map of H.

Definition 1.5. Let f : R
2 → R

2. A map F : H → H is called a lift of f if π ◦F = f ◦π .

Here π : H → R
2 denotes the projection map

π(x, t) = x.

We now state our first theorem. Set c = (2 + √
3)1/4 ≈ 1.3899 . . . .

THEOREM 1.6. (Existence and uniqueness of horizontal Lipschitz lifts) Let f :R2 → R
2

be r-Lipschitz with det Df ≡ λ almost everywhere. Then there exists a cr-Lipschitz lift
F : (H, dH) → (H, dH).

If F̃ is another Lipschitz lift of f , then F̃ (x, t) = F(x, t + τ ) for some τ ∈ R.
Conversely, if f : R

2 → R
2 is Lipschitz with Lipschitz lift, then there exists λ ∈ R so

that det Df ≡ λ almost everywhere.

As will be shown in the proof, an explicit formula for the Lipschitz lift F is

F(x, t) = (f (x), λt + h0(x)) (1.7)

where
∇h0 = 2(λ · J − Df ∗ · Jf ) (1.8)

almost everywhere.
The lifted map F from Theorem 1.6 is a (generalized) contactomorphism, i.e. F

preserves the canonical Heisenberg contact form up to a multiplicative factor. Theorem 1.6
shows that the existence of such a lift is equivalent to the fact that the base map is (up to
a multiplicative factor) a symplectomorphism of R

2. The interplay between symplectic
geometry in dimension 2n and contact geometry in dimension 2n + 1 is a classical subject
in (smooth) Riemannian geometry, dating back to the fundamental work of Boothby and
Wang [8]. For appearances of this idea in connection with quasiconformal maps on the
Heisenberg group, see Korányi and Reimann [19, 20].

For non-smooth maps, a theorem of Capogna and Tang [9] asserts that any L-Lipschitz
map f : R

2 → R
2 with det Df almost everywhere equal to a constant may be lifted to

an L-Lipschitz map F : (H, dC) → (H, dC). From the bi-Lipschitz equivalence (1.4) of
the metrics dC and dH we deduce that F : (H, dH) → (H, dH) is

√
π L-Lipschitz so the

first statement of the above lifting theorem could be essentially deduced from the work
of Capogna and Tang. However, our approach is quite different from the method in [9];
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the advantage being that it yields also the second statement and the explicit formulas (1.7),
(1.8) which we need subsequently. Let us mention also that our constant c is smaller than√

π but we suspect that the conclusion in Theorem 1.6 is still not sharp. Indeed, we do not
know whether or not Theorem 1.6 holds with c = 1.

We notice here also that an alternative method for constructing Lipschitz self-maps of
the Heisenberg group via flows generated by special vector fields, is provided by the work
of Korányi and Reimann. It is rather amusing that affine self-maps of R

3 that are Lipschitz
in the Heisenberg metric arise always as lifts of affine self-maps of R

2. See Proposition 2.3.
With the preparatory Theorem 1.6 in hand, we return to the subject of iterated function

systems. As an immediate application we deduce the following existence theorem for
horizontal iterated function systems in the Heisenberg group.

THEOREM 1.9. (Existence of horizontal IFSs) Let F = {f1, . . . , fM } be an iterated
function system on R

2, where each map fi is ri -Lipschitz for some ri < 1/c and satisfies
det Dfi ≡ λi . For each i, let Fi be a lift of fi to H.

Then FH = {F1, . . . , FM } is an iterated function system on H. Denoting by K ,
respectively KH, the invariant set for F , respectively FH, we have

π(KH) = K. (1.10)

The invariant sets for IFSs on H of the type considered in Theorem 1.9 we call
horizontal fractals. The bulk of this paper concerns the geometry of horizontal fractals.
We study questions related to connectivity properties and regularity for functions whose
graph lies within a horizontal fractal.

According to Theorem 1.6, the lift of a Lipschitz map of R
2 is only defined up to the

ambiguity of a vertical constant. The lifted iterated function system in Theorem 1.9 inherits
the same ambiguity. More precisely, the family of all IFSs which are lifts of a given planar
IFS F can be parameterized by a point in R

M , where M denotes the cardinality of F .
Several of our results have a generic flavor; almost every lift (with respect to Lebesgue
measure on R

M ) has a certain property. Our main result concerning the connectivity of KH

reads as follows.

THEOREM 1.11. Let F = {f1, . . . , fM } be an iterated function system in the plane such
that det Dfi ≡ λi for i = 1, . . . ,M .
(i) There exists δ1 = δ1(M) such that if

λmax := max{|λ1|, . . . , |λM |} < δ1

and K = K(F) is connected, then KH = K(FH) is connected for some horizontal
lift FH.

(ii) There exists δ2 = δ2(M) such that if λmax < δ2 and F is PCF (post-critically finite),
then KH is totally disconnected for almost every horizontal lift FH.

We conjecture that this statement holds even without the conditions λmax < δ1,2; see
Remark 4.16.

The technical PCF condition will be treated in detail in §3.
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Our final results concern the regularity properties of the function between K and KH.
To be more precise, consider the set-valued mapping α defined as

α(x) := π−1(x) ∩ KH, x ∈ K, (1.12)

where KH is a horizontal lift of an invariant set K for an IFS in R
2. We show that each

selection of this set-valued map is continuous at the ‘irrational’ points in K .

THEOREM 1.13. Each selection β of the set-valued map α on K = K(F) defined in
(1.12) is continuous on K \ V∗.

Here the members of the set V∗ ⊂ K are the so-called ‘irrational’ points of K i.e. points
which have a unique symbolic representation (cf. §6). Recall that a function β is a selection
of a set-valued map α if β(x) ∈ α(x) for all x.

Many horizontal fractals are obtained as lifts of classical self-similar examples (Cantor
sets, snowflake curves, Sierpinski-type gaskets and carpets, and the like). A basic example
which plays a crucial role in this paper is the Heisenberg square QH, which is the invariant
set for the principal horizontal lift of the standard planar IFS

F = {f0, f1, f2, f3},
where

f0(x) = 1
2x, f1(x) = 1

2 (x + e1),

f2(x) = 1
2 (x + e2), f3(x) = 1

2 (x + e1 + e2).

Here e1 = (1, 0) and e2 = (0, 1) are the standard basis vectors in R
2. The invariant set for

F is the unit square Q = [0, 1]2.
See §5 for pictures of several horizontal fractals, including QH.
The example of the Heisenberg square QH is not new. Strichartz [26] used QH (and

versions of this object in much more general Carnot groups) to construct “dyadic-type”
Carnot tilings. See also [27]. However, Strichartz obtained QH in a different way as the
graph of an L∞ function and not as a horizontal lift. Due to our different approach we
obtain a more precise regularity result which we state as follows.

THEOREM 1.14. Let QH be the principal horizontal lift of Q = [0, 1]2 and let β : Q →
H, β(x) = (x, g(x)), be any selection of the set-valued map α(x) = π−1(x) ∩ QH.
Then g : Qo → R is a function of bounded variation.

Here Qo denotes the interior of Q.
In a subsequent paper [6] we consider the problem of calculating the Hausdorff

dimension of horizontal fractals. As a consequence of our results in [6] we find that

dimH QH = dimE QH = dimE Q = 2;
moreover, 0 < H2

H(QH) < ∞. Here we denote by dimH A the Hausdorff dimension
of a set A in (H, dH), and by dimE A the Hausdorff dimension of a set A in (Rn, dE),
n = 2, 3. Furthermore, H2

H denotes the two-dimensional Hausdorff measure with respect
to the metric dH.
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Combining this result and Theorem 1.14, we see that there exists a surface S = g(Qo)

in H with
0 < H2

H(S) < ∞ (1.15)

and g a function of bounded variation. This contrasts with a recent result of Ambrosio and
Kirchheim [2, Theorem 7.2], which states the following: there are no surfaces S = g(	)

in H, where 	 is a domain in R
2 and β = (id, g) is a Lipschitz map from 	 to (H, dH),

which satisfy (1.15). In Theorem 6.7 we strengthen this result by replacing dH with dE.
In summary, while horizontal Lipschitz surfaces in H do not exist, there are horizontal
BV (bounded variation) surfaces in H. It would be of interest to know whether there exist
horizontal surfaces of intermediate regularity.

1.16. Overview. The structure of this paper is as follows.
In §2 we prove that self-affine maps of R

3 which are Lipschitz in the Heisenberg
metric arise as horizontal lifts of self-affine maps of R

2. The general nonlinear case
(Theorem 1.6) is treated next. In contrast with the geometric construction of Capogna and
Tang, we present an analytic argument which leads to the explicit formula (1.7) for the lift.
The converse statement in Theorem 1.6 is obtained by using Pansu’s differentiability
theorem on Carnot groups.

In §3 we begin the main subject of the paper with the proof of Theorem 1.9 on horizontal
iterated function systems. We collect in §3 a variety of basic results concerning the
geometric and topological character of horizontal fractals.

In §4 we address the connectivity of horizontal fractals. In particular, Theorem 1.11 is
proven here.

Section 5 is devoted to examples. We present here several horizontal lifts of classical
examples and show some computer-generated pictures written in Maple.

In §6 we study the regularity of functions whose graph lies within a horizontal fractal.
The main results in this section are Theorem 1.13 and Theorem 1.14.

2. Lifts of Lipschitz maps from R
2 to H

Recall that a function f : X → Y between metric spaces is called r-Lipschitz, r > 0, if

d(f (x), f (y)) ≤ rd(x, y) (2.1)

for all x, y ∈ X. Moreover, f is Lipschitz if it is r-Lipschitz for some r < ∞.
The infimum of those values r for which (2.1) holds for all x, y ∈ X is called the Lipschitz
constant of f ; we denote this by LIP(f ).

Assume now that f : R
n → R

n is an r-Lipschitz map. Hadamard’s inequality implies
that

|det Df (x)| ≤ rn (2.2)

almost everywhere.
The first result of this section indicates that if an affine self-map of R

3 is Lipschitz with
respect to dH then it must have a special form. In fact it necessarily appears as a lift of an
affine self-map of R

2.
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PROPOSITION 2.3. Let F : R
3 → R

3 be an affine map of the form

F(x, t) := (Ax + t · a + b, dTx + ct + τ ),

where A is a real 2×2 matrix, a, b, d ∈ R
2 and c, τ ∈ R. Then F is Lipschitz with respect

to the Heisenberg distance dH if and only if the following relations hold:

a = (0, 0), d = −2ATJb, c = det A. (2.4)

The mapping F is a similarity with respect to the Heisenberg metric if and only if the above
relations hold and A is a similarity matrix of R

2:

ATA = c2 Id or ATA = −c2 Id,

where c = det A.

Proof. Let L := LIP(F ). Using the Lipschitz condition we have that

dH(F (0, 0), F (x, t)) ≤ LdH((0, 0), (x, t))

holds for all (x, t) ∈ R
2 × R. Writing this explicitly and using (1.2), (1.3) we obtain

|Ax + ta|4 + (〈d, x〉 + tc + 2〈Jb,Ax + ta〉)2 ≤ L4(|x|4 + t2). (2.5)

Now set x = 0, which yields |ta|4 +|tc−2〈b, J (ta)〉|2 ≤ L4 · t2 for all t ∈ R. This shows
that a = 0.

Setting t = 0 in the above inequality we find

|〈d, x〉 + 2〈Jb,Ax〉| ≤ L2 · |x|2,
for all x ∈ R

2, from which we derive d = −2ATJb.
Using the Lipschitz condition on F for points (x1, t1) and (x2, t2), the above relations,

and the identities

〈Ax1, JA(x2 − x1)〉 = 〈Ax1, JAx2〉 = det A〈x1, J x2〉,
we obtain

(c(t2 − t1) − 2 det A〈x1, J x2〉)2 ≤ L4(|x1 − x2|4 + (t2 − t1 − 2〈x1, J x2〉)2).

Choosing t2 − t1 = 2〈x1, J x2〉, where x1 �= 0 and x2 = x1 + s · Jx1, s ∈ R, we find

4(c − det A)2 ≤ L4s2|x1|2.
Since s is arbitrary, we obtain the last relation c = det A as well.

The verification of the second statement in the proposition is left to the reader. �

Let f : R
2 → R

2 be a general Lipschitz map. Without further assumptions, many
different functions F : H → H serve as lifts of f . However, if we require in addition that
F be Lipschitz with respect to dH, then F is uniquely determined via the formulas in (1.7)
and (1.8). Moreover, such a lift exists if and only if det Df is constant almost everywhere.
This is the content of Theorem 1.6 which we now prove.
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Proof of Theorem 1.6. The outline of the proof is as follows. First, we assume that F

is a Lipschitz lift of f . Using Pansu’s differentiability theorem from [24], we find an
implicit formula for h0 in (1.7) which we use to show that det Df ≡ λ almost everywhere.
This leads to a more precise formula for h0, which is very convenient for proving the
existence of the required lift under the assumption det Df ≡ λ almost everywhere.

Assume then that f is a Lipschitz map of R
2 with Lipschitz lift F to H.

By Rademacher’s theorem, f is differentiable almost everywhere. Pansu’s differentiability
theorem [24] implies that F is P-differentiable at almost every point p0 of H. By definition,
this means that there is a homogeneous homomorphism DPF(p0) : H → H such that

δ1/ε ◦ τ−1
F(p0)

◦ F ◦ τp0 ◦ δε (2.6)

converges locally uniformly to DPF(p0) as ε → 0. The P-differential of F at p0 is the
group homomorphism DPF(p0).

Pick a point p0 = (x0, t0) ∈ H such that f is differentiable at x0 and F is Pansu-
differentiable at p0 as well as at (x0,−t0) (this last restriction is only a technical detail
which we will use in (2.8)). Almost every point p0 is of this type.

Our goal is to find the Pansu-differential DPF at p0. The projection π commutes
throughout (2.6), whence

π ◦ DPF(p0) = Df (x0) ◦ π. (2.7)

Since DPF(p0) is a group homomorphism, and in particular a Lipschitz self-mapping of
H we have, by Proposition 2.3,

DPF(p0)(ej , 0) = (∂xj f (x0), 0) j = 1, 2,

and DPF(p0)(0, 1) = (0, µ) where µ = det Df (x0). Thus,

DPF(p0) =
(

Df (x0) 0
0 det Df (x0)

)
.

Since F is a lift of f , we may write F(x, t) = (f (x), h(x, t)). To find a formula for
h : H → R, we use the t-coordinate of DPF in (2.6) to obtain

lim
ε→0

ε−2
(

h(x0 + εx, t0 + 2ε〈x0, J x〉 + ε2t)

−h(x0, t0) − 2〈f (x0), Jf (x0 + εx)〉
)

= det Df (x0) · t (2.8)

for all (x, t) ∈ H. Setting x = 0, we find immediately that

∂

∂t
h(x0, t0) · t = det Df (x0) · t

for all t ∈ R, and hence

h(x0, t0) = det Df (x0) · t0 + h0(x0) (2.9)

for some h0 : R
2 → R. Notice that (2.9) holds for all t0 ∈ R and a priori only for

almost every x0 ∈ R
2. The function h0 is also a priori only almost everywhere defined.

However, since h is clearly a continuous function we obtain from (2.9) that h0 and thus
λ(x0) := det Df (x0), are both continuous at almost every x0. Moreover, we see that these
functions have continuous extensions such that (2.9) holds everywhere. In what follows
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we work with these continuous extensions of h0 and λ and under the assumption that (2.9)
holds everywhere.

Now, set t = 0 in (2.8), drop one factor of ε in the denominator, and use (2.9) to obtain

lim
ε→0

(
h0(x0 + εx) − h0(x0) + t0(λ(x0 + εx) − λ(x0))

ε
+ 2〈x0, J x〉λ(x0 + εx)

)

= 2〈f (x0), J (Df (x0)x)〉.
Using the above equality once with t0 and once with −t0 and summing, we deduce that

lim
ε→0

h0(x0 + εx) − h0(x0)

ε
= 2〈f (x0), J (Df (x0)x)〉 − 2〈x0, J x〉 · λ(x0)

= 2(λ(x0)〈Jx0, x〉 − 〈Df (x0)
∗ · Jf (x0), x〉).

Thus, we have shown that ∇h0(x0) exists and satisfies

∇h0(x0) = 2(λ(x0)J (x0) − Df (x0)
∗ · Jf (x0)) (2.10)

for almost every x0.
We will now show that det Df = λ is almost everywhere equal to a constant. For this

we go back to the main equation (2.8) and use the explicit formula for h from (2.9) to
obtain

lim
ε→0

ε−2
(

(λ(x0 + εx) − λ(x0))(t0 + 2ε〈x0, J x〉) + h0(x0 + εx) − h0(x0)

+2ελ(x0)〈x0, J x〉 − 2〈f (x0), Jf (x0 + εx)〉
)

= 0,

from whence we get, by dropping one factor of ε in the denominator,

lim
ε→0

λ(x0 + εx) − λ(x0)

ε
t0 = 2〈f (x0), J (Df (x0)x)〉 − 2λ(x0)〈x0, J x〉 − ∇h0(x0)x

= 0

for all x ∈ R
2. Hence, by (2.10), λ(x0) = det Df (x0) ≡ λ for almost every x0 ∈ R

2.
Using the continuity of λ we see that λ is constant.

The only thing left to prove is that a Lipschitz lift exists whenever det Df ≡ λ.
Assume that f is r-Lipschitz. Hadamard’s determinant inequality (2.2) gives |λ| ≤ r2.
Set

F(x, t) = (f (x), λt + h0(x)),

where h0 is given (up to an additive constant) by (2.10). We claim that F is cr-Lipschitz
in the metric dH, where c = (2 + √

3)1/4.
To see this we compute directly

dH(F (x, t), F (y, s))4 = |f (y)−f (x)|4 +|λ(s − t)+h0(y)−h0(x)− 2〈f (x), Jf (y)〉|2.
The difficult part of the proof will be to estimate the second term on the right side in the
above equation. Set therefore

A := λ(s − t) + h0(y) − h0(x) − 2〈f (x), Jf (y)〉.
In estimating the above expression we make use of (2.10) which holds only almost

everywhere. To make our calculations formally correct we impose some initial restrictions
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on the points x, y ∈ R
2. Let us fix first x ∈ R

2 and a value ρ > 0. Since (2.10) holds
almost everywhere we conclude that for y in a full L1-measure set on the circle ∂B(x, ρ)

(2.10) holds at the points

x0 = ξ(t) = y − x

|y − x| t + x

for L1 almost every t ∈ [0, |y − x|]. In what follows we work with such points x, y ∈ R
2.

Let us put f = (u, v). Since h0 is prescribed by its gradient, it is natural to write

h0(y) − h0(x) =
∫ |y−x|

0
〈∇h0(ξ(t)), ξ ′(t)〉 dt

= 2
∫ |y−x|

0
〈v(ξ)∇u(ξ) − u(ξ)∇v(ξ), ξ ′〉 dt + 2λ

∫ |y−x|

0
〈J (ξ), ξ ′〉 dt

= 2
∫ |y−x|

0
〈v(ξ)∇u(ξ) − u(ξ)∇v(ξ), ξ ′〉 dt − 2λ〈x, Jy〉.

Similarly, we write

〈f (x), Jf (y)〉 = 〈f (x), J (f (y) − f (x))〉

=
∫ |y−x|

0
〈v(x)∇u(ξ) − u(x)∇v(ξ), ξ ′〉 dt.

Combining the previous two calculations, we find

A2 =
∣∣∣∣λ(s − t − 2〈x, Jy〉)

+ 2
∫ |y−x|

0
〈(v(ξ) − v(x))∇u(ξ) − (u(ξ) − u(x))∇v(ξ), ξ ′〉 dt

∣∣∣∣
2

. (2.11)

Next, let p and q be a Hölder conjugate pair of exponents (p−1 + q−1 = 1) whose exact
values will be chosen later. Using the estimates (x + y)2 ≤ px2 + qy2, x, y ≥ 0, and
|λ| ≤ r2 together with the Cauchy–Schwarz inequality, we find

A2 ≤ pr4(s − t − 2〈x, Jy〉)2

+ 4q

(∫ |y−x|

0
|f (x) − f (ξ)|

√
|∇u(ξ)|2 + |∇v(ξ)|2 dt

)2

≤ pr4(s − t − 2〈x, Jy〉)2 + 2qr4|y − x|4 (2.12)

since f is r-Lipschitz, and hence |∇u(ξ)|, |∇u(ξ)| ≤ r .
Putting everything together, we obtain

dH(F (x, t), F (y, s))4 ≤ (1 + 2q)r4|y − x|4 + pr4(s − t − 2〈x, Jy〉)2.

Choose the Hölder conjugate pair p and q so that 1 + 2q = p. Then,

dH(F (x, t), F (y, s))4 ≤ (2 + √
3)dH((x, t), (y, s))4.

Since the above uniform estimate holds for a dense set of (x, t), (y, s), it holds everywhere
by continuity. The proof is complete. �
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Remark 2.13. From the proof of the theorem, it is clear that if

|h0(y) − h0(x) − 2〈f (x), Jf (y)〉 + 2λ〈x, Jy〉| = 0 (2.14)

for all x, y ∈ R
2, then f and F have the same Lipschitz constant.

Example 2.15. The lifts of an affine map f (x) = Ax + b are given explicitly as

F(x, t) = (f (x), det A · t − 2〈Ax, Jb〉 + τ ), τ ∈ R. (2.16)

Since h0(x) = −2〈Ax, Jb〉 satisfies (2.14), the Lipschitz constants of F and f agree.
This, in conjunction with Proposition 2.3, shows that all affine maps that are Lipschitz in
the Heisenberg metric arise as lifts of planar affine mappings.

PROPOSITION 2.17. Let f1, f2 : R
2 → R

2 be Lipschitz maps with det Dfi ≡ λi almost
everywhere, i = 1, 2. For each i = 1, 2 let Fi be a Lipschitz lift of fi . Then F1 ◦ F2 is a
Lipschitz lift of f1 ◦ f2.

Proof. That F1 ◦ F2 is a lift follows immediately from the definition. Moreover,
a composition of Lipschitz functions is Lipschitz. �

3. Iterated function systems and horizontal fractals in H

The lifting Theorem 1.6 is the key to the construction of horizontal iterated function
systems on the Heisenberg group. The invariant sets for such systems are so-called
horizontal fractals in H. We first give the basic existence result for such systems and
then proceed to describe various features of horizontal fractals in relation to the planar
invariant set of the underlying IFS in R

2.
We begin by reviewing the general theory of iterated function systems in metric spaces.

A standard reference is [17, Chapter 1], whose notation and terminology we follow.

3.1. Iterated function systems and invariant sets. Let X be a complete metric space.
A map f : X → X is a contraction map if LIP(f ) < 1.

Definition 3.2. An iterated function system (IFS) on X is a finite collection F =
{f1, . . . , fM } of contraction maps. A set A ⊂ X is called an invariant set for F if

A = f1(A) ∪ · · · ∪ fM(A). (3.3)

The fundamental existence theorem for invariant sets of IFSs reads as follows.

THEOREM 3.4. Let X be a complete metric space and let F be an iterated function system
on X. Then there exists a unique non-empty compact invariant set K = K(F) for F .

Henceforth, we use the phrase ‘invariant set of F ’ to refer to the specific set K(F)

whose existence is guaranteed by Theorem 3.4.
The proof of Theorem 3.4 uses the completeness of the space of all compact subsets of

X with the Hausdorff metric. See [17, §1.1].
Theorems 1.6 and 3.4 immediately imply Theorem 1.9.
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Proof of Theorem 1.9. That FH is an IFS on H is clear from the definitions. Since π is
continuous, π(KH) is a non-empty compact set in R

2. The identity

π(KH) =
⋃
i

π ◦ Fi(KH) =
⋃
i

fi (π(KH))

shows that π(KH) is an invariant set for FH. Then (1.10) follows by the uniqueness
assertion in Theorem 3.4. �

We call KH a horizontal lift of K . Our main purpose is to study various topological and
measure-theoretical properties of KH in relation to corresponding properties of K .

Remarks 3.5. (1) In the case when the maps fi ∈ F are affine contractions, the condition
ri < 1/c may be weakened to ri < 1. See Example 2.15.

(2) Since lifts of Lipschitz maps to H are not unique, it follows that horizontal lifts
of invariant sets are not unique. Indeed, given an IFS F = {f1, . . . , fM } on R

2 with
invariant set K , the space of all lifted IFSs FH = {F1, . . . , FM } (and hence all horizontal
lifts KH of K) is naturally parameterized by an M-dimensional Euclidean space, namely,
the t-coordinates of the fixed points of the lifted maps.

Definition 3.6. The principal horizontal lift of an IFS F on R
2 is defined as the IFS FH on

H for which all of the fixed points of the lifted maps have t-coordinate zero.

Remark 3.7. The necessity of the technical assumption LIP(fi) < 1/c comes from
the appearance of the factor c in Theorem 1.6. However, insofar as the existence of
horizontal lifts is concerned, this assumption is not restrictive. Indeed, given any IFS
F = {f1, . . . , fM } on R

2 and any m ≥ 1, the new IFS F (m) := {fi1 ◦ · · · ◦ fim : 1 ≤
i1, . . . , im ≤ M}, generates the same invariant set. Denoting by rmax < 1 the maximum
of the contraction ratios r1, . . . , rM , we have LIP(f ) < rm

max for every f ∈ F (m).
Since rm

max < 1/c for sufficiently large m, every invariant set K for an IFS in R
2 admits

a horizontal lift to H, provided we are willing to view K as the invariant set for a finer
collection of contractions as above.

Self-similar sets of Cantor type in the Heisenberg group have been considered earlier
by Balogh [3] in connection with the distortion of Hausdorff dimension by quasiconformal
maps.

3.8. Symbolic dynamics. The dynamical attributes of an iterated function system are
encoded via its representation as a quotient of a standard sequence space. We study the
connection between the symbolic representations of an IFS in R

2 and its horizontal lifts
to H.

Let A be an alphabet consisting of the letters 1, . . . ,M . Let Wm = Am, m ≥ 1
(respectively � = AN) denote the space of words of length m (respectively words
of infinite length) with letters drawn from A. We denote elements of these spaces by
concatenation of letters, i.e. w = w1w2 · · ·wm ∈ Wm or w = w1w2 · · · ∈ �, where
wj ∈ A for each j . Let W = ⋃

m≥1 Wm be the collection of all words of finite length.
Denote the length of a word w ∈ W by |w|. For fixed i ∈ A, let i be the infinite word
iii · · · .
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Assume now that F = {fi}i∈A is an IFS in a complete metric space X with invariant
set K . As before, denote by ri = LIP(fi) < 1 the Lipschitz constant for fi . For any finite
word w = w1 · · · wm let

fw = fw1 ◦ · · · ◦ fwm, rw = rw1 · · · rwm

and Kw = fw(K). Then K = ⋃
w∈Wm

Kw for each m and

max
w∈Wm

diam Kw → 0, as m → ∞.

We also define Kw for infinite words w = w1w2 · · · by setting Kw = ∩mKw1···wm .
In this case, Kw consists of a single point in K .

We denote by σ the shift map on �:

σ(w1w2w3 · · · ) = w2w3 · · · .

We consider on � the product topology induced by the discrete topology on A and we
define a map p = pF : � → K by setting p(w) equal to the unique point in Kw . Then p

is a continuous surjection from � to K given by

p(w) = lim
m→∞ fw1···wm(x0), w = w1w2 · · · ∈ �, (3.9)

where x0 is an arbitrarily chosen point in X. On the other hand, the mapping p : � → K

in general is not injective. This is described in the following.

PROPOSITION 3.10. p(w) = p(w′) for w �= w′ ∈ � if and only if p(σ sw) = p(σ sw′) ∈⋃
i �=j Ki ∩ Kj , where s = s(w,w′) := min{m : wm �= w′

m} − 1.

This is [17, Proposition 1.2.5]. Observe that s = s(w,w′) if and only if wi = w′
i for

1 ≤ i ≤ s and ws+1 �= w′
s+1.

In the remainder of the paper, we typically work in the situation described in the
following assumption.

ASSUMPTION 3.11. F = {fi}i∈A is an iterated function system on R
2 and FH = {Fi}i∈A

is a horizontal lift of F to H.

We denote by p : � → K and pH : � → KH the canonical surjections from sequence
space onto the invariant sets for F and FH respectively.

LEMMA 3.12. p = π ◦ pH.

Proof. This is an immediate consequence of the lifting identity π ◦F = f ◦π and (3.9). �

3.13. Post-critical finiteness and the open set condition. Following Hutchinson [16]
(but see also Moran [22]), we say that an IFS F = {fi}i∈A satisfies the open set condition
(OSC) if there exists a non-empty bounded open set O such that fj (O) ⊂ O for all j and
fj (O) ∩ fk(O) = ∅ for all j �= k.

PROPOSITION 3.14. Let F and FH be as in Assumption 3.11. If F satisfies the open set
condition, then FH satisfies the open set condition.
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Proof. By (1.7), each lift Fj ∈ FH can be written in the form

Fj (x, t) = (fj (x), λj t + hj (x)),

where hj satisfies the equation ∇hj = 2(λj J − Df ∗
j · Jfj ).

Let O be an open set in R
2 which verifies the OSC for F . Then K ⊂ O [17,

Exercise 1.2]. Choose R > 0 so large that O ⊂ B(0, R), max{|f1(0)|, . . . , |fM(0)|} ≤ R

and max{|h1(0)|, . . . , |hM(0)|} ≤ R2, and set

L := 5R2

1 − r2
max

.

We claim that the open set U := O × (−L,L) verifies the OSC for FH. Note that the sets
Fj (U) are pairwise disjoint since the corresponding sets fj (O) are. To complete the proof
it suffices to show that Fj (U) ⊂ U for each j . It is enough to show that

|λj t + hj (x)| < L (3.15)

for every (x, t) ∈ U . Applying Theorem 1.6, specifically (2.12), we deduce that

|hj (x) − hj (0) − 2〈fj (0), Jfj (x)〉| ≤
√

2 + √
3 r2

j |x|2

and so
|hj (x)| < |hj (0)| + 2|fj(0)| · |fj (x)| + 2r2

j |x|2 ≤ 5R2.

Since |λj | ≤ r2
j ≤ r2

max,

|λj t + hj (x)| < r2
maxL + 5R2 = L. �

For a general IFS F on a metric space X, let C(F) := ⋃
i �=j Ki ∩Kj denote the critical

set for the images Ki = fi(K). Then the critical symbols

C := p−1(C(F))

and the post-critical symbols
P :=

⋃
m≥1

σm(C)

are defined as subsets of the sequence space �. An IFS is said to be post-critically finite
(PCF) if it has finitely many post-critical symbols.

The post-critical set V0 := p(P) is defined as the image of the set of post-critical
symbols†. Equivalently,

V0 =
⋃

w∈W

f −1
w (C(F)) ∩ K. (3.16)

Many classical examples (Cantor sets, the von Koch snowflake curve, the Sierpinski
gasket) are invariant sets of PCF IFSs. The next lemma asserts the uniqueness of
symbolic representatives of fixed points in post-critically finite systems. It appears as
[17, Lemma 1.3.14].

† This terminology differs slightly from that of [17], where the terms ‘critical’ and ‘post-critical set’ refer to the
subsets C and P of symbol space.
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LEMMA 3.17. Let F be post-critically finite and let ai be the fixed point for fi ∈ F .
Then p−1(ai) = {i}.

Since points in the critical set have non-unique symbolic representatives, we have the
following.

COROLLARY 3.18. Let F be post-critically finite. Then the critical set C(F) and the set
of fixed points of the maps in F are disjoint.

We now return to the setting of Assumption 3.11 and prove that post-critical finiteness
of IFSs passes to horizontal lifts.

PROPOSITION 3.19. Let F and FH be as in Assumption 3.11. If F is post-critically finite,
then FH is post-critically finite.

The converse of Proposition 3.19 is not true. See, for example the Cantor-type lift of
the unit square Q in Example 5.1(i).

Proof. From the basic identity π ◦ Fj = fj ◦ π we deduce that the following diagram
commutes:

�
pH

����
��

��
�� p

���
��

��
��

�

KH
π �� K

In particular we have that π(C(FH)) = C(F). Since

p(CH) = p ◦ p−1
H (C(FH)) = π(C(FH)) = C(F),

we have CH ⊂ CE and so PH ⊂ PE. �

4. Connectivity of horizontal lifts
In this section we study the connectivity of invariant sets of horizontal lifts. We present
here the proof of Theorem 1.11. Under the additional assumption that the planar IFS is
affine we have more precise results. In Proposition 4.14 below we identify conditions on
a planar affine IFS which imply that the principal horizontal lift is connected. Finally,
in Proposition 4.18, we show that, under a set of hypotheses stronger than those of
Theorem 1.11(ii), generic lifts of IFS are totally disconnected regardless of the size of
the λi ’s.

For the proofs in this section, we use the following characterization of the connectivity
of invariant sets, due to Hata [15] and presented in [17, Theorem 1.6.2]: K is connected if
and only if for any i, j ∈ A there is a chain of indices i = i0, i1, . . . , in = j in A so that
fik−1(K) ∩ fik (K) �= ∅ for each k = 1, . . . , n.

Proof of Theorem 1.11. To prove (i) observe that by assumption, Hata’s condition holds
for each pair i, j ∈ A for the planar fractal K . Fix i0 ∈ A and set I0 = {i0}. Consider the
collection I1 ⊂ A \ I0 consisting of all i such that fi(K) ∩ fi0(K) �= ∅.

We proceed recursively. Assuming that Im has already been defined, let Im+1 ⊂
A\(I0∪· · ·∪Im) denote the collection of i for which fi(K)∩fj (K) �= ∅ for some j ∈ Im.
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There may be more than one such index j ∈ Im for which this condition is satisfied; choose
one such index arbitrarily and call it the parent î of i.

After at most M steps all elements of A have been exhausted. Define a graph G whose
vertices are the elements of A, where two vertices i and j are connected by an edge if
j ∈ Im and i ∈ Im+1 for some m, with j = î. Note that G is a tree.

Our goal is to show that there is a choice of the parameter τ = (τ1, . . . , τM) ∈ R
M

so that Hata’s condition is satisfied for the corresponding lift. To do that let us consider a
typical junction point for the planar system. Choose a pair of elements i, j ∈ A which are
adjacent vertices in G. There exist points xi, xj ∈ K such that fi(xi) = fj (xj ). We seek
a choice of the parameter τ for which

Fi(xi, ti) = Fj (xj , tj ) (4.1)

for some ti , tj ∈ R with (xi, ti), (xj , tj ) ∈ KH. If it is possible to find τ ∈ R
M so that

(4.1) holds simultaneously for all pairs (i, j) in question, then Hata’s condition will also
be satisfied for KH and connectivity will follow.

Observe that (4.1) is equivalent to

hi(xi, ti ) = hj (xj , tj ),

where
hi(x, t) = λi t + h0,i(x) + τi (4.2)

is the t-coordinate of Fi(x, t). This implies the equality

λi ti + h0,i(xi) + τi = λj tj + h0,j (xj ) + τj . (4.3)

It is important to notice that the values ti , tj depend on the choice of τ1, . . . , τM as required
by the condition (xi, ti ), (xj , tj ) ∈ KH.

To study this dependence we use the symbolic representations of xi, xj ∈ K . Let wi,

wj ∈ � be such that pwi = xi, pwj = xj . Writing

wi = i1 · · · ik · · · , wj = j1 · · · jk · · ·
gives

xi = lim
k→∞ fi1 ◦ · · · ◦ fik (x0),

and
xj = lim

k→∞ fj1 ◦ · · · ◦ fjk (x0),

where x0 ∈ R
2 is fixed.

For the corresponding liftings we obtain

(xi, ti ) = lim
k→∞(Fi1 ◦ · · · ◦ Fik )(x0, t0)

and
(xj , tj ) = lim

k→∞(Fj1 ◦ · · · ◦ Fjk )(x0, t0),

where t0 ∈ R is again fixed. From the formula for Fi(x, t) and Proposition 2.17 we deduce
a formula for a finite composition of Fi ’s:

Fi1 ◦ · · · ◦ Fik (x, t) = (fi1 ◦ · · · fik (x), λi1···ik · t + h0,i1···ik (x) + τi1···ik ).
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We obtain from this the recurrence relations

λi1···ik+1 = λik+1 · λi1···ik
h0,i1···ik+1 = λi1···ik · h0,ik+1 + h0,i1···ik

τi1···ik+1 = λi1···ik · τik+1 + τi1···ik .
(4.4)

Explicit solutions to these recurrence relations are as follows:

λi1···ik =
k∏

j=1

λij

τi1···ik =
k∑

r=1

(r−1∏
l=1

λil

)
· τir

h0,i1···ik =
k∑

r=1

(r−1∏
l=1

λil

)
· h0,ir .

In the above relations the convention
∏0

r=1 = 1 has been used.
Taking limits as k → ∞ we obtain

ti =
∞∑

r=1

(r−1∏
l=1

λil

)
· h0,ir (x0) +

∞∑
r=1

(r−1∏
l=1

λil

)
· τir .

Using this explicit dependence of ti on the parameters τ in (4.3) yields

τi − τj + λi

∞∑
r=1

(r−1∏
l=1

λil

)
· τir − λj

∞∑
r=1

(r−1∏
l=1

λjl

)
· τjr = uij , (4.5)

where uij is independent of τ .
Let us express the infinite series in (4.5) as a linear function in the variables τi with

coefficients depending on λi . The equation takes the form

τi − τj +
M∑
l=1

gijl (λ1, . . . , λM)τl = uij , (4.6)

where the function gijl verifies the estimate

|gijl (λ1, . . . , λM)| ≤ 2λmax

1 − λmax
.

Note that when λ1 = · · · = λM = 0 our equations read

τi − τj = uij .

Order the variables and the equations of the resulting system according to the hierarchy
of indices from the beginning of our proof, so that indices in I0 are considered first,
followed by indices in I1, I2, etc. The system in (4.6) has M −1 equations in M unknowns
τ1, . . . , τM . Consider the coefficient matrix of this system. Observe that if we leave out the
first column (corresponding to the base vertex i0 ∈ I0) we obtain an (M − 1) × (M − 1)

lower triangular matrix whose entries are all 1 on the diagonal. This implies that the system
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surely has solutions in the case λ1 = · · · = λM = 0. By the continuity of the coefficients
with respect to the λi’s this property persists for small λi’s. This finishes the proof of the
first statement.

To prove the second statement we show that the sets Fi(KH) are disjoint for LM almost
every τ = (τ1, . . . , τM) ∈ R

M . For an arbitrary pair of indices i, j (not necessarily related
as in the first part of the proof) consider the set

Zij :=
{
τ ∈ R

M : Fi(KH) ∩ Fj (KH) �= ∅
for the lift FH corresponding to τ

}
. (4.7)

It suffices to show that LM(Zij ) = 0 for all such i and j . In fact, we will show that Zij is
contained in a finite union of affine subspaces of R

M of codimension one provided that the
λi ’s are sufficiently small.

Our argument uses considerations from the first part of the proof. Notice first that
the PCF condition implies that fi(K) ∩ fj (K) contains at most finitely many points.
On the other hand, by looking at the vertical coordinates of elements of Fi(KH)∩Fj (KH),
we obtain condition (4.6), where the right side can take only finitely many values.
When λi = 0 we obtain again the non-degenerate equation τi − τj = uij which shows that
Zij is contained in a finite union of hyperplanes. By the continuity of the coefficients of
(4.6) with respect to the λi ’s, the non-degeneracy persists for small λi ’s. This completes
the proof. �

In the following we give some more explicit sufficient conditions for the connectedness
of KH. We begin by introducing another class of IFS (which includes, for example, the
von Koch curve) where a connected lift exists.

PROPOSITION 4.8. Let F = {f1, . . . , fM } be an IFS such that

λ1 + · · · + λM �= 1 (4.9)

and

fi−1(aM) = fi(a1), i = 2, . . . ,M, (4.10)

where ai denotes the fixed point of fi . Then there exists a lift FH of F for which KH is
connected.

Proof. Write Fi(x, t) = (fi(x), λit + h0,i(x) + τi). We may assume that h0,i(ai) = 0.
The fixed point of Fi is

pi =
(

ai,
τi

1 − λi

)
.

We now prove that we can find τ1, . . . , τM such that KH is connected. Using again Hata’s
condition of connectivity and (4.10), we obtain

Fi−1(pM) = Fi(p1) i = 2, . . . ,M, (4.11)

provided τ1, . . . , τM are chosen to satisfy the linear system of equations with coefficient
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matrix

M :=




1 − λ2/(1 − λ1) −1 λ1/(1 − λM)

−λ3/(1 − λ1) 1 −1 λ2/(1 − λM)
...

. . .
. . .

...

−λM−1/(1 − λ1) 1 −1 λM−2/(1 − λM)

−λM/(1 − λ1) 1 −1 + λM−1/(1 − λM)




. (4.12)

The condition
∑M

i=1 λi �= 1 implies that the rank of M is M − 1, so the system is solvable.
Hata’s condition guarantees the existence of a connected lift. �

Remark 4.13. If
∑M

i=1 λi = 1 the rank of M is M − 2. The conclusion of the proposition
continues to hold if we assume in addition that

∑M
i=1 h0,i(a1) − h0,i(aM) = 0. We leave

the details to the reader.

Next we consider affine IFSs.

PROPOSITION 4.14. Let F = {f1, . . . , fM }, fi(x) = Aix + bi , be an affine iterated
function system with invariant set K . For each i, let ai = (I −Ai)

−1(bi) be the fixed point
of fi . Assume that:
(i) a1 = 0;
(ii) for each i = 2, . . . ,M , ai is an eigenvector of A1 + Ai with eigenvalue 1; and
(iii) for each i, 〈Aiai, J ai〉 = 0.
Let FH = {Fi}i∈A be the principal horizontal lift. Then KH and K are connected.

Proof. We will use again Hata’s condition and verify that Fi(0, 0) = F1(ai, 0) for each
i ≥ 2. From the condition (A1 + Ai)ai = ai we deduce that f1(ai) = fi(0). This implies
the connectivity of K .

Using the fact that we are working with principal lifts in conjunction with (2.16) we
compute that the horizontal lifts of fi , i = 2, . . . ,M , are

Fi(x, t) = (Aix + bi, det Ait − 2〈Ai(x − ai), J bi〉).
Since the lift of f1 is F1(x, t) = (A1x, det A1t) it suffices to show that

2〈Aiai, J bi〉 = 0.

But this is an immediate consequence of (iii) and the definition of ai . �

COROLLARY 4.15. Assume that F is a self-similar system so that a1 = 0, ri = 1 − r1 for
all i = 2, . . . ,M , and Ai = ri · I for all i. Then KH and K are connected.

The corollary implies, for example, that the principal horizontal lifts of the square Q

and the Sierpinski gasket SG from Examples 5.1 have connected invariant sets.

Remark 4.16. The above results give an abundance of cases where a connected invariant
set KH exists whenever K is connected. We do not have any example of an IFS with
connected K for which KH is disconnected for all choices of τ . We conjecture that for
an IFS F with connected invariant set K , there always exists a lift FH for which KH is
connected.
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The final proposition of this section concerns the generic total disconnectivity of
horizontal lifts. Here we impose the following assumption, which is stronger than post-
critical finiteness.

Definition 4.17. An IFS F is strongly post-critically finite if every point in the post-critical
set V0 is a fixed point for an element of F .

It is clear that strongly PCF systems are PCF. Hata’s tree-like set [17, Example 1.2.9] is
an example of a PCF system which is not strongly PCF.

PROPOSITION 4.18. Let F be a strongly PCF iterated function system such that λi+λj<1
for all pairs i, j , i �= j . Then the invariant set KH is totally disconnected for almost every
horizontal lift FH.

LEMMA 4.19. Let F be a PCF system with horizontal lift FH. Let ak be the fixed point
for some fk ∈ F and let pk be the fixed point for the corresponding map Fk ∈ FH.
Then π−1(ak) = {pk}.
Proof. Clearly π(pk) = ak . Suppose that q �= pk satisfies π(q) = ak . Then there exists
a word w ∈ �, w �= k, so that pH(w) = q . Then p(w) = ak = p(k), contradicting
Lemma 3.17. �

Proof of Proposition 4.18. As before, parameterize the set of lifts of F by τ ∈ R
M .

The idea of the proof is the same as in the second part of Theorem 1.11. In fact, we
obtain in this case an explicit form for equations in the system (4.6) which ensures that the
sets Zij from (4.7) are contained in codimension-one affine subspaces of R

M .
Let τ ∈ Zij . Then Fi(KH) ∩ Fj (KH) is non-empty; let (x0, t0) be an element of this

set. Since fi(K) ∩ fj (K) � x0, the strong post-critical finiteness of F guarantees that
x0 = fi(ak) = fj (al) for the fixed points ak, al of elements fk, fl ∈ F . By Corollary 3.18,
i �= k and j �= l. By Lemma 4.19,

(x0, t0) = Fi(pk) = Fj (pl),

where pk = (ak, τk/(1 − λk)) and pl = (al, τl/(1 − λl)) denote the fixed points of Fk

and Fl , respectively. (See the proof of Proposition 4.8.) From (4.2) we deduce the affine
relation

τi − τj + λi

1 − λk

τk − λj

1 − λl

τl = h0,j (al) − h0,i(ak) (4.20)

for each τ ∈ Zij . To complete the proof, we show that (4.20) is never degenerate.
From earlier remarks we see that (4.20) can be degenerate only if i = l and j = k.
But in this case (4.20) reads(

1 − λj

1 − λi

)
τi −

(
1 − λi

1 − λj

)
τj = h0,j (ai) − h0,i(aj ).

The assumption λi + λj < 1 rules this out. �

Under the OSC assumption, |λ1| + · · · + |λM | ≤ 1. We thus obtain the following
consequence in the case M ≥ 3.
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(a) (b)

FIGURE 5.1. Horizontal lifts of Q = [0, 1]2: (a) τ = (0, 0, 0, 0), (b) random choice of τ in R4.

COROLLARY 4.21. Assume that M ≥ 3. Let F be a strongly PCF iterated function system
which satisfies the OSC. Assume that each map in F is orientation-preserving and non-
degenerate (i.e. λi > 0). Then the invariant set KH is totally disconnected for almost every
horizontal lift FH.

5. Examples
We present here a few examples of horizontal lifts of iterated function systems. The first
three examples are classical fractals generated by similarities, and example (4) is generated
by affine maps.

Examples 5.1. Set a1 = 0, a2 = e1, a3 = e2 and a4 = e1 + e + 2, and let fi , i = 1, 2, 3, 4,
be the rotation-free similarities of R

2 with contraction ratio ri = 1
2 and fixed points ai .

(1) The IFS F = {f1, f2, f3, f4} has invariant set K(F) = Q = [0, 1]2. From (2.16)
we derive the following expressions for the lifts Fi :

F1(x1, x2, t) = ( 1
2x1,

1
2xx,

1
4 t + τ1),

F2(x1, x2, t) = ( 1
2x1 + 1

2 , 1
2x2,

1
4 t − 1

2x2 + τ2),

F3(x1, x2, t) = ( 1
2x1,

1
2x2 + 1

2 , 1
4 t + 1

2x1 + τ3),

F4(x1, x2, t) = ( 1
2x1 + 1

2 , 1
2x2 + 1

2 , 1
4 t + 1

2x1 − 1
2x2 + τ4),

where τ = (τ1, τ2, τ3, τ4) ∈ R
4. Figure 5.1 shows an approximation (five iterations on

the initial square [0, 1]2) of the invariant set QH = K(FH) associated to two such lifted
systems FH. These examples satisfy the open set condition.

Figure 5.1(a) shows the principal horizontal lift (see Definition 3.6) associated with
the choice τ = (0, 0, 0, 0). According to Corollary 4.15 this invariant set is connected.
This particular example will play an important role in the final section of this paper.

Figure 5.1(b) shows the (totally disconnected) invariant set for the lift associated with a
generic choice of τ in R

4.
(2) The IFS F = {f1, f2, f3} is the prototypical example of a PCF system. In this

case the invariant set is the Sierpinski gasket SG. Figure 5.2 shows an approximation
(five iterations) of the principal horizontal lift of SG to the Heisenberg group, which gives
a connected lift (see Corollary 4.15).
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FIGURE 5.2. A lift of the Sierpinski gasket to H.

(a) (b)

FIGURE 5.3. Lifts of the von Koch curve with (a) τ = (0,−√
3/45,

√
3/15, −8

√
3/45) and (b) τ = (0, 0, 0, 0).

(3) The von Koch curve is a typical example for liftable IFSs treated by Proposition 4.8.
The lifted functions are

F1(x1, x2, t) =
(

x1

3
,
x2

3
,

t

9
+ τ1

)
,

F2(x1, x2, t) =
(

x1

6
−

√
3 x2

6
+ 1

3
,

√
3 x1

6
+ x2

6
,

t

9
−

√
3 x1

9
− x2

9
+ τ2

)
,

F3(x1, x2, t) =
(

x1

6
+

√
3 x2

6
+ 1

2
,
−√

3 x1

6
+ x2

6
+

√
3

6
,

t

9
+ 2

√
3 x1

9
+ τ3

)
,

F4(x1, x2, t) =
(

x1

3
+ 2

3
,
x2

3
,

t

9
− 4x2

9
+ τ4

)
,

with fixed points p1 = (0, 0, 9τ1/8) and p4 = (1, 0, 9τ4/8) of F1 and F4. Condition (4.11)
from Proposition 4.8 is easily checked. Figure 5.3 shows the fifth-iterate approximation for
(a) a connected horizontal lift and (b) for a random (generic) choice of τ which leads to an
unconnected lift.

(4) The last example depicted in Figure 5.4 (approximation with ten iterations) is taken
from Falconer [11, Example 11.4]. The two specific functions whose projections lead to a
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(a) (b)

FIGURE 5.4. Lifts of some self-affine curve to H: (a) connected with τ = (0, −3/20) and (b) disconnected with
τ = (0, 0).

self-affine curve are

F1(x1, x2, t) =
(

x1

2
,
x1

4
+ 3x2

4
,

3t

8
+ τ1

)
,

F2(x1, x2, t) =
(

x1

2
+ 1

2
,−x1

4
+ 3x2

4
+ 1

4
,

3t

8
+ x1

2
− 3x2

4
+ τ2

)
.

6. Fiber structure of horizontal fractals and horizontal graphs in H

The first objective in this section is to prove Theorem 1.13 stated in the introduction.
We start with some preparations.

6.1. Symbolic uniqueness of irrational points. For the duration of this subsection,
we work in the context of a general complete metric space (X, d). Let K be the invariant
set for an IFS F on X. Recall that C(F) = ⋃

i �=j Ki ∩ Kj denotes the critical set for F ,

while C = p−1(C(F)) and P = ⋃
m≥1 σm(C) denote the critical and post-critical symbol

sets in �.

Set V0 = p(P) to be the post-critical set. For m ∈ N, let

Vm :=
⋃

|w|≤m

fw(V0) and V∗ :=
⋃

w∈W

fw(V0).

We view V∗ as the set of ‘rational’ points in K . If V0 is non-empty, then V∗ is dense in K

[17, Lemma 1.3.11]. If F is post-critically finite then V∗ is countable.

LEMMA 6.2. If x ∈ K \ V∗, then there exists a unique word in p−1(x).

Proof. Suppose that p(w) = x = p(w′) for two distinct words w,w′ ∈ �.
By Proposition 3.10, p(σ sw) = p(σ sw′) ∈ C(F), where s = s(w,w′) is the maximal
length of a common initial word of w and w′ as defined in Proposition 3.10. Thus,
σ sw ∈ C, which implies p(σ s+1w) ∈ V0 and

x = p(w) = fw1···ws+1(p(σ s+1w)) ∈ Vs+1. �
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6.3. Fiber structure of horizontal lifts. We now specialize to the case when F and FH

are IFSs satisfying Assumption 3.11.

LEMMA 6.4.
(i) If x ∈ K \ V∗, then α(x) is a singleton.
(ii) If x ∈ Vm \ Vm−1 for some m ≥ 1, then

diamH α(x) ≤ crm−1
max diamH KH.

Let β be a selection of α. Then
(iii) diamH β(Fv(KH)) ≤ crv diamH KH for each v ∈ W .

Since dH = √
dE when restricted to a fiber π−1(x), x ∈ R

2, we have the following
corollary to part (ii) of Lemma 6.4.

COROLLARY 6.5. If x ∈ Vm \ Vm−1 for some m ≥ 1, then

diamE α(x) ≤ Cr2m
max,

where C = c2 diamH KH/r2.

Corollary 6.5 will play an important role in the proof of Theorem 1.14.

Proof of Lemma 6.4. By applying a preliminary dilation, we may assume that the
Heisenberg diameter of KH is one.

Part (i) follows immediately from Lemma 6.2, since each element of π−1(x) ∩ KH

induces a distinct symbolic representative for x.
To prove (ii), assume that (x, t) and (x, t ′) are elements of KH with t �= t ′. From (i)

we see that x ∈ Vs+1; since V0 ⊂ V1 ⊂ · · · we must have s + 1 ≥ m. Moreover, we
find w,w′ ∈ �, w �= w′, such that p(w) = x = p(w′). Denote by v ∈ Ws the maximal
initial word common to w and w′. Then (x, t), (x, t ′) ∈ Fv(KH). Since Fv is a lift of fv

(see Proposition 2.17), it is crv-Lipschitz in the Heisenberg metric. Thus,

dH((x, t), (x, t ′)) ≤ crv ≤ crm−1
max ,

as desired.
The proof of (iii) is similar. Let β be a selection of α. Given (x, t) and (x ′, t ′) in Fv(KH)

we have
dH((x, t), (x ′, t ′)) ≤ crv.

Thus diamH α(Fv(KH)) ≤ crv , where α(E) := ⋃
x∈E α(x), E ⊂ R

2, and so a fortiori
diamH β(Fv(KH)) ≤ crv . �

Let us finally turn to the following proof.

Proof of Theorem 1.13. Let β be a selection of α and let x ∈ K \ V∗. Let x(n) → x in K .
By part (iii) of Lemma 6.4, it suffices to show that s(w(n), w) → ∞ for any choice of
words w(n),w ∈ � with p(w(n)) = x(n) and p(w) = x.

Suppose there exist words w(n) and w with s(w(n), w) ≤ C < ∞ for all n. Passing
to a subsequence, we may assume that s(w(n), w) = k for all n and some k ≤ C.
Equivalently, w

(n)
k+1 �= wk+1 for all n. Choose a limit w(∞) for the sequence (w(n))

in �. Then p(w(∞)) = x by the continuity of p, but w
(∞)
k+1 �= wk+1. This contradicts

the uniqueness of symbolic representations of x ∈ K \ V∗ asserted in Lemma 6.2. �
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6.6. Horizontal graphs in the Heisenberg group. It is a question of some interest to
determine the maximal degree of regularity of a horizontal graph in H. Recall the notations
Hα

H and Hα
E which stand for the α-dimensional Hausdorff measure with respect to the

metric dH (respectively dE). Let 	 be a domain in R
2 and let ϕ : 	 → H. We say

that S := ϕ(	) is a horizontal surface if 0 < H2
H(S) < ∞. If ϕ is a graph over R

2,
i.e. π ◦ ϕ = id, we say that S is a horizontal graph.

In an important recent work on rectifiability in metric spaces [2], Ambrosio and
Kirchheim prove that there are no horizontal surfaces in the Heisenberg group H (with its
Heisenberg metric dH) which are Lipschitz images of planar domains. More precisely
(see [2, Theorem 7.2]), (H, dH) is purely 2-unrectifiable: H2

H(S) = 0 for every S = ϕ(	)

with ϕ : 	 → (H, dH) Lipschitz, 	 ⊂ R
2.

In the case of graphs, the result of Ambrosio and Kirchheim can be strengthened as
follows: there do not exist horizontal graphs in R

3 (with the Euclidean metric dE) which
are Lipschitz images of planar domains. The next theorem gives a more precise version of
this claim. It is a natural extension to the Lipschitz category of the well-known fact that
there are no C1 horizontal surfaces in the Heisenberg group (viewing the target as R

3 with
the Euclidean metric). The latter result follows, for example, from Pansu’s isoperimetric
inequality [23] which implies that the Heisenberg dimension of such a surface is three.

THEOREM 6.7. Let 	 ⊂ R
2 be a domain and let ϕ : 	 → (R3, dE) be a Lipschitz graph,

i.e. π ◦ ϕ = id. Then H2
H(S) = ∞, where S = ϕ(	).

The theorem is false without the assumption that ϕ be a graph. For example, let 	 be
a bounded domain and let ϕ : 	 → R

3 be given by ϕ(x) = (0, |x|). Then ϕ is Lipschitz
and 0 < H2

H(ϕ(	)) < ∞.

Proof. Since the conclusion is local in nature we may assume without loss of generality
that 	 is bounded. In addition, we may assume that 	 contains the origin.
Write ϕ(x) = (x, g(x)), g : 	 → R, and define G : R

3 → R by G(x, t) = g(x) − t .
Let A := {x ∈ 	 : ∇HG(x) �= 0}; thus ϕ(	 \ A) is the set of characteristic points of the
surface S = ϕ(	).

Assume first that H2
E(A) = 0. Fubini’s theorem implies that

H1
E(Cr ∩ A) = 0

for almost every radius r such that Cr ⊂ 	, where Cr denotes the circle centered at the
origin of radius r . Since

∇HG(x1, x2) = (∂1ϕ − 2x2, ∂2ϕ + 2x1)

we find

0 =
∫

Cr

∇HG · ds =
∫

Cr

∇ϕ · ds − 2
∫

Cr

J x · ds

= 0 + 2
∫ 2π

0
(x1(x2)

′ − (x1)
′x2) dθ

= 4πr2 > 0.

From this contradiction we deduce that this case cannot occur.
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Assume then that H2
E(A) > 0. Without loss of generality we may assume that the

tangent plane TpS exists at each point p ∈ π−1(A) ∩ S. We claim that

H3
H(S) > 0, (6.8)

which clearly implies the desired conclusion.
To prove (6.8) we will use the mass distribution principle [21, Theorem 8.8] which

states that the Hausdorff α-measure of a metric space X is positive provided there exists
a positive Borel measure µ on X with α-dimensional volume growth: µ(B(x, r)) ≤ Crα

for every x ∈ X and r > 0. In fact, we will show that the restriction of the Euclidean
Hausdorff measure H2

E to π−1(A) ∩ S has three-dimensional volume growth: there exists
C < ∞ so that

H2
E(BH(p, r) ∩ S) ≤ Cr3 (6.9)

for every p ∈ π−1(A) and r > 0. (Note that the positivity of the measure is guaranteed
since H2

E(π−1(A) ∩ S) ≥ H2
E(A) > 0.)

The estimate in (6.9) follows from the Heisenberg box-ball theorem [4, (2.6)]. In our
setting, this result states that

Box(p, r/K) ⊂ BH(p, r) ⊂ Box(p,Kr), (6.10)

where Box(p, r) consists of those points p + v ∈ R
3 for which v = v1

p + v2
p , v1

p ∈ HpH,

|v1
p| ≤ r and v2

p ∈ RT , |v2
p| ≤ r2. Since by assumption p ∈ π−1(A), p is non-

characteristic and HpH �= TpS. From this the inequality

H2
E(Box(p, r) ∩ S) ≤ Cr3 (6.11)

is easy to verify, and then (6.9) follows from (6.11) and (6.10). �

As the final result of this paper we prove Theorem 1.14, which asserts the existence of
a horizontal BV surface in the Heisenberg group. The existence of such surfaces contrasts
with the non-existence results from earlier in this section, specifically Theorem 6.7.

For simplicity, we have only stated Theorem 1.14 in the case of the Heisenberg square
QH. The result holds also in other situations. For example, it holds for the principal
horizontal lifts associated with certain other self-similar iterated function systems whose
invariant sets have non-empty interior. The proof is similar and we leave the details to the
reader.

Recall that a function g : 	 → R, 	 ⊂ R
n, is a function of bounded variation if

g ∈ L1(	) and

|Dg|(	) := sup

{∫
	

g · div F dLn : F ∈ C∞
0 (	, R

n), ‖F‖ ≤ 1

}
(6.12)

is finite. Equivalently, the distributional derivatives ∂ig exist as finite signed Radon
measures. In this case we have the R

n-valued signed measure Dg = (∂1g, . . . , ∂ng),
whose total variation |Dg|(	) coincides with the value in (6.12). We denote by BV(	) the
space of functions of bounded variation on 	 and we denote by

‖g‖BV := ‖g‖L1(	) + |Dg|(	)

the BV-norm of g. For the general theory of BV functions, see [28, Chapter 5] or [1].
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Proof of Theorem 1.14. Let β : Q → R, β(x) = (x, g(x)), be a selection of α.
There exists a sequence of piecewise linear (discontinuous) functions gm : Q → R so
that gm → g in L1(Q). These approximations are given by

gm =
∑

w∈Wm

Lw · χQo
w
,

where the Lw’s are affine maps and Qo
w = fw(Qo). The functions gm are in BV(Qo) and

have

Dgm =
∑

w∈Wm

∇Lw · L2 Qo
w +

∑
w∈Wm

LwνwH1 Qo ∩ ∂Qo
w.

Here νw denotes the inward-pointing unit normal to the domain Qo
w . See, for example,

[1, Example 3.3].
It follows that

‖gm‖L1(Q) =
∑

w∈Wm

∫
Qw

|Lw| dL2 (6.13)

and

|Dgm|(Qo) ≤
∑

w∈Wm

|∇Lw| · |Qw| +
∑

w,w̃∈Wm
w∼w̃

∫
�ww̃

|Lw − Lw̃| dH1, (6.14)

where w ∼ w̃ if and only if the squares Qw and Qw̃ intersect along an edge and
�ww̃ = Qw ∩ Qw̃ .

LEMMA 6.15. There exist constants A,B < ∞ so that

∑
w∈Wm

∫
Qw

|Lw| dL2 ≤ A + B

and ∑
w∈Wm

|∇Lw| · |Qw| ≤ B

for all m.

LEMMA 6.16. Denoting by C the constant in Corollary 6.5, we have

∑
w,w̃∈Wm

w∼w̃

∫
�ww̃

|Lw − Lw̃| dH1 ≤ 4C

for every m.

Using these two lemmas in conjunction with (6.13) and (6.14), we see that

‖gm‖BV ≤ 2A + B + 4C < ∞
for each m. From the lower semicontinuity of the BV-norm [1, (3.11)], we deduce that
g ∈ BV(Qo) with ‖g‖BV ≤ 2A + B + 4C. �
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Proof of Lemma 6.16. From Corollary 6.5, it follows that

|Lw(x) − Lw̃(x)| ≤ C · 2−2k (6.17)

for any x ∈ �ww̃ provided s(w, w̃) = k. An elementary computation shows that the
number of pairs of words w, w̃ ∈ Wm with w ∼ w̃ and s(w, w̃) = k, is 2m+k+1. Finally,
H1(�ww̃) = 2−m for any such pair w, w̃.

Thus,

∑
w,w̃∈Wm

w∼w̃

∫
�ww̃

|Lw − Lw̃| dH1 ≤
m−1∑
k=0

∑
w,w̃∈Wm

w∼w̃,s(w,w̃)=k

C · 2−2kH1(�ww̃)

≤ C2−m
m−1∑
k=0

2−2k · 2m+k+1 ≤ 4C. �

Proof of Lemma 6.15. Set Lw(x) = 〈aw, x〉 + bw, where aw ∈ R
2 and bw ∈ R. Then

|Lw(x)| ≤ |aw| + |bw| for x ∈ Q and |∇Lw| = |aw|.
Set

Am = max
w∈Wm

|aw|, Bm = max
w∈Wm

|bw|.
For m = 0 we have L∅(x) = 0 and so A0 = B0 = 0.

Next, we develop recursive inequalities for the expressions Am and Bm. Recall from §5
the notation α1 = 0, α1 = e1, α2 = e2 and α3 = e1 + e2 for the fixed points of the maps
in the planar IFS. For w ∈ W , j = 1, 2, 3, 4, and x ∈ R

2, we have

Ljw(x) = 1
2Lw(x) − 〈Jαj , x〉 − 1

4Lw(αj ).

Thus, ajw = 1
2aw − Jαj ,

Am+1 = max
w∈Wm

{|a1w|, |a2w|, |a3w|, |a4w|}

≤ max
w∈Wm

( 1
2 |aw| + √

2) = 1
2Am + √

2,

and
Am ≤ 2

√
2(1 − 2−m) < 2

√
2 =: A

for all m.
Similarly, bjw = 1

4bw − 1
4 〈aw, αj 〉,

Bm+1 ≤ 1

4
Bm +

√
2

4
Am ≤ 1

4
Bm + 1,

and
Bm ≤ 4

3 (1 − 4−m) < 4
3 =: B

for all m.
The proof of the lemma is now completed by the estimates

∑
w∈Wm

∫
Qw

|Lw| dL2 ≤ (Am + Bm)|Q| ≤ A + B

https://doi.org/10.1017/S0143385705000593 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385705000593


Lipschitz maps and horizontal fractals in H
1 649

and ∑
w∈Wm

|∇Lw| · |Qw| ≤ Am|Q| ≤ A. �

Remark 6.18. Theorem 1.14 can be strengthened as follows: for each selection β(x) of the
set map α(x) = π−1(x) ∩ QH corresponding to the principal horizontal lift QH of Q, the
associated function g : Q → R is in the class SBV(Qo). Here SBV(	), 	 ⊂ R

n, denotes
the class of special functions of bounded variation, defined as those functions g ∈ BV(	)

whose derivative measure Dg has no Cantor part. See [1, §4.1].
To prove this claim, we use the following sufficient condition for membership in the

class SBV(	), which can be found as [1, Theorem 4.7].

THEOREM 6.19. Let ϕ : [0,∞) → [0,∞) and θ : (0,∞) → (0,∞) be lower
semicontinuous increasing functions satisfying

lim
t→∞

ϕ(t)

t
= ∞ and lim

t→0

θ(t)

t
= ∞. (6.20)

Let 	 ⊂ R
n be open and bounded and let uh ∈ SBV(	), h ∈ N, such that ‖uh‖BV ≤ M ,

uh → u in L1(	), and∫
	

ϕ(|∇uh|) dLn +
∫

J (uh)

θ(jump(uh)) dHn−1 ≤ M (6.21)

for some constant M < ∞. Then, u ∈ SBV(	).

Here J (uh) denotes the jump set for uh and jump(uh) denotes the jump of uh across the
jump set; see [1, Definition 3.67].

In the current setting we consider the sequence gm converging to g as in the proof of
Theorem 1.14. Observe that the jump set for gm is Qo ∩ ⋃

w∈Wm
∂Qw . It suffices to verify

(6.21) for an appropriate choice of ϕ and θ . Let ϕ(t) = t2 and θ(t) = t3/4. These functions
satisfy the conditions in (6.20). By the method used in the proof of Theorem 1.14 we
estimate ∫

Q

ϕ(|∇gm|) dL2 =
∑

w∈Wm

ϕ(|∇Lw|) · |Qw| ≤ ϕ(Am)|Q| ≤ A2

and ∫
J (gm)

θ(jump(gm)) dH1 =
∑

w,w̃∈Wm
w∼w̃

∫
�ww̃

θ(|Lw − Lw̃|) dH1

≤
m−1∑
k=0

∑
w,w̃∈Wm

w∼w̃,s(w,w̃)=k

θ(C · 2−2k)H1(�ww̃)

≤ C3/42−m
m−1∑
k=0

2−3k/2 · 2m+k+1

≤ 2C3/4
∞∑

k=0

2−k/2 < ∞.

Thus, (6.21) holds with M = A2 + 2(2 + √
2)C3/4.

https://doi.org/10.1017/S0143385705000593 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385705000593


650 Z. M. Balogh et al

Acknowledgements. ZMB was supported by a grant from the Swiss NSF. RH-I was
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