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ABSTRACT Medical image segmentation is a crucial element of computer-aided diagnosis (CAD) systems.
Segmentation maps are used to calculate imaging features, such as quantitative disease distribution and
radiomic features. Since their introduction in 2015, UNets have become the state-of-the-art segmentation
tools. However, since that time, many new methods for image processing have been introduced, such as
vision transformers and multi-layer-perceptron-mixers (MLP-Mixers). Alongside baseline UNets, we have
now investigated the application of such MLP-Mixers for medical image segmentation, as part of a CAD
system for the diagnosis of interstitial lung diseases (ILDs). Furthermore, we have investigated the effect
of 2D and 3D data representations on segmentation and the final CAD results. We have evaluated the
performance of the baseline segmentation methods and the MLP-Mixer primary on the overall diagnostic
performance of the CAD system - as well as on the accuracy of segmentation as an intermediate step.
In addition to network and data representation variations, we have investigated two different techniques
for selecting features, an agnostic method and an alternative approach which selects features tailored to
a specific segmentation map and diagnosis task. Finally, the CAD’s performance was compared with that
of four independent specialists in chest radiology. Among the 105 test cases, the diagnostic accuracy was
77.2£1.6% for the Al-approaches and 79.046.9% for the radiologists, indicating that the proposed systems
perform comparably well to human readers in most of the cases. For the task of ILD pattern segmentation,
similar results were obtained with 3D data and 2D tomography slices.
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I. INTRODUCTION

The umbrella term of interstitial lung diseases (ILDs)
encompasses a heterogeneous group of chronic lung dis-
orders characterised by either fibrosis and/or inflamma-
tion of the interstitium. A large group of ILDs is of
unknown aetiology with broadly variable fibrosis and
inflammation [1]. As shown in Fig. 1, this group of
ILDs is referred to as idiopathic interstitial pneumonias
(IIPs). Idiopathic pulmonary fibrosis (IPF) is the most
prevalent IIP and is associated with the poorest prognosis.
Therefore, accurate diagnosis of IPF is essential for optimal
treatment [2]. It is difficult to make a reliable diagnosis,
as the clinical presentation may be similar or overlapping in
different IIPs.

* Cryptogenic organizing pneumonia
Acute * Acute interstitial pneumonia

* Idiopathic pulmonary fibrosis

Chronic
+ Idiopathic nonspecific interstitial pneumonia

Smoking
related

Idiopathic
Interstitial

Pneumonias
(nps)

* Respiratory bronchiolitis-interstitial lung disease
» Desquamative interstitial pneumonia

FIGURE 1. Overview over IIPs with similar radiological patterns, such as
IPF, non-specific interstitial pneumonia (NSIP), respiratory bronchiolitis,
cryptogenic organising pneumonia, and lymphocytic interstitial
pneumonia as introduced in [3].

The differential diagnosis of IIP is largely based on
recently proposed harmonised guidelines [4]. A preliminary
diagnosis is made by radiologists in conjunction with a
clinical board of pneumonologists and histopathologists, and
employing the classification into usual interstitial pneumonia
(UIP), typical UIP, probable UIP, indeterminate UIP, and non-
IPF, [4], [S]. Computer Tomography (CT) scans exhibit a
high positive predictive value for UIP and are assigned a
pivotal role in the diagnostic process within the proposed
Fleischner Society guidelines of 2018 [6]. Therefore, if a
typical or probable UIP pattern is present on CT images,
additional invasive procedures such as transbronchial or
surgical biopsy can be avoided [4]. The most clinically
relevant distinction among IIPs is between IPF and NSIP [3],
[7]. Early distinction between these two diseases is crucial for
making fundamental decision on treatment.

Due to the difficulty in the classification of IIPs and
the benefits of CT scans, computer vision (CV) methods
are an attractive approach for enabling faster and more
efficient patient outcomes. Recent reviews [8], [9], [10] have
underscored the benefits of utilising Artificial Intelligence
(AI) techniques, such as Convolutional Neural Networks
(CNNs), for tasks related to the diagnosis and progno-
sis of ILDs. CNNs can fuse local texture-based features
with high-level global context features depending on their
architecture. Features of the former type are generated by
the first few layers in the CNN, whereas the latter feature type
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is generated by neurons with large receptive fields from
deeper layers. The larger an input image is, the more layers
are needed to be stacked to achieve a reasonable receptive
field size. Therefore, CNNs are not always the ideal choice
when working with imaging data. Modern techniques in the
field of CV suggest that vision transformers(ViTs) could
be used [11], as the global context is available from the
first dedicated layer and throughout the network. Several
implementations of ViTs have already been applied to
medical images [12], [13], [14], [15]. In this research,
our primary focus is to explore innovative AI methods as
alternatives to those relying on attention mechanisms as those
seen in ViTs. This approach aims to improve efficiency while
achieving good generalisation on our datasets.

Throughout this study we design and evaluate algorithmic
approaches for the segmentation of ILD patterns as well as
for the diagnosis of ILDs. Within this context, we investi-
gated 1) whether novel image processing methods such as
MLP-Mixers can be applied in future studies to medical
image segmentation to overcome the limitations implied by
CNNs (minimum network-depth for adequate visual field
size), ii) the difference in performance between 2D and 3D
data, and iii) the effect of feature selection methods in the
identification of the most informative features. We applied
various deep learning (DL) models to retrieve segmentation
maps, which were used to assess the pathological pattern
distribution and to calculate dedicated radiomic features for
UIP patterns. Disease distribution, radiomic and demographic
(age and gender) features were used to predict case affiliation
for two different tasks; the first task was a 4-way diagnosis
into a typical UIP CT pattern, a probable UIP CT pattern,
a CT pattern indeterminate for UIP, or CT features that are
most consistent with a non-IPF diagnosis, - all according
to the guidelines published in [6]. The second task was
a 2-way diagnosis with pooled classes where UIP patterns
and the non-UIP patterns were joined together. The optimised
system performance was compared with the performance of
four chest radiologists.

Il. RELATED WORKS

A. COMPUTER-AIDED DIAGNOSIS

The introduction of computer-aided diagnosis (CAD) tools
marked the development of systems capable of imitating
human experts in the field of diagnosis [18]. With the ongoing
advances in CV and Al, especially in the field of Deep
Learning (DL) [11], [12], [13], [14], [15], [16], [17], CAD
systems are deriving substantial benefits ( [19]. These sys-
tems offer the advantage of providing rapid and dependable
information to assist human experts. Nevertheless, they have
encountered challenges that require attention, particularly in
advanced segmentation techniques for medical images [20].
Despite this, we have seen great success of CADs in
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radiology, with breast cancer diagnosis being comparable to
human experts [21] and implemented as the second blind
reader in many hospitals in Europe [22]. While comparable
achievements have been seen in CAD’s application to UIP
pattern detection [5], [23], the broader implementation of
such powerful tools as the norm is yet to be realized in this
specialized field [24]. Reasons for the absence of production
ready CAD systems is mainly the scarceness and quality of
annotated data, as well as model generalization deterioration
across different populations and datasets acquired by a
diverse set of machines. The largest influence on annotation
quality is given by considerable inter-observer variability.
Inter-observer agreement depends on the specialists and the
pattern itself [25], [26], [27]. To address these challenges,
we propose a novel segmentation method that integrates into
an existing CAD design [5], aiming to surmount these barriers
and enhance the accuracy of pulmonary fibrosis diagnosis.

B. DL AND ILDS

An established method for ILD diagnosis published in [23]
implements the CNN Inception-ResNet V2 (IRV2) [28] on
montages created from random CT slices. Despite desirable,
no intermediate segmentation maps for algorithm credibility
are available. This study is solely based on imaging features
and achieves human-like results. Shaish et al. [29] took an
alternative approach, initially segmenting the lung image
and subsequently generating numerous wedges from CT
scans. They employed a CNN to address a UIP classification
problem, and their methodology also involves integrating
histopathology data into the final analysis. A weakness of
this work is that the data originates from a single institution;
this will limit the overall generalisability of the models
learned. More recently, Mei et al. [30]. combines imaging
and clinical data to distinguish individual ILDs. The majority
of recent work focuses on the classification of ILD patterns.
Anthimopoulos et al. [31] introduced one of the first attempts
using a CNN to classify common ILD patterns. Furthermore,
Christodoulidis et al. [32] built upon this work by pretraining
CNNss on publicly available texture databases and then further
fine-tuning the networks to ILD databases; the proposed
method resulted in a 2% increase from previous baselines.
The evaluation of ILDs at CT level still remains challenging
due to the nature of the task and the inter-reader variability.
An alternative approach uses content-based retrieval of
similar chest CT images utilising a DL approach [33]. While
this approach uses segmentation and pattern classification
of known ILDs based on a 2D deep learning algorithm,
we wish to compare 2D against 3D segmentation methods
and furthermore extract radiomic features from ILD patterns
and combine those with demographic data to make an overall
UIP classification.

C. MULTI-LAYER PERCEPTRON MIXERS
A promising approach to retrieve imaging information is
based on multi-layer perceptrons (MLPs) in the form of
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MLP-Mixers [17], where neither convolutional nor attention
operations are necessary to fuse low-level texture and high-
level global context features. However, both ViTs and
MLP-Mixers have been developed for classification, thus
not directly applicable to segmentation-based CAD systems.
However, in [35], a segmentation mechanism on top of ViTs
was introduced to generate densely annotated segmentation
maps, giving promising results on bench-marking datasets.
Recently, MLP-Mixers have been successfully applied for
medical diagnosis [36], [37], where some of them exhibit
more complex modifications [38]. Research in 3D data
has shown that their usage improves the performance
of segmentation algorithms for anatomical structures and
focal lesions such as lungs, brains and tumours [39],
[40]. However, their performance in the segmentation of
diffused radiological patterns has not been systematically
investigated. In any case, the segmentation maps are used
to automatically generate imaging features applicable to
diagnosis tasks. Among different types of imaging features,
radiomic features have been successfully applied to images
of lung diseases [41], [42] and have been proven to be vital
in assessing the severity of ILDs [43], [44], [45].

IIl. MATERIALS AND METHODS

A. DATABASES

Within the scope of this study, we utilised two databases - the
Lung Tissue Research Consortium Database
(LTRC-DB), where written informed consent of each
participant was required before any LTRC procedure
was performed [46] and the Inselspital Interstitial Lung
Diseases Database (INSEL-DB) [5], where depending on
the annotation type, cases were either assigned to the
segmentation database (INSEL-DB-Seg) or the the diagnosis
database (INSEL-DB-Diag). Acquisition for the latter was
based on written consent given by patients on hospital
admission following ethics approval. The segmentation
database encompasses 338 cases in total (278 cases from
the LTRC-DB and the 60 cases from the INSEL-DB-Seg).
From this database, 60% (173 LTRC-DB and 31 INSEL-
DB-Seg cases) of the data was used to train the models,
20% (53 LTRC-DB and 14 INSEL-DB-Seg cases) used for
the evaluation and 20% (52 LTRC-DB and 15 INSEL-DB-
Seg cases) for testing. In order to ascertain the ground truth
for both databases, two chest radiologists - with 21 and
15 years of experience - classified the cases into the 4 UIP
CT patterns (typical UIP CT, probable UIP CT, indeterminate

TABLE 1. High level description of the two Databases used withing this
work.

Database name Annotation type #cases
dense ILD pattern
LTRC-DB diagnosis 278
lung/airway
INSEL-DB-Seg sparse ILD paattern 60
INSEL-DB-Diag diagnosis 105
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for UIP, and CT features mostly consistent with a non-
IPF diagnosis), according to the recommendations of the
Fleischner Society [6]. The radiologists first reviewed and
classified all cases independently and then met to discuss
the ambiguous cases to determine the classification through
consensus.

CT scans within the INSEL-DB were retrospectively
collected with irreversible data anonymisation from October
2015 to June 2017; IRB approval could therefore be waived.
Images were acquired on a third-generation dual-source
CT (Somatom Definition Flash; Siemens Healthineers,
Forchheim, Germany). CT scans were performed during the
end-inspiratory phase using the breath-hold technique with
patients in the supine position, from the apex of the lung
to the costodiaphragmatic recess, with a slice thickness of
1 mm. A tube voltage from 100 to 120 kVp and reference mAs
from 100 to 120 were applied. On the 128-detector scanner,
collimation of 128 x 0.6 mm was used, with a pitch of 0.6.
A slice thickness of 1 mm was reconstructed, with a SAFIRE
(Sinogram Affirmed Iterative Reconstruction) level 3 and
with a high frequency lung kernel (I70f). The LTRC-DB was
originally created in 2005 by the National Institutes of Health
and is made up of four clinical centres from around the United
States: Mayo Clinic Rochester, University of Michigan—Ann
Arbor, University of Pittsburgh, and Temple University. Each
centre contributes CT images of various vendors with a slice
thickness of 1 mm and hard kernel reconstruction.

B. CAD OUTLINE

As shown in Fig. 2a, the CAD support system for ILDs
consists of four modules: 1) segmentation and lung tissue
characterisation, 2) quantification, 3) radiomic feature extrac-
tion, and 4) diagnosis. Each module is described in the
following paragraphs.

C. SEGMENTATION AND LUNG TISSUE
CHARACTERISATION

1) LUNG/AIRWAY SEGMENTATION

To simultaneously extract lung and airway segmentation,
we implemented a 3D CNN-MLP-Mixer hybrid network,
referred to as “3D-Hybrid”, in a multi-task setup. We eval-
uated the performance of our novel MLP-Mixer against the
3D full-resolution nnUNet [47]. As the main operations in
MLP-Mixers are matrix-multiplications, a fixed size input is
required. Thus, each CT scan was re-scaled to a cube with
a side length of 256 voxels. An MLP-Mixer is composed of
two blocks: the token-mixing and the channel-mixing blocks,
where the first token-mixing block accepts as input linearly
projected image patches - the tokens. The token-mixing
block allows communication between spatial locations, while
the channel-mixing block provided a possibility for inter-
token communication. Mathematically, the two blocks can be
described as follows.

Ui = Xl-T + Wy -0 (W - LayerNorm(X)l-T) fori=1...T
(H
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Y; = U/ + Wy - o(W; - LayerNorm(U)]) for i=1...C
@

where U; and Y; are the token and channel embedding,
respectively, Wi to Wy are four different weight matrices, o
is an activation function, - is the dot-product, and «T» g
the transposing operator. For the lung/airway segmentation,
the token-mixing block was designated as ‘“‘auto encoder”
in order to reduce computational costs. The combination of
the two blocks is called a “mixer-layer” and an MLP-Mixer
can contain several of these layers. The networks architecture
can be seen in Fig. 2b. The initial convolutional stage and
the first 5 mixer layers contain task-shared weights. For
each task, 3 consecutive mixer layers and convolutional
up-sampling is implemented. The cubic segmentation map
is finally reshaped to its original CT scan shape by utilising
spline interpolation. In order to exclude tissue belonging to
the main airways we subtracted the extracted airways from
the lung segmentation. The nnUNet framework was used
without applying the in-built post-processing tools; instead
unified post-processing through morphological operations
was applied for both, the 3D-Hybrid and the nnUNet.
To train the network, we applied a region-based dice loss
for foreground and background and a distribution-based
weighted binary cross entropy (BCE) loss with dynamic loss
weights; the class weights (foreground/background) were
calculated per CT scan and utilised to weight the binary
cross entropy case-by-case. Both losses can be calculated as
follows.
2 x Area of Overlap

Dice = - . (3)
Area of Region 1 + Area of Region 2

BCE loss = —(y * log(p) + (1 — y) * log(1 — p)) “4)

where y is the ground truth label and p is the network output.

2) ILD PATTERN SEGMENTATION

Seven different ILD patterns (ground glass opacity - GGO,
reticulation, consolidation, honeycombing, reticulation +
ground glass, bronchiectasis, and emphysema) plus healthy
tissue were considered [48]. We utilised three different
methods to retrieve different ILD pattern segmentation maps
from CT scans. We evaluated the performance of those
models against each other and against the 3D full-resolution
nnUNet [47]. For all 2D methods, axial CT slices and for the
3D methods, cubic patches with a side length of 32 voxels
were used. The first two implemented methods were custom
made baseline U-nets for 2D and 3D data, referred to as
“2D-UNet” and “3D-UNet”, with exactly the same network
architecture (Fig. 2¢). The third method is a 2D CNN-MLP-
Mixer hybrid model, referred to as “Hybrid”’, which is
similar to the network used for the lung/airway segmentation
(Fig. 2c). To counteract class imbalance, we applied a class
weight, inversely proportional to the number of samples and
adjusted the cross-entropy (CE) loss. The adjusted CE loss
was used within a focal loss [49] as followed.

Focal Loss = —(1 — p)” * w * log(p) Q)

25645



IEEE Access

M. Fontanellaz et al.: CAD System for Lung Fibrosis

Lung/airway segmenation ILD pattern segmenation
Segmentation using
Machine Learning
Algorithms I
of CT Volume .
ILD Patterns B CNN-MLP-Hybrid custom U-Net (2D and 3D)
: : axial CT slice or
’—'—‘ xial CT sli
ILD Pattern | X2/ axial CT slice ic CT patch
—> | Segmentation E— i —_— Y [55 1672 ] 3x3(x3), 16, /2 ILD Map
- {32 » | Batchnorm _
HRCT scnas Embedding| 3x3(:3). 8,
(3D and 2D slices) » 3 [}
Anatomical Structure AL ES) :er:ir:::‘t'v‘on T
Segmenation - \maci i 3x30:3), 32, Upsampling
b d Imagin |
Feature Extraction L ! ' atehnomm)
..................................... Mixer-Layer (8x)
— I o v VT ZEED) )
-order statistics Textural featur I
First-orde fextural features § 3x3(x3), 32, 1x1(x1), 32 relu
Mixer-Layer (3x) Mixer-Layer (3x) | | T BatchroT
- " — " | Ceisineim |
| ‘ ‘ = = = ! 3:303), 32,
1 . S05sessess = 1 o= — ]
I 5 Shape  Wavelet analysis e ] relu
LT Je <] ¥ __ \ Al
% [ ] [Volumetrization] | A ]
Demographic Data Y '<“, * | 3x3(x3), 64, Upsampling
(age, gender) Mk 33,32,72_| 3%3,32,72_| ez Batchnorm
(il | relu | 3x3, 16 [ e Jroammeanr 3x3(x3), 64,
Dropout Dropout L A 3x3(x3), 64, [ 1ac),es | relu
3x3,16 3x3, 16 V Batclinommy
Cre ] N I B0 e
> 3x3, 64, %2
[ e
[ [} [ e ]
3x3, 64, %2 3x3, 64, %2 Dropout A
relu eu | 33,32 [ A ]
Machine Learning - Diopote T | - 3x3(x3), 128, Upsampling
(Deep Learning, fp0s L 33,32 3x3, 32 Batchnorm Batchnorm
Transfer Learning) i 4 N relu a0, 128.72) i 3x3(x3), 128,
and Statistical Algorithms | o 4 — Si2iE2R2 S, 8, | e e 128 [
for Data Integration, ] :.: [ ) relu [EEmL | O] e
Feature Selection H 3x3,32,%2 3x3,32,72 | Dropout Batchnorm
(Biomarker Identification) ! P ; 7 ‘ [ Maxpool ] 3x3(x3), 128,
and Decision Making z =S = 2348 I =0
o Dropout. Dropout | softmax__|
z : 33, 1 33, 1 ILD Map [ t
sigmoid sigmoid |
Lung Airway

FIGURE 2. a) Outline of the CAD system for ILD diagnosis and, b) high-level network architecture for lung/airway segmentation, c) high-level network
architecture for the ILD pattern segmentation (Hybrid and U-nets (2D and 3D)). As for the convolutional layers (salmon-colored boxes) in b) and c), the
first parameter is the kernel-size for 2D and 3D models, the parameter in the middle is the number of kernels, and the last parameter is the

down-sampling stride (/2) or the up-sampling stride (*2).

TABLE 2. Different radiomic features extracted for n.

Feature type #features
first order statistic 19
3D shape based 16
grey-level co-occurrence matrix (GLCM) 23
grey-level run length matrix (GLRLM) 16
grey-level size zone matrix (GLSZM) 16
neighbouring grey tone difference matrix (NGTDM) 5
grey level dependence matrix (GLDM) 14
[ total radiomic features [ 109 |

where (1 — p)? is the focal loss’ modulating factor aiming
to improve the class-weighting, — log(p) is the CE loss,
and w is the class weight. The sparse ILD pattern anno-
tations in INSEL-DB-Seg provide unlabelled information
that is exploited in an unsupervised manner by minimising
the entropy of the output probabilities for non-labelled
voxels [50].

D. IMAGING FEATURES

1) DISTRIBUTION-BASED ILD

Disease distribution features are calculated on the basis
of the occurrence frequency of a specified lung tissue
pattern (e.g. 25% of the overall lung tissue is affected by
consolidation). Distribution-based features can be divided
into those calculated over the whole area of the lung
parenchyma and those calculated for designated areas of the
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lung, as described in [5]. We extracted a total of 63 disease
distribution features.

2) RADIOMIC FEATURES

Hand-crafted features were estimated for each pathological
tissue type, as well as for healthy tissue. We extracted a
total of 872 features, 109 for each pattern. An overview
over the extracted features can be found in Table 2. Addi-
tionally, we calculated the Minkowski-Bouligand dimension
to supplement the pool of radiomic features with eight
fractal dimension features: one for each type of lung tissue
considered.

3) FEATURE SELECTION

To identify the most important features among the distri-
bution based and radiomic features, two different feature
selection approaches (FSA1 and FSA2) were applied and
assessed, as based on the predictive performance on the ILD
diagnosis task.

4) FSAT1: COMBINED UNIVARIATE AND MULTIVARIATE
FEATURE ANALYSIS

Firstly, each feature is tested for normality using the Shapiro-
Wilk test, and, depending on the result, either, ANOVA, or a
Kruskal-Wallis H-Test was conducted to test for significance.
All features were eliminated that exhibit a p-value above 0.05.
The multivariate analysis was conducted separately for the
distribution-based and the radiomic features. The maximum
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relevance minimum redundancy (MRMR) algorithm [51] was
used to select the most important features. In Algorithm 1,
we denote a pseudo code for our implementation of FSA1 up
to this point. The procedure is repeated for all three different
ILD segmentation maps generated by our custom algorithms,
resulting in three different sets of selected features. A feature
was selected for diagnosis if it was among the most important
features for at least two of the three ILD segmentation maps.
For the diagnosis, two clinical parameters, age and gender,
were appended to the features set.

Algorithm 1 FSA1
: Input: Feature set X
: Output: Selected feature set Xgelected

Step 1: Feature Normality Test
: for each feature f in X do
Perform Shapiro-Wilk test to check for normality.
if feature f is normally distributed then
Conduct ANOVA to test for significance.
else
Conduct Kruskal-Wallis H-Test to test for signifi-
cance.
11:  endif
12:  if p-value of the test > 0.05 then
13: Remove feature f from X.
14:  end if
15: end for

R e A A T o

—
e

17: Step 2: Multivariate Analysis and MRMR Feature
Selection

18: Perform multivariate analysis on distribution-based fea-
tures.

19: Perform multivariate analysis on radiomic features.

20: Apply MRMR algorithm to select most important
features for each analysis.

21:

22: Output Xgelected

5) FSA2: FEATURE REDUCTION

The method is based on eliminating redundant information.
To this end, the correlation between all features is calculated.
The correlation values above a certain threshold T are
counted. The feature with the highest count is removed. Next,
the correlation values between the remaining features are
calculated and the features are eliminated until no correlation
value above T is observed. Thresholds of 0.1, 0.3, 0.5, 0.7,
0.9, and 0.99 were used. In the second step, features relevant
to classification were selected according to a feature ranking
provided by a random forest classifier on the combined
feature set (diseases distribution + radiomic features +
clinical). In Algorithm 2, we denote a pseudo code for our
implementation of FSA2. The resulting feature sets with
all different Ts were then used for the classification on the
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test set. We report the performance measures only for the
best performing combination. Thus, FSA2 provides different
feature sets for each of the three different ILD segmentation
maps and both diagnosis classification tasks (4-way and 2-
way diagnosis), resulting in a total of six different feature sets.

Algorithm 2 FSA2
Input: Feature set X
Output: Selected feature set Xgelected

Step 1: Feature Correlation Elimination
Calculate correlation matrix C between all features in X.
Count the number of correlation values above threshold 7.

Remove the feature with the highest count.

while correlation value above T is observed do
Calculate correlation matrix C between remaining
features in X.
Remove features with correlation values above T .

end while

Xselected < X

Step 2: Relevant Feature Selection

Rank features in Xgejecteq USing a random forest classifier.
Select features relevant to classification on the combined
feature set (diseases distribution + radiomic features +
clinical).

E. DIAGNOSIS

Diagnosis classification was performed on two different
tasks. Specifically, the random forest classifiers were imple-
mented to i) classify the lung fibrosis for each case into
four UIP patterns according to the guidelines (Fleischner)
and ii) classify pooled classes where UIP patterns and the
non-UIP patterns were joined together. The number of cases
per class with and without the class re-balancing is described
in Table 3.

TABLE 3. Class-distribution for testing set with and without data
augmentation.

Pattern #Cases #Cases with augmentation
Typical UIP CT 14 37
Probable UIP CT 9 29
Indeterminate for UIP 18 35
CT features most consistent 64 64
with a non-IPF diagnosis

F. RADIOLOGICAL IMAGE ASSESSMENT

A chest imaging specialist, a senior general consultant,
a general consultant, and a chest fellow radiologist with 20-
, 9-, 5- and 4-years’ experience, respectively, in chest CT
imaging scored the images on a clinical Picture Archiving and
Communication System (PACS Sectra, Linkdping, Sweden).
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Lung windows settings were used to read the hard kernel
reconstructions (I70f). Both radiologists were blinded to the
ground truth and had to classify the patient’s images into the
four UIP categories (Table 3).

G. EXPERIMENTAL SETUP
To assess the performance of our methods for segmentation
of the lung anatomy, we calculated sensitivity, specificity,
balanced accuracy, and the soft dice-coefficient (Equation 3)
on the testing set. Sensitivity, specificity, and balanced
accuracy are defined as follows

TP

Sensitivity = — L 6
ensitivity = o= (6)
Specificity = —— %)
ecificity = ————
ety = TN+ Fp
1 TP TN
Balanced Accuracy = — + 3
2 \TP+ FN TN + FP

where TP stands for true positive, FN for false negative,
TN for true negative, FP for false positive, and balanced
accuracy computes the average of sensitivity and specificity,
giving equal weight to both metrics, to provide a balanced
assessment of the model’s overall performance.

To compare the different ILD pattern segmentation
pipelines, we calculated sensitivity, specificity, and the
balanced accuracy on the testing set. To assess the difference
between individual segmentation models based on the dice
metric for the lung segmentation and for the balanced
accuracy metric for the ILD pattern segmentation, we applied
the paired sample t-test. The significance level was set to
0.05. For the diagnosis classification, we utilised random
forest classifiers and 105 cases from the validation (53 cases)
and testing (52 cases) sets of the LTRC-DB. For each of
the 105 diagnosis cases, an individual classifier was trained
on the remaining 104 cases and additional cases from the
INSEL-DB-Diag, in order to reduce the class imbalances
(Table 3). In addition to our segmentation based pipeline,
we implemented the algorithm proposed in [23], trained it
on our data, and finally compare the results against our
method. Moreover, and different to [23], we did not only
used random weight initialization of the deep CNN, but used
pretrained RadImageNet [52] weights as type of transfer
learning for network initialization. Finally, balanced accuracy
(Equation 8) a.nd F-score were calculated for the readers
and the proposed CAD systems, using the independent chest
radiology experts’ classification (1-4) as the ground truth. F-
score, the harmonic mean of precision (fraction of TP out of
all positive predictions and recall (sensitivity), is defined as
follows

precision * recall

F-score =2 % ———X—— )
precision + recall

The McNemar test was used to compare accuracy between
the readers and the CAD system. The significance level
was set to 0.05. Statsmodels (v0.13.2), was used for the
McNemar test and sklearn (v0.23.2) was used for Cohen-
Kappa tests. The 4 categories were first analysed unpooled for
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TABLE 4. Comparison between 3D-Hybrid and nnUNet for lung
segmentation.

Method Sens Spec B-acc (%) Dice
3D-Hybrid 0.979 0.987 98.3 0.981
nnUNet 0.983 0.985 98.4 0.984

"Sens is short for sensitivity, "Spec" is short for specificity, and "B-acc" is
short for balanced accuracy.

FIGURE 3. Comparison between segmentation maps retrieved by
MLP-Mixers with and without the presence of convolutional layers. a)
segmentation map, up-scaled with spline interpolation. Artifacts at small
recesses are preserved. b) segmentation map up-scaled with transposed
convolution. Artifacts could be partially cleaned out.

all entries. Then the 4 groups were pooled into two categories:
i) cases needing a biopsy for further diagnostic testing,
according to the white paper of the Fleischner Society [53]
(groups 3 and 4), and ii) cases without further need for
diagnostic testing (groups 1 and 2). Interobserver agreement
between radiologists, as well as between radiologists and
the CAD system, were calculated individually from the
weighted Kappa as follows: slight (0-0.2), fair (0.21-
0.4), moderate (0.41-0.6), substantial (0.61-0.8), and almost
perfect agreement (0.81-1).

IV. RESULTS

A. LUNG/AIRWAY SEGMENTATION

With a dice-coefficient of 0.981, our lung segmentation
method utilising MLPs, performs comparably well to the
nnUNet baseline (dice: 0.984, p-value: 0.62, Table 4).
In Fig. 3, we present different outputs for the segmented lung
parenchyma - once for a pure MLP-Mixer architecture and
once for the architecture as introduced in Fig. 2b. We observe
that the pure MLP-Mixer architecture generates pixelated
outputs, as they internally down-sample the provided images
by the factor of the chosen token-size. Adding a convolutional
up-sampling stage at the end greatly improves the quality of
the segmentation map.

B. ILD PATTERN SEGMENTATION
Table 5 presents the performance for the four different ILD
segmentation methods, as measured in terms of sensitivity,

TABLE 5. Comparison between ILD segmentation methods.

Method Sens Spec B-acc (%)
Hybrid 0.59 0.90 73.94
2D-UNet 0.51 0.84 68.35
3D-UNet 0.56 0.90 72.89
nnUNet 0.53 0.92 73.21

"Sens is short for sensitivity, "Spec” is short for specificity, and "B-acc” is
short for balanced accuracy.
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Comparison between different segmentation methods and ground truth
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FIGURE 4. Comparison between ground truth and the four proposed segmentation methods. For all three custom methods (Hybrid, 2D-UNet, and
3D-UNet) we observe over-segmentation, while for the baseline nnUNet, we observe under-segmentation in the presented cases.
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FIGURE 5. Dependent on the underlying segmentation method and the
goal task (4-way or 2-way classification) the selected features (by FSA2)
could differ significantly. The number of shared features among different
combinations of underlying segmentation methods and goal tasks can be
found on the non-diagnoal entries, whereas the total number of features
contained in one set can be found on the diagonal.

specificity, and balanced accuracy. We display the average
over all 8 tissue pasterns (health + 7 ILD patterns) and all
cases within the test set. We did not observe any statistically
significant difference between nnUNet, the 2D-UNet and
the Hybrid (p-values of 0.14, 0.28). However, there was
significant difference between nnUNet and the 3D-Unet
(p = 0.03). Furthermore, the Hybrid performed comparably
well to the 2D-UNet (p = 0.65), but differently from the 3D-
UNet (p = 0.0007). 2D-UNet and 3D-UNet with the same
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network structures perform differently (p = 0.0002). In Fig. 4
we present output samples for each of the four segmentation
methods and the corresponding ground truth. In the top
row, we have a mix of honeycombing and a mixed pattern
(GGO + reticulation) and in the middle row a predominant
case of emphysema - all pathological patterns present
in ILDs.

C. FEATURE SELECTION

FSAT1 returns 33 features (19 radiomic, 12 disease distribu-
tion, and 2 clinical features), while FSA2 returns between
30 and 52 features for the 4-way and 2-way diagnosis,
respectively. More specifically, features originating from
3D-UNet segmentation maps were selected by applying a
threshold of 0.5 with subsequent selection of the 50 features
and by applying a threshold of 0.3 with subsequent selection
of the 52 features for the 4-way and 2-way diagnosis,
respectively. Feature sets generated by the 2D-UNet and the
Hybrid were selected with thresholds of 0.7 and 0.99 with
subsequent selections of the 30 and 50 most informative
features for the 4-way and 2-way diagnosis, respectively.
In spite of this, having the same threshold and number of
features does not mean that the features for those methods are
identical. Lastly, feature sets generated by the nnUNet were
also selected with thresholds of 0.99 and 0.9 with subsequent
selections of the 30 and 50 most informative features for the
4-way and 2-way diagnosis, respectively. As seen in Fig. 5,
many of the selected features differ between the segmentation
methods and within the segmentation methods for different
tasks (4-way and 2-way diagnosis). Lists of the selected
features can be seen in the supplementary material.

D. DIAGNOSIS
As seen for all three custom segmentation algorithms, the
feature set selected by FSA2 led to better performance
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with respect to both metrics for the 4-way (FSA1 vs
FSA2: Accuracy 49.6+0.71 vs 58.1£2.6 and F-score
0.50£0.01 vs 0.62+0.03) and the 2-way (FSA1 vs FSA2:
Accuracy 70.2+0.95 vs 77.2£1.6 and F-score (0.70£0.01)
vs 0.7720.01) for the diagnosis problem (Table 6). To assess
whether the system can provide diagnosis at least equal to that
of human readers, we calculated the corresponding p-values
utilising the McNemar test. We only analysed the best
performing feature set (FSA2 feature sets). We observed no
significant difference between the 3 custom models and the
nnUNet baseline for either the 4-way or the 2-way diagnosis;
(p-values ranging from 0.24 to 0.80). For both diagnosis
tasks, all four models performed similarly to readers 1, 3,
and 4, with p-values ranging from 0.077 to 0.86, with the
single exception of the 4-way diagnosis, where Hybrid vs.
Reader 4 performed differently (p-values: 0.048) and one
exception for the 2-way diagnosis, where 3D-UNet vs. reader
1 performed differently (p-values: 0.045). For the 4-way
diagnosis, reader 2 performed significantly differently from
all other readers and all four models (p-values ranging from
0.00002 to 0.00046). For the same diagnosis task, reader
1 performed differently from all other readers (p-values:
reader 1 vs. reader 2: 0.00002, readerl vs. reader 3: 0.05,
and reader 1 vs. reader 4: 0.033). For the 2-way diagnosis
task, reader 1 performed differently from all other readers
with p-values ranging from 0.00067 to 0.012. For the same
diagnosis task, there was no significant difference between
readers 2, 3, and 4. Furthermore, Hybrid, nnUNet and 2D-
UNet performed differently from reader 2 (p-values: 0.013,
0.034, 0.0093), whereas 3D-UNet performed comparably to
reader 2 (p-value: 0.097). Readers 3, 4, and all four models
performed comparably with p-values ranging from 0.072 to
0.80. When comparing the performance of our proposed
segmentation based models to the IRV2 methods [23],
we observe a different behaviour in performance between the
IRV2 with random initialized weights and our 4 models (max
p-value of 0.034 for the 4-way classification and 0.001 for
the 2-way classification). In comparison, the IRV2 initialized
with RadImageNet weights performs more in line with our
models (p-values between 0.02 and 0.18 as well as 0.05 and
0.19 for the 4-way and 2-way classification, respectively.
To assess interobserver agreements, the Cohen-Kappa test
was applied. For the 4-way diagnosis, reader 2 exhibits the
weakest agreement with all other readers and all four models,
with values between 0.1 and 0.32 - corresponding to slight
to fair interobserver agreement. For the same diagnosis task,
the interobserver agreement between readers 1, 3, 4, and all
four models, is fair to moderate, with values ranging from
0.29 to 0.59. For the 2-way diagnosis, only the Hybrid vs.
reader 3 exhibit a Cohen-Kappa of 0.19 (slight agreement).
Most other reader-reader, reader-model and model-model
combinations exhibit fair to moderate agreement. Reader
1 vs. reader 3, reader 3 vs. reader 4, reader 1 vs 3D-UNet,
and nnUNet vs 2D-UNet showed substantial agreement
with values of 0.61, 0.63, 0.63, and 0.64, respectively.
Furthermore, the Kappa Fleiss-test was performed on the
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groups (4-way, 2-way diagnosis) - all readers (0.37, 0.50), all
readers and the Hybrid (0.35, 0.42), all readers and nnUNet
(0.36, 0.48), all readers and 2D-UNet (0.34, 0.46), all readers
and 3D-UNet (0.34, 0.49), and all readers in combination
with all four algorithms (0.36, 0.45).

E. IMPLEMENTATION

For both lung/airway and ILD segmentation we used early
stopping to avoid overfitting. For parameter optimisation,
we utilised Adam that was initialised with a beta_1 of 0.9,
a beta_2 of 0.999, and a learning-rate of 0.001. No learning
rate decay was applied. The best hyper parameters for the loss
weighting within the lung/airway segmentation were 0.7 and
0.3 for dice loss and cross-entropy loss, respectively, where
90% of the dice loss is associated to the foreground and
10% to the background. Radiomic features were retrieved
utilising the PyRadiomcs library [54], a standardised python
software-package [55]. With an empirical search, we found
that selecting the 15 most important features among the
distribution-based features and the 35 most important features
among the radiomic features provides the best features set
for FSA1. For FSA2, different feature sets were chosen for
the different segmentation methods and classification tasks.
The random forests for the 4-way and 2-way diagnosis were
configured to use 100 decision trees and 15 features per
leaf with balanced class-weights. Calculations were partially
performed on UBELIX (http://www.id.unibe.ch/hpc), the
HPC cluster at the University of Bern.

V. DISCUSSION
The motivation behind this study was to design and evaluate
algorithmic approaches for the detection and diagnosis of
ILDs. We investigated the applicability of novel image
processing methods such as MLP-Mixers. We additionally
investigated how the performance in terms of diagnostic
accuracy is influenced i) when 2D data and 3D data are
used to retrieve ILD pattern segmentation maps, and ii)
feature-reduction methods are applied for selecting the most
informative radiomic and diseases distribution features.
While our proposed segmentation based CAD system
is more complex than pure CNN based approaches and
does not out-perform established systems like [23], our
solution provides radiologists with auxiliary segmentation
maps, empowering the human expert to verify the algorithm’s
behaviour. Additionally, we utilised random forests for the
classification of our transparent segmentation-map-based
features. Random forests, unlike deep neural networks,
belong to the family of explainable algorithms; hence our
approach aims to increase trust in the algorithms decision
making and encourage practicing radiologists to use an
Al-powered tool in their clinical practice. Moreover, the
original study in IRV2 reports no significant differences
in results when initialising their models with pre-trained
ImageNet [56] weights. In contrast, we observe the IRV2
model with random initialisation performs differently when
initialised with domain-specif RadlmageNet weights, while
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TABLE 6. Diagnostic performance for CAD systems and human experts.

4-way diagnosis

2-way diagnosis

Reader Balanced accuracy (%) Average F-Score Balanced accuracy (%) Average F-Score
Hybrid 61.7 (50.3) 0.66 (0.51) 77.4 (69.0) 0.79 (0.70)
Custom System™ 3D-UNet 56.7 (48.6) 0.61 (0.49) 79.0 (70.4) 0.76 (0.69)
i ¥ 2D-UNet 55.8 (49.8) 0.60 (0.51) 75.2 (71.3) 0.77 (0.72)
Average 58.1£2.6 (49.6£0.71) | 0.62+0.03 (0.50+0.01) | 77.2%+1.6 (70.2£0.95) | 0.77+0.01 (0.70+£0.01)
‘ Baseline System™* [ nnUNet | 59.2 ‘ 0.61 ‘ 77.1 ‘ 0.77 |
Method by [24] (random weights) [ IRV2 ] 557 ‘ 0.43 ‘ 74.9 ‘ 0.63 |
Method by [24] (RadImageNet weights) | TRV2 | 59.0 | 0.53 | 76.3 | 0.70 |
Reader 1 76.5 0.71 90.2 0.86
Reader 2 39.1 0.36 73.4 0.68
Human Reader 3 55.8 0.54 73.1 0.72
Reader 4 59.4 0.53 79.1 0.73
Average 57.7+13.3 0.5440.12 79.0£6.9 0.7540.07

*Performance measures are in the format of feature set from FSA2 (FSAT). ** for the baseline, only features selected by FSA2 were used.

the overall scores are similar (Table 6). This may indicate the
introduction of some bias towards other imaging modalities
like Magnetic Resonance Imaging (MRI) or CT patterns
with high frequency within the RadImageNet dataset, while
random initialization allows the network to focus on the
current data distribution. The optimal case might be an
ensemble of pre-trained and random initialised models.

We found that MLP-Mixer in combination with convolu-
tional pre- and post-processing can be applied to medical
image segmentation within the framework of detecting dif-
fused pathological patterns in the lungs. These techniques not
only show strong results in this area but also have the potential
to be applied to other medical and non-medical image-
processing domains [57], [58]. In general, incorporating CNN
components into MLP-Mixers necessitates a shallower neural
network overall, thanks to the distinctive architecture of the
MLP-Mixer. This design efficiently merges low-level texture
and high-level global context features. However, according
to Fig. 4, nnUNet seems to be more robust than all three
custom models. This might be caused by the different data
preparation used for the custom models (voxel value clipping
to -1000 and 200 Hounsfield Units and normalisation to a
range between 0 and 1) and nnUNet (voxel value clipping
using the 0.5 and 99.5 percentiles of the foreground voxels
and image normalisation utilising the global foreground
mean and standard deviation). Furthermore, we have to
evaluate whether additional auxiliary segmentation losses at
down-sampled stages - as used by nnUNet - would also
lead to more robust outputs for our three custom models,
as with such intermediate auxiliary losses, the network learns
how to gradually fine-tune a proposed segmentation map.
Segmentation maps appear to be sensitive to the overall CAD
pipeline (data pre- and postprocessing as well as DL model)
as segmentation maps produced by our proposed CAD system
appear more similar under each other (despite quite different
network architectures) than compared to those generated by
the nnUNet pipeline.

For diffused patterns, such as abnormal tissue alterations
in ILDs, we found that 2D slice-based segmentation did
not perform worse than 3D patch-based segmentation.
Even though, the segmentation was based on 2D data,
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diagnosis relevant distribution-based and radiomic features
were calculated on the reconstructed 3D segmentation maps.
This is in line with other proposed systems for medical
diagnosis [59], where 2D slices were used to retrieve 3D
predictive imaging features for computer aided diagnostic
support. One reason that the 3D segmentation method does
not outperform the 2D segmentation may be that the third
dimensions does not provide additional information for
diffused radiological patterns, since those patterns appear to
be similar in all directions. By showing that 2D methods
are readily applicable for ILD segmentation we can benefit
from the plethora of well-established and pretrained models
that can be applied for transfer learning and to augment our
segmentation pipelines not only with volumetric CT data, but
also with 2D chest X-rays.

To achieve precise lung and airway segmentation,
we adopted a 3D data processing network approach,
enabling the integration of shape features across spatial
dimensions. We also employed a multi-task setup with
shared first-layer weights to extract shared CT-specific
patterns. In task-specific layers, which combine information
through subtraction, addition, and more complex functions,
the final segmentation output is generated. The challenge
lay in deciding when to transition from shared-weights to
task-specific weights. While lung and airway segmentation
share some similarities, they demand distinct finesse. Lung
parenchyma extraction involves blob-shaped structures,
while airways are tubular and gradually decrease in diameter
as they merge into lung tissues. To accommodate these
nuances, we introduced residual connections to the initial
convolutional down-sampling stages. This empowers the
task-specific layers to derive characteristic combinations of
information needed to fulfil their respective objectives.

The radiomic- and disease-distribution features selected
for each segmentation method and classification tasks (4-way
or 2-way) individually (FSA2) outperformed the approach of
standardised feature selection (FSAT) that utilises selection
techniques based on univariate and multivariate features.
However, with p-values for the 4-way diagnosis of 0.02,
0.06, and 0.25 and with p-values for the 2-way diagnosis of
0.16, 0.73, and 0.80 for the Hybrid, the 2D-UNet and the
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3D-UNet, respectively, most of the differences are not signifi-
cant (0.05 significance level). Nonetheless, we conclude that
standardisation to select features across methods and tasks
(4-way and 2-way diagnosis) is sub optimal and features
should be individually selected for each segmentation method
and task, even though we are at risk of selecting features that
do not represent a characteristic biomarker [60]. From Fig. 5,
we observe that our statistically similar models can identify
different features, as is in line with recent findings [60].
With those experiments, we want to highlight the sensitivity
of feature selection. Even within the same dataset, different
features are perceived to be important for related but not
identical machine learning methods and goal tasks (4-way
and 2-way classification of ILDs), hence accenting the
difficulty of CAD systems to adopt to unseen data.

The accuracy of the radiologists depended on their experi-
ence. The most experienced radiologist with 20 years of chest
CT practice demonstrated significantly better performance
in UIP pattern classification than the other readers and
most algorithms. With ranges from fair over moderate up
to substantial, interobserver agreement was different for
many radiologist-, radiologist- and machine-, and machine-
pairs. Pairs below the substantial level might be used as
complement to a human readers in a second reader setup or to
question the human expert (similar as for DL assisted nodule
detection [61]), whereas those with substantial agreement,
classified more or less the same cases correctly or falsely.

Processing CT scans requires reduction in data volume
if computational resources are not to be exceeded. While
for the IRV2 model, down-sampled montages of 4 randomly
selected axial CT-slices were chosen to select a whole CT
volume [23], we decided to heavily down-sample all CT scans
for the lung/airway segmentation, since the overall shapes
of the lung/airways are of major importance. Prior to the
down-sampling, we accounted for the different voxel spacing
across the three axis through interpolation. The scans have
subsequently been down-sampled to a cube with a fixed size
of 256 voxels per side. For the ILD pattern segmentation
we either split each CT scans into axial slices (2D) or into
cubic patches (3D). As MLP-Mixers require a fixed size
input, we re-scaled the axial slices by sizing the longer side
of the CT-slice to 352 pixels and padded the smaller side
to 336 pixels. With padding, distortions in the CT could be
avoided. Due to the moving-window framework within CNNs
(convolutional down-sampling stage within the Hybrid), the
padded region does not affect the network performance. The
3D-UNet uses 3D patches that are sampled from a CT scan
within the region of the detected lung parenchyma. To avoid
artefacts at the boarders of the patches, we decided to sample
the patches with 25% overlap and average out multiple class
votes at the border regions.

VI. LIMITATIONS

Although we have shown that MLP-Mixers may be used in
the segmentation of medical images, we have to mention
some limitations. Firstly, MLP-Mixers require the input to
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have the same size for all samples. Secondly, images need to
be tokenised and the tokens need to be flattened into an array
of channels. The size of the tokens determines the resolution
of the outputted segmentation map. Therefore, if the token is
too large, the output will be pixelated and in the best case,
demands post processing. The token size however cannot
be arbitrarily decreased, as the number of neurons in the
token-mixing block correlates directly with the number of
tokens within an image and an excessive number of neurons
increases the complexity of the training procedure. We can
mitigate the effect of the token size on output resolution
by choosing an adequate token-size. For the lung/airway
segmentation, a token size of 4 x 4 x4 was chosen for feature
map resolution of 64 x 64 x64; for ILD segmentation a token
size of 4 x 4 was chosen for a feature map resolution of
88 x 84. The outputted down-sampled segmentation map is
subsequently up-sampled by learnable convolutions. As seen
in Fig. 3, MLP-Mixers utilised as segmentation models can
greatly benefit from combination with learnable up-sample
functions. A third drawback of MLP-mixers is the inability
to process unevenly padded regions across different cases.
In our experiments with ILD-mixers on the ILD segmentation
task, we observed poor performance with a weighted
accuracy of 55.59%. By adding a convolutional stage prior to
the MLP-Mixer layers, we empowered the system to carefully
select the information that should be applied to the powerful
mixer layers. Combination of convolutional down-sampling
and up-sampling with mixer layers and intermediate dense
processors boosted the performance by 18.35% to 73.94%.
A limiting factor in our reported performance (segmen-
tation and diagnosis) could be the mix of two different
databases what is challenging for any deep learning based
system. Recently published studies have mentioned a drastic
decrease in performance if the system was evaluated on a
population other than that used for training [62] and that
different cohorts result in different feature sets [63].

VIl. CONCLUSION

We found that MLLP-Mixers in combination with convolutions
are applicable for medical image segmentation. The Hybrid
performs similarly to all other networks with respect to
balanced accuracy on the segmentation task and on the diag-
nosis. In future experiments, we will add additional auxiliary
segmentation losses at different resolutions to achieve gradual
fine-tuning of the final segmentation map. We hypothesise
that investing further research into MLP-Mixer application
for medical image segmentation could boost their perfor-
mance beyond the level of state-of-the-art UNets. Further-
more, utilising 3D data neither improved the segmentation
of ILD patterns nor the diagnosis. Lastly, we found that
features selected for a specific classification task (4-way or 2-
way diagnosis) outperform standardised methods of agnostic
feature-selection. Overall, CAD systems in the framework
of ILDs perform similarly to human experts, with mostly
moderate interobserver agreement.
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